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In concluding we may mention still another factor
whose possible influence on the effect may be of interest.
We have assumed from the outset that the complex
phase changes brought about by the passage of a wave
through the two regions of interaction are additive.
When the interaction regions overlap, any nonlinearity
in the superposition of their fields may imply nonaddi-

tivity of the phase changes. This too would contribute
to the observed cross-section defect, but its analysis
must clearly follow a more complete investigation of
the linear eGects. The author is greatly indebted to
Dr. Anatole Shapiro for calling the measurements of
the eGect to his attention, and to C. Sommerfield and
J. Bernstein for aid with some of the calculations.
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A tentative scheme is developed to formulate the behavior of the new unstable particles. This scheme
is a straightforward generalization of the usual charge-independent meson theory. The selection rules for
isotopic spin are identical with those suggested by Gell-Mann. Owing to the particular form of the inter-
action assumed in this scheme, we can derive a new selection rule which seems to be of some use in inter-
preting the metastability of the new particles.

1. INTRODUCTION

EVERAL attempts' to interpret the contradictions
between the copious productions of the new par-

ticles and their metastabilities have been published.
Among these attempts the "two-coupling-constant
theory, " due to Pais, seems most successful. In this
theory the production processes are due to an inter-
action with a large coupling-constant while the other
small coupling-constant is responsible for decay proc-
esses. Pais' recent theory' based on the four-dimensional
co space seems especially attractive. However there may
remain, of course, other kinds of formalisms within the
framework of the "two-coupling-constant theory. "

In the present paper, the details of a theory of the
baryons and mesons will be presented. In this theory
particles will be distinguished by (a) isotopic spin I,
(b) curious particle constant A, and (c) intrinsic spatial
parity e in addition to the usual mass, spin, and charge.
The theory is constructed so that the selection rules in-
volving I, I„and A are identical with those proposed
by Gell-Mann. In addition we will show that it is
natural to introduce an additional selection rule in-

volving the intrinsic parity e. This last aspect was
brieQy discussed in a paper by Tobocman and the
author. '

In the usual formalism, the neutron and the proton
are described by a spinor P"(et= 1,2) in a three-dimen-

' A. Pais, Physica 19, 869 (1953);A. Pais, Proc. Nat. Acad. Sci.
40, 484 (1954); M. Gell-Mann and A. Pais, Proceedings of the In-
ternational Physics Conference, Glasgow, July, 1954 (Pergamon
Press, London, 1955); T. Nakano and R. Vtiyama, Pro gr.
Theoret. Phys. (Japan) 11, 411 (1954); T. Xakano and K. Kishi-
jima, Progr. Theoret. Phys. (Japan) 10, 581 (1953).' R. Utiyama and W. Tobocman, Phys. Rev. 98, 780 (1955). &n

the present paper this will be cited as U.T.

sional r space. Similarly the charged and neutral mesons
are described by a vector P (or a symmetric spinor of
the second rank 7t"~=yt'~ (n,t8=1,2)) in r space. The
interaction Lagrangian between the two fields in the
usual charge-independent theory is

n ~1ct9 0.77,=1,2
x&" '"'Pys Tt ~" .&4. (1.2)

Here y' &
' ' ' ~ is a symmetric spinor of the eth rank in

r space and is assumed to describe a meson field with
the ordinary spin 0 and r spin tt/2, and f is a wave
function corresponding to some assembly of baryons
with ordinary spin —, and various values of r spin.
T(~1" „) is some square matrix which is considered to
be a generalization of the usual r matrix.

In this treatment, we shall include only three kinds
of meson fields: the ordinary sr-meson field (7t & &

t' or P),s

the i7-meson field with r spin -', (x&ei ), and the r-meson
field with r spin is (x~, ~ ). As to the baryons we shall
include the nucleon field Q&iv& ), the A particle with
r spin 0 (P&s&), the Z particles with r spin 1 (f~q&"e),
and the cascade particle I' with r spin —', (Ptr&"). Con-

'Indices n, P, ~ ~ are spinor indices in r space. The ordinary
spinor indices of baryons are omitted.

gPgys'ef= Q gX" $7;r pP.
ot, P=1,2

Here r p and y & are defined as follows:
~ /

r11 r22~ ~ (rl&~r2) ) r12 r21 ~r3)
and

7tn=x *=—(i/2) (Pt —its), 7t' =X = (s/2)gs.

Now we consider a straightforward generalization of
(1.1), namely
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sequently the strong interaction Lagrangian (1.2) has
the form

L'- ")=a 2 LVv T-p"0"x(-)"'
n, P=1,2

+4» T.("O'X(4) +PV4 T-"0 X(.) 1

+ (Hermitian conj.). (1.3)

The structure of the three kinds of T-matrices can be
determined by the requirements that (1.3) be invariant
under Lorentz transformations, gauge transformations
and under rotations in r space (charge independence).

On account of our special assumption that the strong
coupling between the meson-family and the baryons is
a y5 interaction, a new selection rule involving the
intrinsic parities can be derived which may be of some
use in interpreting the metastability of the new particles.
The selection rule derived from the invariance under
7 rotations is sufhcient to interpret the metastability
of all the known particles. However, if more new par-
ticles are discovered in future, more selection rules may
be necessary to guarantee the singular metastability of
the newcomers. The intrinsic parity rule mentioned
above may be of use in this connection.

In the following sections, we shall give explicit ex-
pressions for the T-matrices and derive the above-
mentioned new selection rule. Further we shall consider
the possible types of electromagnetic and weak inter-
actions.

2. ROTATION-INVARIANCE IN e SPACE

The total Lagrangian density is written as

Under an infinitesimal rotation in r space P and g
are assumed to be transformed in the following way:

4'= (1+(~/2) Z;D'")4

x- x'=(1+('/2) r. ..~")x (2.3)

(4,k ———e(„., j, &=1, 2, 3).

Here D and S are respectively given by

D(k)
D(o)

D(1)
D(2) i

D(1)

0
D(k)

0

D(2)-

where D(l) (3=0, or ~i or 1) stands for an irreducible
Hermitian representation matrix of (2l+1) degree for
the generator of the r-rotation group.

Now let us assume charge independence for the
strong interaction, namely, we assume the invariance
of the Lagrangian under any v- rotation. Then we get
the following relation

~L'-~("=s(C 4m~'fk X) =o,

where Y means4

L=Lr)yL~+L;„,(s), (2.1) (T p(~) T (4) T (~))

L))=~~h'"~)+M)4'~ LM= (()~K '~"K+K & 4(:)~

where y, and g* are de6ned by

X*= (X(-)*"',X(4)*,X(.)* ),

and p2 stands for
P

P(~) +3
P(0) E2

0

X(m)

X(~) ~

CX

X(&) )

0 P(~) E2)

where E„ is an (e)&m) unit matrix.
As to the wave functions of baryons, we shall take

the following representation:

4'(&) 4'= &4' 74
4(~)' =(0(~)" 4(~) 0(~)', 0(r) ) (22)

,.4'(r)

In this case, the mass operator M has the form

' ~(N)E2 0
3f(g)Eg

and r g the scalar product of r and y..
Substituting (2.3) into the above equation, we get

Tn&'= LD'" T]
or equivalently

2

2 T. ~(.)( '~'ID "(1)I-~)=ID'",T-s(-)l,

and

P T. ' (n'ID "(1 /)2nI)= ID", T."g (2.4)
n'-1

2 T-'"'( 'ID'"(1/2)
I ) =D'",T-"1

(-:IT
(0 T
(1 T
.(-', T

T
T
T
T

0) (-,'T
0) (0 T
0) (1 T
o) (2 T

1) (4
1) (o
1) (1
1) (-'

T
T
T
T

(2 3)

2).

Now in our particular representation shown in (2.2),
the T-matrices can be split into various rectangular
submatrices in the following way:

3f(g)E3
3E(y)Eg,

' n and P are not matrix suKces but spinor indices taking values
1 or 2. Each T is an 8&(8 matrix whose matrix indices are omitted.
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where (l
~
T

t
l') is a (2l+1)X (2l'+1) rectangular

matrix.
By virtue of the relations (2.4) the zero submatrices

of T's are given by

(i~T& '~l')=0 for l—/'A&1 or 0,
(l~ T&" ~l') =0 for l—PA+-'
(i~ T"~l') =0 for l l'=—+-,'

(see Appendix).
Since L~ and L~ are invariant under transformation

(2.3), we get the conservation. -law of r angular mo-
mentum:

Now L;„~(~) must be invariant under the transforma-
tion (3.2). From this requirement, we have

TC'=[C T],
or

E2
T( )= Ã40 r2'.

[A.T]—TA'= T.nz —[D,,T]=0
2.6

on account of (2.4). Thus, we have the following repre-
sentation for T-matrices:

[4'&"D'v —i(K*&'"~'x—~"K* &'"2)]=0 (2 7)
~x"

In particular, we have

T(~) —T(~)—
.02

02 +2X4 02
04 E4X2

02
(3.4)

~x ~a*
Iz= i~ Py'D@f+iI g*Sz—&zg

~

dx
Bt Bt

where E; and S;xI, stand for iXi and i)&k submatrices
having nonvanishing elements respectively.

The conservation of charge is now expressed by
= const. Dz —,D12 Qz ~12 (2 8)

3. GAUGE INVARIANCE AND ELECTROMAGNETIC
INTERACTION

Q=e
~

Py'CP+ig*C'~ ieC'A, ~g-
Eat j

(—i
(
——ieC'Ao [g C'y, dx=const. (3.5)

&at

To introduce the electromagnetic interaction, (2.1)
must be replaced by the following expressions:

Le ~L~'= ig (y&(8„ieCA—„)+ M) tl,

L~ —+ L1z' —((8„ieC'A——„)g)—*

~ {(~™—~eC'A") K) —K*V'K (3 1)
L~' and L~' are invariant under the following infini-
tesimal gauge transformation:

P ~ P' = [1+ieX(x)C]P,
g —+ g'= [1+ieX(x)C']g.

Here C and C' are defined as follows:

If we omit the electromagnetic interaction, (3.5)
becomes

~X ~X
Q=

~
gy'CP+i g*C'—C'g dx= const. (3.6)

Bt Bt

Bg
Pp'A/+i y*A'—A'g dx = const. (3.7)

Bt Bf
C=Dz+A, C'= nz+A',

and in that particular representation in which Dg and
X)g are diagonal, C, C', A, and A' have the forms' Since every transition process must conserve the total

charge Q, the conservation of A for the strong coupling
is synonymous with that of Iz for such a coupling.

Besides the gauge transformation, our Lagrangian is
invariant under the phase transformation of baryon-
fields

0,
0, 0

Og=Dz+k
03

E2 P~fe', f~ge ', n=const.0
Here it must be noted that all the baryon fields are
assumed to be complex functions. From this invariance,
we get the conservation of the number of baryons.

(3 2) From (3.6) and (2.8), we have the law of conservation
of A for the strong coupling:

0,

03

.0 2E2
0

proton
neutron +lr

0
~ These representations of C and C' correspond to the follovgng

representations of f and g:



A THEORY OF NEW PARTI CLES

4. INVERSION-INVARIANCE AND THE
SELECTION-RULE

It is easily seen that our Lagrangian is invariant
under the proper Lorentz group. As to spatial inversion,
however, some care is needed. As Yang and Tiomno'
pointed out, spinor fields have four possible transforma-
tion characters under inversion in ordinary space:

1gl

(e&
c& l0

i

l

g 101
1

LQ
I

0 1O

O
&

C&
t

a
0

0 )d l
yO 0

1

Q
l

0
I

4(*)~ «vA( —~),

(A) «= 1, (8) «= —1, (C) «=i, (D) «= 4. (4.1—)

Since the 0 meson is assumed in the present paper to
be a scalar field owing to its decay mode, and since
we assume that the strong coupling interaction is a
p5 interaction, we are forced to introduce baryon fields
with various intrinsic parities.

Now let us consider any element of the S-matrix

1~1

(e) . 0 Ii&i& O—tg ———

0 lg
1 g

I0 10| 0
E.

I

I

g
«& &/Z.

I
O

(flsl4)= (mr* se')
which is rewritten under inversion as

(fIsla)=[(Ier)* IsI ' (Ie')j.
Here I is a unitary operator representing inversion.
Now suppose that 4', and %f are the eigenstates of I,
i.e.,

IC;=r),%;, I+f rifler, ti=——+1 or —1,

and that S is invariant under inversion (no external
field is present), namely,

ISI '=S.
Then we get

&fIsis)=~~f(f Isis)
01

Fro. 2. Representation of T(@.

(4 4)Lint, g p x(a&p( &'rbbT(a, b, b'& '4'(b'&i
a, b, b'

where X&,&
means some kind of meson, gib &

and p&b&

stand for some kinds of baryons, and finally Ti, b b &

stands for some rectangular submatrix shown in (3.4).
Now (4.2) is equivalent to

This is nothing but the usual conservation law of
parity. (4.2) is a trivial relation in ordinary meson
theory. However, in our case this requirement gives
rise to some restrictions on the form of the interaction.

By using (3.4), L; bus& can be written in the following

way:

Qj—mfa (4.3) IL (s&(&)I—'d4x — L is& (x)d4x.

It0 / g l g

1 ~1O fi 01
g 101« ~~1 6'

lo oo1
1

1
Io /

(0 (0~ 0

+~O1 0 l 0
(~)2„=-~ o ~ai u I o =T»S/

0 lol 0 1 0
I gl--- r-L-- -~---

0 1o1 O

FIG. 1. Representation of T(~).

~C. N. Yang and J. Tiomno, Phys. Rev. 79, 495 (1950);
S. Watanabe, Sci. Papers Inst. Phys. Chem. Research (Tokyo)
39, 157 (1941);Wick, Wightman, and Wigner, Phys. Rev. 88, 101
(1952).

and from this relation, we get

(4.5)

Here & is equal to +1 and means the intrinsic parity
of &(i,&, «b and «b, («* is a complex conjugate of «) are
the intrinsic parities of baryons introduced in (4.1).s
If the ordinary nucleon is assumed to be a type-A
spinor, the spinors of type-C and -D can be excluded from
consideration on account of (4.5). From (4.4) and (4.5),
we see that some of the submatrices in '(3.4) must be
put equal to zero. If we assume the parity assignment
as shown in the table which was given in the paper of
U. T., the representation of T-matrices is given by

7 Of course in p the parity due to the orbital angular momentum
is included.

'In the present paper the intrinsic parity is deGned in the
following way; (i) spinor field is transformed under inversion as

4'(X) ~ «V44 (-X),
(ii) tensor or scalar Geld is transformed as

A„,...b(x) ~ 4(—t)"A„„...b( —x);
n=the number of suffices which are not equal to 4 among p.,

X. In both cases, e is called the intrinsic parity of the Geld
considered.
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( t

D o o
(~) L J.=i.P ~ o~ D

I

lg I g

I l

0 tgt D
t.

I o /J

I

L "'.i. —.= 4) 4'h"v"7~4'F. (5.2)

the so-called "Pauli-type interaction":

l) kv"v"74~", ~u. = ~uA. ~.Au,

p= the magnetic moment of nucleons.

Similarly, we can introduce in the present framework
the following gauge invariant electromagnetic inter-
action:

ia-/~
( 0 [-/ cr

g ~ol g
I

I

I

FIG. 3. Representation T('&.

Figs. 1, 2, and 3. In obtaining these representations,
some use has been made of the assumed invariance
under charge conjugation.

Since L;„((s) satisfies relation (4.5), we have the
following relation for any transition exclusively de-
pending on L;„t-,~ '..

(4.6)

Here e is the product of the intrinsic parities of all the
particles present, e is the total number of all the kinds
of mesons present, an.d i and f indicate the initial and
final quantities respectively. The relation (4.6) is easily
verified by considering any particular Dyson-Feynman
diagram and supposing that at every vertex of the
diagram the relation (4.5) is valid.

This new rule is essentially due to the particular
choice of the interaction Lagrangian and, of course,
does not contradict the validity of the usual parity
law (4.3).

S. ELECTROMAGNETIC INTERACTION AND
WEAK INTERACTION

The Lagrangian of the electromagnetic interaction
introduced in Sec. 3 is

I.(') i = eA„Pq~CQ+(eA„( q*C'B~@+B~q*C'@—)
—e'A„Ai'g*C "g. (5.1)

The matrices C and C' are diagonal in the particular
representation in which g and P have the representa-
tions shown in footnote 5. Therefore transitions due to
(5.1) do not give rise to any change of characters of
baryons and mesons. In other words, the conservation
of A and the e rule (4.6) are also valid for these transi-
tions.

In the usual meson theory, besides (5.1), we have
another kind of electromagnetic interaction, namely,

where the matrix U is an (8)&8)-matrix and plays a
similar role to that of our T-matrices.

This U-matrix is not necessarily diagonal but the
requirements of the conservation of A and the e rule
(4.6) lead to the following representation of U:

(i) if Z' and A.' have the same intrinsic parity,

py 0 0
0 p2

p3 0 u 0
0 p4 0 0
a 0 p, 5 0
0 0 0 p6

p, 7 0
ps

where the p s and u are some real constants;

(ii) if Z' and A.' have the opposite parities, U is diagonal.

In the case (i) a fast y decay of Z' to A.' is possible if
the value of a is suitably chosen.

So far, we have discussed only the strong and elec-
tromagnetic interactions. For both types of interactions
the e rule (4.6) and the conservation of A-values and of
the number of baryons are always valid.

Now let us discuss the possible types of weak inter-
actions. These we define in the following way; a weak.
interaction is one which violates the e rule or the con-
servation of A-values or both. However, the require-
ments of gauge-invariance and of the conservation of
the number of baryons should be also satisfied, for this
interaction.

We shall discuss separately the following three
possible cases.

(i) A is conserved but e rule is violated.

The interaction Lagrangian is

RIld

Li(~) = fgViP g+Hermitian conj.],
V —(p' ( ) p' (()) p ( ))

f«g.

(5 3)

Each V-matrix can be determined (to some extent) by
the requirements of the gauge invariance and of the
conservation of A. Namely, by using the notation of
Sec. 3, these two requirements lead to

VC'= [C,V7 (gauge invariance) (5.4)
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TABLE I. Assignments of v. spin and intrinsic parity.

Particle

Spatial spin

Spatial parity

v.-spin

A-value

Wave function

P, g
1/2

A
(+)
1/2

1/2

4 pr)

A.o

1/2

(—)

0

Z+, Zo) Z

1/2

(+)

0

Fo, I'

1/2

8
(—)
1//2

—1/2

P.S.
(—)

S.
(+)
1/2

1/2

X(8)

x

P.S.
(—)

1/2

1/2

and
VA'=[A, V] (conservation of A). (5.5)

(A[V& &[A)=(8[V& &[8)=0,

(A [V&'&[A) =(8[V&'&[8)=0,
(A[V&»la)=(a[v&»IA) =o.

(5.6)

Furthermore since (5.3) is a non-y~ interaction, V has
the following property:

io. ', g',

(I
1 b 1

IO, o ~

I

10 l

I

I I

(0 101 IO
l

0
csun

o = V

L2&~& = fogy&WQ g+Hermitian conj.]. (5.7)

In this case, W must satisfy the following relations:

These conditions (5.4)—(5.6) lead to a concrete repre-
sentation for the V-matrix. For example, in our par-
ticular case, as shown in Table I, the representation of
V& ' is given in Fig. 4, where a and b are some complex
numbers while c must be a pure imaginary constant.
(ii) e rule is valid but A value is not conserved.

The interaction Lagrangian is

(le)V„=
0, ) Ol

I0 010
)~l

I

I

(Oi

g lot
C~)t=-V&g.

0 i 0j
c, oi ~

f Xl

0 &o
I

l

0 I Q
) g, y

WC'=[C, W],

WA'a[A, W],

(5 g)

(5.9)

FIG. 4. Representation of V( ).
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2 ~ "'(~'ID'"(-')I~)=[D'" T "']
a'=1

(2.4)

Now let us take a particular representation for D'2~) as
given in Sec. 3. In such a representation the D's are

'The method here developed is quite similar to what was
presented by Bhabha in his paper: H. J. Shabha, Revs, Modern
Phys. 17, 200 (1945).

APPENDIX'

We shall explain briefly how to get the representation
of T-matrices. As an example, let us consider the second
equation of (2.4):
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given by the following expressions: put

D28+ ~D81 D D28 iD81 D D12 .
then

(l, mlD ll, m —1)= (l, m —1ID, ll, m)
= [(l+m) (l—m+1)]l, (A. 1)

(t, mlD. lt, m)=m, m=t, t—1, —(t—1), t, —

where (l, mlDll', m') means an (m, m')-element of a
(2l+1)X (2t'+1)-rectangular-submatrix of D. Further-
more, (n'

I
D(-', ) I n) is represented in the following way:

(~ID"(l) IP) = (~lriIP),

where the 7.'s are defined by

Thus, if

we have
(t, —tlT, lt+-;, t—;—)w—o,

(t, tl T, lt ——;,t——',)wo.

(A.10)

fi+(l,m) =—(l, ml Till'-', , m ——',),
f,+(t,m) —= (t, ml T.lt~-', , m+-;).

(A.11)

By substituting (A.11) into (A.2) and (A.5), the follow-

ing recursion formula can be derived:

Similarly, from (A.S) we can derive the relation (A.10).
Accordingly, the nonvanishing elements of T-matrices
take the forms

( 0 1/2~ ( 0 i/2~—
(1/2 0 J Ei/2 0

pi/2 0

L 0 —1/2)

(A 1)'

(l—m+1)' fr+(t, m —1)= (l—m+2)' fi+(l, m),

(t+m) l f, (l, m —1)=. (l+m —1): fi (l,m),

(l+m)' f2+(l,m) = (i+m+1)-: f,+(t, m —1),

(l—m+1)** fg
—

(l,m)=(l —m)i fg (l, m —1).

Therefore, we have the solution

[Dg Ti]=-', Ti, (A.6), [Dz,T2]= —-'T2, (A 7)

where the representation (A.1)' has been used. Sub-
stituting (A.1) into (A.6) and (A.7), we get

(m —m' ——,'), (l, mlT ll', m')=0,

(m —m+i), (l, ml T, ll, m')=0.

Therefore the nonvanishing elements of T~ and T2 have
the forms

(t, mlT, lt', m ——;)~0,

(t, ml T, lt', my ,')~0. -
From (A.2) we have

(A.S)

[(t+m)(l —m+1)]-'* (l, m —1I T, ll', m ——,')
= [(t'ym ——,') (t' —m+-', )]-: (l, ml T,

l
l', m —-', ). (A.9)

By putting m= l or t'+2 in (—A.9), this equation
becomes

For the sake ot convenience, let us rewrite (2.4) as
follows:

[Di Ti]=0, (A.2)) [Dr,Tg]= Ti, (A.3)

[D, Ti]= Tg, (A.4), [D„T2]= 0, (A.S)

fi+(t,m) ~ (l—m+1)-:,

fi (t,m) ~ —(l+m)l,

f2+(t,m) ~ (i+m+1)
f2

—
(t,m) ~, (l—m) l.

Substituting these into (A.3) and (A.4), we get the final
solution

fi+(t,m) = ai(t —m+1) l,

f;(l,m) = b, (t+m)-:,

f2+(t,m) = —ai(t+m+1)i,
f2

—
(l,m) = bi(t —m)',

where a& and b& are arbitrary complex constants only
depending on /. For example, in our case we have

0 0 b 0 u 0 0 0
0 0 0 0 0 a&2 0 0
0 c 0 0 0 0 0 d

Ti&"= e&2 0 0 0 0 0 fv2 0 .
0 e 0 0 0 0 0 f
0 0 0 0 0 0 0 0
0 0 g 0 h 0 0 0
0 0 0 0 0 k&2 0 0.

or
I:(t'—l——:)(t'+t+-:)j' (t, —t

I
T

I
t', —t——:)=o

[(tyt'+-,')(t—t' ——;)$' (t, t'+ ',
I
T, lt', t')=o. -

On account of the gauge invariance, c, e, g, and h must
vanish, Further, the ~ rule makes a and d vanish because
of our parity assignments.


