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The method of functional integrals is applied to the problem of
meson theories with derivative couplings. In the static limit,
solutions in closed form can be exhibited. The infinities occurring
in the theory are found to be removable in terms of Z; and mass
renormalizations, contrary to the conclusions of perturbation
analysis. The divergences occurring here have the form of essential
singularities, in contradistinction to the branch-point behavior
of the usual “renormalizable” theories. The lack of validity of the
perturbation expansion is thereby accounted for. These techniques
can be extended to treat the full recoil neutral ps(pv) problem
omitting closed loops. The theory is represented in terms of an
exponential coupling which permits a nonperturbation series
solution for the various propagators. Two infinite renormaliza-
tions are again required. The resultant functions are given mean-

ing by analytic continuation procedures which are adapted to the
four-dimensional nature of the problem. The form of the effective
coupling suggests a rearrangement of the answer in terms of ex-
ponentials of the meson propagator. As a result mass operator-like
structures can be defined. These explicitly exhibit the transcen-
dental nature of the coupling and generalized equivalence theo-
rems with ps(ps) theory can be generated. In a similar fashion,
effective interaction operators for the two-nucleon and meson-
nucleon Green’s functions are derived. The possible applicability
of these quantities to questions of physical interest such as nuclear
potentials and multiple meson production is briefly mentioned.

In an appendix, a model of beta coupling is discussed in con-
nection with the renormalization question there.

1. INTRODUCTION

OLLOWING the success of the renormalization

program in electrodynamics, the same methods
and concepts have been brought to bear on the various
types of meson theories. The success in this region,
however, has not been universal. The applicability of
perturbation renormalization techniques has become a
criterion dividing these theories into two classes.

The most salient characteristic of many of the “un-
renormalizable” theories is that they involve gradients
of the meson field in the interaction. Upon examination
of the radiative corrections occurring in these cases, one
discovers that the infinities appearing in successive
orders become more violent, due to the linear (or
higher) dependence upon momentum transfer of the
elementary vertex. Further, the infinities appear in
such a way that an infinite number of observables
would have to be renormalized. Such effects would
correspond, in terms of a cut-off picture, to a theory
entirely dependent upon the details of the structure of
the elementary particles.! These derivative interaction
theories, whose coupling constants have dimensions of
reciprocal length, were thought to require, along with
other so-called theories of the second kind, the existence
of a fundamental length to give them meaning.? The
possibility has always remained open, however, that
the series of divergences might, in reality, sum to a
more tractable form.

The meson theories of most current interest are, of
course, the pseudoscalar ones. Although the pseudo-
scalar theory with pseudovector coupling has long
seemed to be physically attractive, it has been neglected
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in recent years because of the above troubles. It is the
purpose of the earlier sections of the paper to treat the
problems involved in some simple nonrecoil models of
derivative coupling theories. Already in these examples
will be found many of the basic difficulties and di-
vergences which beset the complete ps(pv) theory.

By means of the functional integral formulation of
field theory, one can obtain closed-form solutions in
these cases. In this procedure (which will be the basic
tool employed throughout) the complete, radiatively
corrected, nucleon Green function, for example, is
obtained by considering the propagation of a bare
particle in an arbitrary external field distribution aver-
aged over all such possible fields. This process repre-
sents the emission and subsequent absorption of the
virtual meson field. The problem is thereby divided
into two separate parts: that of finding a first quantized
nucleon propagator in an arbitrary external field and
that of averaging with the appropriate weight factor
over this field (the functional integration). Perturba-
tion theory corresponds to a Born approximation solu-
tion of the first problem. For the initial cases to be
considered, the static, nonrecoil limit will be taken,
which is equivalent to having the first quantized kernel
satisfy a one dimensional equation. The latter can be
solved rigorously and the functional integrations per-
formed for the structures obtained. The steps then
necessary to give these theories meaning will be clari-
fied, as will the concept of renormalization. It will be
seen in precisely what respects the perturbation analysis
of renormalization fails; in addition, the infinities to be
deleted from the theory will be exhibited explicitly.

Another set of unrenormalizable theories, not directly
related to the above, consists of the so-called direct
interactions, exemplified by the Fermi couplings. In
Appendix A, a simple model (in that the heavy par-
ticles, though not the leptons, are taken as static) of
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scalar beta coupling is considered and the problems of
renormalization discussed in the light of our methods.

In the meson case, the chief problem of physical
interest must take fully into account all the degrees of
freedom of the nucleon field, both the particle and spin
motion. To treat the full recoil theory for neutral
mesons, omitting closed loop diagrams, the method of
functional integration is again the basic technique
employed. The procedure used in this problem is to
note that the ostensibly linear pseudovector coupling
is equivalent to a pseudoscalar coupling exponential in
the boson field. This fact allows the functional integra-
tions to be performed and the infinite renormalizations
separated. In this representation, the solutions are
themselves exponential in the coupling constant. Thus
structures similar to those obtained in the simpler
models appear again in the complete problem, though
in a more complicated context.

Another similarity to the problems noted in the non-
recoil cases is the necessity for giving definition to the
propagators by means of analytic continuation. The
apparatus developed here extends the treatment re-
quired for the case of branch points first considered in
the simple renormalizable theory to the more singular
derivative coupling four dimensional problems. There
is actually a qualitative difference between the role
played by the continuation procedure in these two cases
due to the more violent nature of the essential singu-
larities. This is true even for the null s(v) theory with
recoil, treated in Appendix D.

The expansion appropriate for performing the re-
normalizations is perhaps not that most suited to dis-
play the physical content of the theory. Since the
effective coupling structure is transcendental, a natural
series in such problems to obtain physical results would
seem to involve exponentials in the coupling constant
rather than merely the coupling constant itself. One
finds many generalized equivalence theorems between
the ps(ps) and ps(pv) theories in this process. By this
analysis, the consequencies of the theory can be couched
in diagrammatic language which displays how the
natural exponential structure in the meson propagator
replaces the perturbation form. Thus one can speak of
an effective mass operator upon which can perhaps be
based a reasonable approximation scheme. The above
procedure is, of course, applicable to the more complex
Green functions such as the meson-nucleon and two-
nucleon ones. In both cases interaction operators can
be defined; in view of some of the attractive properties
of ps(pv) theory, particularly at low energies and (in
this formulation) with regard to multiple production,
these quantities are briefly investigated.

2. FUNCTIONAL INTEGRAL FORMULATION

Throughout this work we shall employ the functional
formulation of field theory to discuss the quantities of
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interest.> ¢ We consider a Lagrangian of the form?®

£(x) = — 3 (%) (yp+m)Y (x)+herm conj
— 16 () (B4 (%) — gf T/ (@) W (x), (1)

where T' represents the fundamental vertex (T'¢=¢ for
neutral scalar theory, vsri¢p? for ps(ps) symmetric
theory, 4ysy.d,¢ for neutral ps(pv) theory, etc.) and
f(¢) equal ¢(x) for a linear coupling, ¢?(x) for a pair
theory, etc. The one-nucleon propagator with all radia-
tive corrections (but omitting vacuum polarization)
may be obtained from the functional integral

| exp[—%i [ ¢(5)A+~1<s,z’)¢(s’)dfds']

XGy (5,6 )00 ; (2)

N= f exp[—%i f ¢A+—1¢dsds']a¢,

where ¢(£) is a ¢-number over which the functional
integration is carried out, A; obeys the equation
(=0 41)AL(§,E)=06(¢—¢) and Gi(¢) is the bare
Green’s function in the external field ¢, satisfying

{vo+m+gl /6 (x) NGy (00; ) =0(x—a').  (3)

The “4” subscript indicates the usual outgoing wave
boundary conditions. We also shall have occasion to
use the free particle Green’s function G;© (x—x')
= (x| (vp+m)~[).

Similarly, the general Green’s function governing
the propagation of # nucleons and » mesons is given by

Gnml(xl' . ’xn,xl,' . .xn/; 51' . Em)

= 15lm/2] f exp[—%i f ¢A+—1¢d5df’]

XG—F(xlxl’) e 'G+(xn;xnl)¢(gl) o 'd’(gm)‘sqb; (4)

where [m/2] means “integral part of m/2” and the
nucleon coordinates are to be suitably antisymmetrized.

3. DERIVATIVE COUPLING THEORIES IN THE
NONRECOIL LIMIT

Although our chief interest will center around the
renormalization difficulties appearing in the derivative
coupling theories, we first indicate how even so simple
an example as neutral scalar theory without recoil
exhibits one kind of problem we shall encounter in
further work. For this case, in the Dirac Lagrangian,
yp—+m is replaced by — po+m.® In this approximation
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RENORMALIZATION OF COUPLING THEORIES

the solution to G,/ (—1') is given in reference 3; the
relevant point here is that the renormalized Green
function behaves at small times as

Go~expl— (&/7) Inu(t—1)] >0

0 <t ®)

The existence of a Fourier transform of the convergent
propagator is necessary in order to maintain the quan-
tum mechanical transformation theory for finite times.
Further, in momentum space, the Green function
must behave appropriately to meet the usual physical
requirements on the theory. It is clear, from Eq. (5),
that a critical coupling strength occurs at g¥/4r=m/4,
above which rigorously no transform exists. Since
physically such a limitation on the size of g2 would
appear to have no meaning, we proceed to remove it by
one of the various mathematical techniques invented
for this purpose.” In particular, the method that we will
adopt here and elsewhere will be that of an analytic
continuation of g?/#* from below the critical value of
unity to above it. Specifically we consider the function
G.(t—1t, g for values of g?/n*< 1. Here we may evalu-
ate its transform G.(po,g%) which is analytic in g2 for
g2/w?<1. Such a function will have a continuation to
values above unity (though poles will occur when
g/m*=1,2,3, ---). Thus meaning has been given for
G. beyond the barrier that the particular representation
in Eq. (5) seemed to impose. Insofar as the resultant
behavior in momentum space is concerned, the results
of reference 3 should hold for the larger coupling
constants.

We now consider a set of examples which both involve
derivatives of the meson field in the coupling term and
are simple enough to be solved exactly. These will arise
from various approximations to be made on the nu-
cleon’s motion as represented in Eq. (3) in the case
where the coupling is pseudovector. Such approxima-
tions do not involve the exponential weight factor in
the functional integration which represents the radia-
tive corrections due to the boson field. We begin with
a somewhat artificial limit in which both the nucleon
recoil and the gradient parts of the coupling have been
dropped :

(= potm—igysdup)Gy (Lt ) =8(t—1'), (6)
where G, (t,¢) actually includes a §(r—7"). The v5 has
been retained in Eq. (6) in order to include one feature
of v5 couplings: yg?=—1. (Terms linear in 5 will, of
course, turn out to vanish in the solution since negative

energy states have been otherwise neglected.)
Equation (6) may easily be integrated to yield

G (1Y ) =10(—1)emm=t)

Xexp[——gw f law(r)dr], (7

t

7F. J. Dyson has pointed out in conversation that methods of
L. Schwartz may also be applied to this problem.
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where 6(x) is 1 or 0 as x is greater or less than zero
(which enforces the nonrelativistic boundary condi-
tions). The functional integration may be performed via
the formula

v eXp[—%i [o@areeway
+f ¢(£)f(£—)d£]

=exp[—%i f f(E)A+(£,£’)f(£’)d£d£']- (&)

In Eq. (7), f(§)=—gvs0oH (£0; 1,¢')6*(¥), where H (&o;
L) =0(t— £0)0(§0—1'). The presence of ys in the ex-
ponential is not troublesome since it commutes with
all other quantities involved. The total Green func-
tion is then

G (1— l’) = i(1—)e~im—t)
Xexp{—ig[A (=)= A (0)]}. (9)

All that is necessary to renormalize the theory, there-
fore, is to identify expig?A;(0) with Z,, no mass re-
normalization being required.! The form A,({—?)
— A, (0) appearing in Eq. (9) arises since

disc G/ (O)=i{F (¥ (O})=1. (10)

The renormalization just performed is qualitatively
different from those needed in a ‘renormalizable’”
theory such as the neutral scalar one quoted above.
In particular, the infinity appears as an essential
singularity rather than as a branch point (the latter
manifesting itself in perturbation theory as a series of
logarithms). If Eq. (6) and hence G}’ were solved in a
perturbation fashion, one would have found the usual
“unrenormalizable” results: The higher and higher
diagrams would have higher and higher infinities in
them, leading one to believe that an infinite number of
renormalizations were necessary. Actually, as can be
seen in Eq. (9), the infinities sum to an essential singu-
larity which, however, is a harmless multiplicative
factor. Indeed, if G,/(f) is only a function of Ay (?)
—A,(0), the condition that theory be renormalizable
in the usual way,

G/TA+()— A+ (0)]=2Z[A(0)JG LA+ ()]  (11)

forces an exponential solution like Eq. (9) and hence an
essential singularity.

The renormalized one-particle Green function in its
dependence on time is everywhere finite and does not
even exhibit the difficulties in Fourier analysis dis-
cussed for the neutral scalar theory. The higher Green’s
functions [which may be obtained from Eq. (4)], such

8 Tt is interesting to note that this theory formally has a Ward

identity. This appears to be the case whenever there are no com-
mutation problems for a nonrecoil meson theory.
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as the two-nucleon propagator, may all be renormalized
in an ‘analogous fashion. However, in both theories
analytic continuation must be applied to Fourier analyze
these more complex functions. In the neutral scalar case
it is again a matter of branch points while here an essen-
tial singularity on the light cone must be treated. The
requisite technique for such problems will be intro-
duced later.

As can be seen by inspecting the various Green
functions, the theory we have been considering here
produces no observable effects in the S-matrix. In this
it resembles the situation encountered in s(v) coupling.
Indeed the latter’s nonrelativistic I'¢ is do¢p. Similar
statements can be made about the renormalization and
lack of physical effects for theories of the type I'
=9o"¢.> While all such examples make no physical
predictions, they do retain enough of the dynamical
structure to illustrate the type of renormalization and
the analytic continuation problems that will arise in
the physically interesting cases. In Appendix B, a
static approximation involving gradient coupling and
having observable consequences is discussed.

4. THE NONRECOIL APPROXIMATION AND>
" TRANSCENDENTAL COUPLING

The first approximation scheme considered, Eq. (6),
neglected anticommutativity of v; with vy while in-
cluding the fact that ys?= —1. A scheme that embodies
part of this effect starts from the equation

(—yopotmtigysydod) Gy (1 ; ¢)=6(t—1). (12)

We now make a transformation analogous to that
introduced by Dyson':

G (Y5 ) =exp[ —gvsp () JH (1,15 ¢)

Xexp[—gysp ()] (13)

The equation obeyed by H, is
{—vopotm exp[ —2gvsp (1) JH,. (4,1 3¢) =8(—1). (14)
1

Having used the fact that {vyo,ys} =0, which is essentia
in arriving at Eq. (14), we now make the approximation
of setting yo=1."* As will be seen later, this step changes
considerably the predictions of the theory which there-
fore differs from the true nonrecoil limit of ps(pv).
The approximation is simple enough, however, to
enable us to justify expansions that will later be gen-
eralized to more complicated cases.

Within this framework, then, Eq. (14) may be

9 That nonrecoil theories of the type I'¢=390"¢ are renormaliz-
able has also been discovered by L. Cooper, following paper
[Phys. Rev. 100, 362 (1955)].

0 F. J. Dyson, Phys. Rev. 73, 929 (1948).

11 An approximation substantially equivalent to this has been
discussed by R. J. Glauber, Phys. Rev. 84, 395 (1951). In that
paper the fact that the scheme was renormalizable was observed
and the S-matrix obtained. Our Eq. (16) differs from Glauber’s
result by the inclusion of the first two exponentials and the
existence of Z;. In the transition from the finite times Green’s
function to the renormalized S-matrix, these terms disappear.
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integrated to yield
t
H (4t ¢)=10(—1") exp[~—imf 6‘2”54’(’)d7]. (15)
- 24

In order to perform the functional integral it is
necessary to expand H, in a power series in m. This
expansion, which should be valid at small times, will
be justified later. The resulting exponentials may be
functionally integrated term by term to yield

G (1—t)=Z760(i—1")

o (—im )" pt
Xexp[ig2A (##) ]2 ___y___f dty- - -dt,
n. ‘/

n=0

><exp[2ig2§"1 (A () +A()}]

Xexp[digt & Ar(ts1)], (16)

>=1
where Z, and the renormalized mass m' are given by

Zy=exp[ig’A(0)],
m' =m exp[ 2ig°A,(0)].

It is interesting that Z, here is formally greater than
unity if, in the spirit of a static theory, one sets r to
zero in A, (0) before ¢. The fact that all signs in the
exponentials are positive is explicitly due to the drop-
ping of v, in Eq. (14) and also entails that disc G4’(0)
in Eq. (16) does not reduce to ¢. Thus this approxima-
tion destroys the canonical commutation relations.

Although the infinities obtained here are similar to
those arising in previous approximations where the
functional integral could be done rigorously, it may be
asked whether this theory is indeed infinite or whether
the difficulties actually come from the small time ex-
pansion and the subsequent functional integration of
the series. To consider this question, we first obtain an
expression for Gy (4, ; ¢) which is rigorously correct at
small times. In general one has

G (1) ¢)=10(t—1") exp[ —gvs{e()+o ()} ]

an

Xexp[fimf dr{cos2gp(7)—s sin2g¢(r)}]. (18)

We may replace the integrals occurring in Eq. (18) by
the integrands evaluated at some mean value since the
¢’s are real functions. Denoting below by # and #; the
mean value points for the cosine and sine integrals
respectively, Eq. (18) may be written

G (4t ; ¢)=10(t—1') cos[g{e(t)+(¥)}
—im(t—1') sin2g¢ (t2) ]
Xexp[ —im(i—1) cos2gp(t)], (19)

where terms odd in ¢ have been dropped, since they
vanish in the subsequent integration. The functional
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integral, /'8¢, may be viewed as an infinite product of
ordinary integrals, J1;/ d¢(x;), over all cells in space.
The range of each integration is from — o to 4.
As ¢(t) and ¢(¢2) cover this range, ({—1') cos2gd(t1)
and (t—1") sin2g¢(f2) remain bounded and tend to zero
as t — ¢'. Thus in the entire range of functional integra-
tion the usual power series in {—¢ is uniformly con-
vergent. Hence if the functional integral of (19) exists,
then the integral of the power series in t—¢ exists. To
first order one may write

G4 (4t )= (t— 1) [cosg{e () +0 ()}
+im(i—1'){sin2g¢ (1) sing{e () +¢ ()}
—cos2g¢ (t1) cosg{o () +¢ (1)} ],

which gives upon functional integration

Gy (1= Y2240 (1— 1) exp[igiAy (1— ) T 1—im (t— 1)
X {COSZg2 (A+ (tl'_ t) + A+ (tl'— t’))
+isin2g* (A (b— )+ (b—1)} ] (21)

This is equal, of course, to the first two terms in the
expansion (16) when the mean value condition is used
at sufficiently small times. The important point is that
the series expansion of Eq. (19) when integrated has
the same infinities as Eq. (16), and thus the infinite
renormalizations are not due to the process of expansion
but are intrinsic properties of the theory.

(20)

5. SOLUTION AND RENORMALIZATION OF THE
THEORY WITH RECOIL

The radiatively corrected one-nucleon propagator for
the full recoil neutral ps(pv) theory is given by the
same formal functional integral as in the no-recoil
cases, Eq. (2). Now, however, G (xx';¢) obeys the
more complicated equation

[yvptmtigysydup ]Gy (a5 ) =8(x—2a').

One can again bring this into the form in which the
transcendental aspect of the coupling is emphasized by
the same substitution as was made in Sec. 4:

G (xx'; ¢) =exp[ —gvsp(x)]

(22)

XHy(xx'; ¢) expl—gyvsp(x) ] (23)
H, (xx"; ¢) now obeys the equation
{vp+m exp[ —2gysp (x) [} Hy (w2 ¢) =5(x—a'). (24)

A closed form solution here would require the dis-
entangling of even more complicated ordered operator
expressions than in the nonrelativistic case. However,
the analysis there given of the convergence of a series
development of the corresponding equation in powers of
the mass times the propagation time, {—¢', would seem
to sanction a similar expansion in this case. We there-
fore obtain the operator equation

1 = —m\ "
Ho=— % (exp[-ngsj—) .
Yp

’yp n=0
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m/vp thus plays the role of —m/p, in the no-recoil
case; hence one is making an expansion in large mo-
menta or small space-time intervals. Defining the
neutrino-like free propagator, Ho(xx')= (x| (vp)!|2'),
Eq. (25) becomes in the coordinate representation

Hy(a'; ) =3 (—m)" f . f dys- - -dyHo(wys)

n=0

Xexp[ —2gysp (y1) JHo(y1y2)

Xexp[—2gys(y2) 1+ - -Ho(yns'). (26)

With the exponentials in the positions above, the func-
tional integration cannot be explicitly performed. Now,
however, that the operator form of Eq. (25) has been
expressed in coordinate functions, the exponentials can
be freely commuted past the Hy’s to the extreme right
by noting that

exp[ —2gys¢ (y) JHo(y'y"") ‘
=Ho(y'y") exp[2gvsp(y)]. (27)

One obtains then for G, (xx; ¢) the structure

G+(xx’;¢)=i (—m)"fdyl- < dynHo(xy1) - - - Ho(ynx")

n=0

B(E—)  (=)mH(i—
—Zgwfdsqs(s)[ 2x+ )2 )

Xexp

5 (=) 5 (=)t - ~+<—>n6<e—y1>] ] (28)

The usefulness of the neutrino Green’s function ex-
pansion is now clear; had one attempted to expand Eq.
(24) in a series of G.®’s by artifically adding and sub-
tracting #, one would have encountered considerably
more difficulty in moving the exponentials to one side.
A more important problem than this combinatorial one,
however, would have been the extraction of the in-
finite mass renormalization which will turn out to be
trivial for the form of Eq. (28). After the renormaliza-
tion we shall indeed proceed to restate (in Sec. 7) the
answer in terms of propagators with masses. Equation
(28) more clearly exhibits the fact that we are here
dealing with an expansion about the origin in coordinate
space; the first term is just Ho(xx") which has the same
leading singularity at small times as the rigorous
Gy (x5 ¢).12

The functional integral can now be performed to

12 These singularities are, of course, just those of G.© (x,x’).
The infrared divergences which exist in Eq. (28) due to the fact
that we have formally expanded a problem with recoil about
m=0, will, of course, disappear as the series is recombined into
propagators with mass.
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yield for the one-nucleon Green function

G/ (a) =7 3 (=) expL—igh(=)"s(a')]
X f dy1- - -dynHo(xy1) - - - Ho(ynx')
Xexp(2ig! X (=) TA4(y)+(=)™18, () )

Xexpldig? 3 (=)*A(y),

i>j=1

(29)
where
Zy=explig?A;(0)]; m'=m exp[2ig?A,(0)].

It is shown in Appendix C that the result (29) is
formally equivalent to the perturbation one.

The sign of the leading singularity at x,=0 of A, (0)
is ambiguous, depending on whether the limit is taken
in a space- or time-like fashion. In order to determine
whether Z, is to be considered greater or less than unity
one must insist on the preservation of the boundary
condition that

disc G/ (r—r', 0) =i{{¥ (1) Y (r')}) =divod (r—1').

That this condition is built into G}’ can most easily be
seen from Eq. (24). For any reasonably behaved ¢(x),
Yopo is responsible for producing the singularity of Eq.
(31) and, since the functional integral of Eq. (2) leaves
this leading term unaffected, the desired result is
guaranteed. In Eq. (29) the limiting procedure is not so
transparent. However, as will become apparent after
the process of analytic continuation has rendered the
exponentials more meaningful near their singularities,
the term linear in H, will still be chiefly responsible for
producing the characteristic discontinuity. Since this
term has for coefficient exp[ —ig?{ A (x—2')— A, (0)}]
which must approach unity as x, — x, in the space-like
sense of Eq. (31), the sign of A, (0) is thus determined to
be the “space-like” one. That is, Z, for this theory has
the physically desirable property of being <1 in
magnitude.

(30)

(31)

6. ANALYTIC CONTINUATION PROCESS

While the renormalizations performed in Eq. (29)
extract the appropriate infinite parts of the theory, the
intermediate integrals as well as the Fourier analysis of
the propagator must be given meaning. In this, the
theory is akin to the simplest example of the static
neutral scalar theory discussed in Sec. 3. Here, however,
the procedures required are complicated by both the
four-dimensional nature of the problem and the essen-
tial singularities in the functions being considered.

The formal Fourier transform of G.(x—«’), assuming
for the moment that all functions are well-behaved,
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may be written as

G.(p)= Z( m’

= o [ [mp-Ery -

XHO(P Z kn+1 z—z kn 1)

=0 =0

n n+1
XHo(p—2 kny1,s) 11 Nij(Rij)dkss,

(32)
=0 1>7=0
where
Nij(kij) = (2m)~* f exp[iki;(yi—y;) ] »
Xexp[4igtaiAy (yiy) 1d(yi—v;)  (33)

and a;=(—1)"7 times 1, 1 or 1 depending whether
none, one, or both y; and y; take on the value 0 or 1.
The F ourier variables k;; are defined in the following
fashion: Labeling the points # and %’ in coordinate
space by yo and .1 respectively, the momentum
variable %,; is chosen for the A which connects the points
y:; and ;. Thus diagrammatically, there are n \'s
“emitted” from the lowest point &’ “propagating” to
the remaining » points. The point vy, “reabsorbs” one
and in turn emits #—1 others, etc.

The problem of giving meaning to the Fourier trans-
formed propagator is essentially, therefore, transferred
to that of defining A (%), provided, as will then be the
case, the & integrations converge. Since A(y) has as
leading singularity near the light cone the form
exp(%g*/v.?), we consider first a simple one-dimen-
sional example of the same structure. The function
g(x)=x"? exp(g®/2*) has the transform

g)= [Lewp@/elemtas. ()
Obviously the difficulties in this integration occur for
small x. It will suffice here, therefore, to discuss the
analytic continuation procedure for the quantity®

1
7@)= [ Lexplg/a) 1. (39)
0
In the physically interesting case of A;; when one
approaches the light cone from that direction, either
space-like ot time-like, such that the exponent ap-
proaches + «, integrals of the type (35) appear.
The function f(—g'?) exists and is perfectly well
behaved. To analytically continue to the region g?<0
one notes that

17\
f<~g'2>=5(~) G, g, g0, (36)
s

When g?=—g?(g2>0), Eq. (36) has a quite finite
analytic continuation. Using the integral representation

18 The analytic properties of the more general function g(k)
has been considered by L. Cooper.
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for 1F1, one obtains the defining equation for f(g?)4:1%:

f<g2>=;(§)m%~ / Texp(e/¥de (37)

™

In the physically significant problem, one must Fourier
analyze quantities of the type Ay (x)=exp[4ig?A, (x)].
The exponent may be written as

4ig?A (x) =g/ (x,?)
—g/m ()7 — g/ 20°F (o), (38)

where F(x%) near the light cone behaves as Inu|x| plus
a finite but discontinuous function. To treat the §
function part we note that

exp[ig¥/md(x,%)]
5(x,2)

“expligt/78(0)]—1}=1, (39)
3(0)

since the second term vanishes everywhere but on the
light-cone and is bounded on the cone. Thus the pulse
part of the A function does not contribute.

The remaining part of A(x) to be analyzed has as its
leading singularity (x,%)~' (which is analogous to our
one-dimensional example in the foregoing) and the
logarithmic term (which resembles the neutral scalar
no-recoil structure treated in 3). The fact that we now
have a four dimensional problem manifests itself
through the possibility that 1/x® changes sign across
the light-cone whereas in one dimension there can be
no change of sign. Thus in the Fourier analysis of
exp[ — g%/m*(x,2)~'] there is no singularity outside the
light-cone while in the regions of x,? time-like analytic
continuation as in the one-dimensional example defines
that portion of the integration in the transform. When
g2 is large enough, the logarithmic part of F(x?) will
correspond to a branch point in the usual fashion.
Thus there will be an analytic continuation required
from small g2 to large g* even for the regions outside
the light cone.

The other type of function whose Fourier analysis
must be defined is A_(x)=exp[ —4ig?A, (x)]. The only
difference in treating this function from the procedure
just outlined lies in the interchange of the space-like
and time-like regions. Hence all exponentials must be
analytically continued, though each in a separate
domain.

The statement made above that A(k) will vanish
sufficiently rapidly for large % is now seen to hold, since
the continuation has ensured that as a function of x, A
vanishes adequately at the origin.!6

—14

14 Tn obtaining Eq. (37), the usual convention that (—1)i=+3
has been followed.

15 The fact that the definition of f(g%) by continuation results
in a complex form [Eq. (37)] for the apparently real integral of
Eq. (35) may perhaps be a manifestation of a “charge renormaliza-
tion” akin in this respect to that required in the theory of T. D.
Lee [Phys. Rev. 95, 1329 (1954)7].

16 An alternate method of obtaining the finite result of Eq. (37)
consists of introducing a “structure” or cutoff function ¢x(x) into
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It must be remembered that while mathematical
meaning has now been given to the theory, the method
employed does not necessarily entail that the Fourier
transforms so defined behave in momentum space in
accordance with physical criteria such as causality and
unitarity. These questions require further investigation.

7. THE EFFECTIVE INTERCCTION SERIES FOR THE
RENORMALIZED GREEN’S FUNCTIONS

The now well-defined series, Eq. (32), aside from
being a high-momentum expansion, may also be classi-
fied by the number of A;;’s in each term. Since the trans-
formation of the theory to the effective transcendental
coupling (as reflected in the structure of the N\’s) has
presumably regrouped the interaction of the fields into
more natural units than the perturbation forms, it
appears desirable to re-express the solutions in terms
of quantities closely related to the N’s but in addition
vanishing when the interaction is turned off. When g2
equals zero, \s;(x) =1 or \s;(ks;) =06(k;). Equation (32)
immediately becomes

G)=5 (=m)" o) =GO (). (40

On the other hand, since Ay (x) — 0 as x, — » (for x,
not on the light-cone) \;;(x) — 1 in this limit. Since the
light-cone is a hypersurface in the volume integration
performed on Fourier analyzing, and since further the
analytic continuation makes A;;(x) well behaved on the
cone, A;(k;;) will have the term §(k;;) arising in a
natural fashion. This result could not have been in-
ferred from a perturbation expansion of A;; since the
latter is not permissible. Indeed the §(k4;) part of A\j;
just accounts for the fact that the nucleon has mass,
as may be seen from Eq. (40), while the remainder,
Aij(ki;)=Nij(ki;)—06(ky;) represents the interaction of
the massed nucleon with the meson field. It is in powers
of A;; then, that we shall expand our Green’s functions.
In the process, the Hy's will be replaced by G©’s as
this argument leads one to expect.

To this end, we write the product occurring in Eq.
(32) as

ﬁ Nij (ki) =11 5(kw‘)+]§lf\kz(kkz)n'a(kij)

i>j=1 i>7 i>7
+35 2 Ak Aee(ka) 17 (ki) + - -+, (41)
82 >

where primes on the J]’s denote omission of indices
appearing in the accompanying »_’s while those on the
> ’s imply that no two A’s are to have the same indices.

the integrand of Eq. (35). ¢\ (x) is taken to have the properties
that ¢ — 1 as A —  and that convergence of the integral (35)
is assured. Equation (37) then results when the transformation
x?= —142 (or more precisely x=1y) is made, followed by rotation
of the contour onto the x axis. However, in what follows the con-
tinuation viewpoint will be adhered to since no additional physical
end is gained by introducing a cut-off function of the type required.
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In Eq. (41) we have considered the product to be only
from 1 to n. All terms with end points at either x or &’
were thus neglected. In the S-matrix limit when
%, x' — 2o these terms will vanish naturally and hence
have been dropped for simplicity.

The first term of Eq. (41) leads to Eq. (40) with the
renormalized mass (of course only ' appears hence-
forth). The second term yields

GW= Y (——m’)"fHO"(P)AB(k)
n,a,8,y
X H (p—k)Ho" (p)dk,

Ag(x) =exp[ (—)P4ig?A, () ]—1.

(42)
where
(43)

The structure of Eq. (42) arises from Eq. (32) since for
this term there is only one nonzero intermediate mo-
mentum, or, diagrammatically, one ‘“emission” or
““absorption” which spans 8 of the Hy’s. Here and sub-
sequently A plays the role of the meson propagator.
The summation over «, 8 and v extends from 1 to «
since only internal A’s are being retained. In order that
there be n+1 Hy’s, a, 8, and v are restricted by the
condition a+pB+y=n-+1. The » summation then runs
from 2 to » so that at least three H’s occur, one on
each edge and one spanned by the A. By straightforward
expansion, remembering that — (p—k)2=HZ(p—Fk),
one easily sees that

G.D (p)=—G(p)

m’Ao(k)—l—'y(p—k)A1
"2 Y dkvs 5 1GL@(p). (44
Rt CLD

The Ag and A; which have opposite signs in their ex-
ponents are generalizations of the fact that in
G,.©(p—Fk) the numerator would have the form
m—~y(p—Fk). Indeed a perturbation expansion of the
A’s to lowest order yields the familiar equivalence result
between ps(ps) and ps(pv) with g,.=2mg. Of course,
such an expansion should not be made and Eq. (44)
represents a more general equivalence relation between
the two theories when the full interaction unit, A (),
rather than just the one meson part, is used.
The expansion for G, has been recast into the form

Go=G,O—GLOM VG, O+ .., (45)

The quantity in the bracket of Eq. (44) may then be
associated with an effective first-order ‘“mass operator,”
orders meaning now powers of A. Every order of this
mass operator is, of course, finite now because of analytic
continuation and the fact that the explicit infinities
have been previously extracted.

The parts quadratic in A in Eq. (41) give, along with
irreducible second-order diagrams, the iterate of 6 M.
To arrive at the latter, we consider the terms in Eq.
(41) where />s and the symmetric ones where > .
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The portion of G.® thus generated has the form

2 (—=m)n f Ho*(p)Hof (p—k)Ho"(p)Ho® (p— ')

X Hot(p)As(R)As(R)dkdE'.  (46)

All Greek indices but v sum from 1 to o, the latter

from 0 to «. It may be verified that (46) reduces to

mAa(B) 7 (p— DA (B)
(="

WG, (p) f dhvs

X75(Go® (5)+G.© (0)) f d'vs

Xm’Ag(k’) +y(p—E)AL(E)
(p—Ky+m"

The first term of the brace gives the iterate of 6M ®.
The G.®(0)=1/m" term forms a new second order
structure characteristic of ps(pv) theory. Diagram-
matically, the latter may be viewed as a coalescence of
the first term in which the two central vertices coincide.
In general, to nth order, one will obtain terms corre-
sponding to every diagram of the normal perturbation
type with Ag 1 playing the role of the meson propagator,
plus all diagrams derived from these by allowing any
number of interior G ®’s to be replaced by G (0)
(as long as no two A’s coincide). Statements similar to
those made for 6/ ® about equivalence relations hold
in these higher terms.'”

The existence of a mass operator brings with it the
possibility of further, but finite, renormalizations. These
would have to be evaluated in obtaining physical re-
sults, but in principle no difficulty should arise in such
a calculation.

Turning to the two-nucleon Green function,
Gre’ (x129,21"2c5") the functional integral to be performed
is now

Gro' (w12, w2") = N_lf5¢

(47)

1460 ().

Xexp[—%»i [ ¢<5>A+~1<ss’)¢(s’)dzds’]

X3 (—m)et f dyn- - -dyuHo(w) - - Holyaar)

8,t=0

dezl . -dZnHo(szl) . 'Ho(thzl)

XeXp[—2g751f¢(E)f1(£)d£
~2gv¢ [ ¢(E)fz(£)d£], (48)

17 The formulation of the total mass operator in terms of a
suitably defined ‘‘vertex operator’’ may be of interest. It must be
remembered that the appearance of Ay or A; depends upon the
specific structure to be spanned by the A’s,
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where f;(¢) is the series of § functions appearing in
Eq. (28) and depending parametrically on the y’s and
2’s, respectively. Equation (48) may be suitably anti-
symmetrized at any stage of the calculation, a pro-
cedure which need not be considered here. The vs’s of
each particle commute with any +4’s of the other, of
course. One aspect of isotopic spin which may be
included if desired, is the use of 7;* rather than unity
to describe the neutral mesons; these matrices may be
assumed to have been incorporated into the ys’s. Use
of 75’s only modifies the #-p forces and would not in
any case alter the one-nucleon results. The functional
integral is performed in the usual fashion to yield

G1o (159,21 %9") = Z 2 Z (— ’)“”fdyl -dydz:- - -dz:

8, t=0

X exp[ —4ighys'ys® Z (=)HA L (y0%5) ]

1,7=1

Xexp[4ig? 3 (—)™AL (yiy) JHo(x1y1) - - - Ho(yx1)
1>7=1
t
Xexp[4ig® 3 (—)™HA(z:35) ]
i>=1
XHo(xzzl) . 'HO(thﬁl)- (49)

Once again all meson terms leading to either edge of
both particles have been omitted. The second and third
exponentials are each nucleon’s radiative corrections.
These will, of course, modify the effects of the first
exponential which gives the interaction between the
nucleons due to the exchange of mesons. To go over to
the more physical form, in terms of G+ one again
would express each exponential in powers of A. The
analog of the basic Mgller interaction can be obtained,
however, by dropping all the self-terms and merely
expanding the first term:

exp[ —4ighyslys Z (=)HAL(yiz5) ]

7,7=1

= 1+Z A2 (yz)+---

A= exp[ —4ighyslys’(—) A, (viz;) ]—1.

The unity in Eq. (50) leads to the product of the non-
interacting Green functions, G.@ (x12:)G© (xex5'),
while the second term produces in momentum space

GO (ppek)= 3 (—m)*+ Z A% (k)

8,t=1 7,7=1

XHo' (p1)Ho' (p2) Ho* =" (p1— k) Ho' =~ (pot-k),

(50)

(1)

where % is the momentum transfer between the nu-
cleons. The A;*?(k) may be brought past the first two
H, factors where it becomes Ag!2. The sum may then
be easily performed to yield

G W (p1pak) =G @ (p1)G 1@ (pa) [ Moo (k) ]

XG O (pr—R)G O (patk), (52)
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and hence the effective lowest order interaction struc-

ture becomes
Iy (k) = m’2A0012 (k) or

Tz (o01—x5) = m'2{exp[ — dighystys™Ay (xrx2) ]— 1}, (33)

which displays the usual equivalence relation upon
perturbation expansion.

In coordinate space, the v5 dependence of 115 can be
brought out of the exponent as (Zyslys?)?=—1:

1o (xl— xg) = m""[{ COS4g2A+ (x1x2> -1 }

- i751752 sin4g2A+ (xlxz)]. (54)

This interaction is, of course, complex, the imaginary
part being related to the elastic scattering potential
while the real part corresponds to decay out of the two
nucleon state, that is to meson and pair production.
The adiabatic potential is the time integral of the
imaginary part of [1s. A preliminary analysis indicates
that for p-p forces the central potential has a repulsive
core. Of course, the validity of an adiabatic approxima-
tion is questionable in a theory involving «s’s,!® and
more detailed analysis is required to obtain a mean-
ingful result.

The meson-nucleon Green’s function may be obtained
either by straightforward functional integration by way
of Eq. (4) or more easily from the expression

G/ (ma)=2 [ A+(n$)[ f ad w]

XA (E')dedE.  (55)
One can thus get directly the result to first order in A
from Eq. (44)%:

G (n ') = f AL (OGO (5—£)

XA{—4ig2m/*ys[ m No(§— &) A (EE)
—ME=E) vl (§8) Tvs)
XG O (Ex")AL(Em')dEdE,

where A, is Ay with mass m/. When g 1 is replaced by
unity, one again recognizes the characteristic equiva-
lence with ps(ps) theory, the process of differentiation
having replaced A by N in the interaction structure.
The approximation of Eq. (56) may be of use for low-
energy scattering since a single A already involves
many virtual mesons.?

18 R. Arnowitt and S. Gasiorowicz, Phys. Rev. 94, 1057 (1954).

19 We have omitted differentiations of m’ and Z, which would
lead to terms with two meson vertices coinciding.

2 The behavior of the theory at low energy can also be inferred
from threshold theorems. These may be derived by inserting an
external meson field into the Lagrangian. A constant pseudoscalar
field produces no effects, indicating that, aside from u/m correc-
tions, the cross section goes to zero at threshold. To arrive at the
p-shift one must insert a field g¢ (x) =y, where o, is a constant
vector. The vertex can then be generated by the operation
P(P; P+k)Nk;La/aauG I(P;a)

(56)
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Production processes in both meson-nucleon and .

nucleon-nucleon collisions can be calculated from the
real part of the respective interaction structures. The
exponential dependence upon the meson field in these
terms should imply that multiple meson production is
favored. Such questions have been discussed by
Glauber! in the semiclassical approximation which is
closely related to the first term in our expansion in A.
The conclusions there seem to support such a conjecture.

8. CONCLUSION

In the early examples of this paper a number of
more or less severe approximations were made in order
to obtain closed form solutions. The aim in so doing
was to exhibit the salient differences between ‘re-
normalizable” and ‘“unrenormalizable” theories, rather
than to obtain physical predictions at this juncture.
Although the examples discussed varied considerably
in aspect, the fundamental derivative nature of the
coupling produced the striking essential singularity
behavior both of the renormalization constants and of
the renormalized kernels. When one uses a non-
perturbation approach to even the renormalizable
theories (such as neutral scalar), another phenomenon
arises in that a critical coupling constant exists above
which analytic continuation must be performed if the
transformation theory is to be maintained. Rigorously,
in the gradient theories, the essential singularity causes
the critical coupling constant to be zero.

The perturbation renormalization procedure would
seem, in view of the above, to require of the theories to
which it is applied a certain structure such that
though an expansion near the origin (i.e., around a
branch point) is not permitted, meaning can still be
given to the individual terms. Even if the theory is
mild enough so that such a technique is feasible, the
perturbation approach would still not tell one of the
existence of the critical coupling value and the need
for analytic continuation. In the unrenormalizable case
the situation is more serious still. Assuming one had
been able to extract the explicitly infinite terms order
by order (via some prior knowledge of the exact
results) the ostensibly renormalized perturbation ex-
pansion would still be divergent in a really intractable
manner, as analytic continuation, of its very nature,
can only give meaning to the closed form expression.

In the beta-decay example treated in the appendix
the difficulties encountered in attempting to render
the theory finite are of a different nature since here one
is dealing with something resembling a vacuum po-
larization effect. Insofar as one can learn from the
perturbation expansion (to which our own criticisms
above may apply) the renormalization in the S-matrix
limit seems perhaps possible, unlike the finite-times
Green’s functions. There is perhaps an alternate way
of treating the problem. In view of the equivalence
between a sufficiently heavy intermediate meson field
and a direct interaction, the beta coupling could have
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been discussed as the limiting case of normal meson
couplings. Since now a number of these may be re-
normalized, then at least in the case of such couplings,
the problem is reduced to the consideration of whether
the infinite meson mass limit leaves the renormalized
structure finite.

The specific approximations which have been made
in Secs. 3 and 4 were two in number. The first, the no
recoil assumption, reduced the partial differential equa-
tion for G4 (¢) to an ordinary first-order equation.?
The second approximation used consists in neglecting
the commutator of the various Dirac matrices. The use
of these assumptions cannot only change the numerical
validity of the results (which would not concern us here)
but in some cases can destroy the basic requirements
that these results must obey. An example of this was
seen in Sec. 4. Such questions are perhaps most sig-
nificant in theories involving v since this matrix does
not have an unambiguous nonrelativistic reduction.
For these reasons, it is only insofar as the above re-
sults agree with the full recoil theory that they are
trustworthy. For the relativistic case, however, it was
seen that the infinities are again of the essential singu-
larity type. These can then be removed in the physically
acceptable way of the renormalization philosophy.
Within the framework of our solution, these strong
divergences imply that the remainder after this first
renormalization must have equally virulent behavior
in the zero time limit of the kernels since the canonical
commutation relations are preserved. Hence a further
definition is necessary at this point, a process which in
“renormalizable” theories is required only in certain
domains of the coupling constant (above a critical size)
and, hence, there for a much milder problem. As in
other examples of redefinition of a theory, it seems
reasonable to judge the procedure by the physical use-
fulness of the results; in particular, the fundamental
requirements on the analytic behavior in momentum
space must be maintained.

The approximate forms specifically exhibited for
several physically important interaction operators of
the theory seem promising in those aspects where ps(pv)
has always been thought to be of interest, such as
multiple meson production and nuclear forces. How-
ever, before any predictions (even rigorous ones) can
be taken as more than indicative, it should be re-
membered that several important qualifications apply.
The most physical of these has been the neglect of the
charged mesons. Had the latter been included none of
the steps of this method could have been performed, and
in particular no definite statement of renormalizability
been made.”? Analogies from perturbation theory here

2t When recoil is dropped, vacuum polarization effects auto-
matically vanish, of course.

2 Inclusion of charged mesons presents many of the same prob-
lems as are encountered in treating the spin if one does not make
the assumption of commutativity. Such an approximation may
correspond to a weak coupling one and not be as serious as in
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do not seem of much aid. At the moment then, charge
symmetry can only be discussed in an ad hoc fashion.
The other major omission is concerned with closed loop
effects. The problem here is again one of the continued
applicability of the renormalization approach. Since
the only methods known at present to deal with
vacuum polarization are at least of a quasi-perturbation
nature, no conclusions can be drawn.

ACKNOWLEDGMENTS

We wish'to thank Dr. J. R. Oppenheimer for several
interesting conversations and for the hospitality ex-
tended us at The Institute for Advanced Study.

APPENDIX A. THE FERMI INTERACTION IN
THE STATIC LIMIT

A second class of “unrenormalizable” theories con-
sists of the beta interactions. We consider here the
nucleon static limit for the scalar coupling.?® The
Lagrangian for such a system may be written in a
unified notation as

L= =L (= potmy— b (yp+rm,)
— ghanjasp+-i¢+herm conj, (A1)

where ¥ represents the nucleon field, ¢ the lepton field
(which is, of course, kept relativistic),

¥ be
() ()
Y oy
M is a lepton mass matrix (unity when acting on electron
functions, zero when on neutrino functions) and «; and
@ are the matrices [in the spaces defined by Eq. (A2)]
required to allow the appropriate processes to take place.
For simplicity, however, we shall in what follows set A,
a; and a2 to unity. 7 and 7 are external spinor sources
which are assumed to anticommute with all other
fermion amplitudes. By use of these external sources,
the functional differential equation for the one-nucleon
Green’s function may be obtained in a fashion analogous
to the case in which the ¢ field is a boson, though slightly
more care must be taken due to the anticommutativity
of the fermion sources:

(A2)

[—‘Po+mvg{;, gﬁi(lt—)+¢(ﬁ) } {% g:(r—t)—i—d;(t) ”

XGy' (Lt dp)=0(—1). (A3)
Here subscripts “” and “7” mean left and right de-
rivatives respectively, that is, in performing the func-
tional differentiations indicated, one takes the variation
with respect to the source, and commutes it to the

the spin reduction since there is no question of a +ys-like fourth
component in this three-dimensional isotopic space.

2 Such an approximation is actually valid for allowed beta
transitions with this coupling.
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extreme left or right in the expression before dividing
by it.

From Eq. (A3) one may again follow the usual pro-
cedure®+ to arrive at the result

Ga-n=v- [ exp[—i | ¢(€)Go_1(€—5')¢(5')]

XGi (115 §¢)opdep, (A4)

where (yp+me)Go=1 and

[—potm+gd (Do (OG- (1Y ; dp) =8(t—1").

In the functional integral of Eq. (A4) it must be re-
membered that the ¢’s and d¢’s still anticommute
among themselves.? Equation (AS5) may be integrated
to yield the familiar exponential form but bilinear in
the lepton variables. The functional integration may
still be performed, however, since the integrand is just
a Gaussian with a modified propagator:

Gy (t—1") =10 (t—1")e"mt—t"
Xexp[—Tr In(1+gPGo)], (A6)

where in coordinate space P(£&)=H (£o,it')6%(¥)d*
X (£—¢"). The Tr above refers to a trace both over the
spinor indices and coordinates of the leptons. The nu-
nucleon variables, ¢ and 7, still enter parametrically in
P(§,¢). Structures similar to the above appear in the
usual vacuum polarization effects. This is not surprising
since one is here dealing with a spinor pair theory
coupled to a heavy source, which may be likened to
vacuum polarization in an external field.

The logarithm in Eq. (A6) may be expanded in a
perturbation series in g to yield

(A5)

—Tr In(14-gPGo)=— J‘dé

X (£ gPGo—38*(PGo)*+4°/3(PGo)*— - - - |§). (A7)
If £ is a representation which diagonalizes the operator
PG, then Eq. (A7) may easily be rewritten as?

—Tr In(14-gPGo) = —5(0) f deIn[1+¢/ ()], (A8)

where (| PGo|&)=f(£)5((—¢). While to find the
diagonalizing representation in general would be very
difficult, when {—¢=T is very large (the S-matrix
limit), PG, is diagonal in the p, part of the usual mo-
mentum representation. For this partial diagonalization,

24 For a detailed discussion of functional integrals over fermion
variables see P. T. Matthews and+A. Salam (to be published).

25 If, for example, £ were momentum variables, then §(0) is to
be regarded as VT. In our case, the §(0) actually cancels at finite
times in the term by term intregation of the perturbation series.
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an equation similar to (A8) can be written
—Tr In(14-gPGo) = -—indpo/iTr'

XIn[ (1+¢PGo(po)], (A9)
where Tr’ is the trace over all remaining eigenvalues.
The integral in Eq. (A9) is thus the mass renormaliza-
tion (or zero-point energy in fixed source language). In
the large time limit, therefore, the Green’s function re-
duces to the unperturbed one with renormalized mass
and Z, (the latter not appearing in the above calcula-
tion). The lepton-nucleon Green function in the same
limit exhibits, in addition to these, a coupling constant
renormalization.

When the times are not infinite, these simplifications
are lost and one must have recourse to the perturbation
expansion of Eq. (A7). To first order in g one obtains
—1(t—1")4mg(—1)A,(0) which is a mass renormaliza-
tion. The second term displays both Z; and mass
renormalization as well as a finite function of (¢—1')
(which vanishes at infinity). However, the g* term in-
volves, aside from finite terms and a Z, renormalization,
the product of infinite terms and finite functions of
time (which also go to zero at infinity). These pre-
sumably would represent g renormalizations but there
appear to be terms beyond those necessary to renor-
malize the second order structure.?® Thus to renormalize
the theory for finite times it may be necessary to obtain
a nonperturbation solution or perhaps to introduce
other counter terms. However, even within the S-matrix
renormalization program, it should be checked whether
a unique charge renormalization suffices there in treat-
ing all the higher Green functions. '

APPENDIX B. STATIC APPROXIMATION WITH
GRADIENT COUPLING

A more complex approximation to the full ps(pv)
theory than the example of Sec. 3 involves the gradient
part of the coupling term:

(= potm—igo- V)G, (415 $)=08(t—1),

where oz=7vsyoys. Equation (B1) can be formally
integrated in terms of time-ordered exponentials. How-
ever, the evaluation of such a structure in closed form
is, of course, an insoluble mathematical problem. We
consider here only the simplified approximation in
which the ¢’s are taken to commute.?” With this assump-
tion the ordered exponentials are equivalent to ordinary

(B1)

26 For the scalar pair theory, whose charge renormalization has
been treated by A. Klein and B. McCormick [Phys. Rev. 98, 1428
(1955)7] in the S-matrix limit, one obtains a linear and logarithmic
divergence at finite times. The linear divergence correctly re-
normalizes the g2 term, while the logarithm fails to do so.

27 This might be viewed as a semiclassical approximation to the
cutoff theory considered by G. Chew, Phys. Rev. 94, 1749 (1954).
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ones, allowing the functional integral to be performed.

Gy (1—t)=10(t—1) exp[ (—im(t—1)]
Xexp[—%igz f f drdr'V?AL(0, T—T')]. (B2)

The exponential is similar to the result of neutral scalar
theory except for the Laplacian. The latter raises the
order of infinity of the renormalization constants to be
extracted. By use of the equation obeyed by A, G}/
may be rewritten as

Gy (=) =i (t—)e=m ="

¢ t
Xexp[—igz{ AL (i—t)—A(0) }——%igz,uﬁf f drdr’
124 ¢

><A+<r—T'>+;ig253<0><t—f'>]. (B3)

Again essential singularities of the type encountered
in the v;d0p approximation arise through the first part
of the exponent. The second term is equivalent to the
no-recoil scalar theory [with (ig)%? playing the role
of g which again is equal to the adiabatic limit of the
ps(ps) case.t This will produce a further Z, as well as
a mass renormalization. The third term is the usual
contact structure that occurs in ps(ps)— ps(pv) equiva-
lence transformations and is absorbed into the mass
term. Physical effects will arise in the higher Green
functions from the scalar part of the interaction.

Interactions involving higher powers of the gradient
(T¢p~V?7¢) can similarly be handled.

APPENDIX C. FORMAL EQUIVALENCE OF THE
SOLUTION WITH PERTURBATION THEORY

In this appendix we show that the solution given in
Eq. (29) is formally equivalent to the usual perturbation
expansion. It will suffice to consider here only the terms
of order g2.:Equation (29), when expanded gives

G (o) =igE. (—m)" f dys- - -dy,Ho(wy) - -
X Ho(yst!)L (1 20)A 4 (0) — (— )" ()

+2 ; (=) TA ()4 (=) "HA (v ]

X (<A )] (CD)

>7=1
This is to be compared with

— (2| GLO0M G, @ [a') = —ig? f dydy'G,© (xy)

XysvuG @ vy ) sy, [0,9,' A (yy) 16+ (y'%'). (C2)



RENORMALIZATION

The two derivatives on Ay (yy") due to the vertices are
integrated by parts to act on the appropriate G;©’s.
Using the defining equation for G one then obtains

igﬂ[A+<o>[G+<°> (@)= 2m [[ 56,0 )G, )
- A+<xxl)’)’5G+(°) (xx')'y5

2 [ a8, )G (234 9 35
+2m f dyysG+@ (2y) G+ @ (y2) Ay (y2')

—4m? f dydy' A, (yy" )G @ (wy)
XvsGy @ (3 )vsG+ @ (y'x") ] (©)

In the derivation of Eq. (C3) a term having as co-
efficient 9,A (y) ],—0 has been dropped since this factor
vanishes by oddness. Equation (C3) need only be
expanded in a power series in  to prove it equivalent
to (C1).

The terms in which either of the arguments of A, is
x or &’ vanish in S-matrix limit. The last term is the
usual ps(ps) lowest order correction. The coefficient
of the remaining G (xx’) is recognizable even in the
perturbation expansion as a Z, renormalization while
the other A, (0) term is similarly a mass renormaliza-
tion. The ps(ps) structure produces its own infinities.
However in the rigorous form terms of this sort add
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back in such a way that the A,(yy") is replaced by
exp[ £41g?A, (yy')]. When analytic continuation is em-
ployed, what remains is finite, which is necessary since
higher powers of A,(yy’) appear in subsequent orders
and would not be renormalizable.

It may be noted that the formal equivalence with
perturbation theory is demonstrable for higher Green’s
functions as well. However, as was pointed out in Eq.
(39), the &(x,?) part of A,(x) does not contribute to
exp[4ig’A,(x)] but would produce effects in the
expanded forms.

APPENDIX D. NEUTRAL S(V) THEORY

The relativistic counterpart of the nonrecoil case
with dep coupling is, of course, the s(v) theory which
will be considered here. The equation for G, (¢) is

(vp+mA-gv,0,0)Gi (0,05 §) =8(x—).  (D1)

Letting G (x,x'; ¢)=e W¢@H, (xx'; ¢)ets") one
easily finds that

(vp+m)H, (x5 ) =0 (x—2)

or Hy(x,2)=Gy®(xx"). The functional integral is
trivial to perform here, yielding

Gy (') = Z» exp[ —1g°A1 (x,2) ]G+ @ (w,0"),  (D3)

where Z,=exp[1g?A,(0)]. The structure indicates the
well-known fact that the s(v) theory has no physical
effects.

Zy in this case is less than unity according to the
interpretation given to A;(0) in Sec. 5. In order to
give meaning to G.(p), however, analytic continuation
is still required just as in the ps(pv) theory.

(D2)



