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Some nonrecoil, derivative coupling theories, which are exactly soluble, are analyzed in order to discover
what it is that produces the nonrenormalizable behavior typical of derivative coupling. This behavior is
found to arise as the result of an essential singularity which the operators of the derivative theories possess
at the origin in coordinate space and the resulting branch point the Fourier transforms of these operators
possess at the origin in the complex coupling constant domain. This branch point causes the breakdown
of the expansion of the Fourier transform of the operators in powers of the coupling constant and introduces
the nonrenormalizable infinities. It is shown that a coordinate space coupling constant expansion is possible,
and that a Fourier transform of the operators of the derivative theories may be defined by analytic con-
tinuations and made finite by renormalization.

I. INTRODUCTION

HE success of the renormalization program in
identifying all of the infinite parts of quantum

electrodynamics with a renormalization of the charge
and mass of the electron has led to many attempts to
duplicate this procedure with less tractable theories.
Although these have sometimes succeeded, it has be-
come clear that for many field theories it is not possible,
with the usual methods, to remove the ambiguities by
identifying the infinities with empirical constants. In
particular, for derivative coupling theories, one 6nds
that the usual renormalization procedure cannot be
carried through because, no matter what subset of
graphs is chosen as primitive, the degree of divergence
increases inde6nitely as one goes to higher order
processes.

In what follows, several simple nonrecoil derivative
coupling theories (all but one ot which is nonrenormal-
izable by the usual methods) are analyzed in order to
discover what it is that produces the nonrenormaliza-
bility which is characteristic of derivative coupling
and whether, in spite of their very bad behavior in the
power series expansion, something can still be done to
make these theories finite and unambiguous. Perhaps
the most striking result is that these theories in a sense
are renormalizable; that is, it is possible to make all
the operators of the theories finite by mass, Z1 and Z&

renormalizations.
The distinction between the renormalizable and non-

renormalizable theories considered occurs as follows:
for the renormalizable theory, the renormalized propa-
gator in coordinate space is analytic (in the finite plane)
in the coordinate difference everywhere except at the
origin, where it has a branch point. For small enough
values of the coupling constant its Fourier transform
exists and is analytic in the coupling constant in the
neighborhood of g'/4s'=0. The renormalized propa-
gators of all the nonrenormalizable theories, in coordi-
nate space, are also analytic in the coordinate difference,
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in the finite plane, everywhere except at the origin. At
the origin, however, they have essential singularities.
Because of these essential singularities, the Fourier
transform of the propagators for the nonrenormalizable
theories exists only in one half of the complex coupling
constant plane, and it sometimes turns out to be that
half of the plane for which the Hamiltonian cannot be
Hermitian. However, a Fourier transform can be defined
by analytic continuation from the non-Hermitian half
of the coupling constant plane. The Fourier transform
in any case has a branch point at g'/4m'=0 which
makes it a many-valued function of the coupling
cons~a~t. .

It then results that the set of progressively worse
infinities, which in the power series expansion is asso-
ciated with nonrenormalizability, is due solely to the
failure of the expansion of the momentum space
propagator about a branch point in coupling constant
space.

The infinities which occur in the simple theories
treated here, therefore, fall into two distinct classes:
those which have nothing to do with the power series
expansion and which occur in a similar fashion in both
renormalizable and nonrenormalizable cases (renormal-
ization constants), and those whose existence is due
entirely to the coupling constant expansion (the non-
renormalizabie infinities). This suggests that the be-
havior of the momentum space propagator, in the
coupling constant, may divide 6eld theories into three
classes: those for which the propagator is analytic at
the origin and is renormalizable; those for which the
propagator is not analytic in the coupling constant at
the origin, but a formal expansion of which gives an
asymptotic series which is renormalizable; and those
for which the behavior in the coupling constant at the
origin is such that an expansion cannot be made at all.

It also turns out that the solutions of the nonrenorm-
izable theories are so singular that it is not possible to
freely interchange the order of such operations as
diGerentiation and integration. The momentum space
perturbation expansion sometimes implicitly inter-
changes these operations and, in so doing, may add
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spurious (sometimes infinite) terms to the correct
solution, depending on the method of calculation. In
the renormalizable case, the solutions are not so singular
so that this difFiculty does not occur, and the usual
momentum space perturbation expansion gives the
correct result,

In the second section, the propagators for several
simple nonrecoil theories are obtained exactly by
functional methods and are renormalized. The differ-
ence between the renormalizable and nonrenormalizable
theories is then discussed in Sec, III. A perturbation
method suitable for calculation with the nonrenormal-
izable theories is outlined in Sec. IV. In Sec. V, the
operators of a nonrenormalizable theory are defined by
analytic continuation. Appendix A gives the details of
these analytic continuations and considers the multi-
valued behavior of the propagator as a function of the
coupling constant. In Appendix 8, the accuracy of a
cutoff approximation to the nonrenormalizable theories
&s discussed.

II. THE PROPAGATOR FOR A CLASS OF
NONRECOIL THEORIES

We shall, to illustrate the method, first obtain the
propagator for a simple class of theories which has the
following equations of motion for the nuclear field f,
and the meson field p:

{—s(a/at)+ m+3m —g(a-y/at-) }it=o
s s}y ()

This can be thought of as a spinor field in the nonrecoil
limit interacting with the eth derivative of a boson
6eld with no vacuum polarization. ' When m=0 we
have the neutral scalar theory previously solved. ' ' It
will be seen that the method of solution would permit
us to work out in a similar fashion any nonrecoil theory
with a coupling term of the form gP*rr;(D;"gg where
D" is a differential operator and o. is a commuting
vector.

Since the technique used below is relatively new, it
will be explained in some detail. Later, when the
solutions are examined, it will be seen that a certain
kind of perturbation expansion is possible even in the
nonrenormalizable cases. This gives a series which can
be summed when the n's commute. The reader who is
not willing to follow the first method is referred to the
second.

To 6nd the propagator we employ the functional
integral formulation of field theory first proposed by
Feynman' and exploited recently by Edwards and
Peierls' and Matthews and Salam. ' Using this formu-

lation the nucleon propagator for the 6elds above can
be written as

~(-)'(t—t')

fapggnp(t)p(t') exp{iJ' J'2'"'(xi)8(xi—xs)dxidxs}

J 5$5$3$ exp{sJ'J"Zi"'(xi)8(xi x—s)dxidxs}

=(&(e(t)~(t')))., (2)
where

1 8 a e@
s +m—+—am g—

2 Bt Bt

+Herm. conj. —{( P)'+ti'@'}

Following Matthews and Salam the integration over
it and it is performed, and, neglecting the effects of
vacuum polarization, one gets an equation which
(except for the factor —i) is identical to Eq. (21) of
Edwards and Peierls:

S&„i'(t—t') = —ilV ayG, &"&(t,t', y)

Z f
Xexp —

~ "y(~)~-'(P,&')y(g')«d~', (3)

where

&-'(r, Y) =5(r—Y) (— '+~')t,
1 t'

~-'=~ 34 -p —,
, 4(~)~ '(~,Y)4-(~')did~',

and G4&"~ (t,t', p) is the solution of the equation

a a"Q)
i +m—+—am g—G,&-&(t,t', y) =5(t t') (4)—
at at- I

and is a functional of @. The symbol J'ff&$8& means
a functional integration over all functions p. This
integral is still to be precisely defined, but in the simple
cases considered it will be seen that the method of
solution is to manipulate the variable function p by
linear transformations until the functional integration
cancels out.

The solution of Eq. (4) is

G4&"'(t,t'; p) =i8(t t') exp i—(m+5m) (t—t')—

Equations of this form have been solved and renormalized
also by R. Arnowitt and S. Deser, preceding paper /Phys. Rev.
99, 349 (1955)).' S. F. Edwards and R. E. Peieris, Proc. Roy. Soc. (London)
A224, 24 (1954).' T. D. Lee, Phys. Rev. 95, 1329 (1954).' R. P Feynman, Re.vs. Modern Phys. 20, 376 (1948).

~ P. Matthews and A. Saiam, Nuovo cimento II, 120 (1955).
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Putting this into Eq. (3) one has, with r= t t'— This gives for the propagator:

i' 8"4 (5)
S& i'(r) =8(7)e ""+' 'IV~ 5P'exp ig I —d&J„

z

~(~)~ '(~-e)~(~')««' (6)

Now let

where

and

si„i'(~) = 8(v )e
—'"'8&"~ (r),

g2 00

P& "~ (7)=exp !
I pPdp~~n —

P(&
—~~~ 1)

4x'~ p

where

~
t

~(~) =~'(~)+a„«'(~,~)d~; 8~'=8~,
t'

,

I d ~a- (x,~)S&-&(~ x') =8&.~(t—~')8(r —r').

g2 00

8m= !I P'dPpi ' for N=O; 5m=0 for e)0.
4~'~ p

The propagator is renormalized by a multiplicative
constant Z2~"):

This gives

S&„&'(r)=8(7) exp i(m—+&n)r

where

Si„i'(~)=Zp'"'S, '"'(7),

g2 00

z ("&=exp II P&dP~» —Pl,

I

(13)

zg2 ~t pt gn

+—I «II d~' ~&-&(~e)J, 8)n
(7)

as the functional integral just cancels out.
6&"'($,f') can be represented by

jg2 (et pt Qn gn—I' db I' db', ~'"(6k'),
2 "i J

g Bfp" Bpp'"
(9)

which at. g= E' is Lletting pi= (p'+p') lj

g2 ~t ~t
db d&p' I pi'" 'P'dP

Svr' ~ t t' p

0 ~n=0
)(l &

—i~Ipo —po'I+ (10)
ipi8 ($p —$p')+ ~ e)0

where

~"'(Ge) «(=6' i»"'(0,b; o,b')

g
—s~ l to—$0' I

4'' p

and the terms omitted in (10) are derivatives of
B(b—b ) which give zero when integrated from t' to t.

Doing the b and (p' integrations, (10) becomes

g' t" 1 ir/pi +=0
p'dp(u'" ' —(e '"'—1)+ (11)

4pJ, 0 e&0.

&'"'(S,Y) =—&"'(r &').
8g ~n

Then the second part of the exponential of Eq. (7)
becomes

The Zp renorrnalization makes S,'"&(r) finite for r) 0.
We see that this multiplication shifts the value of the
propagator so that where the unrenormalized function
is Rnite for 7=0 and zero for 7-/0, the renormalized
function is 6nite for z&0 and infinite for r =0.'

For m&0 it is convenient to investigate the behavior
of the renormalized radiative correction term R, '"'(7)
for meson mass @=0, as this does not change the
behavior of the function at its singularities. Then
R.&"'(r) becomes:

g r
g (n) (g )

—exp I p2n ldpg i—ir-
4x'~ p

The integral in the exponent is well defined for r in the
lower half plane and can be continued to all points in
the complex r plane, except 7.=0, to give':

8,&"&(p-) =exp((g'/4x-')( —1)"(2e—1)!~ '"}

Letting y = (—1)"(g'/4m'), we have for e)0, the
radiative correction term

E.'"' (r) = exp{y(2n —1)!r—'"}, (14)

where (—1)"y= (—1)"y*~&0 for Hermitian Hamil-
tonians.

With the interaction term Q*n, (D;"P)P (where
n,n, —n, n, =0; nini=n&n& —— ——1) everything goes
through almost exactly as above (except that one gets

6 Although Z2(") above appears always to be smaller than one,
actually this depends upon the way the limit v-~0 is taken.
Since Z2("& in the n)0 cases is

ZpI "&= lim exp h r "),
7W

the value of a function at its essential singularity, this value
depends upon the path by which it was reached.

If the meson mass was kept unequal to zero, the singular
functions in the exponential would be Hankel functions of argu-
ment IJ7 and their derivatives.
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a mass renormalization). Equation (7) becomes

Zg

+—~'~J ~
d4'd&D~'D~ '~'(5, k') (7a)

For D=V, (11) becomes

g
k4dkco o(e '"' 1+iM—7')

4m'~ p

and so, after renormalization —for meson mass p=0,
this is just identical to R,&" (o.) above. In general any
diQ'erential operator D" will give results which, with
respect to the singularities of the solutions, are identical
to those above.

III. COMPARISON OF THE RENORMALIZABLE
AND NONRENORMALIZABLE THEORIES

The differences between the theories with interaction
terms of the form Q*n;(D,"P)iP, which we shall desig-
nate as nonrenormalizable or n&0 theories, and the
renormalizable or m=0 theory (with the interaction
term yP&P), result almost entirely from the type of
singularity the operators of these theories possess at
the origin in coordinate space.

For x=0 the renormalized propagator is singular at
7=0 for Hermitian Hamiltonians, but it is summable
at this point for any complex value of y, ~7~ &1. For
I=0, S."'( )ios'

&"pdp
S.&"(r)=8(r) exp imr+y —' e '"'~. (15)

~p GD

In order to find the behavior at r=0 we write

p 7I'0 F00 dp
dp e '"= H&'&—(pr-) —pP ——e-'"' (16)

oi 2

g+ &@($1—8)geo d'4 dry

p'dp dE.
4'pro~ o dpi db ~ cip (+ oi) (++oi)

S,i"(r) exists and is analytic in y at y=0. One can
reproduce the renormalized perturbation series by
expanding 8,&"(7) in powers of y. Then each term of
the expansion converges (involving integrals like

Jo log"Tdt) and, for
~ p ~

&1, the series itself converges.
For m) 0, as can be seen from Eq. (14), the radiative

correction term E,i"'(r) has an essential singularity at
x=0. As a consequence of this, the propagator S,&"i(r)
is not summable at r= 0 for p in the right half plane
and thus the Fourier transform of S.&"&(7) is defined
only for p in the left half complex plane. The fact that
the Fourier transform of the propagator exists for
certain complex values of y, however, suggests that a
Fourier transform couM be dined over the entire
domain of y by an analytic continuation. This possi-
bility is exploited, in Sec. V, in order to define the
momentum space operators of the m) 0 theories.
However, the Fourier transform of the propagator so
defined has a branch point at y=0. It is just this that
makes the momentum space coupling constant expan-
sion impossible and introduces a nonrenormalizable
set of infinities into these theories. For the character-
istic nonrenormalizability in which the degree of
divergence at infinity (in the Fourier transform space)
increases with each term of the series is rejected in
the breakdown of the expansion Jo exp/ —(y/ro")
—i (q+ m) rjdr in powers of y. The expansion, of course,
breaks down independent of the sign of p.

Another consequence of the high degree of singularity
possessed by the n&0 theories, is the fact that in the
calculation of the operators of these theories spurious
terms may arise if the order of the operations of
difI'erentiation and integration are interchanged. This
arises, in particular, for the nonrecoil theories treated
above when the differential operators involve the time.
In the eth derivative theories each meson propagation
line is operated on to give

For r((1 the second term can be neglected as we are
interested only in the singular part at r=O. Then (16)
becomes

where

dp—e '"'~—in'(pr)+ln2
&p GO

3

lny =C~0.577

Thus R, i i(o.) for o.«1 is

E, (r)~ (const) (ps) (17)

In coordinate space, for y)0, R."&(r) is singular at
7 =0. However, for ~y~ &1, the Fourier transform of

The meson mass p cannot be set equal to zero in the e=o
case because a logarithmic infrared divergence would result.

Putting (&i) g"E" at each vertex, as one would do in
the usual perturbation expansion, is equiva, lent to
reversing the orders of the operations and could
introduce spurious terms even if the entire expansion
did not break down.

In all the theories, infinite consta, nts appear which
can be absorbed by Z2, Z& and mass renormalizations
and whose existence is independent of the method of
calculation. These "traditional" divergences do not
arise because of the power series expansion, but their
identification and absorption into physical constants
is made dificult by the expansion. The nonrenormal-
izable divergences associated with the deriva, tive
coupling theories are produced by the incorrect expan-
sion and thus disappear when the method of calculation
is changed.
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and the exponentials give e ' " '). Associating the
differential operators D»" with the coordinates on
which they operate, S""(r)becomes

IV. A PERTURBATION EXPANSION FOR THE
NONRENORMALIZABLE THEORIES

Because of the behavior of the momentum space
propagator at r=0 for the e&0 theories, the usual
coupling constant expansion becomes impossible. How-
ever, since the propagator in coordinate space for r/0
is analytic in p, it is possible to obtain all the operators
even for the e&0 theories by a power series expansion
in y as long as one remains in coordinate space and
keeps v 40. The fact that such an expansion does exist
for the nonrenormalizable cases would make it possible
to explore more complicated theories for which it is not
such a trivial matter to obtain an exact solution. '
Also, this provides an alternative derivation of the
results of Sec. II.

We will consider a general nonrecoil theory, with an
interaction term ygn (D"g)f, in which the nucleon
propagator (everything will be in coordinate space) is
given by

g2l ~t
Sit&(r) = (—1)l g(r)e

2'll aJ ti 0 ti
dt2l

X
~

df 1~@1&@2' ' '&@st 2 apl"Dps t41F(&2 &1) ' ' '

t' Per mutations

XDp2t Dp(21—1) t4tF42t +2t—1). (22)

If the n's commute the integrand is symmetric in
t& t2l and we may change the limits of integration
to get,

g2l ( 1)l
Sl2" (r) = g(r)e ' 'cx n . . n

2ti! (2l)!

SF(f2—t,) =g(f2 —f,)e-'m«2-tt'

the meson propagator by

(1g) X P ! dfst ''' dflDu1 Dps AF(&2 &1)
Permutations ~ t v tr

toft

AF(x2 —xr) = — d'pe '"&'~'»
16m'& p CO

and the vertex operators by

XDy2l Dp(21 1) t41F—(&2t &2t—1)~ (23)

Using the representation (19) for AF(x~ —xl) and
assuming for an explicit example that D"=V', we can
do the f integrations. Then we have for Sist&(r):

g2l
S(2t)(r) =— g( )e ™gl

i! (21)!

(2o)gn&

&est Q gp1, p2gp3, y4'''gp(2t —1), p2t) (24)
Permutations

where

(e '"' 1+i&or)—
16m'~ co' 11 |Atda

{e '"'—1+rior}
4x' 3 co'

df». . . " dftg(r, f) g(f fst)— —Sist&(r) =

g2l

X( 1)l e
—im(tt —t')—tm(t2 —tt) —~ tm(t ttt—)—

)I2l at X=X' and is diagonal because of the antisymmetry
of k„;k». Since the n's commute the sum over permu-
tations gives (2l)! identical factors (ct„tr„)t=3t for a
three dimentional V'

~ Therefore, we have
X&p1Dpl &ps~@2 '' p2tapst '2 ~F( 2 '1)

Permutations
Of Xt ~ ~ ~ $2L

Then the 2l-order propagator is given by a sum of
diagrams in which a nucleon line, beginning at x' and
ending at x, emits and absorbs mesons at the 21 points
x~ x2l, where the meson lines connect all permutations
of the coordinate pairs (xrxs)(x3$4) ' ' '($2t—1Ã2t) ~ S (r)
ls

X'F(X4—X3) ~F(X2t—Xst 1). (21)
and

S21(~) g2l3lgt/itg(r)e imt'—(25)

Here D»" is a diGerential operator which acts on the
coordinate x;. The factor 1/2ti! is introduced because
we sum over all permutations of the coordinates x~ x2l
rather than all pairings. This just duplicates l J2'

identical diagrams.
The 8 functions combine to give limits of integration

over the t variables:

]'& ],(]2& ~ (]2l
'Arnowitt and Deser (reference 1) have investigated the Ps(Pe)

theory, including recoil, with the use of an expansion in a pa-
rameter which is not related to the coupling constant but is
proportional to the proper distance 3'„.

SFt(r) —P S(2l}(r) g(r)e imr-
l=p

g' p" k4dk
Xexp ! (e '"'—1+i(or)

4~2" 3 aP

which checks with Eqs. (7a) and (11a).Other operators
of the theory such as the vertex function and the
meson-nucleon Green function can be calculated in a
similar fashion by inserting one or more external lines
into the propagator and again summing over all possible
permutations.
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The crucial point in the calculation is the assertion
that the n's commute. If they did not, then each pairing
of the coordinates would have a diGerent weight and
there would no longer be symmetry in the t& ~

variables. Then the t integrations cannot be done so
easily, and the problem is no longer trivial.

It is of interest to inspect this perturbation expansion
of the propagator for the nonrenormalizable theories.
For 1@0it is clear that term by term the infinite parts
can be removed by mass and Z2 renormalizations. For
/=0 the renormalized expansion breaks down and this
just is due to the singularity of the exact solution at
this point. One also sees that the terms of the series
correspond, as they must, to an expansion of the exact
propagator in powers of y.

V. DEFINITION OF THE OPERATORS FOR THE
NONRENORMALIZABLE THEORIES

In order that the nonrenormalizable theories treated
above be physically meaningful, it is at least necessary
that the Fourier transforms of the various operators of
the theories be defined, as these Iourier transforms
are closely related to quantities, such as the scattering
amplitudes, which are comparable with experiments.
The scattering due to the diagram in Fig. 1, for ex-
ample, is proportional to the Fourier transform of the
propagator; more generally, the meson-nucleon scat-
tering amplitude is given by the Fourier transform of
the meson-nucleon Green's function which will involve,
with other quantities, the Fourier transform of the
propagator.

The renormalized propagators, for the e larger than
zero theories, are given by

5,&"'(r) =e(r)e '"' exp{y(2m —1)!r '"} (26)

and the Fourier transform of 5,&"'(r) is (suppressing
the superscript e)

S(q) = e '~+p'~ exp{&(2e—1) tr »}Jr (27—)
dp

This is defined for rN+q in the lower half plane
(ns+q —ie) and for y in the left half plane. We want
to extend the domain of definition of Eq. (27) to all
complex values of y. When this is done the Fourier
transform of the propagator can be defined for those
theories (ts even; is) 0) for which the requirement that
the Lagrangian be Hermitian would place p in the
right half plane; also the singularity that the Fourier
transform of the propagator possesses at y=0 can be
examined. This turns out to be a logarithmic branch
point and introduces an ambiguity into the theory
because the Fourier transforms of the operators become
many-valued functions of the coupling constant.

5(q) can be analytically continued from the left half
plane into the entire domain of p by the procedure
given in Appendix A. Equation (A2) of this appendix

Fxo. j.. A Feynman diagram for the scattering of a meson by a
nucleon. The double line represents the nucleon propagator with
all radiative connections: S,(p+g).

gives a representation of 5(q)

S(q) =
~

exp{—i(nz+q)r —)i(2'—1)!r '"e"}dr,
ce

(28)

where y= —)e" and ) =)*~&0, which is defined for the
entire domain of y. From Eq. (28) one can see that
5(q) is a many valued function of y, as there will be an
infinite number of contours Cg+~~ which correspond to
a given y= —Xe"e'" 3=0+1&2

In the v=1 case, where y must be real and smaller
than zero for. the physically interesting Hamiltonians,
the values of 0 are restricted to even multiples of
w, 0=2hr, where 3=0, &1, &2 . . We can define Sp(q)
(that function of q for which /=0) as the principle
value of S(q). It is Sp(q) that would be reached in a
"natural" way beginning with a cut-oG theory and
permitting the cutoff to go to infinity. (See Appendix
B.) Si(q) is the sum of Sp(q) and terms which are the
contributions of the integrand of Eq. (28) when inte-
grated over a contour which encloses the point 7-=0.

In a theory which contained scattering, if the same
general results were valid, the extra terms, while not
changing the residue of the propagator at q+nz=0,
would give an additional contribution to the scattering
which did not necessarily have the same energy de-
pendence as the scattering due to the principal value.
Some explicit evaluations of these terms are given in
Appendix A.

In the m=2 case y must be real and larger than zero
for Hermitian Lagrangians. Then 0 is an odd multiple
of ~, 0= (21+1)m, where l=0, &1, &2 . . Again one
gets a many-valued propagator but here the principal
value Sp(q) would not. be approached by a cut-off
solution. (The cut-off solution diverges as the cutoff
approaches infinity. ) The fact that two such cases
occur seems to be a peculiarity of the nonrecoil theories.
In the four-dimensional case, the results obtained by
Arnowitt and Deser' show that due to the presence of
functions like exp( —g'/x')e '"* which must be inte-
grated over all of space-time —positive and negative
values of x2—no cut-off solution would approach the
continuation which gives the finite Fourier transform.

The point y= 0 is a finite branch point, for any value
of z, and is shared by all the Rielnann surfaces. Thus,
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as the interaction goes to zero (as y approaches zero
from any direction) the Fourier transform of the
propagator becomes, unambiguously, the free propa-
gator.

Once the Fourier transform of the propagator has
been dined the other operators of the theory are also
defined and can be made finite by renormalizations.
The vertex function for example is:

X p —'/2 " 4($)t& '(5 Y)4(E')dkdY (29)

The author wishes to express his gratitude to Dr.
J. R. Oppenheimer and to the Institute for Advanced
Study for their hospitality. He also would like to thank
the members of the Institute for many helpful conver-
sations.

APPENDIX A. BEHAVIOR OF THE PROPAGATOR
IN THE y DOMAIN

The existence of the Fourier transform of S.'"& (r) for
part of the complex y plane makes possible the definition
of a Fourier transform of S.t"& (r), for the entire domain
of y, by the process of analytic continuation. " If
—y=he" where X=X*~&0, the Fourier transform of
S,t"&(r) is

where I'&") is related to the usual vertex function by

'(~,g-')S '(y, l'-)S '(oo, t)-I't"&(x y ~')dhdyd('

=r'-'(t, t', P). (30)

t

r&-&(t,t'; t) =gS(.&'(r), &'"'(f,~o)d~o. (31)

By a procedure entirely analogous to that of Sec. II,
one gets for I'(")

S(q)=)I exp( —i(t&o+q)r —)t(2'—1)!r '"e")dr, (A1)
0

and this is well defined for m+q in the open lower half
plane and for y in the left half plane (—sr/2 &~8~& or/2).
If the contour of integration in the r plane is now
deformed to Cg, as shown in Fig. 2, we obtain the
analytic continuation of Eq. (A1) into the entire
domain of y. S(q) is then

S(q)= t exp( i(ng+q—)r )(2izs —1)—!r o"e'o)dr (A2).
The Fourier transform of this operator is well defined
if the Fourier transform of S'(r) is defined, and there
are no additional ambiguities. Let This is a many-valued function of y since there are an

(n) g (n)p(n)

Then I', '") will be finite if

g (n) g (n)

(32)

(33)

The same kind of argument is applicable to the
meson-nucleon Green function 0

2Q

i
l

I

l

t

o

t

X " &'"'(P',rto')dgo'S(. i'(r) (34)
V

and to the other operators of these theories.
The matrix elements between free particle states of

the operators which describe scattering amplitudes

t such as the meson-nucleon Green function, Eq. (34)]
are all zero. This is because the interactions of the
theories treated can be transformed away and contain
no scattering of mesons by nucleons. "The procedure
outlined in the foregoing, however, makes it possible to
de6ne 6nite matrix elements for virtual transitions and
thus to make all the operators finite for any value of e,
in spite of the fact that for e&0 the operators, from
the usual perturbation series point of view, are not
renormalizable.

I G. Wentzel, QNoetgm Theory of Fields (Interscience Pub-
lishers, Inc. , New York. , 1949},p. 4/.

l

l

I

t

I

I

I

Fio. 2. Contours in the 7. plane which de6ne the Fourier trans-
form of the propagator in various regions of the y domain. Cg
applies for any value of e. Co, C&, and C2 are the contours which
give So(g), Sq(q), and S2(g) for the case a=1.

"The author wishes to acknowledge some very helpful dis-
cussions on this point with Professor A. Beurling and Dr. P.
Malliavin of the Institute for Advanced Study,



NONRENORMALIZABLE F IELD THEORY 369

infinite number of values of 8 which correspond to a
given y and each of these give a different 5(q) due to
the contour Cg. Some of the contours that arise are
shown in Fig. 2.

As an example of the kind of behavior S(q) exhibits
let us investigate in detail the case m=1. For this case
y= —g'/4or' (in order that the Hamiltonian be Her-
mitian) so that the relevant values of 8 are 8=2hr
where l=0, &1, &2. . Let Si(q) be the function
5(q) when 8=2hr. Then

Si(q) =So(q)+ Tt (q) (A3)

where Sp(q) is defined as the principal value of 5(q) and

T~(q) is the contribution that arises due to integrations,
such as those in Fig. 2, which surround the point 7 =0.
The procedure outlined above would also be applicable
if the meson mass p were not set equal to zero. However,
the explicit evaluation of Ti(q) then becomes much
more

dificult.

Tp(q), which is the contribution of the integrand of
Eq. (A2) in a complete, clockwise circuit of the origin,
is (for n=1)

- (X) (m+q)"-'
Tp(q) =2m. Q r!(2r—1)!

(A4)

So(q) = + e "'"+o'h(r)dr, —
(A5)

rN+q & p

where h(r) =exp( —X/r') —1. The second term of Eq.
(AS) contains the radiative correction to the propa-
gator; it is finite for all values of q and goes to zero as

0. For /@0 we get

Si(q) = e+'& +"'h(r)dr+8(m+q)Tp(q)
m+q ~o

(A6)

Sp(q) = + e ""+'&'h(r)dr+To(q), etc.
m+q

Tp(q) goes to zero as (m+q)~0 and as X—+0. As m+q
or X become infinite along the real axis Tp(q) also
becomes infinite. This latter behavior is true for all odd
e while for e even (e)0) Tp(q) oscillates and goes to
zero as X or (m+q) become infinite. For the meson
mass unequal to zero Tp" (q) remains finite as m+q~
and is zero for X=O. However, the explicit form of
Tp&(q) would be much more complicated than that of
Eq. (A4) and its dependence as q

—&op has not been
ascertained as yet.

A peculiarity of the meson mass zero case is the

logarithmic branch point S(q) possesses, in the q
domain, at the point m+q=O. This corresponds to the
production of mesons with arbitrary energy. The value
at 5(q) in the m+q domain differs from branch to
branch of the Riemann surface by just T&(q).

In examining the behavior of Si(q) for the various
values of / it is convenient to separate off the singular
part of Si(q) at m+q=0. We then have (for v= 1)

As m+q —+0, 5(m+q) becomes

Si(q) =—i/m+q+finite terms, (A7)

APPENDIX B. CUT-OFF APPROXIMATION

In spite of the impossibility of making a coupling
constant expansion for the Fourier transforms of the
e&0 theories discussed above, it is possible to approxi-
mate the exact theory by a cut-off theory, the error
term which can be estimated when the solutions are
known. The Fourier transform of the operators of the
cutoff theory can be calculated in a p.rturbation
expansion and this expansion will be practical if the
coupling constant and cutoff are small enough.

As an example let us consider the m=1 theory with
an interaction term yP (n V@)P.Then the renormalized
propagator is

g2 p k4dk
5,(r)=8(r)e '~'exp '

—
e '"' . (B-1)

4s'o" pop

A theory which cuts oG the meson momentum at E
would give for the renormalized propagator,

g2 ~X $4dp
5 K(r) —8(r)e ~mr exp I e irur (Q2)

4x' 4 GO

The cut-off solution above is analytic in g'/4~' for
all. values of r and thus the Fourier transform is analytic
in g'/4n' at g'/4K'=0 and can be expanded in the
coupling constant at the origin. As E increases and the
cutoff solution approaches the E= ~ solution the terms
of the expansion of the Fourier transform of S,K(r)
grow increasingly large and oscillate. Thus the expan-
sion appears to be completely dependent on the cutoff.

This is not necessarily so, however, for an exami-
nation of the exact solutions shows that the cutoff and
E= ~ theories differ mostly in the region where w—&0,

but this region itself contributes very little to the
Fourier transform of the propagator because of the
radiative correction:

E.(r)=exp( —(g'/4~')r '} as r +0. —

and for X=O, Si(q)= —i/m+q
We can obtain a crude idea of the behavior of these

functions, for small values of m+q and X, by replacing
h(r) by the step function

h( )=—813/20)' —3.

Then neglecting terms of order m+q or higher we have,

So i—/m—+q 3/2—QX+
Si i /m+ q+—3/2+X+
S, —i/m+q —3/ 2y'X+ .

, etc.

For larger values of m+q, Tp(q) becomes dominant
except in the odd l cases where the step function
8[+ (m+q) j cuts off T&(q) as m+q changes sign.
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Define the error term E(E,q) to be

E(E,q) = LS(q) —S (q)3/Sx(q). (B5)

g plane

FIG. 3. Contour
used in evaluating
the error term
z(x,q).

If the contour of integration is shifted to C', shown in
Fig. 3, we can divide the contribution to the error term
into a portion which comes from the neighborhood of
the origin C& and that which comes from the major
part of the path C~. The contribution to E(E,q)
which results from C~ is

E~(k,q) (X/R—)e xa(1/R+K) (B6)

To make this more precise we will examine the
Fourier transform of S,(r) S,x(r—) and show that, for
a large enough cutoQ, the error term is small and, for a
small coupling constant, a perturbation expansion of
the Fourier transform of S,x(r) can be made.

The Fourier transform of S,lr(r) is

where X=g'/4zr', while the contribution from C~ is of
the order of

xE
+ X exp() /R' —ER)[ER—1$ . (B7)

2 Sx(q)

S (q) = exp —z(zzz+q)r

g' ~ k4dk

+
4zr'"

and the principal value of that of S,(r) is

oo g' p" k4dk

S(q) = il exp z(ztz+q)—r+ II e
47l O M

'bG7 7 d7-

Letting R=r+X and E=k/QX, one can choose values
of r and k so that the error term becomes arbitrarily
small. However, this is limited in practice by the
requirement that E be kept reasonably small in order
that a perturbation. expansion of Sx(q) be possible.
In any case one gets a better approximation close to
the poles of Sx(q) since the major contribution at the

' 'dr . (B4) singularities comes from large values of r where S,lr(r)
is a very good approximation to S.(r)
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Agreement of Classical and Quantum Coulomb Excitation Integrals*

JQHN P. LAzARUs AND S. SAcK f'

Yale University, Rem Haven, Connecticut

(Received June 13, 1955)

A comparison is made between classical and quantum Coulomb excitation integrals. Use is made of a
relation due to Breit and Daitch concerning close equality of classical and quantum density integrals. It is
shown that the indefinite Coulomb excitation integrals show agreement at nearly the same distances as the
corresponding density integrals. The agreement of the Coulomb excitation integrals for small excitations is
therefore believed to be caused at least partly by the agreement of the density integrals.

'HE fact that semiclassical and quantum calcu-
lations of Coulomb excitation are in close agree-

ment has been discussed by Breit and Daitch, ' by
Daitch, Lazarus, Hull, Benedict and Breit, ' and by
Biedenharn and Class. ' In a note to appear shortly,

* This research was supported by the United States Air Force,
through the 0%ce of Scienti6c Research of the Air Research and
Development Command.

f Now at University of California, Livermore, California.
' 6, Breit and P. B. Daitch, Phys. Rev. 96, 1447 (1954).
'Daitch, Lazarus, Hull, Benedict, and Breit, Phys. Rev. 96,

1449 (1954).' L. C. Biedenharn and C. M. Class, Phys. Rev. 98, 691 (1955).

Breit and Daitch' show that there is a close agreement
between integrals of classical and quantum densities
integrated from r =0 to r. They show that if the integrals
are taken to a node of the radial wave function F/r and
if the JWKB approximation holds at the point r, there
is an exact agreement between the two integrals.
A redistribution of densities occurs as a result of going
from the classical to the quantum theories. It is reason-
able to expect, therefore, that the calculation of radial

'G. Breit and P. B. Daitch, Proc. Natl. Acad. Sci. (to be
published).


