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after these corrections and that for compound nucleus
contribution a similar discrepancy yet remains, it is in
the sense to correspond to a greater reduced width for
neutrons (in C") than for protons (in N"); i.e., "the
neutrons stick out further than the protons. " Such an
eRect has been suggested for heavier nuclei, though it
would be very surprising to find it holding for so light
a nucleus as A=13.

An estimate of the course of the cross section for the
reaction C"(d, t) C" was made on the basis of compound
nucleus formation by assuming, as before, that the
whole of the cross section for C"(d, rs) N" at low deuteron
energies involves compound nucleus formation. On the
assumption that the reduced width for triton emission
is as great as that for neutron emission (the assumption
of "preformed" tritons), we predict the dashed line of
Fig. 2—in which the coming into play of successive
residual states of C" has been allowed for and the
associated irregularities smoothed out. It is seen that
even under the very unplausible assumption of the
existence of preformed tritons, compound nucleus
theory fails by an order of magnitude to explain the
observed C" formation. We are forced then to assume
that this (d, t) reaction proceeds by some pickup mecha-
nism and that we are indeed measuring the relative

probability of the deuteron's losing a nucleon to the
nucleus and removing one from it. As yet no sufficiently
reliable theory of (d, t) pickup exists to warrant a
comparison being made with these results. It is interest-
ing to note that, at Ed, ——3.3 Mev, the angular distribu-
tion of the reaction C"(d, t) C" is such as to suggest that
a direct mechanism already predominates. 4

It is interesting to compare these results with those
of Cohen and Handley' on (p, t) reactions. These authors
suggest that triton emission from a compound nucleus
state has an inherent probabil&ty comparable with that
for single nucleon emission. They base this argument on
the rather Oat angular distributions sometimes obtained
which, they remark, tell against a pickup process. How-
ever, this conclusion is no longer valid when the energy
of one or both the charged particles concerned is of the
order of or below the Coulomb barrier; here a direct
mechanism can give a sensibly isotropic angular dis-
tribution. It appears that considerable interest attaches
to the resolution of this question of the mechanism by
which tritons and similar complicated particles are
emitted from nuclei in events of moderate to high
energy.

'B. L. Cohen and T H. Han. dley, Phys. Rev. 93, 514 (1954)
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An approximation method developed previously to deal with many particles in strong interaction is
examined in further detail. It is shown that the series giving the interaction energy is a development in a
sequence of linked or irreducible cluster terms each of which gives a contribution to the energy proportional
to the total number of particles. Consequently the convergence of the expansion is independent of the total
number of particles. The origin of this simple feature is illustrated by showing that a similar situation exists
jn the expansion of standard perturbation theory. The numerical convergence of the expansion is quanti-
tatively discussed for the nuclear problem where it is shown that the correction arising from the erst cluster
term involving three particles is less than the leading term by a factor of about 10 '. The smallness of the
correction is largely a result of the action of the exclusion principle.

I. INTRODUCTION

' 'N a previous paper' (to be referred to as I) we have
- - given a method for reducing approximately the many
body problem for strongly interacting particles to a
problem of self-consistent fields. Some of the physical
content and origin of the method were discussed there
and the nature of certain correction terms which can
be neglected for very many particles was discussed.
We shall in this paper examine the structure of another

type of correction term which arises from interaction

*Supported in part by a grant from the National Science
Foundation.

' K. A. Brueckner and C. A. Levinson, Phys. Rev. 97, 1344
(~955).

of clusters of particles and in so doing exhibit the gen-
eral structure of the expansion involved. This will also
allow us to draw some general conclusions about the
convergence and accuracy of the method.

In Sec. II, we shall briefiy summarize the relevant
formulas from I and describe some diKculties which
appear in high-order terms in the expansion for the
energy which can be removed by a simple modification
of the many-body propagation function. In Sec. III, we
show how similar terms appear to arise in the usual
perturbation theory but that they cancel identically,
in a manner simply related to the cancellation discussed
in Sec. II. In Sec. IV, we summarize these results and
show how they may be generalized into a simple pre-
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scription for evaluating matrix elements or, equiva-
lently, used to redefine the many-body propagator for
the system. In Sec. V, we take as an example the nuclear
case and discuss quantitatively the convergence of the
method. In Sec. VI, we discuss the equation for the
two-body reaction matrices which provide the leading
approximation to the energy. Finally in Sec. VII, we
summarize our results and make some concluding
remarks.

find for the leading terms in the expansion
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In this notation the equation for the operator t is

tijkl Vij, , kl+2 Vij, nsn tran, kts
mn e

where 1/e is the propagator for the many-body system.
Ke have previously defined e to be the operator

e=E—PT —Pt "

where
tcij—0 (ti,j'j+ ttj, ti)s,

which we shall still use for the present; in Sec. IV we
shall show how a diferent definition may be advantage-
ously introduced to simplify the structure of the ex-
pansion for the energy. In terms of these operators, the
energy of the system is

where
11

I'=1+——E &,,ktpkt,
2 g iikl

11
~kl = 1+ Z IsanrÃrs.

2 g mn&kl
(6)

Equation (5) for the energy may be written more
explicitly as an expansion in the incoherent or non-
diagonal operators I. We use Eq. (6) for the I"s and

II. FORMALISM

A. Structure of the Expansion for the Energy

In this section, we shall summarize the results of I
and discuss some of the formal properties of the ex-
pansion. We use the formalism developed in I for
dealing with identical particles. We shall compress the
notation used there by introducing the following
definitions:

( 1 1 1
+0 Z ~

tttOslij, kl ~nr, rs ~yq, tv ~ah, csttts0

e
'

e
'

e

In all of these terms the condition must be imposed on
the summations that consecutive pairs of indices not
be matched, this condition arising from the similar
condition in the defining equation for FI,l. Let us now
examine these terms in detail. The first term on the
right hand side of Eq. (7) is that previously evaluated
in detail elsewhere; it gives by far the largest contribu-
tion to the energy of a highly degenerate Fermi gas.
We shall return to a discussion of its structure in more
detail in Sec. VI. The second term vanishes identically
since the product of the two nondiagonal operators with
me/k/ has no diagonal matrix element. The third
term is the first correction term to the energy as given
by the first term alone; it involves a cluster of three
particles. A typical pairing of indices gives a term

( 1 1
&~0=0 E~ 40,&;,, ;; &jk;k I;k .-kyO ~.

-
e e

This term has what we shall call a typical linked or
irreducible structure; each I is linked to the other two.
As a consequence of this structure, this term cannot
be written as a product of simpler terms; this result is a
general feature of all linked terms. As we shall see it is
criterion of linkage which characterizes the expansion
and determines its convergence.

To determine the order of magnitude of these typical
terms, it is convenient at this stage to introduce a
method of counting the dependence on the total number
of particles, X. We observe that the operators I con-
tain a factor of v '~E ' which comes from the nor-
malization of the wave functions. Each free summation
over momentum states gives a factor of S since

P —v dk-iV.
(2qr) 0J

In determining the number of free summations we
must of course take proper account of the Kronecker
delta function on the total momentum contained in
each operator I. Thus we can determine the Ã-de-
pendence of a given term by a simple counting pro-
cedure. Application of these rules to the terms so far
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Jt' 1 1 1
Ether =p~ $0,I;j, ; j —Ikt, k t —I;i,; Ilk't'kt40 , ~

~ (12)

If ij and kl are summed independently, application of
the counting rule gives

Z4& )-r2 (13)

On the other hand, for a typical linked term such as

discussed g&ves

Et=+ (y„t., ;,y,)-N'(1/X) =llew (1O)
i7

as we expect. Similarly

E6~1V4/$6 =E,
with three factors of X coming from the summation
over i,j,k and one factor of E from the summation
over i'.

In the next term of fourth order in the I's, we erst
6nd terms of a new structure arising. ' In addition to a
variety of linked cluster terms, we now 6nd reducible
or unlinked terms. These have the form

ij and kt' are independent of each other with no inter-
action term linking them. They therefore arise in the
expansion only because of an inadequacy in this
approximation scheme. It is easy, however, to show
that they may be eliminated by a very simple and
natural redefinition of the propagator 1/e. To see this,
let us look elsewhere for similar unlinked terms in the
energy. It is easy to see that these first appear in the
second order term t,;„;..Let us examine a typical term

tijij =
, Vijsj+, Vsj, i'j' ti'j'ij,

e

=v;;,;;+v;;,;;.(E PT„——P t,, )
—'t" ". (16)

le kl

We can evaluate the propagator by making use of the
fact that to a good approximation

E=Z Tk"'+Z t., kl"', (17)
kl

where by the superscript zero we mean evaluated in
the ground state. Consequently the energy denominator
1s

E—p T; pt. , kt
—e;.,'+ p——(&„kt&0& j, kt)—, , (1&)

1 1 1
0 i' i' ' ki' k'v l'j', l'y k'l', kl 0

e e e
(14) where

kl&i j

the counting rule shows a linear dependence on X.This
result holds generally for a linked cluster; these are
always of the order E or lower and hence depend at
most on the same power of S as the leading term.
Consequently the convergence of this series does not
depend on X (as long as X is very large) except through
the appearance of unlinked clusters. Before examining
these in more detail, we write down some typical un-
linked clusters of higher order which also depend on
higher powers of E than the erst. These are, for example,

( 1 1
E6

~
4'Os Iij, i'j' Ii'kik' Issn, r,

n'n'

e e

1 1
X-Ik;, k;I .. .y0 ~-~',
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e e e

e;; =T;+Tj+v.(6')+U, (j)
—T; —T,' —V, (6') —V,(j'), (19)

V, (6)=Pt, , ;j,

etc. The terms in t, k&, which do not refer explicitly to
the excited particles i', j' have changed because of an
implicit dependence of the operator for the kl pair on
the excitation state of the unlinked ij pair. Explicitly,
neglecting the second-order change in t,

( 1 1
[4 t, kt

L ek't' ek'l' 'j')

= ~kt, k t' (ek t.;.;.—ek. t.)4.t, l, l
ek'i' ek i i'~'

1 1
=&kt, k L 4'l', klei'j s r (21)

1
X—I „„—I„... „,@0 ~~1V'.

e e

B. Reducible Clusters

Inserting this change into the propagator for the ij
(15) pair and expanding the propagator, the expression for

t@,'; breaks up into two terms

The terms which cause difhculty since they are not
linear in X all have a similar unlinked structure. Conse-
quently they do not represent actual interaction energy;
for example, in the fourth order term, the two pairs

2 The author is indebted to Professor J. Bardeen for pointing
out the lack of a satisfactory treatment of these terms in other
theories of the many-body system.

tij, ij Vij, tj+Vijil j' tpp,ij,
e,';

1 1
&W, k i (22)

ei'j' ei'j'k'l' ek'l'

The last term is identical except for sign with Z4'"~
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Kij, ij vijij+, vij, i'j' Ki'j'ijq,
g&r p

(23)

which divers from t;;, ;; in that the unlinked terms are
omitted from the propagator, is thus, although much
simpler, a much better approximation to the leading
term in the energy. It is similar to the result used in
applications of these methods to the nuclear problem. "

Before going on to show that is possible to generalize
this definition of the propagator for a general matrix
element, we shall show how a similar simplification
occurs in ordinary perturbation theory.

except that two of the I operators have been replaced
by v operators. These, however, are equal to erst order;
thus we see that the 1P terms cancel, leaving only the
linked terms for irreducible clusters which are of no
higher order than Ã. The two-body operator defined by
the equation

where
1 1 n—1

S„=—hS g
——QES

6 g 97S=1

(31)

The diagonal elements of S„are not needed explicitly;
they can, however, be fixed by the unit normalization
condition

QS S =0 js/0
m=0

(32)

together with
S0——1. (33)

We also introduce
I=a—(Is), (34)

which has vanishing matrix elements in the ground
state. The expansion can then be written

Ep ——ep ——(Hp),

E2—— h—h = I—I

Hp=ZT',

and the perturbation

III. RELATION TO PERTURBATION THEORY

For simplicity in this section, we shall assume that &&=(h)~

the particles are distinguishable; the more general dis-
cussion closely follows the treatment we give here.

In the usual perturbation theory4 the Hamiltonian is
separated into the unperturbed Hamiltonian

h=gw;; (25)
v

(for simplicity we absorb a factor of s' into the n's).
We take for the zeroth order wave functions a product
of the eigenfunctions of H0, for example plane waves
normalized in a large box of volume e. The perturbation
series for the energy then is

(26)

1 1 1 1
E4= h—I S— Q I —h )

1 1I—I —I —h . 35

We introduce a compact notation to simplify the form
of the perturbation expansion; we define

(~o,0~ ) =(0) (27)

for any operator. We also let

(28)
(

n—1

E„=(hS g) —P E'„(S ), (3o)

s K. A. Brueckner, Phys. Rev. 97, 1353 (1955).
i See, for example, L. I. Schiff, Qgamjicm Mechajsjcs (McGraw-

Hill Book Company, Inc. , 1949), Chap. VII.

where the operator 1/u is

1/a= 1/(ep Hp). —(29)

Using this notation it is then easy to show that the
perturbation series for the energy is given by the
development

The structure of these terms is extremely simple; we

can obtain them by taking the eth order iterate of I

(n( —u/), (36)

ol (37)

is to be set equal to zero. This simple prescription su%.ces
to define the full perturbation series for the energy.

We next note some simple properties of the expansion

by examining the first few terms; we shall later general-
ize the results. Inserting the series for k and for I, the

and subtracting all matrix elements of the same order
in which matrix elements in the ground state of any
subset of the I's appear, always remembering that a
matrix element of the form
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expression for E2 becomes

2 Z E(eo,"A-)
n&0 i7. kl

n)~kl 0 ~ (38)
'b7 n ~0—~n ~0—~n

XZ [(P-,"P-)—(Po,"kyo)+i j)
In the double sum over ij, kl, since matrix elements to
the ground state are omitted, the matrix element will
vanish unless ij=k). This result also is apparent if we
note that v&~ is in eGect an operator exciting the pair kl
from the ground state; this pair must be returned by
e;;. Thus

1
E2=E Z(4o,"A-) 6t-,"Ao) =Z ~,;~;j, (»)

n&0 ij 8

which is the second term in the expansion for t;;. We
break down the third term

1
E = Q l;;(l —(ll ))—V„„

i7'kl)nn g 8
(40)

Esl'& =P ll, (il; "—(ll; )—)-l;. (41)

We can also pair ij and nse and leave kl free; this gives

1 1
il' —(loki —(&kl))

in a similar way. In this term we can combine the in-
dices ij, kl, me in several ways. The simplest possi-
bility is with all pairs the same, giving

1
x

~

(y...;;yo)
60—6n

0)&'7 n ~0 A: 0, &'a &ga 0

Thus the eGect of E3&') is to give the erst correction
term in the nonperturbation propagator 1/e in E2.

The remaining term in E3 arises from combining
three diGerent indices, corresponding to the involve-
ment of three particles. This term is

E3"'=Z l;,—r, k
—ik;

a a

which is the first term in the expansion of the three
body cluster term.

The next term in the energy E4 contains a variety
of types of combinations of the matrix element of the
e's; we shall consider here in detail only those terms
which are similar to the unlinked clusters discussed in
Sec. II. The general reductions are given in the Ap-
pendix. The terms of fourth order which we shall not
discuss here are the following:

(1) fourth order interaction of il;; (for a single pair).
(2) changes in the propagators of lower order terms.
(3) linked 4-body cluster.

The unlinked or reducible terms in Ei are:

This can be further reduced since unless k or / is equal
to i or j, only the diagonal elements of ski —(ski) with
respect to the ground state enter, giving zero. Thus we
have a restriction on k,l so that

1 1
E4i"l =+ ill& loki

I
like ll'j+&ij

ijkl aij aijkl ( aij akl )

(4j)
s7'I l g;~2 ~It

1 where
~;—(r;k —(s;k)+~jk—(i jk))-s*j . (43) (48)

Writing the matrix element out more explicitly, this is

E3"'=ZOO, ~'A-)
27n

XZ[(4-,~'A -)—(A,~'kA)+ (~ ~ j)]

etc. This we simplify using the identity

1 1 (1 1 y 1 1 1 (a;;+akl
I

—+—I-
..2 Laij aijkl ~aij akl& aij akl aij & aijkl

Since
aijk l =aij+ a k l, (50)

X(y...;,do). (44)

We now note that this term in E3 can be combined with
the second order term E~ to give

these two terms cancel. We note that this is possible
only when all of the matrix elements of the same general
unlinked structure, are combined. Thus the unlinked
terms (of order N') give zero, as we expected from the
consideration of a similar cancellation in Sec. II. %e
shall not discuss the cancellations of the unlinked
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We define the matrix element of p in this case to be

p=LZ% —&')3 ' (52)

where the sum over i is to run over all terms linked to
the left to the pair k', l'. For the energies E; and E we
shall take

E;= (A, T;+pt, , ;.,A),
2

s;.= (y,', T;.+pt„,",y;.). (53)

If the energy difference is zero, then the matrix element
of p is to be set equal to zero. Since the states we con-
sider are discrete, the omission of the single term in the
matrix element is unambiguous. To show that this
definition leads to the desired changes; first, it is obvious
that the equation for E;;;; now appears directly. In
addition, in a typical unlinked term of fourth order,
for example, we now have the matrix element

(A»'» & P(' J')Is~, s ~ P(&'1')

Xf'~', 'gp(sj)ls i, std's) (54)

terms of higher order; the proof has been explicitly
constructed in fifth and sixth order and always involves
a lengthy but trivial sequence of algebraic identities
such as those of Eq. (49).

We proceed next to a more general statement of this
result in the following section.

IV. LINKED PROPAGATOR

The results of the last two sections strongly suggest
that the appearance of unlinked cluster terms in the
energy expansion is everywhere spurious in that they
are exactly canceled by similar terms appearing else-
where in the expansion. Consequently the expansion is
in each order linear in the total number of particles in
that the contributions to the energy depend on N. The
unlinked terms which cancel are always unphysical in
that they cannot represent actual interaction energy;
this situation is similar to that which exists in the S-
matrix expansion of quantum field theory where similar
unlinked terms can always be identified as contributing
only to the phase of the wave function without giving
real eGects in the scattering.

In discussing these terms in Secs. II and III, we have
shown that their omission results in a simple and
reasonable definition of the propagator or energy
denominator. The criterion of dropping unlinked terms
is perhaps suAicient to apply to any given term in the
energy expansion since the spurious terms can be easily
recognized and dropped. It is however convenient to
show that these conditions may be formulated more
formally by defining what we shall call a linked pro-
pagator. We introduce a modified propagator p with
the following properties. Consider a typical expres-
sion involving the nondiagonal I operators and the
propagator;

($0, Ikl, k'l'pItnn, re'n'. 40). . (5&)

The propagator p(ij) is for the ij and all linked pairs
(in this case the i'j ' pair) in th.e ground state; hence the
energy diGerence is zero and by the previous definition,
this matrix element of the propagator is equal to zero.
Thus this term is identically zero; this will be true for
any such unlinked interaction.

This completes the specification of the expansion; it
now has a quite simple form since it is a series in the
linked or irreducible clusters alone. The great simplifica-
tion of this result in comparison with the perturbation
expansion, for example, is due to the immense com-
pression of the series which is accomplished by the
introduction of the E and I operators. The equation
for E is nonlinear; it is the perturbation expansion of
this operator which leads to the very complicated series
of perturbation theory. It is worth noting, however,
that the convergence of the perturbation series itself
does not depend on N, each term in the series depending
only on N linearly.

V. CONVERGENCE OF THE LINKED CLUSTER
EXPANSION

To determine the extent to which the linked cluster
expansion is sufBciently rapidly convergent to make it
a useful approximation method, we shall examine the
leading cluster terms. Since the convergence does not
depend on N, we expect that the expansion will be
characterized by other parameters of the system such
as the density and the interaction strength and range.
Thus we shall attempt to determine the dimensionless
expansion parameter which governs the rate of con-
vergence of the series; if this is sufficiently small, we
expect that the leading term in the expansion will be
an accurate representation of the many-body energy.
As an explicit example we shall consider the nuclear
system which has been studied elsewhere" '; the
convergence of the method has been investigated in
these papers but only in a semiquantative way with the
intent of establishing a rough upper limit on the magni-
tude of the correction terms.

We consider in detail the first cluster term involving
more than two particles; this is

»s=s 2 (4o, I'r, '~ PI.'."Pl*'~', .Ao). (55)

In evaluating this we shall neglect all exchange terms;
these are in general much smaller and also of opposite
sign to the main term so that we over-estimate AE3 by
making this approximation. In evaluating AE3 we shall
take a simple form for the nondiagonal operators I, i.e.,

2~VO
I;;,„,= Lf(k, —ks)+f(k;+k,)]

p
&&6(k,yk;, k„+k,), (56)

5Brueckner, Levinson, and Mahmoud, Phys. Rev. 95, 219
(1954).

6 K. A. Brueckner, Phys. Rev. 96, 908 (1954).' Brueckner, Francis, and Eden, Phys. Rev. (to be pub1ished).
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where
f(x) = 1/( '+*'), (57)

and Vo/p=0. 25, n= total normalization volume. This
result is a reasonable approximation to the actual
nondiagonal operators I; it is the Born approximation
matrix element given by a Yukawa well with Serber
exchange mixture. In the propagator we use the
approximate result for the energies

E;= k,2/2M*, (58)

where M*=0.54M is the effective mass of a nucleon
moving in the velocity-dependent nuclear potential. '
Making these substitutions into Eq. (55), the energy
shift AE3 is

(27rVO~ '
AE3 ——-', (2M*)'I —

I Q I f(k;—k,')+f(k,+k,'))
& pp j ';~e

for x small, it is reasonable to evaluate the integrals
over k;, k;, kq making the approximation that x is
small. This integral is

t dk,dk;dkI, 1
(64)7

x' (k p+k p —x) (k @+kgb& x)—
where p;= k,"x/k;x, etc. The restriction from the
exclusion principle restricts the angular range of
integration; the condition is

p ~ (k'+x' kp')/—2k x (65)

and similarly for the other angular variables. Keeping
only the leading terms in x, the integral over k;, for
example, is

kj f,ks2+z2—kf 2}/2k;~

2m k dk; (66)
~ay —z k,p;+k,p,—x

X(k;2+k' —k '—k, ')—'I f(k;—k;.)+f(k;+k;,)]
X(kg+kg —kj' —kI, ') '

For small x, we set k,= kj except for the upper limit of
the angular integration where we set

k'+x' —kg' (k;+kg) (k kf) k—g kf
XQ(k;—k),+'f (2k+;k~ —k),j'.(59) (67)

2k;x

with these approximations, we And for the k, integration

~ kf ~ (ks—kf}/z

j2@k
ky —z Pi+Sr

= —2~k,xL1+ &, ln(1 —1/~, )). (68)

The integral over kk gives a similar result; the remain-
ing integral over k; gives

'V

dk, . (60) 6= (27rkr)'2~kg'

The sum over ski' is not only over the momentum
states but also over spins and isotopic spins. Since the
operator I does not involve spin operators, the sum
over the two spin and two isotopic spin values for the
states ijk introduces a factor of (4)' (the summation
over the spin states of i', j', k' gives unity). The sum-
mations over momenta can be replaced by integrations,
uslllg

Introducing the variable
„ky

~
(kq —ky) /a

dk;) I 1+p; ln (1—1/p, )]'dp;. (69)

we then And
k;—k,'= x, (61)

A change in the order of integration and a change of
variable in the p, integration leads 6nally to

(2m Voy ' v»,=8(&*)'I
I

~ dk, ~~ dk„~ dkjj' dx
ps j (2m) ~ kr ~kg ~ ky

Xf'(x)Lx' —(k,+k;) x I 'Lx' —.(k+kI) xj ' (62) (70)

where we have dropped some small exchange terms de-
pending on f(x)'f(x+k, ), etc. , which are much smaller
(for large k~) than the main term. In this integral the
restrictions arising from the exclusion principle are that

Ik I

= Ik' —xl~kr,

k;—x

Ik.'I = lk~ —xl) k,

Jp
63

Using Eq. (57) for f(x), the integral over x is

t f'(x)x'dx= ', lJ,
'- (72)

Let us now examine this 12-dimensional integral to see
how simpli6cations can be made to reduce the problem
of evaluation. We note that f(x)' is a very rapidly
decreasing function of x for x&p, falling oG as x '.
Therefore, since the rest of the integrand is also largest

Tak'ing 4e(4/3~k'')/(2m)'=X, the final result is

(M*VO 1)' p,»,=
I

——
I
0.468

( p p 4~j
(73)

1

6= (2mks)'krx I dss 1+s ln
~0 - 1+s-

= (2m.kr)'kgx(0. 078).

Collecting these results we And

t'2~VO) ' e
»3=8(M*)2I I (2.k,)3

E pv j (2m)'
~OQ

X0.078k' 4~x'f'(x)dx (71).
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For typical values of the parameters, i.e., M*/p~4,
Vo/zi = —x', kr = 1.6zi, this gives

AE3——0.0071 Mev, (74)

which is to be compared with the leading term in E;;,;;
which is about equal to 30 Mev per particle.

The very small effect of the correction term on the
energy is due to the smallness of the effective expansion
parameter

M*Vp 1
P = ——=0.072.

p p, 4m.
(75)

It can be fairly easily shown that the four body cluster
term is also given by an expression very similar to that
for AEo except that it depends on P'; consequently it is
again the size of P which determines the next higher
order correction. The smallness of the expansion pa-
rameter P is due in part to the size of (Vo/p) (M*/p)
which is in this case of the order of unity. It is of course
obvious that convergence cannot be expected for large
values of this combination of constants. Even more
important, however, is the factor of 1/(4n. ) which
always appears paired with the mass and potential
constants. This factor appears as the result of the
restriction of the angular integrations by the exclusion
principle; this restriction is important because the
typical momenta near the Fermi limit are rather large
compared with momenta for which the matrix elements
of the interaction are large. We have made use of this
fact in evaluating the integrals for AE3. For much
stronger potentials, however, this result would no
longer hold and for the same Fermi momentum the
angular integrations would be less affected by the
exclusion principle.

Another important and striking feature of the result
for the three- (and more-) body cluster is its linear
dependence on the Fermi momentum. It is easily shown
that the leading term in the energy depends on kf',. thus
the relative importance of the higher-order cluster
terms decreases as the Fermi momentum increases or,
equivalently, as the density increases. The origin of
this effect is obvious; as the Fermi momentum in-
creases, the momentum transfers required to bring
particles out of the Fermi gas to excited states increase.
Since the matrix elements of the interaction decrease
as the momentum transfers increase, excitations in-
volving the multiple excitation of particles are inhibited.
The effect is most pronounced for the high-order clusters
for this reason.

VI. METHODS OF SOLVING THE X;;,;; EQUATION

We have shown that the linked cluster expansion
converges very rapidly for forces of typical nuclear
strength so that it is a very good approximation in this
case to evaluate only the leading term in the expansion.
The convergence may not be as rapid in other systems
of physical interest; even in such cases, however, the
leading term will give very useful semiquantitative

and

E'=(A, (T'+Z t.;.)4o)

Pp . a g k ik, ~k ak, ks 0 )

(77)

E' =(@(z'),LT'+-: Z (K",' k+K' k, '))0(z')). (78)

To a good first approximation, we can suppose that the
coherent potential

Vc(i) =
z Qk(K'k, 'k+K'k, k;) (79)

acting on the ith particle depends only on the mo-
mentum state of the particle i and evaluate V, (i) as if
particle i were always propagating on the energy shell.
This is equivalent to the assumption that the potential
acting on a particle is the same in virtual states as in
real states. If we make this simplifying assumption,
then we can write

K„,;;= v,;,;;+v;;,;; $T,+T; T; T; +—V, (—z)+V, (g)
—v. (z') —v, (J')~ 'K,';, ;;, (80)

V.(z) = [yo, pk(K;k, ,k+K, k, k;)yog,

V, (i') =[go, pk(K' k, 'k+K'k, k')4o&. (81)

Equations (80) and (81) form a coupled system for the
determination of V, (i); they are equivalent to a non-
linear integral equation for V, (i). In this approximation
they have been solved as a self-consistency problem in
applications of the methods to the nucleus. '

A more accurate treatment of the propagator in
intermediate states is possible if account is taken of the
fact that propagation off the energy shell is occurring.
According to our rules for dining p, in an intermediate
state with i'j' excited, the equation for a typical term
in V, (i') is

K i'ki'k Vi'ic, i',k+ Vi'k, i"k'

X(E;+E;+Ek E;" E—; E—k) 'K—i k ik (82)

This differs from the equation for E;k; k on the energy
shell in that

Ki'k, pk= vpk, pk

+v'k, '"k (E'+Ek —E*' —Ek) 'K" k. 'k (83)

The neglect of the difference between E;k, ;k and
X'; k; k leads to a high order correction term in the
energy. If the energy difference in the propagator is
expanded out as a perturbation, i.e., if we take

1K, =, . + ~l
i'k, Pk= VPk, &~k~VPk, &~~k~ ~ i"k', Pk

e;k+5 E

=Kpk, pk vi'k, 8'k' DE —Ki"k', Pkg
e;k e;k

information about the system. The equation for the
matrix elements of E,, @ as given by Eq. (23) is, in
the ground state,

Kij, ij= vij, is+ vij, ij' (Ei+Ej Ei' Ej') Ki'i', ijr (76)
where
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then the equation for the ground-state matrix element
of E;;,;, is altered by the amount

1 1
&(AE E,' —), ; g K,',', ,, (85)

Since the effect appears in such high order, the actual
quantitative change is probably quite small. If greater
accuracy is desired, this effect can be included at least
approximately. It adds the complication that a self-
consistent solution must be obtained for the effective
potential V, acting on a particle both off and on the
energy shell. It is probably an excellent first approxima-
tion to neglect this eRect and make the static approxi-
mation for V. ; this has been done in the actual applica-
tions of this method.

VII. CONCLUSIONS

We have considered in detail an approximation
method which has been developed to deal with the
problem of determining the interaction energy of a
many-body system when the particle-particle forces
are not weak. The usefulness of the method is
determined by the convergence of an expansion which
determines the interaction energy. We have primarily
interested ourselves in this paper in a study of the
structure of this expansion, particularly in the de-
pendence of the convergence on the total number of
particles (which we wish to take to be very large). We
have shown that the convergence of the method does
not depend on X, any dependence on higher powers of
IV than the first being spurious and exactly canceled
by similar spurious terms appearing elsewhere in the
expansion. This cancellation has been shown to occur
in a precisely similar manner in the expansion of con-
ventional perturbation theory, any nonlinear depend-
ence on the total number of particles being again
spurious. As a consequence the resulting expansion is
in every order proportional to the total number of
particles the total number thus appearing as a common
factor for the entire series. The expansion is in a series
of irreducible or linked clusters which involve a succes-
sion of transitions brought about by the nondiagonal
transition operators of the theory. The convergence for
the nuclear system has been investigated by a detailed
examination of the erst irreducible cluster (involving
three particles) and shown to be extremely rapid, with
the exclusion principle playing an important role in
determining the rate of convergence.

Finally the problem of evaluating the two-body
interaction operators has been brie6y discussed; it is a
sum over the diagonal part of these operators which
provides the leading term in the interaction energy. It
is shown that in the approximation the potential acting

on a particle is the same in virtual as real states, the
problem of solving for the potential reduces to the
problem of self-consistency used in other applications.
The accuracy of this approximation is discussed brieQy
and methods of improving on the approximation are
described.

APPENDIX

Reduction of Fourth-Order Perturbation Term

We shall show how the fourth-order perturbation
term can be broken up into a variety of terms which
can be identified either as modifications of the pro-
pagators of lower order clusters or as irreducible cluster
terms. To make this identification possible we first
expand the reaction matrix E;; as given by Eq. (23)
with the notation simplified for the case of distinguish-
able particles:

(z;;)= (v;;)+ v;;—K;;),
~ij

(A1)

where to second order the modified propagator is

&ij= Ei+ Ej

+pk (v L)+ v k
—vA —v Lv k v'k+ (2 ~ j') . (A2)

Expanding the equation for E;; we find for the fourth-
order term

1 1
(E")&')=P v; —v; —v; —v;.

8 8 8

1
+P v;, (v g, (—v;t,))-—v,, v;;—

1
+P v*&

—v~&. (va —(va )—ve

1 1 qi
+Z ve (v'~ —va — v') —va

~

—-vsj

a& a a )a

1 1
v;,—(v;y —(v;I,))—(v;g —(v,.[))—v;;, (A3)

a u a

omitting some terms which result from interchange of ij.
We shall also need for comparison the expansion of the
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modified propagator for the three-body cluster which
is, to fourth order,

simplifies the possible terms; they can be classified
according to the number of pairs of indices which are
set equal. The simplest term is that with all pairs of
indices equal, i.e.,1 1

ttit (ttitt ( itttt)) itjm &mi
ijmk [ g g 1 1 1

E4 =Q Sij uit u—it tt-,
ij u a g

(A9)
1 1 1

+ tjij 'ttjm ('ttjtt (ttjtt)) ttmi

f
(A4)

This is the fourth-order iterate of I;, which appears in

Theperturbation expansionas given in Sec. III gives the expansion of E;;. The next term with one I „
for the fourth-order term in the energy different is

111 1 1
E4= I S—Q~ — I—I Q Q

1 1 1

(A5) Ji 4 =Q Sit Sit lait—t Sit'—
ijk g g g

Inserting the expansion for I, this is

1 1 1
E4= E Sit umn Srs +tv

ijmnrate . g g g

1
S;j 'llm„— u„,—St„. (A6)

u g

1 1 1
+ S,, S,t,—S;,—s;;—, (A10)

together with terms in which I;& is replaced by I;&.
These two terms are the first-order modification in the
propagator of the third-order iterate of I;; in the equa-
tion for E;;.The next term has two u's the same:

1 1 1
The 6rst simpli6cation is that already noted in Sec. @,i2)= P
III, i.e., ijgmt g g g

1 1
Sip Smn = Z Sij Sij ttim~jn

ijmn g . ijmn g

1 1 1 1 1
+Q S'j—Slv~t t~tj +2 S'j St t Sjt S'j (A11)

a u u a u a

Consequently the second term of Eq. (A6) is

(A7)
In E4('~ we have not included terms which vanish be-
cause they involve matrix elements of I in the ground
state or because they require intermediate transitions
to the ground state. The various terms in E4(') have
the following interpretation; the first two cancel with
the unlinked term of Eq. (AS) as shown in Sec. III.
The last two terms combine with the linked term in

Eq. (AS) to modify the propagator of the second term
in the expansion for E;;.Finally we have the term with
no I's the same but all linked; these are for example

+Q uij —sij sitt s;y, (AS)

1 1 1
Z

ijmkl g g g
(A12)

the first term of which is of order X'. Before reducing
the erst term of Eq. (A6), we note a simple property of
the matrix element. An expression in which a term I „
is not linked to any other term is zero, since in this case
the expectation value of the product reduces to the
product of the expectation values, and the expectation
value of I „in the ground state is zero. This rule greatly

which is the modi6cation of propagator of the three-
body cluster term, and

1 1 1
S;t Sjtt Spy Si;—

u a u
(A13)

which is a term typical of the fourth-order irreducible
clusters.


