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Recent measurements at high energies indicate that the total cross sections for collisions of both nucleons
and m mesons with deuterons are noticeably smaller than the sums of the corresponding cross sections for
free neutrons and protons. A formalism for calculating the cross sections of the deuteron is developed, based
on the assumption that the interactions of the incident particle with the neutron and proton may individually
be treated by the general methods of diffraction theory. The nonadditivity of the free-particle cross sections
is shown to be due largely to "eclipses" in which either the neutron or the proton lies in the shadow cast by
the other, an effect in which quantum mechanical diffraction plays an important role. Simple representations
of the high-energy interactions and the ground-state wave function of the deuteron are found to lead to
cross-section defects of the magnitude observed.

I. INTRODUCTION
' 'T has often been suggested that in collisions with
~- 'incident particles of sufficiently high energy the
neutron and proton comprising a deuteron may be
considered as independent scatterers. For de Broglie
wavelengths much smaller than the deuteron radius,
it is argued, interference effects vanish, and any cross
section should equal the sum of the corresponding
neutron and proton cross sections measured separately.
Recent measurements of nucleon attenuation at 1.4
Bev (where K=0.1X10 " cm) seem, on the contrary,
to reveal a substantial lack of additivity of the neutron
and proton cross sections, in deuterium. '' Measure-
ments with incident protons and incident neutrons
both indicate that the deuteron cross section is less
than the sum of the free-particle cross sections. The
measured differences, although obviously subject to
uncertainty, amount to 9 mb and 6 mb respectively,
values to be compared with o (n,p) =42 mb and o. (p,p)
=48 mb.

A very similar situation has been found to arise in
measurements' of interactions of x mesons with hydro-
gen and deuterium at 800 Mev (where )(=0.2X10—"
cm). The observations, which we shall discuss later in
detail, furnish support for the hypothesis of charge
symmetry and show that the deuteron cross section is
once again smaller than the sum of the free-particle
cross sections. The measured differences in this case are
6 mb and 4 mb, values to be compared with the
magnitudes o. (m. ,p) =41 mb and o. (~+,p) =18 mb.

Some simple considerations may be of help in
indicating the nature of the effect. At these energies
the attenuation of the incident amplitude by incoherent
processes such as meson production may be schemat-
ically represented as due to a certain amount of absorp-
tion of the incident wave by the nucleons. Since the
incident wavelengths in these cases are evidently much
smaller than the ranges of interaction, the nucleons may

' Coor, Hill. , Hornyak, Smith, and Snow, Phys. Rev. 98, 1369
(1955).

Chen, Leavitt, and Shapiro (private communication). See
also Phys. Rev. 95, 663(A) (1954).

Dr. O. Piccioni has kindly supplied these data.

be thought of as casting fairly well-defined shadows.
It is then clear that absorption or scattering by either
nucleon is reduced when it enters the shadow of the
other. Astronomers have long been familiar with a
time-reversed analog of this effect; the decrease in
luminosity of binary star systems during eclipses.

To observe the mechanism of the effect more closely
we may begin by considering an elementary model.
We represent the regions of interaction surrounding
the nucleons as black spheres, each of which will then
have a total cross section (comprising absorption and
diffraction scattering) equal to twice its absorption
(i.e., geometrical) cross section. The effect of eclipsing
is most easily seen on the total absorption cross section
of the system. This is because absorptions by the two
nucleons are mutually exclusive events, and because no
interference effects are involved, conditions which
are both lacking in the consideration of scattering.
To find the deviation of the total absorption cross
section from the sum of the two absorption cross
sections, we must correct for the fact that those
particles whose initial trajectories cross both regions of
interaction are absorbed in the 6rst and not the second.

The geometrical cross section of the first nucleon will
be or/2, where o.t is its total cross section. We require
the probability that a straight line passing through the
first region of interaction also intersects the second. We
shall assume, for the moment, that the interaction
ranges are small compared with the average value of

~

r ~, the separation of the nucleons. Then, since the
probability density of the second nucleon is isotropic4
about the first, the required probability is ~o&(1/4vrr'). d

which is the average solid angle subtended by the
second region, as viewed from the erst. The correction
to the absorption cross section of the system arising
from collisions in which the shadow of region 1 falls on
region 2 is thus —~ato2(1/4~r')d. An identical correction
comes from collisions in which the regions are inter-
changed. Hence we have

o b 4&1+go 2 (&1&2/8'tr) (1/» )d (1)
'We neglect the d-state admixture and the effects of spin in

the deuteron.
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for the absorption cross section. The total cross section
of the system is most simply found by appealing to the
fact that, whatever their configuration may be, the
total cross section of the black interaction regions equals
twice their absorption cross section. We therefore have
the expression for the total cross section

in which k is the initial propagation vector and k' the
defI.ected one. The integration is carried out over a
plane perpendicular to the direction of incidence. We
shall find it convenient to employ the abbreviation

I'(b) = 1—c—~x(b)

Crt —0 i+o s (o io s/4s ) (1/r')d. (2)
Then for axially symmetric regions of interaction
centered at b=0, the scattering amplitude reduces to

Assuming that the deuteron has a radius of the order
of the triplet effective range r,=1.7&&10 " cm, it is
easily verified that the correction term has the appro-
priate order of magnitude, 6 to 9 mb for nucleon
scattering. We shall return to a more quantitative
discussion of the eGect at a later point.

Although the representation of the interaction regions
as black spheres has been helpful in the foregoing
derivation, it must be emphasized that the evidence
available to date is not sufficiently detailed to support
such a model firmly. While meson production may
indeed represent a considerable absorption, the spatial
distributions of opacity remain unknown within wide
limits. Nor can we exclude the possibility of coherent
scattering taking place within the interaction regions.
For these reasons then, in examining the eGect further,
we shall avoid placing any strong restrictions on the
nature of the interactions involved.

II. CALCULATION OF THE TOTAL CROSS SECTION

k
ei(k—k'1 b{e—iy(bl 1}d(2)bf(k', k) =

2''~
' G. Moliere, Z. Naturforsch. 2a, 133 (1947); Fernbach, Serber,

and Taylor, Phys. Rev. 75, 1352 (1949).
p If the interaction is due to a potential V(r), the phase function

x(b) is given by (Av) ' J' "U(z+b)Ck, where z is the component
of r in the direction of propagation and v is the incident velocity.

In the energy region of interest, incident particles
have wavelengths considerably smaller than their
ranges of interaction with nucleons. If it may be
assumed that the energies of interaction of the incident
particles with the nucleons are smaller than the incident
kinetic energies, the collisions may be described by
methods which are essentially those of diffraction
theory. ' In the diffraction approximation we assume
that the incident plane wave sweeps, virtually unde-
viated, through the region of interaction, and emerges
suGering only a position-dependent change of phase
and amplitude.

If we let b be an impact-parameter vector in the
plane perpendicular to the direction of incidence, the
scattering process may be characterized by a function
x(b) which represents the change of phase, at a point
b of the emerging wave front caused by passage through
the region of interaction. The decrease of amplitude
due to incoherent processes is represented by allowing

x(b) to assume complex values (Imx(0). The coherent
scattering at small angles is then given by"

f(k', k) =ik Jp(
~

k —k'
~
b)I'(b)bdb.

We shall assume that the interactions of the incident
particles with nucleons are completely characterized
hy functions x(b) or I'(b) defined separately for the
neutron and proton. In the work that follows, we make
use of the scattering amplitudes only at or near the
forward direction k =k. It is this restriction which
justifies the neglect of recoil effects implicit in the
use of (3) and (5) for the description of scattering by
isolated nucleons. "

In discussing scattering by deuterons and more
complicated systems, the possibility of excitation of
the system requires explicit treatment of its internal
degrees of freedom. For this purpose a generalization of
the diffraction procedures already outlined has been
developed. While the application of the method is
suKciently direct in the present context, we shall return
to a fuller discussion of its mathematical basis along
with certain more general procedures in future work.

We may formulate the problem in a general way by
considering the scattering by a bound system of
nucleons whose individual velocities are small compared
with the velocity of the incident particle. The nucleons
may then be considered frozen in their instantaneous
positions, say r~ r~, during the particle's passage
through the system. Assuming that the incident
particle interacts with the nucleons through two-body
forces, the total phase change of the emerging wave,
xp,p(b), will be the sum of the phase changes produced
by the individual nucleons. If the projections of the
coordinates r~. . rg on a plane perpendicular to the
direction of incidence are q& q&, we may write

xi.p(b, e tl~)= E x (b—il).

The function I' analogous to (2) is then

I'. (b, qi a~) =1—exp' —sZ;x;(b —tI )1. (7)

7 Recoil eRects are in fact easily included in a somewhat more
general formulation of the method outlined in the succeeding
paragraphs, but the corrections they represent for 'k' different
from k are characteristically quite small. This is because the
assumptions inherent in the diffraction approximation restrict
the scattering predominantly to small angles. The forwardness of
the scattering does not, however, exclude the possibility of internal
excitation of scatterers containing more than one nucleon. To
find the coherent scattering amplitude we must exclude the latter
explicitly.
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If the nucleons were rigidly Axed in their instantaneous
positions, substitution of this expression in (3) would
yield the scattering amplitude. Since the nucleons are
not fixed in position the quantity r&,&(b, qi q~) is
to be regarded as an operator inducing transitions of
the nuclear system as well as deRections of the scattered
particle. In particular, if we are interested in elastic
scattering, we must employ the diagonal element of
ri, &, (b,qi. . q~) in the nuclear ground state. ' For the
reasons previously stated, ' we may ignore the recoil
momentum of the nucleus as a whole by letting its
center of mass remain fixed at the origin. Then the
elastic scattering amplitude is

ik (
F(k' k) =—

i e" ""d'"b
2m.~

F(0)=F(k,k), f(0)= f(k,k). (13)

Then, introducing the individual forward scattering
amplitudes via (3) and (4), we have

This expansion separates the scattering into the
amplitudes contributed by the nucleons individually
plus a term representing the corrections due to the
presence of two nucleons. The b-integrations of the
first two terms, after translation of their origins in the
b-plane, indeed reduce to the neutron and proton
scattering amplitudes given. by (1).

Since our interest centers, for the present, on the
total cross section, and this may be found from the
forward scattering amplitude, we specialize at once to
the case k=k', and introduce the abbrevaitions

&&~ I4(r r )I r. (b, q q )II«;, (g)

where the r-integrations are over the configuration space
of the 3—1 independent nucleon positions.

To apply this approximation to scattering by
deuterons, we introduce the relative coordinates

I'= I'y —1'2) g = gy
—

Qg) (9)

and let P(r) be the wave function of the deuteron ground
state. Then the elastic scattering amplitude according
to (8) reduces to

F (k' k) =
i

e'&"—"' b

2' ~

,

I
I p(r) I'e '[xi&h+zi2)+x2&~ —ei2)idr —1 d&2ib, (10)

where use has been made of the normalization

J'I
& (r) I'«=1.

Now the expression exp{—iLxi+x2)) may be written
in the form

exp{—~Lxi(b+kq)+x~(b —kq) )
=

I
I—ri(b+-', q)]I I—r2(b ——,'q)], (11)

so that the scattering amplitude may be resolved into
the terms

F(k,k)= i I&.(r)I drI —
I

i
e'&-'&r, (b+-'q)d&'b

(ik)
&~ )&

Lk)
I

I p(r) I'drI —
I

I e"~ ~'& sr (b ——,'q)d"'b
&2)0

+ I v (r) I'«
2+i~

X~~e""-""ri(b+kq)r~(b —kq)d"'b (12)

We neglect the influence of nuclear spins in the present work.

F (o) =fi(o)+f2(o)+ . I I ~(r) I'
2' ~

&&ri(b+-,'q)r (b—-', q)d&"bdr. (14)

To find the total cross section of the deuteron, we
make use of the fact that the attenuation of the
incident beam may be described as a destructive
interference with the coherent amplitude scattered in
the forward direction. This relates the total cross
section to the imaginary part of the forward amplitude
in the familar way:

Og
——(4'/k) ImF (0),

and for the individual nucleons

&T;= (4~/0) Imf, (0).

Then, taking the imaginary part of F(0) as given by
(14), we find the general expression for the deuteron
cross section:

~.=~,+~,—2 Re
I ~(r) I

Xri(b+2q)r2(b ——,'q)d"ibdr. (Iy)

The relation of the two-particle term to the "eclipse"
corrections mentioned in the introduction may be seen
in a general way at this point. The functions r(b)
defined by (4) go to zero for impact parameters lying
outside the range of interaction. The integral over b
in the two-particle term therefore vanishes except when
the relative position of the nucleons is such that the
region of interaction about one casts its "shadow" on
the other.

Since the wave function of the deuteron is spherically
symmetrical to a good approximation, it is convenient
to express the two-particle term in a way which takes
advantage of this. As a 6rst step we calculate the term
for a spherically symmetric wave function in which the
neutron and proton remain a fixed distance p apart;
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that is, we take

I y(r) I'= (4m'p') '8(lrl p) (18)

The r-integration in (17) may then be separated into
an integration over z, the component of r in the direction
of incidence, and an integration of q over the perpendic-
ular plane. The s-integration is easily carried out.
Writing S(p) for the two-nucleon correction in this case,
we have

LO

0.8

0.6

0$

where

og o——~+os+$(p), p Axed (19)
0.2

$(p) = —(2m p') —' Re d ' bd ' qI', (b+-', q)r, (b ——',q) l,0 2.0 3,0
I

4.0
I

I

5.0 r/a

X 8{(V'+s')' —p}ds= ——
wp~ isi&u (p 9 )*

Fto. t. The function S(r), which represents the correction to
the total cross section when the neutron-proton separation is
held at the 6xed value r, is plotted in units of 2''. The dashed
curve represents the asymptotic form the function assumes at
large distances.

xRe) r, (b+-', q)I', (b —-', q)dis~b. (20)

This result for a fixed distance between the nucleons
may now be employed to find the correction to the
cross section for any spherically symmetric representa-
tion of the deuteron wave function. The correction in
the general case, which we represent as bo., is obtained
by averaging S(p) over the radial distribution function.

op= 0't+0's+80, (21)

I v (p) I'$(p)4~p dp
0

(22)

For neutron-proton separations r much larger than
the interaction ranges, S(r) reduces to

S(r) —(7rr') ' Re rt(b+sq)rs(b —sq)d's~bdi@q,

or, introducing q&
——b+ q/2, qs=b —q/2,

S(r)-—(wr') 'Re r~(q—t)d"'qt~ rs(qs)d"'qs .

The latter integrals are proportional to the individual
forward scattering amplitudes given by (3) and (4),
so that $(r) reduces to

$(r) (4~/k'r') Re{f, (0)fs(0)}. (23)

6 = (4 /k') Re{f, (0)f, (0)}(r—') . (24)

This is of course an asymptotic expression, valid at
large distances, but its r-dependence is roughly correct
down to the radii of the interaction regions themselves.
Hence, if there is a suKciently small probability that
the interaction regions overlap, we have

A further simplification may be achieved if it is
assumed that the high-energy interactions are purely
absorptive. The absorption, which represents incoherent
processes such as meson production is, of course, always
accompanied by elastic diGraction scattering. This
assumption, that the incident wave suffers no real
shift of phase, but only a decrease of amplitude (i.e.,
x;(b) is purely imaginary), implies that the scattering
amplitudes (3) are purely imaginary. We then have
f;(0)= (ik/4')o;, and substitution of these relations in
(24) yields

8o.= —(I/4n. )o,o.s(r—')d. (25)

8o..b.———(1/2~) o t.os.(r-') g. (26)

The considerations required to hnd the scattering are
rather more lengthy. It is necessary to take account of
all scattering processes involving breakup of the
deuteron as well as the elastic collisions. This is accom-
plished by integrating the scattered intensity over

This is just the expression found in the introductory
considerations, which treated the interaction regions
as black spheres. It is evident now, however, that the
result is substantially more general. The interactions
need not be perfectly opaque and indeed the opacity of
a nucleon may be distributed arbitrarily within ranges
small compared with the size of the two-body system.
It must be mentioned, though, that the absorption of
the system is no longer given in general by (1), since
the absorption and total cross sections are no longer
simply related by a factor of two.

It is instructive to calculate the absorption and
scattering cross sections separately. Their sum, of
course, furnishes a check on the total cross sections
discussed thus far. The correction to the absorption
cross section is still given by the argument of the
introduction, but employing the individual absorption
cross sections a.~, and 0-2, instead of geometrical areas,
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angles and summing the squares of all matrix elements
of the operator F&.&(b,qi q~). The resulting expression
is a sum of terms representing scattering by the individ-
ual nucleons, interference between them, and corrections
due to double scattering and scattering by one followed

by absorption by the other. YVhen these are summed
and added to (26), they indeed reduce to the much
simpler expressions given above for the total cross
section.

III. RESULTS AND DISCUSSION

In the foregoing work we have analyzed the total
cross section of the deuteron in a way which remains
valid for the wide range of high-energy interactions
which may be treated by the methods of diffraction
theory. While it is anticipated that the actual interac-
tions of high-energy incident particles with neutrons
and protons will be found to have this character, too
few observations exist as yet to permit conclusive
analysis of the data. In particular, lacking measure-
ments of the diAerential cross sections for elastic
scattering, very little can as yet be said concerning the
phase change functions y, (b), or the "shadow" functions
I', (b)=1—expLix;(b)j, which figure in the general
results (20) and (22). We shall therefore confine
ourselves for the present to the use of simple models
for the high-energy interactions. In this way rough
estimates of the effect may be reached along with
comparisons of the relative magnitudes involved.

The experimental total cross sections" for nucleon-
nucleon encounters at 1.4 Bev are

o.(p, p) =48 mb and o (n,p) =42 mb.

Two attenuation measurements have also been per-
formed with deuterium. With a beam of incident
protons, a subtractive experiment involving deuterium-
and hydrogen-bearing targets yields o (p, Ld —p])=33
mb which is 9 mb smaller than a(p, n)=a(n. ,p) The.
subtractive measurement added to o(p, p) indicates a
proton-deuteron cross section o.(p,d)=81 mb. With
neutrons incident on deuterium, ' the total cross section
of the deuteron is found to be o.(n,d) =84 mb, a value
whose closeness to the corresponding result for protons
strongly supports the hypothesis of charge symmetry.
If it is assumed then that the free neutron-neutron
cross section is the same as o. (p,p) given above, the sum
of the free-particle cross sections o(n, n)+o(n, p) is
found to exceed o.(n, d) by 6 mb. As a further conse-
quence of charge symmetry, these differences of 9 mb
and 6 mb must be considered as two measurements of
the same number. Since they are differences of experi-
mental cross sections, their errors may of course be
relatively large, but it will be of interest to see whether
or not the results predicted lie in the range they indicate.

Since little more is known about nucleon interactions
at 1.4 Bev than is contained in the above total cross
section measurements, we shall employ them to define
the radii of opaque regions of interaction. The black-

sphere model to which we thus return is at least
roughly consistent with measurements' made at
somewhat lower energies of the relative proportions of
elastic and inelastic processes occurring in proton-
proton scattering. Since the neutron and proton cross
sections are not very diferent, we shall simplify the
calculations by assuming their regions of interaction
identical. The radius a=0.85)&10 "cm corresponds to
a mean nucleon-nucleon cross section 2m.u'=45.4 mb.

Whether this interaction range may be considered
small or not depends in large measure on the form
assumed for the deuteron wave function. As we shall
see, the experimental data such a wave function must
be required to 6t, leave the radial distribution function
quite undetermined at small neutron-proton separations.
In particular for models which concentrate the probabil-
ity densities at small distances, it will be necessary to
use the general formulation of the result given by (20)
and (22).

The functions F;(b) for the black-sphere interactions
assume the particularly simple form

0, b)u.
(27)

With the aid of these, the function S(r), which repre-
sents the correction to the total cross section when the
neutron-proton separation is held at the 6xed value r,
is easily found. Introducing the variable

x= r/2a, (28)

' Smith, McReynolds, and Snow. Phys. Rev. 97, 1186 (1955).

we have for x ~&1:

S(r)= —2~a'{1+(4/3~) (x-'—x)E(x)
—(4/3~) (x—'+ x)E(x)} (29)

and fol s ~~ 1:
S(r) = —2ira'{1+ (4/3m. ) (x' —1)E(x

—')
—(4/3m) (xs+1)E(x ')}, (30)

where the functions E and 8 are the complete elliptic
integrals of the erst and second kind, respectively.
A graph of —(1/2s.a' )S(r) is given in Fig. 1, where it
is compared with the asymptotic form as/2rs, which is
valid at large distances; It may be seen that the
asymptotic form deviates widely from the correct
function only for radii r smaller than the range of
interaction a.

The deviation of the total cross section from the sum
of the free-particle cross sections is found by averaging
the function S(r) over the radial distribution function
of the deuteron. For this purpose we shall discuss three
possible models of the deuteron, selected to illustrate
different ways in which the probability density may
behave at small distances. The constants which any
representation of the deuteron wave function must be
chosen to 6t are: the triplet effective range r,=1.7



CROSS SE CTIONS I N DE UTERI U M AT H I GH ENERGIES 247

&10 " cm, and the binding energy, which may also
be stated in terms of the parameter n, the logarithmic
derivative of the radial wave function at large distances.
n= (1/4.31)X10"cm '

If the interaction which binds the deuteron is
represented as a square-well potential, its radius is
found to be 2.07X10 "cm. The value of S(r) averaged
over the radial distribution function appropriate to
this potential yields bo. =5.7 mb, a value quite consistent
with the smaller of the two measurements. The value
found by employing the asymptotic result (25) exceeds
this by about 20%, an error which corresponds to a
probability of only 4%%u~ that the neutron-proton separa-
tion is less than 0.85&10 "cm. The use of the asymp-
totic approximation must therefore be restricted to
distributions which are less concentrated at small
distances.

A model of the deuteron somewhat more in keeping
with the original proposals of the meson theory would
be based on a potential which becomes singular as 1/r
near the origin and decreases exponentially at large
distances. The Hulthen potential, V(r)~X(e""—1) '
for which the wave function is proportional to e

X(1—e i')/r, represents a convenient choice of this
type. The parameter X is found to be 1.21)&10"cm ',
a value which corresponds to an increased concentration
of the wave function near the origin. The mean value
of S(r), in this case, yields 8o.= —7.2 mb, which lies
between the measured values of the cross-section defect.

A third type of deuteron model which has recently
received considerable discussion is based on the
assumption of a "hard core" in the low-energy neutron-
proton interaction. The particles are assumed subject
to an infinite repulsive potential which prevents their
approach closer than a distance r, . An example of this
model is furnished by one of the computations of
Blatt and Kalos based on a core of radius r, =0.531
)&10 " cm surrounded by a potential of the type
proposed by Levy, with parameters providing an
approximate fit to the known constants for the triplet
state. " The average value of S(r) in this case gives
80 = —4.5 mb. The asymptotic approximation (25), as
may be expected, is more accurate here than in the
square-well case. Since the radial distribution lies almost
entirely in the region r& a, the asymptotic estimate is
on the low side, by about 10%.

The value 4.5 mb for the cross-section defect in the
hard-core example considered is smaller than either of
the measured values, 9 mb and 6 mb, though perhaps
not small enough to exclude this model in view of the
various uncertainties involved. However, since the case
is one in which the asymptotic approximation is
serviceable, certain general remarks may be made
about the dependence of the result on the form assumed

IJ. M. Blatt and M. H. Kalos, Phys. Rev. 92, 1563 (1953).
The wave function employed corresponds to the parameters listed
on line 2 of Table I. The core radius is the smallest reported upon.
We are indebted to Mr. J. Bernstein for supplying the tables.

for the high-energy interactions. In particular, the
validity of the asymptotic expression (25) for arbitrary
interactions of a purely absorptive character indicates
that the result should not be very sensitive to variations
in the opacity distributions which leave the total
cross sections unchanged. If the interactions are
assumed to be refractive as well as absorptive, the
forward scattering amplitudes are no longer purely
imaginary, and we must return to the more general
relation (24) to find 80.. This may be rewritten as

bo —(1/4s.)f0,0 s
—(4s./k)'

XRefi(0) Ref i(0)}(r s)q, (31)

from which it is evident that similar signs for the real
parts of the forward scattering amplitudes would result
in a decrease of the predicted effect, and hence a strong
need for a more compact deuteron model. For models
in which the probability density is substantially more
concentrated, however, the asymptotic approximation
becomes less accurate and the inhuence of other
assumptions concerning the interactions can only be
found by recalculating the general expression (22).
While the black-sphere model we have employed in
the absence of scattering data may well prove inaccurate,
it seems clear that an effect of the magnitude observed
may be explained with other strongly absorptive
interactions by suitably adjusting the radial distribution
of the deuteron.

A test of consistency may be made on the radial
distribution required by analysis of the similar e8ect
which is found to occur in collisions of x mesons with
deuterons. The total cross sections at 800 Mev for
collisions of x+ mesons with protons are'

0(7r—,p) =41 mb, (r(7r—,p)=18 mb, (32)

while subtractive measurements performed with
deuterium- and hydrogen-bearing targets yield

0 (7r+, fd —pj)=35 mb, 0 (s.—,Ld —p$) = 14 mb. (33)

These results, which involve probable errors of about
2 mb, may be added in pairs to yield the deuteron
cross sections

0 (s+,d) = 53 mb, 0 (vr, d) = 55 mb.

The agreement of these results oRers further support
for the hypothesis of charge symmetry, so that the
cross sections (32) and (33) must be interpreted as

implying that the deuteron cross section is less than
the sum of the free-particle cross sections by about
5 mb. In the absence of other data on meson interactions
at this energy, we may merely remark that the assump-
tion of purely absorptive interactions, together with
the use of the deuteron wave functions employed above,
furnishes estimates of the eRect in the range from 1 to
3 mb. A larger effect may be due to nonvanishing refrac-
tive eRects or concentration of the density distribution
of the deuteron at smaller radii.
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In concluding we may mention still another factor
whose possible influence on the effect may be of interest.
We have assumed from the outset that the complex
phase changes brought about by the passage of a wave
through the two regions of interaction are additive.
When the interaction regions overlap, any nonlinearity
in the superposition of their fields may imply nonaddi-

tivity of the phase changes. This too would contribute
to the observed cross-section defect, but its analysis
must clearly follow a more complete investigation of
the linear eGects. The author is greatly indebted to
Dr. Anatole Shapiro for calling the measurements of
the eGect to his attention, and to C. Sommerfield and
J. Bernstein for aid with some of the calculations.
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A tentative scheme is developed to formulate the behavior of the new unstable particles. This scheme
is a straightforward generalization of the usual charge-independent meson theory. The selection rules for
isotopic spin are identical with those suggested by Gell-Mann. Owing to the particular form of the inter-
action assumed in this scheme, we can derive a new selection rule which seems to be of some use in inter-
preting the metastability of the new particles.

1. INTRODUCTION

EVERAL attempts' to interpret the contradictions
between the copious productions of the new par-

ticles and their metastabilities have been published.
Among these attempts the "two-coupling-constant
theory, " due to Pais, seems most successful. In this
theory the production processes are due to an inter-
action with a large coupling-constant while the other
small coupling-constant is responsible for decay proc-
esses. Pais' recent theory' based on the four-dimensional
co space seems especially attractive. However there may
remain, of course, other kinds of formalisms within the
framework of the "two-coupling-constant theory. "

In the present paper, the details of a theory of the
baryons and mesons will be presented. In this theory
particles will be distinguished by (a) isotopic spin I,
(b) curious particle constant A, and (c) intrinsic spatial
parity e in addition to the usual mass, spin, and charge.
The theory is constructed so that the selection rules in-
volving I, I„and A are identical with those proposed
by Gell-Mann. In addition we will show that it is
natural to introduce an additional selection rule in-

volving the intrinsic parity e. This last aspect was
brieQy discussed in a paper by Tobocman and the
author. '

In the usual formalism, the neutron and the proton
are described by a spinor P"(et= 1,2) in a three-dimen-

' A. Pais, Physica 19, 869 (1953);A. Pais, Proc. Nat. Acad. Sci.
40, 484 (1954); M. Gell-Mann and A. Pais, Proceedings of the In-
ternational Physics Conference, Glasgow, July, 1954 (Pergamon
Press, London, 1955); T. Nakano and R. Vtiyama, Pro gr.
Theoret. Phys. (Japan) 11, 411 (1954); T. Xakano and K. Kishi-
jima, Progr. Theoret. Phys. (Japan) 10, 581 (1953).' R. Utiyama and W. Tobocman, Phys. Rev. 98, 780 (1955). &n

the present paper this will be cited as U.T.

sional r space. Similarly the charged and neutral mesons
are described by a vector P (or a symmetric spinor of
the second rank 7t"~=yt'~ (n,t8=1,2)) in r space. The
interaction Lagrangian between the two fields in the
usual charge-independent theory is

n ~1ct9 0.77,=1,2
x&" '"'Pys Tt ~" .&4. (1.2)

Here y' &
' ' ' ~ is a symmetric spinor of the eth rank in

r space and is assumed to describe a meson field with
the ordinary spin 0 and r spin tt/2, and f is a wave
function corresponding to some assembly of baryons
with ordinary spin —, and various values of r spin.
T(~1" „) is some square matrix which is considered to
be a generalization of the usual r matrix.

In this treatment, we shall include only three kinds
of meson fields: the ordinary sr-meson field (7t & &

t' or P),s

the i7-meson field with r spin -', (x&ei ), and the r-meson
field with r spin is (x~, ~ ). As to the baryons we shall
include the nucleon field Q&iv& ), the A particle with
r spin 0 (P&s&), the Z particles with r spin 1 (f~q&"e),
and the cascade particle I' with r spin —', (Ptr&"). Con-

'Indices n, P, ~ ~ are spinor indices in r space. The ordinary
spinor indices of baryons are omitted.

gPgys'ef= Q gX" $7;r pP.
ot, P=1,2

Here r p and y & are defined as follows:
~ /

r11 r22~ ~ (rl&~r2) ) r12 r21 ~r3)
and

7tn=x *=—(i/2) (Pt —its), 7t' =X = (s/2)gs.

Now we consider a straightforward generalization of
(1.1), namely


