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alld
vo= L(2Ss'—Ss'—Ssv)/18pscsgl. (50)

For I=a, Eq. (49) is indeterminate but cs can be
determined by eliminating vo between Eqs. (37) and (47).

Experimental data recently obtained from AP~ and
Be resonances in beryl'0 have been reviewed in terms
of the above procedure. The resulting coupling constants
were found to be essentially identical with those
calculated previously on the basis of expressions for
individual energy levels.

The third special case involves determining S2 and S3
at two diferent magnitudes of the magnetic field, say
H and XH. From the resulting two sets of equations for
Ss(H), Ss(XH), Ss(H), Ss(XH) it follows that

vo = (LSs (XH) —Ss (H) j/pi (X'—1)}: (51)

cs (1+rp/3) = L)~ Ss(H) —Ss(XH) j/ps(X' —1) (52)

css(1—sl') =p.'S, (H) —Ss(XH) j/ps() '—1),
Ix-,s. (53)

The values of rt and cs follow from Eqs. (52) and (53) in
a manner similar to that given by Eqs. (45) and (46).

It should be noted that, for g=0, the quantities S2

and S3 determined at two values of IIO are sufhcient to
determine the angle 0 between the 6eld and the unique
axis of VE.

III. CONCLUSIONS

The procedure of relating experimental data to
theory through the coefficients of secular polynomials
can be used advantageously in those cases in which
the mathematically equivalent method of relating their
roots, the individual energy levels, presents computa-
tional difhculties.

Application of the procedure to nuclear resonances
in crystals results in relatively simple general expres-
sions for the coupling constants in terms of the resonant
frequencies.

Energy relations for the asymmetric rotator, similar
to those for the pure quadrupole case, can be developed
by a corresponding procedure.
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It is shown that the "contact interaction" recently pointed out by Sessler, Sucher, and I'oley for the
relativistic two-electron atoms can be very simply and unambiguously obtained from the 6eld-theoretical
form of the theory of Breit and Mttlier, whereas the original "reduction" procedure (reducing the equation
for the 16-component wave function to one for the four big components by successive approximation) does
not lead to this contact term. The effect of the singular behavior of relativistic wave function at the origin
gives rise to a correction of order 0,4 in the energy.

I. INTRODUCTION'

'HE problem of finding the relativistic energy of a
two-electron atom (He-like atoms) was first

treated by Breit.' Many calculations have been made

' After the above work was 6nished, our attention has been
called by Dr. S. Shanmugadhasan, to whom we wish to express
our thanks, to a paper by A. I. Andreev, Vestnik Moskov. Univ.
Ser. Fiz.-Mat. i Estestven. Nauk 3, No. 5, 65—9 (1954), in which
the author employs simultaneously the reduction procedure to
the big components and the matrix element of H in (1) with
respect to the 16-component wave function, thereby obtaining
the contact term H, of (12), but also the B's term in (10) Lor the
H&'& in (11)g as well. The procedure given in Sec. III in the
present note gives II, but not H(').

Our result is essentially the same as that of Berestetskii and
Landau, reference 5. Our method divers from theirs in that we
use the wave functions in (15) thereby obtaining the relativistic
correction very simply by one simple integration in (18), whereas
the other authors express the small components in terms of the
big components and obtain the various operators in (11) and
(12) in separate forms in a longer calculation.

s G. Breit, Phys. Rev. 34, 553 (1929);39, 616 (1932).

subsequently. Recently, Sessler and Foley' gave on
classical arguments an additional term of order (e/c)'
in the energy of the ground state of helium, and in a
more recent paper, Sucher and Foley' obtained this
additional term from the original method of Breit.
This term, of the nature of a contact potential and
previously found also by Berestetskii and Landaus in
connection with the positronium problem, has in fact
been found much earlier and included in their work by
Breit and his co-workers, ' although not explicitly in
connection with the ground state of helium. The
purpose of the present work is to point out that by

s A. M. Sessler and H. M. Foley, Phys. Rev. 92, 1321 (1953).
4 J. Sucher and H. M. Foley, Phys. Rev. 95, 966 (1954).
~V. Berestetskii and L. Landau, J. Exptl. Theoret. Phys.

(U.S.S.R.) 19, 6'73 (1949).
e G. Breit, Phys. Rev. 72, 1023 (1947); G. Breit and G. E.

Brown, Phys. Rev. 74, 1278 (1948); Breit, Brown, and Arfken,
Phys. Rev. 76, 1299 (1949).
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following the original procedure (reduction of 16-
component wave equation to one for the 4 big compo-
nents), one does rtot obtain the contact term, whereas a
calculation of the interaction between the two electrons
in the manner of Breit and of Mi&ilier' does lead very
simply and unambiguously to this contact term.

II. "REDUCTION" PROCEDURE

The theory of Breit~ in the earlier form is as follows.
The Hamiltonian of a two-electron atom is taken to be

H(1,2) =Hp(1)+Ho(2)+e'/r12+B, (1)
where Ho is the Dirac Hamiltonian for one electron:

Hp(1) = —c(&rz ' Hz) Pzt&tc' —Ze'/rz,

g2 1
(ez ezz)+ (ez r12)(ezz r12), (&)

2f1g ~12

Hz, ——Pz.+ (e/c)Az, .

Here and in the following, the subscripts I, II refer to
electron 1 and 2 respectively. On writing

ft c) Zes(1 1) e'
Ho= —--+

(
—+—

~

——, (4)
i &)t c «1 rs~ cr12

and on denoting the 16-component wave function P by
four 4-component wave functions

uq

Ev e)'
and writing

1
(ez ezz) + (ez ' r12) (ezz ' r12)

~12
(6)

u——1Ip '(ez. Hz)%+ B IIp '(ezz Hzz)11r
2' c —11o '(ezz Hzz)4,

1
v——IIo '(en' Hzz)%'+—B IIo '(ez Hz)4

2mc —11o '(ez Hz)&t,
' C. M&tller, Z. Physik 70, 786 (1931).
2 From (7b) and (jc), one obtains 2&, v up to (v/c). Putting these

into (7d), one obtains p& up to (v/c) in (8). Putting this back in
(7b) and (7c) one obtains tt, v in (9).

where e~, e~~ are the Pauli matrices for the two elec-
trons, the wave equation can be put in the form

(IIp—2r&tc)%'+(ez Hz)u+(ezz Hzz)v+(B'/c)&t&=0, (7a)

(ez Hz)%'+IIpu+ (B'/c) v+ (ezz ' Hzz)&f& =0, (7b)

(ezz Hzz)++(B'/c)u+11ov+(ez Hz)&=0, (7c)

(B'/c)++ (ezz Hzz)u+ (ez Hz) v+ (11o+2&rtc)&=0. (7d)

The 12 small components p, u, v are expressed in terms
of the 4 big components 4' by solving (7b), (7c), (7d)
by successive approximation, '

1 gl
(ez ' Hz) (ezz Hzz)+-

4m'c' 4mc'

such that when they are substituted in Eq. (7a), all
quantities of order (v/c)' are included. On using (8)
and (9), Eq. (7a) gives the original equation of Breit
for the 4 big components

{(ez Hz)IIo '(ez Hz)
2tpsc

+(ezz Hzz)IIp
—'(ezz Hzz)) — (ez IIz)'(ezz IIzz)

Sm4c4

+ ( (ez ' Hz)B'(ezz' Hn)+ (en ' Hzz)B'(ez Hz)
Sm'C4

+B'(ez IIz)(ezz. IIn)+(ez Hz)(ezz Hzz)B')

1 B" ~I =0. (10)
Sm'c4

This equation can be put in the form'

where

c(e y)IIo '(e y)= p'+—(H"~&+H&'&),
1

2mU U'

H&' &= (t 8&&y] e),
ek

4m2c'

. ek
H&4&= 2(8 y—).

4m2c2

(C)

8= —~ V= —(2»tcs/e)p'U.

The usual procedure is to expand 1/U —1—0 in the first term in
(C) and replace Us by 1 in the second and third term in (C).
This procedure is not correct, it leading to the indeterminate
value ~ 0 for the matrix element of H(3 ). Only working with
the exact operator (1/U')H&"& gives the value 0 to the spin-orbit
interaction for the S-state. LSee E. U. Condon and G. Shortley,
Theory of Ato&mic Spectra (Cambridge University Press, London,
1935), p. 130.]

On forming the matrix element of

1 1
2mU U2 2m U U2

p'+—H"'=——v'+ —(V U V) (D)

GThe various operators are given in reference 2 and in the
notation of (11)by H. A. Bethe, Hartdbgctt der Physc7t (J. Springer,
Berlin, 1933), Vol. 24, Part 1. Concerning the operators H('),
H&2'&, H&4& /see H. A. S. Ericksson, Z. Physik 109, 762 (1938),
and reference 3g, the following remarks may be useful. The above
operators come from the terms

(ez Hz)Ho (ez Hz)+(ezz Hzz)Ho '(ezz Hzz)

in (10). In the following it is sufficient to refer to the first of
these two terms and to consider the case with no external field
(II= y). On omitting the subscript I, one has

1 1
c(e y)IIo '(e"y)=—(e y)—(o y)2m U

1
(e y)'+—(e y)U '(e y), (A)

2mU 2'
where

U= 1+ (E—2mc'+eV) —=1+&&

1
25$c—1+0(v'/c'), except at rz, rs, rz2 ——0,

1~m as —,—,—as rz, rs, rz2~0 respectively. (B)
~1 ~2 ~12

The dot behind U ' indicates that the operator in the front does
not extend beyond U '. On carrying out the calculation, one
obtains
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szr P eh q'
H. = ——

~ ~
(ez ezz)8(rrs),

3 E2rrzcP
(12)

does sot appear. "
and integrating the first term by parts, one obtains

p' 1-+—«'& ad =—-(VP)'d-
2mU U' 2m U

On expanding I/U~I —
&& and integrating the above integral by

parts, one has

e f

, f (I—n)(VC)'d =-2 (CVe) +, J cad. —2(n&Ve)—

WPVdr 4(V» —pk—)ter
2m 2mi

where the prime on the integrals indicate that a small spherical
volume of radius R around each of the poles r1, r2, r12=0 of U
in (B) is to be excluded so that the expansion 1/U=1 —

z& does
not introduce any singularity at these points at which 1/U=O.
The two surface integrals denoted by the subscript S vanish in
the limit R~O. One finally obtains for (E) the usual result

p~+g(1)+g(4) pg~
2m

f4*PS=rf
— , f (PV—*)(PV)d +fk'ff"&kri

in which the prime has been removed by allowing E to approach
zero.

'o In the second paper in reference 2, Breit employed a different
procedure from the "reduction" procedure outlined in (8), (9),
(10) and treated the operator B' as a perturbation in Eqs. (7).
From (7) and the approxims, tion

zz= —IIo '(ez Hz)%, v= —IIo '(erz Hrz)N,

,(er Hz)(ezz Hzz)q, (F)
(2zrzc)'

the perturbation energy due to B' comes out to be

, ,f([(et Hz)KtB'(etr IIir)+[(o'tz Hzt)+]tB'(et Hz)

++tB'(er Hz)(en'Hzi)+[(er Hi)(err Hrz)%']tB'}4'dr. (G)
A correct evaluation of the last term by Sucher and Foley yields
the contact term (12).

The procedure employed in the foregoing in arriving at (G),
while in agreement with the field-theoretical point of view in
treating the Breit operator B' as a perturbation, seems to have
involved the multiplication of (7a), (7b), (7c), (7d) by tPt, zrt, rrt, stt,
respectively, the use of (F), and the addition of the four resulting
equations. On writing out these four equations separately before

$HNrr+H +H&s&+Hz&7@=E@',

H„=H&"+H&' &+H&4&,

H~ H—&s&+H&ss&+H&s&+H&i&

H&& is the nonrelativistic Hamiltonian, H& ) the quan-
tum mechanical analog of the classical Sommerfeld
correction, H(' ' the spin-orbit interaction, B&4& the
"S-state" correction, H(') the interaction with external
fields. The term H('" representing some sort of "spin-
other orbit" interaction and the term H(') representing
the spin-spin interaction, arise from the magnetic
interaction (rrz zrzz) in the operator 8, the term H&'&

arises from the retardation term in 8, and the term
H&z& from both in B. (10) and (11) are the original
result of Breit. It-is to be emphasized here that accord-
ing to this procedure of reduction, the additional
contact term, ' '

This "reduction" procedure leads to the term 8" in
(10), or H&z& in (11), which Breit' has immediately
given some arguments for discarding and which has
later been shown by Bethe' to come from the second
order perturbation when the Breit operator 8 is taken
to be a perturbation. Even before the development of
the field theory, Breit' already cautioned against treat-
ing (1) as the exact Hamiltonian. In the later develop-
ments, it became clear that there is ground for treating
separately the interactions between two electrons
through the longitudinal fields which give rise to the
Coulomb term es/rrs, and the interactions through the
transverse fields of which the first term in the series in
powers of e'/Ac=zz is the Breit operator B. In the
field-theoretical form of the theory of Breit and of
M&tiller, one does not regard H in (1) as the exact
Hamiltonian, but treats 8 as a perturbation. In the
following, we shall show that a simple calculation of
the diagonal matrix element of 8 with respect to the
16-component wave function gives unambiguously II,
in the case of the ground state of two-electron atoms
(for which H&'&, H&ss&, H&'& vanish).

III. CONTACT TERM IN THE THEORY
OF BREIT AND MUFLLER

Let us consider the case of two electrons in the
central Geld of a charge Z|, and let us assume that Z

them, one finds

IIp 1
q t —' —1— ((ez IIz)1Io-'(ez IIz)

2mc 2mc

+(err'Hzz)110 (err'HII)}
Bl+, ,(ei Hr)(o'n Hn) O'=0, (Ha)8m'c4

1—DIo'(e H)q]" (e H)(e H
(2mc)o

1
,B'rro '(err IIn) g =0, (Hb)

1—[1Io (o'n Hn)q'] (ei'Hi)'(eii'Hii)
(2rrzc)o

1
B'11o '(er IIi) +=0, (Hc)

2mc

B/
[(ei.IIi) (eri. Hzr)q']t, ,q'=0. (Hd)

While adding these equations leads to

Hp 1—1— ((Irz IIz)IIo '(er Hz)
2mc 2mc

1
+(ezz Htz)110 (eiz HII)}

g o o(ez HI) (ezz Hiz)

+, ,([(oz II )q]tB'(e z II )+[(e r II )KtB'(ez IIr)

++ B'(et IIr)(etz'Hn)+[(ez Hz)(eiz Hrr)+]~B'}+=0, (I)
adding and hence to (G) with the contact term, the four equations
(H) are obviously incorrect. There is thus an ambiguity in the
result dependin on whether one first adds up the four equations
+tX (7a), zrtX 7b), etc. , and then puts in (F), or whether one
first uses (F) as above to get the equations (H) and then adds
them. That the equations (H) are incorrect arises from the fact
that the approximation (F) does not satisfy Eqs. (7) up to (rr/c)o
[the lowest order term being (s/c)z in (7a)g.
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is large so that the electron-electron interactions, up
to n2,

e' e'

f12 2r12

l
1

(nr n»)+, (nr r»)(n» r»)
lr12

&([y(1)p'(2) —j (1).j'(2) jdrtdrs. (14)

For the ground state of He-like atoms,

P7',f'= 0.

To take account of the Pauli principle, one has

e' Pit(1) 4- (1) 4".(1) A(2)
p(1)p'(2) =—

2 f (2) 0- t(2) 4-:(1) 4-:(2)

= s b:, ;(1)p-:,-1(2)+p-', -1(1)p'1(2)

pL-i(1)p—', :(2)-p-. , 1(1)p;, --:(2)3

p;;(1)= —erat'it(1)P,*(1), etc. ,

fi being a four-component column matrix corresponding
to All = rs, fit a row matrix, etc. Similarly,

j(1) j'(2)=Kj., —:(1)j--:,--:(2)+j-:,—:(1)j-:,—:(2)

where
-j:,—:(1)j-:,—:(2)—j—:,:(1) j-:,—:(2)3,

j;;(1)= egit, nrem;, etc.

For the hydrogenic electron, we have"

are small compared with the electron-nucleus interac-
tions. In this case one may calculate the interaction
energy between the electrons through their fields by
calculating the diagonal matrix element of (13) with
respect to the 16-component wave function of the two
hydrogenic electrons. The work of Breit s M)lierr and
Bethe and Fermi" shows that taking the diagonal
matrix element of (13) is equivalent to calculating the
integral

t 1
I 2iriprfrrs5

~&r„& c )

t'1 1
' —3'3 87 1d72= —Z o!

J y2 2

in Rydberg units, (17)

in Rydberg units. (18)

The matrix element (18) of the Breit operator 8 is
to be compared with the terms H"&, H"P', H&'& in (11)
that arise from the operator B.The matrix elements of
H&'), H&'", H&'& with respect to hydrogenic wave
functions are all zero for the ground state of He-like
atoms, but the matrix element of the contact interaction
H, in the same approximation is exactly -,'Z'e' Rydberg.
Thus the matrix element of 8 with respect to the
16-component wave function does lead to the contact
term Lt, for the relativistic energy of the ground state
of two-electron atoms. It is, however, not yet clear why
H, does not appear if one follows the "reduction"
procedure, as shown in Sec. II. This might again be
traced to a cause related to that mentioned at the end
of Sec. II.

Expressions (17) and (18) give the energy from the
electron-electron interaction (13); the total relativistic
energy of the two-electron atom of course is the sum of
(17), (18), and the relativistic energy of the two
hydrogenic electrons containing the Sommerfeld, the
spin-orbit and the 5-state corrections for the two
electrons. The first term in (17) is the nonrelativistic
energy arising from e'/r rTshe second term, which in
this approximation of unscreened relativistic hydrogenic
wave function is 0.46Z'cP Rydberg, has no correspond-
ing term in (10)—(12). It arises from the singular
behavior of the wave function (15) at the origin, and
is the consequence of treating (13) by the perturbation
procedure. A rigorous treatment of the relativistic
system

e2

so that

(pp' —j j') =&'e'(Pf'(1)+g'(1) 3Lf '( )+g'( )j
+8f(1)g(1)f(2)g(2) cos8rs). (16)

Evaluation of (14) leads to

r 1 5
pp'd—r rdr, = Z+0—.46Z'n'

J ~ r„

M= -',20 fit=X(if cos8, if single "",g, 0), Hp(1)+Hp(2)+ —/= ED
y12-

(19)

M= —sr, f 1t=N( if sint'ie'&, if cos8—, 0, —g),

g=e—e'i rr y= |1—(Zn)'ji 1—
ZQ e2

g)
1+$1—(Zn)')'* hc

"H. A. Bethe and E. Fermi, Z. Physik 77, 296 (1932).
's C. G. Darwin, Proc. Roy. Soc. (London) A118, 654 (1928).

is not known; but on plausible considerations, the
eGect of the singular behavior of the relativistic wave
function in (19) at the origin can be expected to
contribute a correction of the order o.4, and must be
treated together with the higher order interactions in
the field theory.

The authors wish to thank Dr. H. M. Foley and
Dr. 6, Breit for helpful discussions,


