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Scattering of Mesons by a Fixed Scatterer
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The meson-nucleon scattering equations of Chew and Low are generalized to the case of mesons and
scatterers having arbitrary angular momenta. In consequence, the algebraic structure of the equations
is made clearer. Two coupling schemes for the angular momenta are studied, the J-scheme in which momenta
of meson and scatterer in the initial state are coupled, and the X-scheme in which the meson momenta in
initial and Anal states are coupled. The condition of unitarity of the S-matrix is simple only in the J-scheme,
the condition of causality is simple only in the E-scheme. The interlock between the two schemes gives
rise to the peculiar linking of diferent J-values in the Chew-Low equations. The linkage coe%cients are
shown to be ordinary Racah coeKcients.

L INTRODUCTION

~~HEW' has introduced the so-called "fixed-source~ model" as an approximate model for the meson-
nucleon interaction, and has found remarkably good
agreement between this model and the experimental
data on photo-production and meson-proton scattering.
Low' has discovered a new type of scattering equation
which greatly simplifies the mathematical analysis of
the Chew model. Low has also proved' a theorem which
states that his scattering equation is in a certain sense
equivalent to the requirement that the meson-nucleon
interaction satisfy the two conditions of causality and
unitarity of the 5-matrix. This means that the conse-
quences of the Low scattering equation are to some
extent independent of the details of the model, and
therefore to be taken more seriously than the model
itself.

The present paper contains a simple generalization
of the Chew-Low analysis to the scattering of mesons

by a Gxed scatterer, the mesons and the scatterer having
arbitrary angular momenta. The treatment is general
enough so that scattering matrix elements which are
mixtures of diferent multipole orders can be included.
It is found that the essential features of the Chew-Low
theory are entirely unchanged by the generalization.
In particular, the Low theorem about unitarity and
causality still holds.

The purpose of this generalization of the theory was
to understand the algebraic structure of the scattering
equation LEq. (3.11) of reference 2), particularly the
linkage between scattering amplitudes of diferent total
angular momentum. The generalized equations make
the structure clear. The essential results thus obtained
are two.

(i) The linkage coefFicients are Racah coeKcients,
which enter here for the same reason that they occur
in the theory of angular correlations of successive
nuc1ear radiations. 4

' G. F. Chew, Phys Rev. 89, 5.91 (1953); 94, 1748 and 1/55
(1954); 95, 1669 (1954).' F. Low, Phys. Rev. 97, 1392 (1955).' G. F. Chew (unpublished communication).' G. Racah, Phys. Rev. 84, 910 (1951).

(ii) The unitarity and causality conditions can be
simply formulated in terms of two diferent coupling
schemes for the angular momenta, and it is only in the
transformation between the two coupling schemes that
the Racah coeKcients Inake an appearance.

The discussion in this paper is intentionally conGned
to the algebraic properties of the scattering equations.
Concerning the physical meaning of the equations, we
have nothing to add to what Chew and Low have said.

&=&o+H'+&, (2)

where Bo is the energy of the scatterer alone, H is
that of the free meson Geld, and II' is the interaction

where U(r) is a Hermitian matrix operating on the
states of the scatterer.

The Fourier transform of the operator U(r) may be
expressed as a sum of multipoles:

U(k) = l U(r)e"'der=+( —1)"7'
i,~(k) Ui,n(k),

IL THE SCATTERING EQUATION

We shall consider the interaction of mesons with a
heavy scatterer to be a particular case of the following
general situation. There is a scatterer whose states are
represented by

~

So.), ~
Tr), where o or r is the s-compo-

nent of the angular momentum, and 8 or T denotes
the total angular momentum together with any other
variables needed to specify the state completely. There
is a neutral spin-zero meson fmld p(r). States of the
scatterer plus one meson are denoted by ISoL'Ax),
where L is the orbital angular momentum of the meson,
'A is the s-component of L, and x is the magnitude of
the meson momentum at infinite distance from the
scatterer. The states are normalized by the convention

(TrMtty
~

So LXx)=8rs8,.8rM8i o8 (x y). —

The Hamiltonian of the whole system is
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where V i,z(k) is a normalized surface harmonic, and
Ui,z(k) is an operator depending on. the magnitude of k

only. The basic hypothesis of the fixed-scatterer model
is that the Ui, z(k) be factorizable. That is to say, for
each multipole separately we have

UP(k) =up(k)OP (4)

where uz(k) is a c-number function of
I
I I, and Oqz is

an operator independent of k. The O~~ are irreducible
tensor operators in the sense of Racah. ' According to
Eq. (29) of reference 5, the matrix elements of OP are
given by

(Rp I
oP

I so) = ( 1)~+~v(—Rsl, —po'&)(Rllo Ils), (5)

where V is a signer coe%cient, and the reduced
matrix elements (Rllozlls& express the physical proper-
ties of the scatterer.

The interaction operator is subject to the further
conditions that it be Hermitian and invariant under
time reversal. The first condition gives

(RIIO IIS)'u.*(k)= (—1)s-a+z(SIIO IIR)u. (k). (6)

The second condition, using the conventions of Coester'
to de6ne the time-reversal operator, gives

(Rllo~lls) =&(—1)s-8+z(sllozlIR) (7)

where p= &1 expresses the intrinsic parity of the meson
field under time-reversal. According to (6), the phase
of uz, (k) is independent of k. We may therefore choose
the phase of OP in (4) so that uz, (k) is real for q=+1
and pure imaginary for r)= —1.Then (6) and (7) imply
that every (RIIO~IIS) is real.

Consider the part of the S-matrix for which the
initial state

I
SOI.Xx& is a state of the scatterer with one

meson of momentum x, while the final state IRp) is
any state of the complete system of scatterer plus
meson field. For the final state, R represents the total
angular momentum and any other variables needed to
specify the state, while p is the s-component of angular
momentum. Let Eg be the energy of the final state,
Eq that of the scatterer in the initial state, and Ag
=Ez—Es. Let &u, = (p'+x')*' be the energy of the
meson with momentum x. According to Low

I Eq.
(3.6) of reference 2j, this part of the S-matrix may be
written

S=I+2i (x/a. )5(~.—Dg)F(x), (g)

where F(x) is an operator whose relevant matrix
elements are given by

(RpIF(x) ISOL) &= ,'(ei,/rr)iud—(x—)(Rploi, Iso& (9).
This F(x) is the scattering amplitude operator for a
meson of momentum x. ln a scattering state which is
an eigenstate of F(x), the eigenvalue will be e" sink,
where 8 is the phase shift.

' G. Racah, Phys. Rev. 62, 438 (1942).' F. Ceester, Phys. Rev. 89, 619 (1953).

xZ (T.lo „ IRp)(Rplo, Is )
~p Ag —M~ —16

1
+ (Trio),zIRp&(RpIO „~Isa& . (10)

~ir+ei*

Here it is supposed that the initial and final states of
the scatterer have equal energy Fs. Equation (10) is
exact and depends only on the hypothesis of factoriza-
bility of the interaction. The approximation of neg-
lecting states IRp) containing more than one meson
will not be made anywhere in this paper.

III. THE TWO COUPLING SCHEMES

The usual method of eliminating the magnetic
quantum numbers r, p, 0, X from Eq. (10) is to use the
fact that the total angular momentum J of the system,
and its s-component j, are constants of the motion.
Thus we may write

(TrMp,
I
F (x) I

SoLX)=P~, (21+1)V (TMJ, rp j)—
xv(s11, ) —j)(z'MIF, (*)ISL). (11)

Substituting Eqs. (5) and (11) into (10) gives the Low
equation in the J-coupling scheme

(TMIF ( )ISI.)=
xuz, (x)uM(x) (—1)sr+'-ir

16m'

( 1)M+s 8—
8~~+

ZJ+1 Ag+ei

x(z'llo'IIR&(Rllo~lls&lv V»M, ») (»)

Here H/' is the Racah coeKcient defined in reference 5.
This Eq. (12) is the direct generalization of Low s equa-
tion (3.11) in reference 2, and it shows how the coupling
between different J-values in Low's equation comes
about. The numerical factors 8/3, 2/9, etc. , in Low's
equation are products of Racah coefficients, as shown
explicitly in Eq. (33) below.

An alternative way of eliminating the magnetic
quantum numbers from Eq. (10) is to couple together
the initial and final angular momenta of the meson;
thus we couple together (JM,ST) instead of (TM,SI.).
%e write

(2'rMplF(x) IS~I.X&=g~.(ZN+1)V(I-MN, —) p.)
X V (STN, cr —v) (—r1)'+s s ~(TM

I Gv (x) I SL& (13).

The scattering equation of Low
I Eq. (3.7) of refer-

ence Zj, for the case of elastic scattering of a meson
with momentum x, gives

xuz (x)usr (x)
(rrM,

I F(x)
I
S~L,) )=( 1)~—+s

16 ~
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Substituting Eqs. (5) and (13) into (10) gives the Low
equation in the 3~-coupling scheme

xuL(pp)uM(a) (—1)L

167l & Ag Q)~ 26

( 1)M+N

X&Tf
fOM

ffR&(R f
fO'f fS)W(TMSL, RN)+

+R+nI z

(TMlGN(*) fsL&=

x(TlloLIIR&&RlloMIIS&w(TLSM, RN) .

For given I., 3f, S, T, the number of possible values of
E is always equal to the number of values of J. From
the symmetry of the Racah coefficients, Eqs. (12) and
(14) imply

&TMIF~(*) lsL&=&SLIF~(~)
l
TM&,

(15)
GN(*) lsr &= (—1)s—

T&sL,
I GN(&) l

TM&.

Thus the S-matrix is symmetric in both J and E
coupling schemes, in accordance with the general
theorem of Coester. '

Equation (14) has in addition a property of sym-
metry7 with respect to the interchange of I, and M.
Thus for n=o, I, we consider the sum or difference
defined by

(TMIGN. (~) Isr.)=f&TMIGN(*) IsL&

+(—1)-(TI lGN(x) lsM&j. (16)

For this quantity, Eq. (14) gives

&TM
l
GN. (x) l

sr.&

auL (x)uM (x) 1 ( 1)N+a-

R -AR oIz ze AR+oIz—

x((—1)L&Tllo IIR&(Rllo lls&w(TMSL, RN)

+ (—1)M+-&TlloLflR&&RfloMlls&

X W (TLSM,RN) J. (17)

The F~ and t"~ are linear combinations of each
other according to Eqs. (11) and (13),

Fg=+N(2N+1) ( 1)M+T L ~w(T—MSL,JN)GN,
(18)

GN =Pg(2J+1) (—1)M+T ~~W(TMSL, JN)Fg

Substituting Eq. (18) into (14) reproduces Eq. (12) by
virtue of the Racah sum-rule fEq. (43) of reference 5$

(2N+1) ( 1)L+M+s+T+J+R+Nw(TMSL JN)
XW(TLSM, RN) =W(LSTM, JR). (19)

The physical meaning of the amplitudes &TM l GN

X(x)lsL& is not very clear. They are the "tensor
parameters" of the S-matrix, according to the definition

7 The extra symmetry is related to the Gell-Mann and Gold-
berger "crossing theorem" Lthe theorem is mentioned by H. W.
Wyld, Phys. Rev. 96, 1661 (1954), end of Sec. III, but is otherwise
unpublishedg. The purpose of introducing the quantum-number
E is to make this symmetry evident in the equations.

of Fano. The following seems to be their most concrete
interpretation. For any direction p, let fLO~& be the
state of the meson having total angular momentum I
and zero component of angular momentum about p.
Then Eq. (13) implies

&T,Mo,
l
F(*) l

s.r.o,)
=PNf4rr(2N+1)]'V (LMN, 000)V (STN, o —rr o)—

X(—1)' + +M(TM fGN(T) fsL)Y N(P). (20)

This exhibits the G~ as coeKcients of Legendre poly-
nomials in the angular distribution of a scattering
amplitude.

IV. UNITARITY AND CASUALITY

Every quantity appearing on the right of Eqs. (10),
(12), (14), and (17) is real, except for the infinitesimal

(—ie) in the denominators. Therefore the imaginary
part on the right side of these equations comes only
from states

l Rp& with DR ——oI,. Using (9), the imaginary
part of (10) becomes

Im&TrMp
f F(x) l

soLx) = (T/co,)g,(TTMp f
F*(T)

l Rp&

Xb(AR —oI,)&Rp f F(x) f SoLX&, (21)

which is simply a statement that the S-matrix (8) is
unitary. Since Eqs. (12), (14), and (17) are all equivalent
to (10), the imaginary parts of these equations are also
equivalent to the unitarity of the 5-matrix. For ex-
ample, the imaginary part of (12) is

xuL(x) uM (x)
Im(TM fF,(*)fSL,)= ( 1)M+T J—

(2J+1)16s-

xg. ~.,~(A —~.)&TlloMIIR&&RlloLIIS&, (22)

and this is another statement of the unitarity condition.
We may now use Eq. (22) in order to simplify (12),

following the ideas of Low. ' The contribution to the
right side of (12) from all states R with DR ——oI,)p may
be expressed by (22) in terms of ImFR(z). Thus (12)
becomes

xuL(x)uM(x) (—1)M+T R

(TM fFJ(a) lsI.)=
16K' & Ag Mg

( 1)M+S R—
x&TlloMIIR&(Rllo'lls& a„+

2J+1 hR+oI,

X&TffO ffR&&RffOM ffS&W(LSTM, JR)

1
f
"Ck xuL(a)uM(x) Im&TM fFg(s) lsL&

7I 'l
p OIz uL(S)uM(S) OIz OIz te

Im(TI.
f FR (s) f SM)

+Z ( 1)M+S LT——
8 COz+OIz

X (2R+1)W(LSTM,JR) . (23)

' U. Fano, Phys. Rev. 90, 577 (19$3&.
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Here the first sum extends only over the states R of
the system for which 5g &p, and is in most cases a
discrete sum over a finite number of states. The integral
has the appearance of a dispersion formula, except that
the amplitudes for diGerent angular momenta R are
mixed together in the last term.

To obtain a true dispersion formula, we must use the
F-coupling scheme and apply the same argument to
the real and imaginary parts of Eq. (17). Let Q~ (R)
be the quantity in curly brackets on the right of (17).
Let the function gz (n&) be defined by

g& (ni*) = 516~'l»z (~)Nsr (&)3&TM I
G~- (~) I

SL) (24)

Then using the unitarity of the 5-matrix to simplify
the right side, Eq. (17) becomes

pi~. (~)=2' Q~.(R)
( ])N+a -,

+—
Cd Ay+ed

1 I.
"

+— LImg~ (e~') ]de)'
/ ~

~. GO 6) ZC

( 1)N+a i

(25)

This is a dispersion formula of the customary kind,
expressing the fact that g& (u) is an analytic function
of co for complex co in the upper half-plane, and is an
even or odd function according as (N+n) is even or
odd. We may call Eq. (25) a causality condition, since
it is formally similar to the dispersion formulas which
have been deduced from requirements of causality. '
The fact that the linear transformation (18), (16) from
Fz to G&„diagonalizes the Eqs. (23) is due directly to
the Racah sum-rule (19).

These results may be summed up in the statement
that the I ow scattering equation is equivalent to a
unitarity condition (22) which is simple in the I-
coupling scheme, together with the causality condition
(25) which is simple in the 1V-coupling scheme. The
interlock. between the two conditions is given by the
transformation formulas (18).

When the meson energy is below the threshold for
inelastic processes, the unitarity condition is particu-
larly simple. In this case the only states lRp) v'', ich
contribute to (21) are one-meson states

l
P~K~x), and

Eq. (22) reduces to

Irn(TM
l
Fg(x) l

SI.)
=Pgx(TM l

FJ*(x)
l PK)(PK l

Fg (x) l SL),

or simply
ImFg(x) =Fg*(x)Fg(x), (26)

where F~(x) is considered as a matrix in the indices
TiVSI..

The "one-meson approximation" of Low' means that
inelastic processes are neglected and so (26) is assumed

'Gell-Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612,
{1954); M. L. Goldberger, Phys. Rev. 97, 508 (1955); M. L.
Goldberger, Phys. Rev. 99, 979 (1955); Goldberger, Miyazama,
and Oehme, Phys. Rev. 99, 986 &1955).

00

l Img~(e~')]du)'
cd ei zc ni +M

~ (28)

This equation is precisely equivalent to the following
four statements:

(a) g&(e~) is an analytic function of &u in the whole
complex plane with cuts from p to + ee and from
—p, to —~.

(b) gii (n&) is real for real ed in the range —p (n& (p.
(c) g~(~) is even or odd according as 1V is even or odd.
(d) gz(ni) has only a simple pole with residue —2 at

co=0 when E is odd, and it has no pole when g is
even.

The fact that these conditions, together with the
unitarity condition (21), are equivalent to the scat-
tering Eq. (10), is the theorem of Low which was
mentioned in Sec. I.
V. EXTENSION TO CHARGED MESONS. THEORY OF

MESON-NUCLEON SCATTERING

The theory which has been developed for neutral
mesons can be extended immediateIy to mesons which
possess a total isotopic spin I.' and a charge quantum-
number )', scattered by a scatterer possessing total
isotopic spin 5' and charge quantum-number a', pro-
vided the interaction is invariant under rotations in
isotopic space. Particles having several values I.', 3P of
total isotopic spin may also be included. The resulting
equations will be the same as for the neutral case, except
that each Racah coe%.cient is replaced by a product of
two Racah coefficients operating independently on the
angular momentum and isotopic spin quantum num-
bers. For example in Eq. (12), W(LSTM, JR) is
replaced by W (LSTM,JR)W (L'S'T'M', I'R').

The Chew model of p-wave meson-nucleon scattering
is the special case of this theory in which always

to hold for all energies. We shall not make this approxi-
mation, but we shall specialize the system slightly in
order to bring the dispersion formula (25) into a very
simple form. We suppose that the scatterer has a ground
state with spin 5, and no other state with energy below
Fs+p. We consider the amplitude (SM l Grr

l
SI.) for

elastic scattering which leaves the scatterer in the
ground state, not assuming that competing inelastic
processes are absent or unimportant. In this case the
causality condition can be deduced directly from (14)
instead of from (17), and the sum over states R in (25)
reduces to the single term 8=5 with Ag =0. If we write

&SM I G~(*) I
SL)= l:QN/16~'j»~(*) ~~(~)g~(~ ),

Q~= (—1)'&sllo~ll»&silo'lls) w(SMSL, SN),
(27)

the unitary condition applied to Eq. (14) gives the
result

1
a~(~) = E(—1) —1j—
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WgR = W(1-', -,'1,JR),

VRR =W(-', 1-,'1,RN),
(29)

so that 8' and V are numerical 2&(2 matrices

1 —2
~JZ=—

12 4

4 1 —Q6 2
) ~EN (30)

I=I'=M=M'= 1, 5=S'= T= T'= -'. The possible
values of J, J', E, E.' are —,', —,', and the possible values
of E, E' are 0, 1. We write

1
g» (~)=L~1—1j—

~ 00

+— LImg»~ (co') )dry (37)
M M Ze CO+M.

21 1
~JN

6. 1

The ambiguous sign is plus for g=E' and minus for
NNN'. By (30), the numerical values of the coef6cients
ZqR in (35) are

The physical properties of the scatterer are expressed The relations (35) can be inverted to give

only in the form-function N&(x) and in the single
reduced matrix element

f=(-;—;llonll-;—;), (31)
= P X~gX~~g~Fggi(x), (39)

which fixes the strength of the interaction. We may
identify f with the renormalized coupling constant of
the Chew theory. The scattering amplitude

with

XNJ=2

F„.(x) =(-,'-;11lF„.(x) l-,'-,'11) (32)

This is identical with Low's equation (3.11) of reference
2 if we choose"

Nt(x) = (48s.) i(x/p), (34)

corresponding to the conventional point-source charge-
symmetric pseudovector interaction, and assume (26)
to hold for all x (one-meson approximation).

If, however, we make the substitution

Fg g (x) = (f'/16s')x[gt(x)]' P Zg~Zg rr g~~ (a g), (35)
NN'

~JN ( 1) '(2N+1) V,j'NV JNy (36)

which is the analog of (18), (27) for the Chew model,
then the functions g». (co) satisfy the simple dispersion
formula

' According to (6) and (7) the time parity of the meson field
must be odd, and the uz, (k) pure imaginary, for neutral pseudo-
scalar mesons. In the charge-symmetric theory the meson Geld
also has odd parity under inversion in isotopic space. This makes
the Nz(k) real when the charge variables are inserted in (6) and (7).

is equal to e" sinb, where 8 is the phase-shift for a
meson of momentum x in the state (J,J') of the system
meson-plus-scatterer. In general 6 will be complex; it is
real below the threshold for inelastic processes, in the
range where (26) holds.

The scattering Eq. (23) for the Chew model becomes

Fgg (x) = —(f'/16m') {xl ur (x)]'/(u, }
Xf,b &~" Ws *We-j-—-

1 I."dsxl ~&(x)3' Irn

0 Q)g Ny 8 COg M~

ImFRRI (s)+2 (2R+1)(2R'+1)W JRW O'R . (33)
RR' ~~+&g~

It is the gNN, and not the usual scattering amplitudes
Fz&, which obey causality relations of the form (37).
It happens that the gNN for the Chew model have a
direct interpretation in terms of observable processes.
Let g+(0) be the amplitude for elastic scattering without
charge exchange of a positive or negative meson by a
proton, without changing the proton spin state. Let
a+(1) be the amplitude for scattering a positive or
negative meson, with change of the proton spin state.
Then gNO is proportional to

Lo (N)+~'(N) j,
and gN~ is proportional to

L -(N)-"(N) j
The fact that it is these combinations of the amplitudes
which have a simple causal behavior has been already
pointed out by I ow and by Goldberger. '

The causality relations of Goldberger refer always to
forward scattering amplitudes, which are expressions
of the form (20). The coeKcient V(LMN, 000) is zero
when (L+3f+N) is odd, therefore in the case of the
Chew model the right side of (20) brings in only the
amplitudes with E=0 and not those with E= 1. For
this reason the argument of Goldberger demonstrates a
causal behavior only for the no-spin-Rip amplitudes,
which are those with E=O. The causal behavior of the
spin-Qip iV=1 amplitudes is thus a prediction of the
Chew model which is not required (so far as we know)
by general principles of field-theory, and may therefore
serve as a test of the model.
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