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Relativistic Theory of Discrete Momentum Space and Discrete Space-Time
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An examination is made of the result of restricting translations and Lorentz transformations in space-time
to those with rational coefhcients. This removes the major defect of Schild s model of discrete space-time
by elimination of the lower bound on the relative velocities of reference systems. The theory is formulated .
in two stages. In the first the energy and momentum components of a particle are restricted to a countable
set satisfying the relativistic energy-momentum relation while the space-time variables are continuous.
This gives a theory of discrete energy-momentum space in which wave functions are almost periodic func-
tions. In the second stage the space-time variables are restricted to rational values. This leads to the theory
of discrete space-time.

1. INTRODUCTION
' 'T has been conjectured frequently that a treatment
~ - of space and time as having a discrete structure
would be of interest as a test of the character of physical
theories. ' Heisenberg's suggestion of the existence of a
minimal space length has aroused particular interest
among physicists. ' A number of trials have been made
at the reformulation of quantum mechanical theory by
assumptions depending on the nature of the space and
time variables considered as operators. '

One of the major difhculties encountered arises from
the supposed necessity of preserving invariance of the
theory under the full continuous group of Lorentz
transformations, L. Some years ago Schild examined the
consequences of assuming a lattice structure of space-
time, requiring only the discrete group of Lorentz trans-
formations under which the lattice as a whole was
invariant. 4 For the case of a cubic lattice he found the
smallest permissible velocity parameter to be n/c=-,'K3,
which is impossibly large to make the model of use for
physical purposes. There is little doubt that other
space-time lattices suffer from the same defect.

We assume the character of a space to be determined

by its allowed group of symmetry transformations in
the same sense as was used in Schild's model. The
property of discreteness can be achieved by other
methods of selecting sets of transformations from L. ,

The principal requirements which it seems necessary to
impose in order to make any such set a reasonable

starting point for a physical theory of space-time are
the following: (a) the set must form a group in order

to have closure under successive transformations and

symmetry with respect to the senses of backward and

An interesting discussion is given by B. Russell, The Analysis
of Matter (Dover Publications, New York, 1954), especially Chaps.
11 and 29.

'W. Heisenberg, Z. Physik 120, 513 (1943); W. Heisenberg,
Festschrift der Ahad. Wissert Gottingert .(Springer-Verlag, Ber1in,
1951)7 p. 50.

s H. S. Snyder, Phys. Rev. 71, 38 (1947); 72, 68 (1947); V.
Rojansky, Phys. Rev. 97, 507 (1955).

4 A. Schild, Can. J. Math. 1, 29 (1949). The problem was under
independent investigation in this Laboratory by C. N. Kelber
at the time of the appearance of Schild s paper. The writer is in-
debted to Dr. Kelber for discussions of his work.

forward, and (b) it must be dense in the full group I..
To form a discrete subgroup of L is easy. One has only
to take any finite or countably infinite complex E from
L which contains the inverse of every element in it, and
then form all possible products from the elements in E.
The resulting extended complex will be a subgroup of
L which will be at most countably infinite. However,
when the complex E is chosen in an arbitrary manner
it will be generally quite difricult to test whether its
extension will be dense in L.

The present work starts with the selection of trans-
formations from L which have rational coefficients. In
this case the necessary analysis reduces to certain
problems in the theory of numbers. The general

properties of the resulting infinite discrete group, to
which we shall refer as the rational proper Loreptz
group, L„, are developed briefly in the Appendix. The
group L„ is dense in L and so is sufFiciently extensive
to remove doubt that it can be made the basis of a
physical theory. It thus avoids the principal weakness
of Schild's model in preserving the property of discrete-
ness without setting lower bounds on the parameters of
its transformations.

The theory is developed along two lines. In the first
the space-time variables are allowed to be continuous
but the energy and momentum variables of a particle are
restricted to a certain countable set which is described
later (Sec. 2). We refer to this as the theory of discrete
energy-momentum space. The major result of quantum
mechanical interest is that wave functions here become
a special case of almost periodic functions. This inter-
pretation provides an approach to the handling of
continuous spectrum problems which, in principle at
least, is more in consonance with current quantum
mechanical theory in which strict normalization of
the wave functions is not required than is the Hilbert
space theory of von Neumann. ' However, it does not
appear that it will lead to any great improvement in the
handling of convergence problems in perturbation
theory without a revision in the nature of interaction
operators.

5 J. von Neumann, Mathematica/ Foundations of Quantum
3dechalics (Princeton University Press, Princeton, 1955).
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In the second form of the theory the property of
discreteness is extended to space-time. One has the
choice of treating the energy-momentum variables as
discrete or continuous. This leads to alternative inter-
pretations of wave functions of which the implications
have not been analyzed fully.

The major part of the discussion will be devoted
to the formulation of the models of discrete energy-
momentum space and discrete space-time. The treat-
ment of wave functions will be incomplete owing to the
fact that a suitable reformulation of the quantum
mechanical operator theory has not yet been carried
through.

2. MODEL OF DISCRETE ENERGY-MOMENTUM SPACE

The energy and momentum of a particle are in-
variant under all translations of the reference system
in space-time. The translations are therefore equivalent
to the identity for the discussion of this section and
so can be omitted.

We take as the coordinates of the energy-momentum
space of a particle the four quantities

7rp ——E/mpc', sr;= p;/mpc. (i= 1, 2, 3) (1)

Under all transformations of the full continuous group
of proper Lorentz transformations, I, these quantities
transform like the components of a real four-vector
with the invariant (energy-momentum equation of the
particle)

(2)

More particularly, under the discrete group of
rational Lorentz transformations, I.„, the set of points
in energy-momentum space having r06oeal coordinates
which satisfy Eq. (2) will be invariant. These points
constitute our discrete energy-momentum space.

The possible values of the energy and momentum
of a particle which satisfy these restrictions can be
characterized in the following manner. We consider only
positive values of the energy for definiteness. Let

s-p ——m/tt, rr, =m, /rt;. (i =1, 2, 3) (3)

These rational fractions are supposed to be reduced to
their lowest terms so that'

It is clear that m ~&e. Since the choice m=e leads to
the obviously acceptable energy value E=moc2, it will
be convenient in the following discussion to make the
restriction m& e.

Equation (2) hence takes the form

(m/rt)' (m, /n, )'—(—ms/n p)' (/ m)'—=st1. (5)

' We use the notation given in the text by G. H. Hardy and
E. M. Wright, An Introduction to the Theory of ENmbers (Oxford
University Press, Oxford, 1945), second edition. The greatest
common divisor of two integers m and n is indicated by (m, n) and
the least common multiple by (m, rt j.

If (tt, et ss Ns} =se=srn& ——sees ——sses is the least
common multiple of the tt's, we can write (5) in the form

s'(m' —e') = (stmr)'+ (ssms)'+ (ssms)'. (6)
Every solution of this Diophantine equation in integers
leads to a solution of Eq. (2) in rationals, and conversely.

Equation (6) shows that the positive integer
s'(m' —rt') is expressible as the sum of three squares of
integers. It is known that an integer is expressible in
this manner if and only if it is not of the form 4'(8b+7),
where a and b are non-negative integers. ' To make use
of this result in connection with Eq. (6) we employ the
following lemma. '

Lemma. —The positive integer s'(m' n'—) with
(m, n) =1 will be of the form 4 (8b+7) if and only if
(m' —rt') —= 7 (mod 8).

It follows immediately that the rational values
E/mpc'=m/rt, with (m, l)=1, will be allowed energy
values if and only if (m' —n') p 7 (mod 8); that is, if and
only if (m' —m') is not an integer of the form 8b+7.
For example, the value 4/3 is not allowed since 4' —3'= 7.

One can show easily that the allowed values of energy
are dense in the range E/mpc' ~&1.For since the rational
numbers are dense in this range we have only to show
that the allowed values of E/mpc', all of which are
rational, are dense among the rationals. I.et a/y be
any positive rational number such that x)y and
(g,y) =1. Then if r is any positive integral multiple of
8, so that r—=0 (mod 8), the rational number (rx+3)/
(ry+2) will be an allowed value of E/mpc', since
$(rx+3)' —(ry+2)')=5(mod 8).' By taking a suffi-
ciently large value of r this number can be made to
approximate a/y with arbitrary accuracy. Similarly,
the numbers (r a+ 4) /(ry+3) will be unallowed values,
from which we can conclude that the rational numbers
which are unallowed for E/mpc' are also dense in the
open interval (1, po).

For any allowed value of E/mpc' other than unity
there will be infinitely many rational solutions of
Eq. (2) for the components of the momentum vector,
p/mpc. "The allowed momentum vectors will form an
infinite countable set which is dense in direction and
magnitude in space. Xo convenient parametrization has
been found for this set. In the following discussion the
allowed energy values will be designated as E and the
allowed momentum vectors by p s with n, P = 1, 2, 3

7 See reference 6, Sec. 20.10.
8 Write s in the form s =2&r, where r is odd. Since the square of

any odd integer is of the form St+1, one has s'=4&(St+1). Since
(m,e)=1, m' —n, 'can at most be of the form Sq+7. Suppose
m —n =8q+ 7, then it is apparent at once that s'(m' —n )
=4&(8b+7) with b=8tq+7t+q, which proves the erst part of the
lemma. Conversely, if s'(m' —n') =4&(8t+1) (m' —n') =4~(8b+7)
then we must have a=p, so that (8t+1)(m' —n') =8b+7. But
in any event (m' —n') =8r+g, where 0~&g~& 7. It is apparent by
inspection that the only possible choice is g= 7, which proves the
second part of the lemma.

9 No integer of the form 4 (8b+7) is congruent to 5 (mod 8).' These solutions are to be obtained from Eq. (6) by specifying
the integers m and rt, with (m,m) =1, and then taking all cases
s=1, 2, 3, ~ ~ . Almost all of the solutions will arise from very large
values of s,
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The usual representation of the wave function of a
particle in terms of a Fourier integral must now be
replaced by a sum over the allowed states.

y(x,y, z, i) =P.g,A.s exp[i(p. p r Z—.i)/h5

Qsd s expIi(msc/5) (sr r msc—t) j.. (7)
The space-time coordinates will be considered to be
continuous variables and no restriction will be placed
on the numerical value of the Compton wavelength.

Functions of the form (7), with appropriate con-
vergence requirements, belong to the special class of
almost periodic functions known as limit periodic
functions. "They are the natural generalization of the
very special periodic functions which appear in the
method of "quantization in a box, " or that of periodic
boundary conditions. They are very diGerent from the
functions which are representable by Fourier integrals.
This is shown by the fact that no almost periodic
function can vanish at infinity without being identically
zero. The sums in (7) are free from the measure re-
strictions associated with Fourier integrals, but of
course they are not normalizable in the usual sense.

The coefficients in the expansion (7) can be evaluated
by the method of mean values, in the sense of an initial
value problem. If Mf j (x,y,s)} is the mean value of
the function Ii taken over all space, and if u(x, y, s) is the
form of the wave function at 3=0, then"

A s——M{I(x,y, s) expL —i(p.s r)/5]}. (8)
The wave functions (7) will be solutions of the

Klein-Gordon equation, of course, but an exactly
similar procedure can be used for the construction of
free particle solutions of the Dirac equation and the
other equations of quantum mechanics.

The manner in which these wave functions are to be
used for the calculation of interactions between par-
ticles and fields presents some questions of principle
which have not been solved. It does not appear likely
that convergence difficulties will be lessened appreciably
so long as the usual differential interaction operators
are allowed. The situation may be improved if it is
found possible to revise the operators in such a manner
that they are given, or at least are approximated, by
matrices having nonvanishing elements only connecting
the allowed states in the momentum representation.
The results which have been obtained to date are too
scanty to justify their further discussion here.

3. MODEL OF DISCRETE SPACE-TIME

Under the group L„ the set of points of space-time
(coordinates x'= ct, x'= x, x'=y, x'=s) having rational
coordinates will be invariant. This property will be
preserved under translations provided the components
of the translation vectors are restricted to rational
values; these will be referred to as rational translations.

"A. S. Besicovitch, Almost Periodhc Functions (Dover Publica-
tions, New York, 1954), p. 32. The theory can be extended to
functions of any number of variables.

'2 See reference 11,p. 12.

This allows us to define the rational translation group
T„in space-time as the family of all rational translations.
Clearly there is in it no smallest step in any of the
variables.

The group combination laws for successive applica-
tions of transformations of L„and T„will be val. id and
any transformation generated in this manner will leave
the set of points in space-time having rational coordi-
nates invariant. This provides our model of discrete
space-time.

The construction of wave functions in this case
depends on the interpretation assigned to energy-
momentum space. If the energy-momentum variables
are allowed to be continuous then Fourier integrals
can be formed in the usual manner, but the symmetry
between energy-momentum and space-time wave func-
tions will be lost. If both spaces are taken to be discrete
the situation becomes more extreme. The mathematical
implications of these methods have not been examined
in sufficient detail to permit their application to phys-
ical problems.

4. CONCLUSION

The foregoing theory has been designed mainly to
show the possibility of constructing a self-consistent
theory of discrete energy-momentum space and dis-
crete space-time without doing utter violence to the
invariance under Lorentz transformations. The ex-
tensiveness of the group of allowed transformations is
so great as to leave no room for direct experimental
disproof of the theory. However, this does not mean that
there may not be some consequences which will be sub-
ject to experimental verification.

Since the group L„is embedded in the full continuous
group L and is dense in it, L„will have most of the
properties of L which are used in physical theory. In
particular, the matrix representations of L which are
now used will still be applicable. However, the discrete
group L„may well allow the existence of representations
which cannot be extended to the full group. This
suggests the following point which might ultimately
become of some importance as a possible means of ex-
perimental test. The restriction of the quantized values
of angular momentum to those employed in the usual
vector model is dependent on the assumption of con-
tinuity of the matrix representations of the 3-dimen-
sional rotation group. These representations will still
be available for L„, with a slight reinterpretation to
take account of the discreteness of L, But if L,. admits
of other representations for its subgroup of rational
rotations then the vector coupling model may no longer
be applicable. This seems to be a very delicate question
which the writer has not succeeded in working out as yet.

APPENDIX A. RATIONAL HOMOGENEOUS PROPER
LORENTZ GROUP, L„

The continuous group of proper homogeneous Lorentz trans-
formations, I., is given by the set of real 4X4 matrices l=D j
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(i,j=0,1,2,3) subject to the conditions"

l22&~1, det(t)=+1, t ' r=tF2t, (A-1)

where l~ is the transpose of / and

—1 0 0 0
0 1 0 0
0 0 1 0 ' (A-2)

0 0 0 1

It is evident from an inspection of these conditions that they
will all be satis6ed, as will the law of group multiplication, if we
restrict the matrices to those having rational numbers as elements.
This set of matrices forms a subgroup of L to which we shall refer
as the rotatiorIaI LorerIts group, L„as stated in the text, and which

forms the basis of the theory given in this paper. The separation of
the transformations of L into rotations and special Lorentz trans-
formations holds as it does for L simply because L„ is embedded
in L.

The writer has been unable to give a direct algebraic proof that
L„ is dense in L. To avoid this we show in the next three parts of
the Appendix that L, contains a subgroup which is dense in L.
While this is sufhcient to show that L„itself is dense in L, it leaves

open the question whether the Euler factorization process is valid

for L,.

1—t2 2t
(cose(t) ( =,, (sine(t) (

= (B-S)

"F. D. Murnaghan, The Theory of Group Represerltctiorls
(Johns Hopkins University Press, Baltimore, 1938), Chap. 12.

'4 Hardy and Wright (reference 6, Sec. 13.2) give the solution of
the equation u'+b'=c' in integers from which our result can be
found. The solution in rationals is given directly by O. Ore,
%umber Theory arjd its History (McGraw-Hill Book Company,
Inc., New York, 1948), p. 169.

APPENDIX B. RATIONAL ROTATION
SUBGROUP OF L„

If R(n; h) is a rotation through an angle X about an axis in

space specified by the unit vector n, the associated coordinate
transformations on the space-time variables are

r'=rcosX+n(n r)2 sin2X/2+(nXr) sink, t'=t. (B-1)

Examination of the coefficients in these equations shows that a
necessary and sufhcient condition that they be rational is that the
quantities cosh and I; sink (i = 1,2,3) be rational. The search for
the set of rational rotations can be reduced to the solution of
Eq. (6). For, if we set

cosh=p/q, 22; sinh=p„/q;, (B-2)

where these rational fractions are reduced to their lowest terms,
we must have

(p/q)'+ (p&/q&)2+ (p2/q2)2+ (p2/q2)'= 1. (B-3)

With (q,q2,q2,q2) =rq =r q2 r22q2 =r2q2 a——s the least common
multiple of the q's, we can write

r'(q' —p') = (r2p2)'+ (r2p2) + (r3p3) (B-4)

which is equivalent to Eq. (6) of the text. There is thus a simple
one-to-one correspondence between the allowed points of the
discrete energy-momentum space and the rational rotation sub-

group of L,.
For the special case of a rotation through an angle 8 about one

of the coordinate axes cosa and sin9 must be rational. In this case
the allowed rotation angles are easily determined. Since cos20

+sin'8=1, we must solve this Diophantine equation in rational
numbers. The general solution is'4

where t is an arbitrary rational number such that 0~&t~&1. An
alternative formulation is ( tan(e/2) ( =t.

Since the values of t are dense in L0,1$ and since relations
(B—5) are continuous in this interval, the allowed rotation angles
will be dense in the interval L0,22rj. We can make the usual
identification R(n; 22+it) =R(—n; 22 —tt).

(C-1)
ct rv/—cct'= 1~

(1—v'/c') *'

These transformations do not form a group by themselves, of.

course, but by combination with the three-dimensional rotations
the full group L can be generated.

Inspection of the coeKcients shows that a necessary and
suiiicient condition that they be rational is that (1—v2/c2)b and
v;/c (i=1,2,3) be rational. From this one can reduce the analysis
of the rational transformations of type (C-1) to that of Eq. (6).

Again restricting attention to motion along one of the coordi-
nate axes it is easy to And the allowed values of the relative
velocity. With the notation

vc
(1—v'/c') *' (1—v /c')'*' (C-2)

these quantities must be rational. Since u2 —b~=l we need the
general solution in rationals of this Diophantine equation. It is'4

o= (r'+1)/2r, ~b( = (r' —1)/2r, (C-3)

where r is any rational number r ~&1. Alternatively, the allowed
values of v/c are given by ~v/c( = (r' 1)/(r'+—1) These v. alues
are dense in the open interval (—1, 1).

APPENDIX D. DENSENESS OF L„ IN L

Let L&', Lf/', L,' represent special Lorentz transformations of
type (C-1) along the coordinate axes, and R, ', R„Rb',e ro, 'tations
about the same axes. The Euler factorization process for the full
group L shows that any transformation in it can be factorized as

product of the form R,'R„'R,'L, 'L„'L '.'5 Furthermore, the
resultant transformation is a continuous function of each of the
transformations in the product.

It is not known to the writer whether the group of rational
transformations L, admits this same type of factorization. In
any event, starting with the allowed rational transformations
of the indicated special forms as a complex of L„we can form
all possible products. In this way we obtain a countably infinite
subgroup of L„, which may or may not be a proper subgroup but
which we argue is dense in L. For taking any transformation of L
and writing it as this type of product we can approximate each
of the separate transformations by a corresponding rational trans-
formation to any desired degree of accuracy. The continuity of
the product in each of the multiplicands assures us that the Anal
product transformation (which is in L) can be approximated
arbitrarily closely by a product of transformations from L„.
Hence L, must be dense in L.

"See reference 13, p. 357.

APPENDIX C. RATIONAL SPECIAL LORENTZ
TRANSFORMATIONS OF L„

The special Lorentz transformations to moving reference
systems, the direction and speed of the relative motion being
arbitrary, can be written in the form

v rv/c- 1 ct


