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Momentum Deyendence of Phase Shifts
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A lower limit is found for the momentum derivative of the scattering phase shifts of a relativistic neutral
two-particle system when the interaction is of finite range.

OME restrictions on the momentum dependence
of the phase shifts for a nonrelativistic scattering

problem have been discussed recently by 7Vigner. ' In
this note we derive a somewhat stronger restriction for
the phase shifts for the relativistic scattering of neutral
particles confined to a single channel. The latter
condition essentially means that we are dealing with
a first-quantized field.

The proof is based upon the unitarity of the partial
5-matrix referring to a single phase shift and to the
completeness, outside some radius ap, of the asymptotic
wave functions describing the scatterer and scattered
particle in the center-of-mass system in a given state
of angular momentum. Ke shall restrict our discussion
to S-waves; analogous theorems are valid for other
angular momenta.

For nonrelativistic 5-wave scattering, unitarity and
completeness have been shown'' to lead to the con-
clusion that S(k)e ""La&ct,j, if it has an analytic
continuation, is a regular function of k for Imk&0
as long as no bound states are present. If there are no
branch points, Ning Hu' has shown that one can
therefore write

k —k,* k+k,
5(k) esie(s) s

—siosII
k k, k+k,*—

cg cp, Imk, +0.
The k, for diGerent s are not assumed to be necessarily
distinct. The form of Eq. (1) is dictated by the absence
of poles in the upper half plane and by the condition

5(k) esie(s) e 2i6( s) ——58(— k) (2)

For a relativistic particle the energy is a double-
valued function, E=& (k'+tt'):; in general the scatter-
ing amplitude depends both on k and E so that cuts
must be introduced in the k-plane along the imaginary
k axis from iIJ, to i~ and —ip to —i~. Following Hu, '
we can write

S(k,E)
(k.+k.*)(E-E.*)—(E *-E) (k-k ")

e
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5(k) has a pole at k=k„E=E = (k '+tts) l but need
not have a pole at k=k„E= E„we—have 5*(k,E)
=5(—k,E) in accord with unitarity but there is no
simple relation between 5(k,E) and S(k, E). B—ut for
a real field (neutral particles only) 5(k,E)=5(k,—E),
so that for every factor in Eq; (3) contributing a pole
at k„E, there is one contributing a pole at k„—E,.
When the pair of factors with E, are multiplied, Eq.
(3) reduces to the form of Eq. (1).

We may solve Eq. (1) for the phase shift and obtain

8(k) =-ak+Z. «n-'~, (k) = —.k+p, (l, (k),

where we have introduced the angle

8 (k)=tan —'cr (k)

and the function n, (k),

~.(k) =2k imk, /(k' —~k, ~s).

The properties of the derivative of 5(k) with respect
to k, denoted by a dot, are related to those of the
derivatives of 0 and o.,

Ots
8= —a++ b), = —a++

S $1+ir

Because the poles of 5 are all in the lower half-plane,
however, 6 is always positive,

k'+ ik, [s
n, = (—2 Imk, ) &(),

(ks —
[ k, )s)s

5& —u.

Actually, the properties of e, permit a still stronger
statement on the lower limit of b. By comparing Eqs.
(5') and (7), we may conclude that

n, & Jcr, J/k.

But this implies that tII, has the lower limit
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and that, in turn, 8 has to be greater than —a by a
positive definite amount
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The last part of the inequality can be easily deduced by
induction, starting with a sum over two terms,

I sin(etage)
I

=
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sinet coses+ cose] sings

I
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I + I »nes II cost) t I

& IsineiI+ fsin9sI. (12)

Equation (11) above corresponds to Eq. (Sa) of
reference 1, but diGers in that the oscillating term
always makes a positive contribution.

When bound states are present 5(k) of Eq. (1) has
simple poles in the upper half-plane at k = ik~ such that
the energy of the bound state is (ti' —kz')'*. Then the
rks of Eq. (1) will have a factor

mesons by nucleons. Under the transformation
E~ 8 —the partial S-matrix e"" for 7r++p ~w++p
becomes that for ~ +p —+sr +p.s In a charge-inde-
pendent theory, for instance, ~ +p —+ m'+I can take
place, e'@'& ~' cannot be unitary, and 8s(—E) cannot
be real.

Nevertheless some information about the range of
interaction can be inferred for the meson-nucleon
system. Completeness and unitarity give the relation

+ (ks+ tls) 2j
dke'"Skk, —(ks+„s)-:j=0

k+ikg
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and Eq. (11)becomes
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where SLk, + (k'+p')*'g may be the partia15-matrix for
~++P ~ tr++p or m +p ~ m'+n. Charge inde-
pendence relates the charge exchange amplitude to the
two elastic amplitudes, and the x+ amplitude becomes
the complex conjugate of that for w when the sign of
the energy is changed. Completeness, unitarity, and
charge independence lead to the single relation

Another inequality which can be stronger than
Eq. (11) and is valid for real fields even if inelastic
processes enter at higher k, follows from an application
of Cauchy's theorem to expI 2s8(k)+2ika). Since the
integrand has no poles in the finite half-plane if there
are no bound states, Cauchy's theorem yields

P p~ 2s»48(~)+c»4~(&l
2csie3(s)+ csrgr(s) dt, (17)

vari ~ ~ f—k
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Differentiating both sides of Eq. (17) with respect to

(15) k and then setting k=0, we obtain

1
I
"dt sin'I 6(t) —8(k)+at —ak] With Drear's extrapolated phase shifts,

i(k) = —a+— (16)
(t—k)s k k
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By differentiating Eq. (15) logarithmically and using 25, (0)+j(0)+.3z
8(k) = —5(—k), we obtain J ts

The integrand of the right-hand side is always positive.
Therefore a knowledge of 8(k), even over a limited

region of k, contributes a lower limit to the entire
integral in Eq. (16).'

For the partial S-matrix of Eq. (3), which describes
the scattering of a charged relativistic particle, even
the inequality (8) will not hold in general; it does not
seem possible, therefore, to apply the inequalities (8),
(12), and (16) to the scattering of charged mesons.
Furthermore the possibility of charge exchange makes
even Eq. (3) inadequate for the 5-wave scattering of

' lf multiple processes occur at momenta greater than 0, Eq
(16) still holds with the sin2( ) of the integrand replaced by
e 'sm sin'( )+e sm sinh(s2), where bs is the imaginary part of b

24 s(0)+P (0)= 2
I 4&s(O) I+ I it (o) I.

From this we can infer

a &0.11(A/tic) .

(20)

(21)
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the complete neglect of the positive definite integral
yields u &0.02(h/tic).

A stronger limit on a is easily obtained if we use a
linear approximation to the 5-wave phase shifts. The
integration in Eq. (18) can be carried out, with the
result


