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The contributions to (a,d), (P,d) reactions and their inverses
from the pickup and stripping mechanisms are considered as cor-
rections to the compound-nucleus or R-matrix theory of nuclear
reactions. In an (n,d) reaction, for example, the R-matrix theory
neglects the interaction of the incident neutron with the target-
nucleus proton "tails" which extend beyond the nuclear radius.
The pickup correction to the collision-matrix component, or reac-
tion amplitude, appears as the matrix element of the neglected
interaction involving an exact wave function and the approximate
wave function of the compound-nucleus system not having the
interaction; a distorted-wave Born approximation is used in which
the former exact wave function is replaced by one of the latter type
with the appropriate radiation condition. An explicit expression

is given for the collision-matrix component which, together with
the compound-nucleus contribution, can be substituted directly
into the formulas of Blatt and Biedenharn for total reaction cross
sections and angular distributions. In general, the angular dis-
tributions contain interference terms in addition to the straight
pickup and compound-nucleus contributions. If the distorted
neutron and deuteron spherical partial waves are assumed to
depend only on the angular momenta, and not explicitly on the
total spin and the channel spins, the formula of Tobocman is
obtained for the pickup contribution, while Butler s formula is
obtained if plane waves are used instead of distorted waves.
There are discussions of the various approximations, the exchange
terms, . and the question of the nuclear radius.

I. INTRODUCTION

'HE theories of deuteron stripping and formation
by pickup, which were first formulated by Butler, '

and by Bhatia, Huang, Huby, and Newrns' for appli-
cations at intermediate energies where it is possible to
observe the angular distributions of the individual
particle groups, ' have been the subject of numerous
theoretical studies. 4 However, it does not appear that
any of these investigations have revealed how the
compound-nucleus contribution to these deuteron reac-
tions can be fitted into a general theory in a manner
which is also useful for interpretations. The purpose of
this note is to show formally how this can be done and
to give an explicit form of the stripping or pickup
contribution to the collision matrix which, together

*Work performed under the auspices of the U. S. Atomic
Energy Commission.' S. T. Butler, Phys. Rev. 80, 1095 (1950); Proc. Roy. Soc.
(London) A208, 559 (1951);Phys. Rev. 88, 685 (1952).

s Bhatia, Huang, Huby, and Newms, Phil. Mag. 43, 485 (1952).' The earlier work on deuteron reactions was primarily con-
cerned with the excitation functions or with the angular distri-
butions at high energies where the resolution of the individual
particle groups is not of concern. See J. R. Oppenheimer and M.
Phillips, Phys. Rev. 48, 500 (1935);H. A. Bethe, Phys. Rev. 53,
39 (1938);R. Serber, Phys. Rev. 72, 1008 {1947);D. C. Peaslee,
Phys. Rev. 74, 1001 (1948); G. F. Chew and M. L. Goldberger,
Phys. Rev. 77, 470 (1950).

4 P. B. Daitch and J. B. French, Phys. Rev. 87, 900 (1952);
R. Huby, Proc. Roy. Soc. (London) A215, 385 (1952);N. Austern,
Phys. Rev. 89, 318 (1953);E. Gerjuoy, Phys. Rev. 91, 645 (1953);
F. L. Friedman and W. Tobocman, Phys. Rev. 92, 93 (1953);
J. Horowitz and A. M. L. Messiah, Phys. Rev. 92, 1326 (1953)
and J. phys. et radium 14, 695 (1953);N. C. Francis and K. M.
Watson, Phys. Rev. 93, 313 (1954); S. Voshida, Progr. Theoret.
Phys. {Japan) 10, 1, 370 (1953); Fujimoto, Hayakawa, and
Nishijima, Progr. Theoret. Phys. (Japan) 10, 113 {1953);R. D.
Dalitz, Proc. Phys. Soc. (London) A66, 28 (1953);M. Gell-Mann
and M. L. Goldberger, Phys. Rev. 91, 398 (1953);E. Clementel,
Nuovo cimento ll, 412 (1954); S. T. Butler and N. Austern,
Phys. Rev. 93, 355 (1954); W. Tobocman, Phys. Rev. 94, 1655
(1954); J. Yocoz, Proc. Phys. Soc. (London) A67, 813 (1954);
I. P. Grant, Proc. Phys. Soc. (London) A67, 981 (1954) and A68,
244 (1955). A review of the experimental material and of the
theoretical work has been presented by R. Huby, Progr. Nuclear
Phys. 3, 177 (1953).

with the compound-nucleus contribution, can be sub-
stituted directly into the formulas of Blatt and Bieden-
harn' for the total reaction cross sections and angular
distributions. The present derivation of the stripping
or pickup contribution is also simpler than some of the
previous ones in that the desired collision-matrix com-
ponents are obtained directly by an application of
Green's theorem to the wave equations involved, rather
than by introducing Green's functions, such functions
not being necessary for the usual approximate pro-
cedures (plane-wave or distorted-wave Born approxi-
mations). With the present results it is possible, for
example, to interpret a stripping reaction in the vicinity
of an isolated resonance of the compound nucleus, '
which resonance may also contribute an appreciable
number of reaction products, and it is possible to con-
sider the distortion by the nucleus of the wave functions
involved in the evaluation of the stripping contribu-
tion. ' The present formulation should also be applicable
to a more detailed interpretation of other "surface" or
"direct" interactions, such as the (e,p) and (e,m')

reaction mechanisms proposed by Austern, Butler, and
McManus '

Wigner, Eisenbud, and Teichmann' have developed
a general theory of nuclear reactions, the R-matrix
theory, which is particularly useful for considering
reactions which proceed through one or two isolated

' John M. Blatt and L. C. Biedenharn, Revs. Modern Phys. 24,
258 (1952).' Berthelot, Cohen, Cotton, Faraggi, Grjebine, Leveque,
Naggiar, Roclawski-Conjeaud, and Szteinsznaider, Compt. rend.
238, 1312 (1954); Holmgren, Blair, Simmons, Strat ton, and
Stuart, Phys. Rev. 95, 1544 (1954); Jones, McEllistrem, Douglas,
Herring, and Silverstein, Phys. Rev. 98, 241(A) (1954).

~ Numerical evaluations of the effects of such distortions have
been made by W. Tobocman and M. H. Kalos, Phys. Rev. 97,
132 (1955).

8 Austern, Butler, and McManus, Phys. Rev. 92, 350 (1953).' E. P. Wigner and L. Eisenbud, Phys. Rev. 72, 29 (1947);
T. Teichmann and E. P. Wigner, Phys. Rev. 87, 123 (1952).
Additional references on the development of this theory are cited
in these papers.
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levels of the compound nucleus. This theory is also
readily applicable to the region of nuclear excitations
where many levels overlap, provided that the signs of
the reduced-width amplitudes y),„for the levels X and
channels c, are uncorrelated, "such a lack of correlations
presumably being the case if the interactions in the
internal, or compound-nucleus region, are relatively
strong. In this application the compound nucleus is
found to manifest many of the reaction properties
which have been well known from the work of Weisskopf
and his collaborators. " The salient features of such
compound-nucleus reactions are the symmetry of the
angular distributions and the Maxwellian nature of the
energy distributions. In contrast, the stripping and
pickup angular distributions are generally peaked
forward and the energy distributions are concentrated
at the higher energies. These departures could of course
be attributed to correlations of the signs of the yq, .
However, in an examination of the derivation of the
E.-matrix theory one notices that the derivation assumes
that the nuclear interactions are con6ned to an internal
or compound-nucleus region of the configuration space
and thereby neglects, for example, the interaction of an
incident neutron, while it is in the external neutron
channel, with the "tail" of the wave function of a
proton from the target nucleus, which tail extends to
infinity though in an exponentially decaying manner.
The present theories of pickup (or stripping) do indeed
suggest that it is just such interactions which give rise
to the deuterons in an (N,d) rea, ction. Since the total
neutron cross sections are satisfactorily described by
the compound-nucleus theory and since they are ob-
served to be an order of magnitude larger than the
total (n, d) reaction contribution, it seems reasonable
to use the R-matrix theory for the interpretation of the
interaction of the incident neutron with the bulk of
the nucleus and then to correct for the external inter-
action with the proton by a first-order perturbation
calculation using the compound-nucleus wave functions
as first approximations. The collision-matrix com-
ponent U„,.e referring to an (rt, d) reaction appears then
as a sum U„,d='lt„,.e+d, U„,e, where tt„,e represents the
compound-nucleus contribution and B,U„.q the external
pickup correction term. The cross section therefore
contains terms proportional to ~%,„,e ~

' for the straight
compound-nucleus contribution, to

~
EU„,.e~' for the

pickup contribution, and to interference terms of the
form tt„,off „,.e*+c.c. At nuclear excitations where the
levels overlap, the interference terms will vanish if
averaged over a sufficiently wide energy interval,
provided that the signs of the y~, are uncorrelated. "On

&o R. G. Thomas, Phys. Rev. 97, 224 (1955).
"V.F. Weisskopf, Phys. Rev. 52, 295 (1937);V. F. Weisskopf

and D. H. Ewing, Phys. Rev. 57, 472, 935 (1940); H. Feshbach
and V. F. Weisskopf, Phys. Rev. ?6, 1550 (1949);and, in particu-
lar, J. M. Blatt and V. F. Weisskopf, Theoretical SNclear Physics
(John Wiley and Sons, Inc. , New York, 1952), Chaps. VIII and
IX.

the other hand, these terms may be important in the
vicinity of an isolated resonance level.

The pick-up term hU„,.q appears as the matrix element
of the perturbing Np interaction of the external region.
This matrix element involves the wave function of the
complete Hamiltonian which includes the perturbing
interaction, and the wave function of the Hamiltonian
with just the internal or compound-nucleus interactions.
An approximation for its evaluation is the replacement
of the former type wave function by one of the latter
type with the same radiation condition, as in a Born
approximation. Since the "distorted" waves of the
compound nucleus are used rather than plane waves,
this evaluation is expected to be more accurate than the
usual "plane-wave" Born-approximation calculation.
The distorted-wave method has been presented for
general applications by Mott and Massey"; it has also
been discussed and applied in various forms to stripping
and pickup reactions by Horowitz and Messiah, 4 by
Francis and Watson, 4 by Tobocman, 4 and by Kalos and
Tobocman. 7 It was first noted by Francis and Watson, 4

that at nuclear excitations where the levels overlap, the
complex potential representations of the nucleon-
nucleus interaction"" may be useful for constructing
the external wave functions which are involved in the
correction matrix element.

HN= &0,

BCC =EC.
(1a)

(1b)

Here H is the complete Hamiltonian and BC=B—hV
is the Hamiltonian for the system not having the inter-
action AV between the neutron and proton in the
external region, that is, in the region where both are
situated at distances from the center of the residual
nucleus which are larger than the nuclear radius u;
+ and C are the respective wave functions with the
hereinafter specified radiation conditions. By applica-
tion of Green's theorem to the integral over the con-
figuration space r of the difference of (1a) multiplied
on the left by C* and the complex conjugate of (1b)
m,ultiplied on the right by 4, one obtains"

X (@grad C*—C* grad„%')ds, (2)
's N. F. Mott and H. S. W. Massey, The Theory of Atomic Col

tiseorts (Oxford University Press, London, 1949), Chap. VIII,
Sec. 5.

"N. C. Francis and K. M. Watson, Phys. Rev. 92, 291 (1953);
Feshbach, Porter, and Weisskopf, Phys. Rev. 96, 448 (1954);
Lane, Thomas, and Wigner, Phys. Rev. 98, 693 (1955).

'4 G. Breit, Phys. Rev. 58, 1068 (1940); E. P. Wigner, Phys.
Rev. 70, 15 (1946).

II. DERIVATION BY MEANS OF GREEN'S THEOREM

The derivation proceeds by considering the two wave
equations
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provided that the surface S is far enough out so that the
nuclear systems can be regarded as decomposed into
groups of two-particle subsystems of reduced masses
M„. groups involving three or more subsystems are
ignored.

For the consideration of an (e,d) reaction, the ex-
ample to be used throughout, spherical waves of the
following asymptotic form are substituted in (2):

(3a)

where d, and 8, are wave functions for the various
channels c representing unit-Aux imcomieg and oltgoieg
waves, respectively; U and are the collision matrices
associated with the Hamiltonians H and BC, respec-
tively. The radiation condition imposed on the solution
0'& is that only the deuteron channel d has an ieconsieg
wave, while the condition imposed on C „ is that only
the neutron channel e has an oltgoieg wave. The C„
of (3b) is thus a solution which is the time-reversed of
the usual type, such as (3a), having an incoming wave
in only one channel. ""The expansion of C„ is valid
throughout the entire external part of the configuration
space, whereas the expansion of 4'& is the asymptotic
form which is valid only at distances far from the origin
where even the interaction AV is negligible.

As in the work of Wigner and Eisenbud, ' 8, and 8,
wave functions are constructed for each channel c
having a definite value of the channel spin j, which is
a vector sum of the spins of the two particles of the
group, and of the total spin J, which is a vector sum
of j and the relative angular momentum M of the two
particles, and of the total spin component M along the
beam direction; the channel subscript c thus refers to
the set of quantities n j/J3f, where o. denotes the nature
of the pair and their respective states of excitation.
These wave functions are therefore of the form

e.; =p„(jl m~ JM)p( j )
X (i'F'i (Q~))s —:r 'O„((r ). (4b)

Here P(crjv) is the sum of the products of the wave
functions of the two members of the pair n, which sum
has a definite channel spin j, component v; I'~ is the
spherical harmonic with the usual property I"

&

*
=(—1)"Ft, and v is the relative velocity. " The
"See K. M. Watson, Phys. Rev. 88, 1163 (1952); G. Breit and

H. A. Bethe, Phys. Rev. 93, 888 (1954).
'~The behaviors under the time-reversal operation E' of the

wave functions in (4) are

It|I(~p)=( 1)'-V(~, y), X(—PF)~)=( I)'~(PF(~—)
This representation was suggested by L. C. Biedenharn and M. E.
Rose, Revs. Modern Phys, 25, 736 (1953), and divers from the one
used by signer and Eisenbud. As noted by R. Huby, Proc. Phys.
Soc. {London) A67, 1103 (1954), the use of the present repre-
sentation requires that the Z coeS.cients in Eq. (4.6) of Blatt and

A U. , g
——U , s 'u„, d . —(i/5). ——4 „*6V@ddr. (6)

The matrix element on the right gives the correction
AU„.~ which is to be added to the compound-nucleus
contribution LL„., ~ in order to obtain the total collision
matrix component U„., &. As noted by Watson and by
Breit and Bethe, "the use of a wave function having an
incoming wave in only one channel, rather than the
C„of (3b), would not give AU„, q, but a sum over
channels c of the products of the components U, ~ and
&e;c

III. APPROXIMATIONS AND EVALUATIONS OF
THE COMPONENT SUMS

As mentioned in the Introduction, the basic ap-
proximation of the present approach is the replacement
of the exact wave function 0 „in (6) by a solution with
the same radiation condition to the partial Hamiltonian
3'.. It is also assumed that the contributions to the
matrix element (6) from the reaction channels of the
4'~ and C„solutions can be neglected; that is, these
wave functions are approximated in the external region
by

(7a)

(7b)

The second approximation neglects, for example, the
possibility that a neutron, which is inelastically scat-
tered by a compound-nucleus process, could on
emergence pick up a proton to form a deuteron. '7 The
inclusion of such contributions does not present any
formal difficulties, but does make the 6nal formulas
more cumbersome. A third approximation is the neglect
of the tensor ep force which gives rise to the 'D com-
ponent of the deuteron wave function; this neglect may
be justified by a plane-wave, Born-approximation cal-

Biedenharn for the differential cross sections be replaced by the
coeff'rcients Z(le&I2J2,jL) i'~ '2 Z(l&J=~I2J2,jL).

'7 According to calculations by B. H. Bransden, Proc. Phys.
Soc. (London) A65, 738 (1952), such processes are likely to be
important at energies above 200 Mev. See also W. N. Hess and
B. J. Moyer, Phys. Rev. 96, 859(A) (1954).

radial functions in (4) are taken to be

I t (G——.i—iF.i) exp(iP. i)

expL —i(p —ti log2p ——hr+o s) j, (5a)

(5b)

where o s ——argI'(1+it) ) and It i——g, i' tan —'(r) /s)
are Coulomb phases, r) =Zi Zs e'/ks is the Coulomb
field parameter, and p =M s r /h=k r; F and G are
the usual regular and irregular external radial wave
functions.

By substituting the expansions (3) into the right side
of (2) with the surface 5 at infinity and by noting that
the Wronskian I(dO/dp) O(dI/—dp) =2i, one immedi-
ately finds that
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culation which shows that the contribution from this
component is incoherent and therefore negligible com-
pared with the 'S contribution. " As in the work of
Horowitz and Messiah, 4 it is assumed as a fourth ap-
proximation that the interaction AV between neutron
and proton can be replaced by a zero-range (central-
force) interaction"; if )f(r) is the wave function for the
relative motion of the neutron and proton in the ground
state of the deuteron, then

AV(r)x(r) = —(5'/M) (Szu):8(r),

where n '= (k'/MB)&=4. 4X10 " cm is the "radius"
of the deuteron associated with its binding energy 8,
/i(r) is the three-dimensional delta function, and M is
the nucleon mass.

The final bit of information needed for the evaluation
of (6) is an expansion of the wave function of the target
nucleus t in the external region of the con6guration
space where the contributions occur; that is, it is
necessary to know the form of the proton "tails" which
can be picked up. This wave function appears as one
of the factors in the iP(aji) of (4) when the latter is
used in (7b). The expansion is taken to be

the sum being with respect to o/~j~v„l„m„i~i„. Here I&,
i ~ and I~, i~ are the spins and components of the states
of the target and final nucleus, respectively; iP(rrtItit) is
the wave function of the final nucleus in the excitation
state nt and ip(p-', i„) is the wave function representing
the pickedup proton in the spin state i „; l„and m„
designate the orbital angular momenta and components
of the proton tails; the channel spins j„are the vector
sums of the proton spin —,'and I~, and their components
are i „;the (FsV l&m&) are the angular parts of the proton
wave functions and the N(r„) are r~-times the radial
parts, the latter being considered as real because they
may be defined as scalar products. "It is convenient to
express the radial parts as

ts(ntJ', /„r,)= t(nt J„/r) (2M'a/It' )
X[W( n„ /, +s—; 2k,r,)/

W(—r)~, /~+-,'; 2k~a)]. (10)

Here 7(nt j„/~) is the reduced-width amplitude for the
separation in the external region of the ground state of
the target nucleus into a proton and a state n~ of the
final nucleus; M is the nucleon mass; W(—rt, /+ rs; 2kr)
is the exponentially decaying Whittaker function;
k„= (2MeB„t/k')' is the wave number associated with

"R.D. Dalitz, reference 4; R. G. Thomas (unpublished).
» See G. Breit, Phys. Rev. 71, 215 (1947) where the validity of

such an approximation is investigated in detail in connection with
the problem of the interaction of slow neutrons with bound
protons.

r~ See Eq. (4) of Wigner and Eisenbud, reference 9.

the binding energy B„Jof the proton in the ground state
of the target to the state ny of the final nucleus;
r)~=Zte'Me/k'k„ is the corresponding Coulomb field
parameter; e=A, —1/Ai is the ratio of the masses of
the final and target nuclei. "

With the above information and approximations the
matrix element (6) can readily be evaluated, the
methods of Racah22 being used to perform the sums over
the various spin components. The result is that

6U(re „/„;dj p/s, J)

Xv(j,/„)W(s1j „j~; &It)W(Ii/, &js;j,j.)
where

XZ(/„j „/&j &, J/„)R(j „/„,j s/&, /g), (11)

f= (3ua/Men tis)'*,

8' is the Racah coeScient and the relation between the
Z coefficient and the Z coeflicient of Blatt and Bieden-
harn is given in reference 16. The angular distributions
may be obtained by substitution of these collision-
matrix components, together with those for the com-
pound-nucleus contribution, into the formulas given by
Blatt and Biedenharn, ' and polarizations may be
deduced from the formulas of Simon and Welton. "
Since AU is symmetrical, this result applies also to
(d,e) reactions; the modifications required for (p, d)
and (d,p) reactions should be obvious.

The presence of the Racah and Z coefficients in (11)
implies that there are selection rules. In addition to the

~' The dimension of the reduced-width amplitude used here is
the square root of energy (see Sec. II of reference 10); it is
normalized with respect to all con6guration space, rather than just
the internal region as in the resonance applications, the difference
usually being negligible. In the expansion for a pickup neutron,
which is involved in a (p,d) reaction, g„=0 and W(0, l+-, ; 2s}
= (2s/m)&ICi+l(s), where E+ (i)Iiss the modified 'Bessel function
Lsee Sec. II-B of R. G. Thomas, Phys. Rev. 88, 1109 (1952)g.

22Biedenharn, Blatt, and Rose, Revs. Modern Phys. 24, 249
(1952).

is A. Simon and T. A. Welton, Phys. Rev. 90, 1036 (1953);
Albert Simon, Phys. Rev. 92, 1050 (1953).The remarks in footnote
16 concerning the modification in the convention for time reversal
also apply to these papers; the i factors involving angular mo-
mentum exponents should be deleted and the Z coefBcients
replaced by Z coefficients. Polarizations in stripping and pickup
processes have been investigated by W. B. Cheston, Phys. Rev.
96, 1590 (1954), by J. Horowitz and A. M. L. Messiah, I. phys.
radium 14, 731 (1953), and by H. C. Newms, Proc. Phys. Soc.
(London) A66, 477 (1953).

and the (dimensionless) radial integral is

R(j /, js/g /, I)
~" dr W( —rt~, /„+-', ; 2k„r)

~lp—lrs+Lg

W(—rf„, /~+ ', ; 2k„a)-
XLIi„(er)—9l(ej„/; isj„/; J)Oi (er)]

X(Its(r) tt(dj s/s,. djs/s—, J)Oi~(r)$; (11a)
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expected ones: j„+I„=J; jq+ ld ——J; I/2+&/2= 1;&/2+ I~
= jp,' 1+Iq

——j~, /2+ 1&——j„;I„+j„=I&, there are also
the relations j„+j~=l„;/2+jq ——j„;1„+lq=l„.There
is also the parity rule l„+id+/„= even.

At intermediate and high energies where many partial
waves l„and ld contribute to the pickup process, the
cross section evaluations will in general be very tedious.
Fortunately, some simplification is possible if it is
assumed that the diagonal collision-matrix components
in the radial integrals of (11) are independent of the
total spin and of the channel spins, in which case the
radial integrals depend only on /, l&, and l~. This sim-

pli6cation is quite reasonable for applications at exci-
tation energies where the levels overlap. Indeed, at
such excitations it is the practice to represent the
neutron-nucleus or deuteron-nucleus interactions by
models which depend on only the angular momentum,
such as the strong-coupling or complex potential models

(without a spin-orbit coupling dependence). With this

simplification the sums over the total spin J and the
channel spins j„, jd in the formulas of Blatt and
Biedenharn can be evaluated using the unitary proper-
ties of the transformation coefficients and the Racah
sum rules. "One finds that the pickup contribution to
the (e,d) differential cross sections is given by

[do n; ~(I)d)/dI3a ]pickup

= l&='f' Z(2/. +I) 'v(/. )'Q(/. ), (12)

where

v(/. )'=Z v(j./.)',
and

ld (l. ~~~)!---:

Q(/.)= Z ~(2/. +1)(2/.+I)
m=ld lnld (l.+ [~[)!

X (/„l 00
~
/„0) (l„l Om! /„m)

XR(/„,/~, /„)Pt~~ "~ (cos8~)
~

',

= (—1)'n(2/p+1)gz, (—1)~Pr, (cos8d)

(2/„+ 1)(2/„'+1) (2/g+ 1)(2/g'+ I)
SnSn'idled'

x (/„/po
~
l„o)(I„'l.'oo~ l„o)(l„l„'oo

~
Io)

X (/d/g'oo

HALO)W(l„/„'/g/g',

Ll„)

XR(/„,/g, l,)R(l ',4', l,)*.

Apart from a slight difference entering the factor f, this
cross-section formula with the first alternative ex-
pression for the quantity Q(l„) is the same as the one
derived by Tobocman. 4 ~ The second alternative form
of Q(l„) is obtained by forming the absolute square in
the first and carrying out the sum over the deuteron
angular momentum component m; for numerical work

it is probably not as useful as the first. Note that the
incoherence of the various contributing j„and l„ terms
is a consequence of the simplification.

The compound-nucleus contribution to the differen-
tial cross section can be obtained directly from the
formulas of Blatt and Biedenharn. The interference
terms can also be simplified if the pickup radial integrals
are again assumed to be independent of J. By carrying
out the J sum in the pickup factor, one finds that for a
single compound-nucleus collision matrix component
'tt(ej „'/„'; djz'/z', J') these terms are given by

fdg'n; d (t)d)/dII 0 jr'nterference

'if(2I,+1) '*(—1)1&+ &+~'(2J'+I)

XXI.(—I)'P~(«»0~) z (—1)'"(2j +1)'
jplp

XP(j p/p) P L(2/ +1)(2/d+1)/(21„'+1) (2/&'+1) jI
lnld

X (/.l.'OO
~
LO) (/„/. OO

~
/„O) (/„'/, '00 ~/„0)-r

XZ(l„'j '/z'j &', I'/„)Z(/„/d/„'/z', /„L)

XW(21j „jz', 2I&)W(Ir/„,'jz', jpj„')—

XR(/, /&, /„)*It(ej 'l ', dj &'/a', J')+c.c. (13)

One-level formulas for the collision-matrix componenst
have been given by signer and Eisenbud' and by Blatt
and Biedenharn. '

Much simpler expressions are obtained for the
straight pickup and the interference contributions if
the plane-wave Born approximation is used rather than
the distorted-wave Born approximation. These expres-
sions are given in the Appendix.

IV. DISCUSSIONS

The reader may have noticed that the above develop-
ment contains a Qaw in the assertion that the R-matrix
theory can be used to obtain the compound-nucleus
contribution to the collision matrix component U„,~

for a nuclear system not having the interaction AV
between the neutron and proton when they are in the
external region. For if AV were completely neglected
in the R-matrix formalism the deuterons which appear
at the nuclear surface would cease to interact there and
consequently would appear at infinity as free neutrons
and protons. This contribution to U„,.d would thus
vanish, and the "compound-nucleus" deuterons which

appear at the nuclear surface would contribute instead
to the component U„,.„„.This difhculty may be resolved

by noting that the effect of the interaction 5V is not
only to give the AII„'., z contribution of (6) but also to
convert the above compound-nucleus component U ., „
to a compound-nucleus component U„., ~, as implied in
the development. It is evident then that the derivation
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of the R-matrix theory does not entirely neglect 5V
but only that contribution from it which was used to
calculate hU„., ~.

There is also an exchange contribution to U .~ from
the interactions of the external region. This contribution
arises from additional terms in the expansion (9) cor-
responding to the dissociation of the target nucleus in
the external region into a deuteron and a core of A ]—2
particles. The perturbing interactions are those between
the incident neutron e~ and both the neutron n2 and
the proton p of the deuteron when the deuteron is in
the external region. As a result of these interactions
the deuteron can be ejected and the recoiling neutron
n~ captured by the core. (The incident neutron could
also pick up the core, forming the residual nucleus and
leaving the deuteron behind. ) A similar mechanism was
considered by Austern, Butler, and McManus' for the
contribution to (n,p) reactions from the external region,
in which the incident neutron ejects a proton from the
target and the recoiling neutron is subsequently cap-
tured by the core. Because of the fact that in the (n, d)
exchange calculation there are essentially four inter-
acting particles involved (the core and the nucleons

n&, n&, p), rather than just the three particles of the
direct term, the exchange term is considerably more
dificult to compute. Fortunately, it may be negligible
for a number of reasons: First, and perhaps the most

significant, is that the reduced width (or probability)
for the dissociation of the target into a deuteron and a
core may be expected to be small compared with the
proton reduced width since two particles are involved.
Secondly, the radial wave function for the dissociation,
which is involved in a "radial" integral similar to (11a),
will decay rather more rapidly than a proton function,
which is involved in the direct term, because deuteron
binding energies are generally larger than proton binding
energies and because a deuteron has twice the mass.
Finally, the "radial" integral will also be relatively
smaller because it involves two, rather than just one,
exponentially decreasing function and because the mo-
menta transfers involved are relatively larger.

In the calculation of the pickup contribution we have
neglected the contribution from the interaction between
the incident neutron and the core which takes place
when the proton of the target and the core are separated

by distances greater than the channel radius. One can
associate with this interaction a mechanism in which

the incident neutron ejects the core with the result that
the freed proton can combine with the neutron to form
a deuteron. This mechanism is essentially the same as
the above-mentioned one considered by Austern et al.
However, there is an important difference in detail in
that in the (n,p) case the ejected particle is a light one
whereas in the (n,d) case it is a heavy one, that is, the
roles of the proton and core are reversed; and it is this
difference which leads one to believe that although the

former mechanism is apt to be important, the latter is

not. Unfortunately, we cannot give a really satisfactory
justi6cation for this remark, although the impulse type
of approximation, such as the one used by Austern et al. ,
suggests that in an (n,d) reaction, the core ejection
mechanism is apt to be less important than the pickup
mechanism. First, the radial integral of the former
involves two, rather than just one, exponentially
decaying radial function and, secondly, the momentum
transfer involved in producing forward deuterons is
much larger in the ejection process than in the pickup
process. In fact, according to such a calculation, the
deuterons from the ejection process are concentrated in
the backwards directions (as one would expect for a
process which ejects the core in the forward directions),
rather than in the forward directions, as in the pickup
process.

It is well to emphasize that although the present
approach utilizes distorted partial waves in the matrix
elements, it is still a Born approximation evaluation and
subject to the limitations of that approximation. In
particular, the absolute magnitude of the calculated
collision-matrix component U„,.q of (11) can exceed
unity in certain circumstances, thus violating the
unitarity or Aux-conservation requirement. If the waves
involved in the radial integrals are not distorted by a
sharp resonance, it is not likely that the absolute mag-
nitude of those integrals will exceed unity, and it would
then be su%cient to require that the factor fy(j ~l„) of
(11)be less than unity. Since the factor na of f is of the
order unity, this requirement is essentially that the
geometric mean of the neutron and deuteron energies
be greater than the reduced widths y(j~l„)', these
having an upper limit of a few Mev according to the
sum rule. On the other hand, near a sharp resonance,
the absolute value of the radial integral can become
very large compared with unity because the irregular
functions G, which are generated by the resonance,
would be large. However, in such a case it is probably
not necessary to include an external contribution to
U„,d because the internal contribution dominates and,
anyway, the channel radii for the resonant partial
waves could be taken large enough to include in the
"internal" region most of the "external" interaction so
that there is electively no "external" contribution to
U„., q for those partial waves. The radial integrals could
also be large if the binding and barrier of the picked-up
proton are very small; the Whittaker function would
then decay very slowly and contributions to the integral
could arise from a large radial interval. The Born
approximation will also be invalid if there is appreciable
polarization of the deuteron by the Coulomb field, as
expected at low deuteron energies.

Finally, it is appropriate to remark on the important
matter of what value of the nuclear radius should be
used in the external calculation. In order that the
above Born approximation have some validity, it is
clear that the radius should not be too small. On. the
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other hand, for the applicability, in the case of over-
lapping levels, of the compound-nucleus theory to the
internal region, it is necessary that the radius be small
enough for the signs of the reduced-width amplitudes
to be uncorrelated, thus indicating that the interactions
of that region are strong right up to the surface. In
other words, the interactions of the internal region
must be strong enough so that the multiple processes
dominate, whereas those of the external region must be
suSciently weak so that multiple processes can be
ignored (Born approximation). Clearly these require-
ments are not compatible with a unique boundary, and
there is probably an intermediate region, or shell, which
is not properly accounted for by either the compound-
nucleus calculation or by the external perturbation
calculation. Although there may be no simple way of
dealing with this region, the observed near equality of
the nuclear radii inferred from total neutron cross
sections and stripping processes'4 is an indication that
it may be small or not very important.
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APPENDIX

The results of the text are, of course, much simpler if
undistorted rather than distorted waves are used, that
is, if the it, „and 'll, d,.d of (7) are assumed to be unity,
and if, in addition, the Coulomb fields are neglected.
With these simplifications the various neutron and
deuteron partial waves combine to form a simple ex-
ponential function, and the radial integrals correspond-
ing to (11a) become simply the Fourier transforms of
the radial functions N(a~ j„l„;r„) of (9). By application
of the wave equation and by an integration by parts,
these transforms may be expressed as wronskians
evaluated at r= a. Furthermore, if the compound-
nucleus contribution is neglected, the cross section
formula reduces to the relatively simple one which was
originally given by Butler. Although these approximate
methods do appear to give fairly accurate predictions
of the angular distributions in circumstances where the
Coulomb barriers are not strong, they are found to
predict absolute yields that are much too large. ""

"J.R. Holt and T. N. Marsham, Proc. Phys. Soc. (London)
A66, 1032 (1953).These authors show that the stripping radii are
actually larger, as one would expect.

2~ R. G. Thomas, Phys. Rev. 91, 453{A) (1953);Horowitz and
Messiah, reference 4; Fujimoto, Kikuchi, and Yoshida, Progr.
Theoret. Phys. (Japan) 11, 264 (1954); G. Abraham, Proc. Phys.
Soc. (London) A67, 273 (1954). The proportionality of stripping
and pickup cross sections to the reduced widths y(l~), which is
also evident in (12), is brought out in these papers; see also A. M.
Lane and D. H. Wilkinson, Phys. Rev. 97, 1199 (1955).

In the plane-wave Born approximation, the pickup
contributions d,A to the (n,d) reaction amplitudes
A=S+DA for initial and final channel spin states
j„,v„and j&,vd, respectively, are

AA(nj „v„;djdvd)

= —4n'fkd(2j +1)l(2jd+1)'(2I&+1)&

X ( 1)rf rt 7d+fn—+en—
(mrs+ k , 2)

—1

(—1) v &'v(2j„+1)1(2lp+I) &

XII'(I~&,sj d;j,jn)II7'(slj pj d', sIr)

X (j.jdv. vd
~
&pm—,)V(j „&p)~l„J/),m„(Op). (14)

In addition to the quantities already defined in con-
nection with (11), there are the following: The charac-
teristic stripping momentum, transfer wave numbers are
k„„=k„——',kd and k,r=kd —ek., so that

k„'=k '+-,'kd' —k kd cosgd,

k,P= e'k~'+kd' 2ek„kd cos()d,.—

O~ is the angle between the direction of kvr and the
incident beam and may be obtained from the relation
sinO= (kd/kpr) singd. The Wronskian is

mg ——F( t(x) —(I+A)x 'F, (x),
—

where x= k„~u, and h. is the radius u times the logarith-
mic derivative at u of r times the radial part of the
wave function of the proton bound to the target nucleus;
when the Coulomb field is neglected, the expressions
for (I+A.) in terms of z=k„a for the proton angular
momenta l are

l l+x

0 —8
1 —z'/(1+z)
2 —(z'+z') /(3+3z+z')
3 —(3zs+6s'+z4) /(15+ 15s+6z'+ z')
4 —(15s'+15z'+ 6z'+z') / (105+105s+45s'+ 10s'+z4)

Butler's formula for straight pickup is obtained by
summing the absolute square of the amplitudes (14)
over all final channel spin states and averaging over all
initial ones; it is

(~&a;d(ed)/~fld5pickup=kd f (kpe +& )

XQ y(l p)'V7~„'. (15)
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Note that the angular dependent factors Tfvmv(O~p)
in the amplitude expressions do not appear in (15).

The contributions to the reaction amplitudes from a
particular collision-matrix component

are given by
e(nj „'l„',dj, 'O'; J')

e(nj „'v„', djd'vd')

= —i a'k„ I(2l„'+1)l(j„'l„' v„'O~ I'v„')

X (gd'4'vd'v „' vd—'
~

J'v„')

X tt(nj 'l ', djd'ld', J') V«.„,d (—Qd) (1.6)

By summing the absolute squares of the sum of terms
from (16) and (14) over all possible v ', vd' and by
dividing by the number of initial spin states, one obtains
in addition to the straight pickup and resonance con-
tributions, the interference contribution to the differ-
ential cross section which is

Ldtr n; d (ed)/dQd )interference

,'i f-kdk„'( 1—)I&+It+d'(ots+kv„') '—(2J'+1)
X (2I,+1) ' lt(n jn'ln', dj d'O'; I') P (—1) fv

july

X (2jv+1)'*y(j„lv)'NfvW(Itlvsjd'; j vj ')

XW(-', 1jvjd', ,'If)Z—(lj''ld'jd', 1'lv)

XP„L(l„'l.'Om
~
l„m)/(l„'l. '00

~
l„o)$

XP(O' —[m))!(l —[m[)!/(l '+ [m[)!(l + [m])!gl

Xpfd ~l ml (gd) pf„l ml (0~)+c.c. (17)

The m sum extends from —1„to l„, or from —
/d,

' to ld',
whichever range is smaller.

The pickup reaction amplitude (14) was calculated
for the deuteron 'S wave function of the zero-range
potential. For a Chew-type wave function of the form
exp( —trr) —exp( —Pr), where P=7n, (14), (16), and
(17) should be multiplied by p&(fr+ p) ~/(p'+k „'), and
(15) should be multiplied by its square.
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Reactions C"(d, n)NIs„,„„d,t,t, and C"(d, f)C" up to Ed =20 Mev*

D. H. WILKINsoNt
Brookhaven Sationa/ Laboratory, Upton, %ex York

(Received May 31, 1955)

The course of the partial cross section for the direct formation of N'3 in its ground state only in the reaction
C"{d,n)N" has been followed up to Ed =20 Mev by observing the N ' activity induced in a stack of poly-
ethylene foils (only the ground state is stable against proton emission). The cross section falls appreciably
less rapidly than would be expected for compound nucleus formation and also less rapidly than predicted
by simple stripping theory. The cross section at Ed =8 Mev is 100 mb which is not so large relative to that
for the mirror (d,p) reaction as is predicted by simple stripping theory. The reaction C"(d, t)Cu has been
detected and its total cross section measured from its threshold (Ed=14.5 Mev) to Ed=20 Mev where it
is 10 mb. The magnitude of this cross section indicates that this is a pickup reaction.

INTRODUCTION

HE many measurements of "stripping" angular
distributions in recent years have given ample

grounds for believing that (d,p) and (d,n) reactions
induced by deuterons of energy greater than three or
four Mev do not as a rule involve the strong formation
of a compound nucleus but that the reactions proceed
most frequently by a direct interaction in which a
nucleon of the impinging particle simply severs its
"deuteron bond" at the nuclear surface and attaches
itself to the existing (and undisturbed) structure of the
target nucleus thereby forming one or other of those
states of the residual nucleus of which the target nucleus
is a parent. ' Although fair to good qualitative agree-
ment between experimental and theoretical stripping
patterns can usually be obtained (albeit by a somewhat

~ Performed under the auspices of the U. S. Atomic Energy
Commission.

t On leave from Cavendish Laboratory, Cambridge, England.' S. T. Butler, Proc Roy. Soc. (London) A208, 559 (1951).

cavalier approach to the problem of the nuclear radius),
it is abundantly clear that neither the details of the pat-
terns predicted by simple stripping theory nor the theo-
retical absolute cross sections are reproduced by ex-
periment and that considerable refinements to the
theory. are needed. Examples of such refinements are
the taking account of Coulomb effects, scattering of the
incident deuteron wave, exchange effects, and boundary
conditions for the outgoing particle. ' As soon as such
refinements are introduced the fit with experiment may,
of course, be much improved since it is not usually clear
which of many alternative procedures. should be fol-
lowed at each stage, and advantage may be taken of
this uncertainty. Thus, although some empirical work-
ing recipe may emerge for the fitting of experimental
angular distributions and reduced widths, we cannot
feel confident that the particular constellation of param-

2 See, for example, W. Tobocman and M. H. Kalos, Phys. Rev.
97, 132 (1955).


