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Tensor Scattering Matrix for the Electromagnetic Field*
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The scattering of an arbitrary incoming electromagnetic wave by an unrestricted scattering object is
described in terms of a tensor scattering matrix. General reciprocity relations and the cross-section theorem,
including an interesting extension, are established using this representation. The results are related to the
special case of plane-wave scattering and the scattering matrix is explicitly exhibited in terms of the plane-
wave scattering amplitude for two mutually perpendicular directions of polarization.

GENERAL FORMULATION

' 'N the following note, we delineate those general
~ - features of the scattering of electromagnetic waves
which are consequences of the asymptotic properties of
Maxwell's equations but are independent of the nature
of the scatterer. ' For this purpose, it is convenient to
describe the scattering by introducing a tensor scat-
tering matrix. Using this representation, reciprocity
and the cross-section theorem, including an interesting
extension, are easily established as we now proceed to
show. '

Outside the, scattering region, and in particular as
r—+~, the fields satisfy the free-space Maxwell's equa-
tions, which we write (in Gaussian units) in the form

v XE=ij H, vXH= —skE, (&)

where we have assumed harmonic time dependence
e '"' and where k is the free-space wave number. We
now decompose the asymptotic field E(nr), r—&eo into
incoming and outgoing waves along n; that is, we write

E(nr) =Fi(n) +Fs(n)

to the incoming fields which we assume to be arbitrary.
Thus, we introduce a linear connective S(n,n'), called
the tensor scattering matrix, by writing

Fs(n) = — dQ'S(n, n') Fi(—n'), (4)

dQr'n {E'(nr)XI VXE(nr)g
—E(nr)Xt ~XE'(nr)$}=0, (6)

where the choice of signs is such that 8 reduces to the
unit operator when there is no scattering. As a conse-
quence of Eq. (3)

n S(n,n')= S(n,n') n'=0

so that 3 has only four independent components. '
We first establish reciprocity relations for the electro-

magnetic field starting from the fact that if E and E'
are any two solutions of the source-free Maxwell's
equations (but with the same harmonic time-depend-
ence), then

provided that the dielectric, permeability, and conduc-
tivity tensors are symmetric. The proof of this relation
is straightforward. Under the stated conditions it is
easily established from Maxwell's equations that
V. (E'XH —EXH') vanishes identically. Integration
over all space, followed by an application of Gauss's
theorem, then yields Eq. (6) for there are no sources
except at infinity and asymptotically the fields satisfy
Eq. (I). (It is of interest to remark that the symmetry
of the constitutive tensors seems to be a necessary
condition for reciprocity. )

Decomposing E' as well as E in Eq. (6) into incoming
and outgoing waves along n, we obtain the following
after some algebra:

where, as a consequence of the divergence condition,

F, (n) n=Fs(n) n=0.

In the above and throughout, we neglect terms of
higher order than the first in reciprocal powers of r;
we deal only with pure radiation fields.

As a consequence of the linearity of Maxwell's

equations, the outgoing fields must be linearly related

*This work was supported in part by the Geophysics Research
Directorate of the Air Force Cambridge Research Center. Some
of the results were presented at the URSI symposium on Electro-
magnetic Wave Theory, University of Michigan, 1955 (unpub-
lished), and a more detailed discussion of some aspects is given
in "Lectures on the Scattering of Light" by D. S. Saxon (notes
by R. S. Fraser), University of California at Los Angeles, De-
partment of Meteorology, Scientific Report No. 9, May, 1955
(unpublished).' We assume, however, that the scattering region consists of a
linear medium which contains no sources and does not extend to
infinity. We do not assume that the scatterer is homogeneous or
isotropic or lossless.' See E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 1445 (1954),
for a similar discussion of scattering without absorption for scalar
fields. In the present paper, the development is generalized to
the vector field, including absorption.

1

' dQ/Fi'(n) Fs(n) —Fi(n) Fs'(n))=0,

where the prime denotes the amplitudes associated
with E'. Expressing the outgoing fields in terms of the

s Since F~ is transverse, strictly speaking S(n,n') n' is undefined
according to Eq. (4). However, we complete the definition by
taking it to be zero.
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incoming by Eq. (4), we then have

dQ dQ'LFi'(n) S(n,n') Fi(—n')
J

—Fi(n) s(n, n') F,'(—n')j=0.

Replacing n by —n' and n' by —n in the last term and
transposing the product, this becomes

dQ dQ'j F,'(n) LS(n,n')

—Sr(—n', —n)j Fi(—n'))=0,

where the superscript T signifies the transposed tensor:

(sr), ,= s, ,
Since F, and Fi' are arbitrary, we thus have

S(n,n') = Sr(—n', —n),

and this is the reciprocity condition in its general form.
Later we exhibit it in more familiar form when we

apply our results to plane wave scattering.
Next consider the energy relations which hold for

the field. The time-average energy Aux inward through
the sphere at infinity must of course be equal to the
average power P absorbed by the scatterer, and hence

C t'
——Re (EXH*) nr'dQ =P.

Sm.

by this relation, and we complete the definition by the
additional conditions:

n' X(n', n") =X(n', n") n"=0.

From the fact that P is real, it follows at once from
Eq. (10) that X is Hermitian, X*r(n",n') =X(n', n").
If we regard X as a continuous supermatrix, this can be
written in matrix notation as X~= X, where the adjoint
symbol means to take the complex conjugate and to
transpose all indices, continuous and discrete.

Equation (8) can imw be rewritten in the form

~ ~t dQ'dQ"Fi*( —n')
t g(n', n") —e8(n' —n")

+X(n',n")$ Fi(—n") =0.

Now Fi is arbitrary, except that it must remain trans-
verse, and hence we infer that the transverse part of
the bracketed expression vanishes. Of course g and X
are already transverse and we need only extract the
transverse part of the unit tensor. Denoting this by
er(n), we evidently have

6r(ll) = E—1111, (12)

since n er(n)=or(n) n=0. On the other hand, if 8 is
any vector perpendicular to n, then 8 ~r(n) = er(n) 8
= 8 so that er maintains its character as a unit tensor
with respect. to such vectors. In any case, using Eq. (9),
we have

Expressing H in terms of E by the first Maxwell dQS+&(nn&). S(nn«)
equation, we then find using Eq. (2) and Eq. (3) = er(n')8(n' —n")—X(n',n"). (13)

C—
~~ LF,*(n) F,(n) —F,*(n) Fi(n)fdQ+P=0.

C—
~

dQ'F, *(—n'), "g(n',n") Fi(—n")dQ"
8~~

where

—F,(—n') +I'=0, (S)

Upon substitution of Eq. (4), we obtain, after appro-
priate transpositions and relabeling of the integration
variables,

Finally, introducing the reciprocity relation in this
last result, we find after a little manipulation

~dQS(n', n) S*r(n",n)

= er(n')6(n' —n") —X'(n', n"), (14)

where X'(n', n") =X*(—n', —n") =Xr(—n', —n"). In
matrix notation, these relations have the form

S~S= 1—X, SS~= 1—X'

and S is seen to be properly unitary in the lossless case
when X and X' are zero.

g(n', n") = dQS*r(n, n') S(n,n"). (9)
APPLICATION TO PLANE WAVE SCATTERING

From Eq. (8) we see that the energy loss is determined
in terms of the incoming field alone and can itself be
characterized by a tensor X(n', n") defined by the
relation

C

')t dQdQ'Fi*( —n') X—(n—',n") Fi(—n"). (10)

Vile now specialize to the case in which a plane wave
is incident along the direction no, so that the field at
large distances from the scattering region has the form

e1',fC r

E(nr) qei~rno. nyA (n no)

Here q is a unit vector in the direction of polarization
Actually, only the transverse parts of X are defined of the incident wave and A1(n, no) is the amplitude of
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e""2m.i
+ Aq(n, no) — q6(np —n)

r
~ (16)

Hence, regarding this as a special form of Eq. (12),
we have at once from the definition of the scattering
matrix,

27ri 27ri
Aq(n, no) = b(no —n) q — S(n,no) q. (12)

Equivalently, we can write

A, (n, n, ) =M(n, np) q, (18)

where M(n, np), which we shall call the tensor scattering

amplitude,
4 is given by

27ri
M(n, np) = [er (np)8 (np —n) —S(n,np) $. (19)

k

Regarding (18) as the definition of M, and supposing
that q& and q2 are two mutually perpendicular polar-
ization directions and Aqi and Aqs are the corresponding
scattering amplitudes, we have simply

M(n, no) =Aqi(n no)qi+Aqs(n, no)qs (20)

Accordingly, by (19),

k
S(n,np) = eT (np)8(np —n) — M(n, np)

27ri

the wave scattered in the direction n, the notation
serving to indicate explicitly the direction of the inci-
dent wave and its polarization as well as the direction
of the scattered wave. Of course q np and n. Aq(n, np)
are both zero. The decomposition of this field into its
incoming and outgoing parts leads in a straightforward
way' to the result

27ri
E(nr) = q5(no+ n)

T~OO r

or equivalently, using Eq. (18)

q' Aq(n, no) =q A, .(—no, —n). (23)

For the special case in which q= q, this last relation
states that if we interchange the direction of the incident
wave and the direction of observation, the component
of the scattered wave in the direction of polarization is
unchanged; arid this is the more customary (and more
restricted) statement of reciprocity.

Next we examine the consequences of energy conser-
vation as expressed by Eq. (13). Upon substitution of
the first form of Eq. (21), we obtain

k
dQ er(np)b(np —n)+ Mr*(n, np)

27ri

k
er (np') 5 (np' —n) — M (n,no')

2~i

= er(no')6(no' —no") —X(no', no"). (24)

Noting that er(np)'M(np, np)=M(np, np), since M is
transverse, we then find, after the 5 function terms are
integrated,

4m'~ *(n,np) M(n, np')dQ+ X(ilp, lip )
k'

2'=—[M(np, np') —Mr*(no', no) ); (25)
ik

and this is a rather interesting extension of the cross-
section theorem. It reduces to its conventional form
upon setting n~' ——no and taking scalar products from
left and right with q, for we then have, using Eq. (18),

4m'
Aq*(n, no) Aq(n, no)dQ+ q X(no,np) q

k'

= (4sr/0) Im[q ' A (ilp Iip) $. (26)

= er(np)8(np —n) Now from Eq. (10), and recalling that F,(n)

k
= (2sri/k) q8(np+n) for a plane wave incident along no,

[Aqr(n, np)qr+Aqs(n, np)qs), (21) the rate of energy absorption I' is
2m

which is thus an explicit construction of S in terms of
the plane wave scattering amplitude for two mutually
perpendicular direction of polarization.

We are more interested however in examining the
properties of M corresponding to the previously derived
general features of S. Thus the reciprocity relation Eq.
(7) yields at once, with the aid of the first form of
Eq. (21)

M(n, no) =Mr( —no, —n),
4 Note added ie proof Morse and Feshba. —ch, Methods of The

oretical Physics (McGraw-Hill Book Company, Inc. , 1953).
See pp. 1897—1898 where a tensor scattering amplitude is intro-
duced to describe scattering from a sphere.

c 4m'
I =— q X(lip, lip)

Sm

while the energy flux in the incident plane wave is c/8sr.
Hence the second term on the left of Eq. (26) is simply
the absorption cross section cr while the 6rst term is,
of course, the total scattering cross section cr, and thus,
as expected,

o..+o.= (4tr/k) Im[q Aq(no, no)$ (27)

It is worth emphasizing that this result, as well as the
more general relation Eq. (25), both of which are
statements of conservation of energy, involve inter-
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ference between the scattered and incident fields. To
make this more explicit, recall that in our treatment
the incident wave is represented by 8 functions. Thus
the left side of Eq. (24), representing the total outgoing
energy, contains the scattered energy, the outgoing
energy in the incident wave and interference terms
between the scattered and incident fields. The right
side represents the incoming energy (arising only from
the incident wave, of course) from which is subtracted
the energy absorbed in the scatterer. The purely inci-
dent wave terms cancel, as they must, and the scattered
plus absorbed energy is accounted for by destructive
interference between the incident wave and the forward
scattered wave. This is the physical content of Eq. (27).

The structure of these relations perhaps becomes
more transparent if we repeat our derivation using
matrix notation. Thus, corresponding to Eq. (21) we
have

~ = 1—kM/2vri,
and hence

StS=1 k(W W—t)/2xi—+O'WtW/4~

Recalling that from energy conservation S~S=1—X,
we thus obtain, corresponding to Eq. (25)

MtM+47rX/k'= 2x (M Mt)/ik. — (28)

The diagonal elements of this result give directly the
cross-section theorem (for specific directions of inci-
dence and polarization), the usefulness of which is so
well known. However, perhaps because of their com-
plexity, little consideration appears to have been given
to the oG-diagonal elements. ' It is our belief, as we now
attempt to demonstrate, that extension of the cross-
section theorem to oG-diagonal elements also has its
utility.

One obvious application is simply as an algebraic
check: on specific calculations of scattering amplitudes.
As an example of the kind of relations which can be
derived, consider a lossless scatterer, X=O, which is
axially symmetric and has a symmetry plane perpen-
dicular to its symmetry axis; e.g., a spheroid or a
dumbell shaped scatterer. Consider now plane waves
incident along the axis of symmetry in both directions;
i.e., in Eq. (25) take np along the axis of symmetry and
take no' ———no. Further, let each incident wave have
the same polarization q. Using Eq. (18), we then obtain

A,*(n,np) A, (n, —np)dQ

2'
q. [As(np, —np) —Ap~( —np, np)].

~k

Because of the symmetry, A, (n, —np)=A, (—n, np)
while the two backward waves are equal and have the
same polarization as the incident waves and can thus

'Eofe added in proof.—However, see Glauber and Schomaker
(Phys. Rev. 89, 66'7 (1953)j for a discussion in the scalar field
case without dissipation.

be written as qdq. Referring I to no as polar axis, we
thus obtain the simple result

4x
A,*(8,pp) A, (pr —tl, pr+ pp)dQ= —Im[A p).

This relation is easily verified for a spherically sym-
metric scatterer directly from the (vector) spherical
harmonic expansions. Evidently similar but more
complicated relations can be derived for other sym-
metries.

Finally we mention a rather different kind of appli-
cation in which one uses off-diagonal elements to learn
something about the large-angle scattering. For this
purpose, consider a lossless, rather soft, spherically
symmetrical scatterer in the short-wave limit. Here,
the scattering is predominantly in the forward direction
and the integral in Eq. (25) can be approximately
evaluated as follows. Assuming the effective radius of
the scatterer to be a, the angular width Ã of the main
diffraction peak is roughly (1/ka) and the main contri-
butions to the integral evidently occur when n is near
no and when it is near no', i.e., when one of the factors
in the integrand is the forward scattering amplitude.
For simplicity, let us take both incident waves to have
the same polarization q (which means that we restrict
our attention to the situation in which n and no lie in
the plane perpendicular to q) and let us assume that
the large-angle scattering amplitude does not Quctuate
violently over M. We then obtain,

Using the obvious relations between the scattering
amplitudes which follow from the spherical symmetry,
this can be reduced to the relation

sing~
~
Ay~ cos(yp —y),

2ka'
(29)

where we have written

and
Ap(np, np) = q(Af je'&p

q A, (np, np')= (q A(e*&,

so that y is the phase angle of the component of the
complex scattering amplitude along q and yo denotes
this phase angle for forward scattering. Using similar
evaluation techniques for the total cross section, ~ we
have

o...tt 7riAg('/(ka)',

s E. Gerjuoy and D. S. Saxon, Phys. Rev. 94, 478 (1934),
Eq. (70) t7.

{A,*(np,np) A, (np, np')+A, *(np,np') Ap(np', np'))
(ka)'

t

2Ã—q [A, (np, np') —A,*(np', np)].
ik
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and hence, according to the cross-section theorem for
lossless scatterers,

sing p I ~f I
/4krts. (31)

Eliminating ldtl between Eq. (29) and Eq. (31),
we see that y=2yo to the accuracy of these relations.
In words, under the stated assumptions, the phase of
the complex scattering amplitude (more precisely, of
its component along the direction of polarization of
the incident wave) increases from its value ys for
forward scattering to roughly twice this value outside
the main diGraction peak and, surprisingly, then be-
comes independent of scattering angle. Further, using
Eq. (30), we note that in the usual electromagnetic

scattering problem, where the total cross section tends
to a constant value in the short-wave limit, the phasee
yo and y also tend to definite limiting values. On ths
other hand, if the total cross section tends to zero, as
for example in the scattering by a free electron cloud,
then the phases tend to zero as 0&. This latter case,
which is infrequently encountered in electromagnetic
scattering, is the usual situation in quantum mechanics.
In this connection see reference 6, in which some
discussion of the Born and variational approximations
is given on this basis. Presumably, relations such as
those above can be generally useful in evaluating the
consistency and convergence of approximation methods,
but we shall not elaborate further.
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Scattering by a symmetric structure, such as a regular molecule or crystal, is discussed in terr, .s of a
variational principle. The appropriate partial waves are labelled by the irreducible representations of the
crystallographic groups and may be generated by a set of projection operators, one for each irreducible
representation. The trial functions are chosen to lie in a space spanned by the crystallographic partial
waves. Methods are indicated for generating either the in6nite set of partial waves needed for an exact
solution or a Gnite set more useful in an approximate calculation.

INTRODUCTION

'HE analysis of term splitting in symmetric
potentials' is one of the well-known physical

applications of group theory, but no systematic remarks
on the corresponding scattering problem appear to
have been published. In this connection, one might
consider the scattering of particles by regular molecules
or crystals, or macroscopically the scattering of sound
by regular polyhedra. As long as these problems are
done in Born approximation they are suKciently simple
so that there is no appreciable advantage in discussing
further simpli6cations associated with the symmetry.
But there are, of course, situations in which the Born
approximation may not be adequate, such as electron
diffraction by molecules containing potentials of very
different strengths. ' In this case more refined methods
are needed, and then it may be helpful to handle the
symmetry conditions in a systematic way. In the
following, this will be done in connection with a
variational principle proposed by Schwinger. '4

' H. A. Bethe, Ann. Physik 3, 133 (1929).
2 The example of uranium hexaRuoride has been discussed by

R. Glauber and V. Schomaker, Phys. Rev. 89, 667 (1953).' J. Schwinger, Lectures oe Nuclear Physics, Harvard University,
1947 (unpublished).' E. Gerjuoy and D. Saxon, Phys. Rev. 94, 4/8 (1954). Gerjuoy
and Saxon have used this principle to discuss scattering from a
spherically symmetric potential and have shown that even in this
case it is convenient to utilize a cyclic group. The present note
was suggested by their work.

PARTIAL WAVES

Consider scattering by a potential I having the
symmetry of a rotation group G. Let the incoming
wave be f, and the outgoing wave be fe. They are
connected by S, the scattering operator:

14——S4,=e'V„
where S and g commute with all the elements R of G:

(S,E)= (I),E)=0. (2)

Equation (2) implies that rt and S are multiples of the
unit matrix, when the representation of G is irreducible,
and that they have no elements connecting diGerent
irreducible representations. When G is the complete
rotation group, one obtains the irreducible representa-
tions by choosing the basis functions to be the spherical
harmonics I'~, and then

rt (i,j)= I) (lsrt; l'rrt') = I)I5(lsrt, l'nz'). (3)

The eigenvalues g~ determine the phase shifts and there
is one for each irreducible representation.

In the case of the crystallographic groups, G contains
only a finite number of elements and has only a small
number of irreducible representations (I'„). Every
representation of the complete rotation group D& may
be decomposed into the F~:

Dt=g a„r,.


