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Theory of the Hyyerfine Structure of the NO Molecule. II. Errata and Some
Additional Discussion*
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A theoretical formula for the magnetic hfs of diatomic molecules previously given by one of us (M.M.)
is revised by including the Fermi term and correcting an error in the choice of phase. The new formula
gives eQq= —1.7 Mc/sec and eQq'=22 Mc/sec for the 'II state of the NO molecule. It was found that
these constants together with the values a=23.14 Mc/sec, b=1 40 56 Mc/sec, for the parameters of the
magnetic hfs, de6ned in the erst paper give theoretical frequencies which explain not only I/2-+3/2 spectra
but also the 3/2 —&5/2 transitions of the 'III state Ad.iscussion on the theory of the magnetic resonance
spectrum of the ~II' state is also given.

NOTE ON MAGNETIC HFS

A LTHOUGH the 6rst-order theory of the magnetic
interaction of NO has been given by several

authors, ' ' the second-order effects remain to be ex-
amined. The Hamiltonian for NO, exclusive of nuclear
quadrupole and A-doubling eGect, can be written as4

II=Hs+Hr,

H, =DAS,+I3DJ. s.) +(J——s )']
+28 (J,s,+J„so),

H, = —2If(J~.+J„S„)

2g.P.P 3(1 r)(S r)
I z,+— —I S

16m.

+ g-P-Plk(o)I'(& S).
3

(z, n, JIH, Iz, n, J)
= —snLoA+ (b+c)Z]R(J)[J(J+1)]—', (2)

(z, n, JIH, IZ, n, J—1)=——,'I ~Ay(b+c)z](Js —ns)'*

Xf(J)P(4J' 1)I]-', (3-)

(~, Q, JIH, Ix~1, Q~1, J—1)
= W-s'bL (JWQ) (JWQ —1)]&LS(s+1)—Z (Za1)]l

Xf(J)l J(4J'—1)'] ', (4)

(z, n, JIH, Ix+1, n+1, J)
=-s,b[J(J+1)—Q(n+1)]-:Is(s+1)—&(~+1)]-'

xz(J)LJ(J+1)]-~+ILLJ(J+1)—n(ny1)]&
xls(s+1) —z(zy1)]-:, (5)

(r, = —-'„n=-,', JIH, la=-,', n= ——,', J)
=-',d(J+-', )R(J)LJ(J+1)]-' (6)

(&=~s, n=~s, JIHrl&=~s, n=~s, J—1)
=+sdf(J)/I, (7)

where

Here D and 8 represent the spin-orbit coupling constant
and the rotational constant, respectively, of NO. The
other symbols have a fairly standard significance. We
shall construct the Hamiltonian matrix in a Hund's
case (a) representation, i.e., a representation where

0, Z, A, J, I, and F are diagonal. IIO is completely
diagonal in this scheme and will be taken as the unper-
turbed Hamiltonian. If we introduce the symbols u, b, c,
and d as defined by Dousmanis' (also by Frosch and
Foley' ), the matrix elements of H& can be expressed as
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f(J)= [V'+J I)(F+I -J+1)—
X (&+I+J+1)(J+I P)]t, (8)—

If(J)=J(J+1)+I(I+1) F(F+1). —

We have omitted the "high-frequency" matrix elements
connecting A and A&1. The first-order magnetic inter-
action energy arises from the matrix elements (2) and
(6). To obtain the second-order correction we apply a
Van Vleck transformation' to remove the nondiago-
nality in J and Q. It is then found that all the second-
order terms are negligibly small except the one arising
from the matrix elements of the type (5), where
g= —1/2, Q=1/2. This is the one which comes from
the mixture of II; state and II; state. Although the
effect of this mixing was already taken into account in
the formula (36) of Part I, the Fermi-type hfs effect
was neglected there. The following formula is the

~ See, for example, E. C. Kemble, The Fundamental Princip/es
of Quoutum iVechouics (McGraw-Hill Book Company, Inc. ,
New York, 1937), p. 394.
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generalization of the formula (36) of I:
AW, , s ———(bv/8) [(2J+3)(2J—1)]'[J(J+1)j—'

X [~(~+I)—I(I+1)—J(J+1)j (9)
where

3 cos'8 —1
+(16-/3)g-~.{ l~(0) I

.
r'

Av

This formula gives

/5P. , s(J=3/2) =+0.20 Mc/sec (10)

as a contribution to the value of I' (formula (39) of
Part I) of the J=3/2 state, instead of the former value
+0.18 Mc/sec, and is closer to +0.23 Mc/sec required
from the experimental result.

ERRATA ABOUT ELECTRIC QUADRUPOLE HFS

There was an error in the calculation published by
one of the present authors' on the same title, and the
formula for the electric quadrupole hfs obtained there
was wrong. The error came from the formula (A6) of
Part I:
('II-:J~l = (4J+2) '[(2J—I)'(ESJ~I

+ (2J+3)'(E+1SJ~
I j

In that paper the same formula for (J+ml and (J ml
states, where J+ and J mean states where the compo-
nent of J along the molecular axis is positive and
negative, respectively, was used. The correct wave
function should be

('111J I
= (4J+2) '[(2J—1)'(E SJ

+(2J+3)'(E+1+SJml j, (11a)
and

('II.J ml = (4J+2) '[(2J—1)i(E SJml
—(2J+3)'(E+1MJnzl j. (11b)

These wave functions give the following result for
the nuclear electric quadrupole eGect:

W, ,
s'= eQVI'(F) [3(st)'(J'+J)—'—13, (12)

where

I"(Z) = [-;C(C+1)—J(J+1)I(J+1)1
X [2(2J—1)(2J+3)I(2I—1)j ',

instead of the formulas (30) of Part I.
Formula (12) is nothing but the usual formula for a

symmetric top molecule and the anomaly reported in I
was fallacious. Accordingly, the formulas (42) and (43)
in I which gave the value of the coupling constant of
the electric hfs should be changed. The correct value
for them will be given below. The formulas (44) and
(46) should be revised also.

NEW FORMULA FOR ELECTRIC QUADRUPOLE HFS

It was emphasized in Part I that a rotational state
of the ground electronic state is not a pure 'II~ state,

but a small amount of 'll; state is mixed because of
the end-over-end rotation (Zeeman effect showed 'Z is
also mixed to a still smaller extent'). Thus, the wave
functions (J~ml and (J' ml should be

(J+~l =~('II:J+ I+ ('ll:J+~l, (13)

where one should take upper or lower signs together.
Each rotational state splits into two, because of the
A-type doubling, and their wave functions are

(col =2 '{(J+~l+(J-~l}, (14a)

(dJBll =2 i{(J+ml —(J eLI }, (14b)

where c designates the lower component and d the
higher.

If we express the interaction between electrons and
the nuclear electric quadrupole moment as

Hs=Q V'E, (15)

it is evident that Hs is diagonal in Z (component of
spin along the molecular axis) since Hs does not contain
any spin coordinates. Thus, only

(11;J, IH, I'11;J, ), (rr;J, IH, I'II;J, )

and
(II,J,~IH, I

rr;J,~)
are 6nite while all the other matrix elements are zero.
We obtain from the formulas (14a), (14b), and (15):

(cd I Hsl cJm) =2'+8', (16a)

(dJ~
I
Hsld J~)=~' ~', —(16b)

where

a'={(II;J,mlH, I
II;J,m)

+('II,*J ~IH I'11;J ~)}/2, (16c)

P'=p{ (siI,J~~IHslslI, J yg)

+ (slI;J m
I
H I'IsI,*J~m)}/2. (16d)

We assumed Ipl» I pl, p—1.
It can be shown that (16c) reduces to the con-

ventional formula,

W'=~qI (I )[3(')'(J'+ J)-' 1j--li/. , ~', (»—)

while the 8' term will give something new. The calcu-
lation of this term can be performed by using Racah's
method and the formulas obtained in I.' The wave
functions one should use are shown in the formulas

(11a) and (11b) and the similar formulas for ('II,*J+m I

can be obtained from the formula (A7) of I.
The same results can be obtained by another pro-

s Mizushima, Cox, and Gordy, Phys. Rev. 98, 1034 (1955).
' There were some misprints in those formulas in Sec. 4 of I: in

(15b), I(2I 1) should be /I(2I 1); in (—18), the right-h—and side
should be (—1) x ~+&6{A(A+1)—(4/3) J(I+1)K(K+1)~ ~ ~ .
in (19) the last factor in the right-hand side should be
[4K(K+1) ~ ~ ~ ] 1; in (20), the right-hand side ~ ~ K(K+1)
g(2K+3) (2K —1)g 1 . ; in (23), the right-hand side should
start as —-', (X(%+1)~ ~ ~; in (24), 2 should be taken off. Formula
(A7) should be —(111'~ =
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TABLE I. Observed and calculated frequencies (Mc/seel.

1/2~3/2

3/2~5/2

'3/2~5/2
1/2~3/2

c 3/2 —+3/2
1/2~1/2

,3/2~1/2

'3/2~1/2
3/2~3/2

d'3/2~5/2
1/2~1/2
1/2~3/2

'5/2~7/2
3/2~5/2

c
'

1/2~3/2
3/2 —&3/2

,5/2~5/2

'5/2~7/2
3/2~5/2

d~~ 1/2~3/2
3/2~3/2

,5/2~5/2

S (ObS.)

150 176.54
150 198.85
150 218,89
150 225.75
150 245.69

150 375.48
150 439.22
150 546.50
150 580.70
150 644.37

250 435.60
250 439.20
250 447.16
250 474.42
250 481.52

250 794.98
250 814.64
250 816.24
250 752.61
250 707,92

v(calc.)

150 176.29
150 198.86
150 218.84
150 225.83
150 245.81

150 375.62
150 439.19
150 546.34
150 580.73
150 644.40

250 435.26
250 439.19
250 447.41
250 474.24
250 481.82

250 795.47
250 814.81
250 816.02
250 752.45
250 707.66

(19)

The symbol ( ) .«means the average value over the
odd x electron and e is the effective number of such
electrons. From the above formula, we obtain

8'= —-', vegq'(2J+1)L(2J —1)(2J+3)j*
X (J'+J) 'I'(F), (2o)

R=eg( —qWvq'(2J+1)L(2J+3)(2J —1)j ')/
8I(5+1)I(2I—1), (21)

where the double sign means —for c and + for d
states, respectively. Since we know that v= —0.0247
in the J=3/2 state, we can obtain the value of the
coupling constants by comparing the formulas (16a),
(16b), (18), and (21) with the value of R shown in
Table I of I as follows:

egq= —1.7 Mc/sec,

egq'= 22 Mc/sec.

(22)

(23)

egq' is a quantity which has never been observed for
any molecule previously. At first sight it appears rather
surprising that q' be so large compared to g. The
following rough theoretical estimates, however, make
the magnitude found for q' appear reasonable. As is

cedure, namely, using Van Vleck's method. 4 The result
of them is

('II J+IFlIIs~'II J&F)= —sregq'(2J+1)
XL(2J—1)(2J+3)j'*(Js+J) 'I'(F) (18)

where

r3'V O'V 8'V
q'= —

~
c+ +2s — e

ag' away cly'

shown in the definition (19), only the odd p7r electron
contributes to this quantity. If we assume that there
is exactly one odd electron which is in the pure pn. -
orbital, we can estimate g'. Using the Slater wave
function (n'/2s. ) lr since'&e ~', one can easily obtain

q'= (8/5)eo.s= 3.82X 10"cgs esu, (24)

where the numerical value is obtained with n=1.95 a.u.
(atomic units). Somewhat more accurate value can be
obtained by using the Hartree wave function. Dous-
manis' calculated ((a +y')/r') by employing the
Hartree wave function and modifying the result. From
his result, we obtain

q'= 2.58X10"cgs esu,

Using the observed value shown in (23), we obtain

Q=0.008X10-'4 cm' «om (24)

Q=0.012X10 "cm' from (25).

(25)

(26)

8
~~c, d= ~Vp

35
(28)

and v, the parameter which gives the extent of mixing
of the 'IIg state, is calculated in the same way as was
done in the appendix of I, to be

v(J =5/2) = —0.0404; (29)
8 J. Sheridan and W. Gordy, Phys. Rev. 79, 513 (1950).' C. H. Townes and B.P. Bailey, J. Chem. Phys. 17, 782 {1949).I M. Mizushima, Phys. Rev. (to be published)."C. M. Johnson and J. J. Gallagher, post-deadline paper,

American Physical Society meeting, Columbia University, New
York, New York (January, 1954).

Both of these estimates agree with the value 0.01)&10—'4

cm' obtained by Sheridan and Gordy, ' but is smaller
than the value 0.02)&10 " cm' obtained by Townes
and Dailey. ' This value, however, is based on the
assumption that exactly one electron contributes to
egq', which is not necessarily true as will be shown in
the third paper of this series. " The more detailed
discussion on this point and accordingly a more reliable
value of Q will be given there.

ANALYSIS OF 2=3/2-+5/2 TRANSITIONS

Johnson and Gallagher" observed the next rotational
transition J=3/2 —+J=5/2 of the NO molecule at
'II; state. Their experimental data are cited in Table I.

The hfs of J=5/2 state must be expressed by
formula (39) of Part I:
W =P(F(F+1) I(I+1) J(J+1))— —

+R$„'C(C+1) J(J-+1)I(I+—1)j'.

The theoretical formula with the values of the
parameters given by formula (40) of I yields

P,= —7.00 Mc/sec, P~=12.29 Mc/sec. (27)

The contribution due to the mixing of the 'II~ state
is by formula (9)
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thus
gP, s——+0.23 Mc/sec. (3o)

4u= a—(b+c)/2 of Dousmanis,

Sb=d of Dousmanis.
(31)

As the correction in P due to the mixing of 'll; state,
the theoretical values cited in (10) and (30) are used.
The calculated frequencies agree with the observed
values with the average deviation of 0 08 Mc/sec for
the J=1/2-+3/2 transition, and 0.24 Mc/sec for the
J=3/2 —+5/2 transition. See Table I. Most of the
deviations are within the experimental error which is
assumed to be about 0.10 Mc/sec for J= 1/2~3/2 and
0.25 Mc/sec for J=3/2v5/2.

THEORY OF THE MAGNETIC RESONANCE SPECTRUM
OF NO IN 'II) STATE

The magnetic resonance spectrum of NO in 'll; state
has been observed by Beringer and Castle, " and a
theoretical account has been given by Margenau and
Henry" and also by Henry. " Recently 8cringer,
Rawson, and Henry" have made more accurate meas-
urements on the spectrum. With the new data it is
seen that the Margenau and Henry treatment, in
which the secular equation is set up in the Hund's case
(b) representation, does not provide very good agree-
ment between the calculated and experimental results.
Since NO is a good Hund's case (u) molecule, it should
be more natural to solve this problem by starting from

TABLE II. The values of hfs parameters derived by the values
cited in Table I (Mc/sec).

The theoretical values of R can be calculated by the
formulas (21), (22) and (23). The results are given in
Table II.

Although in Part I one of the authors tried to adjust
the numerical values of the parameters P and R so as
to reproduce the observed frequencies of J=1/2—&

J'=3/2 transition" as far as possible, we were not con-
cerned about the theoretically predicted relations be-
tween them. In this paper, we have tried to reduce
everything into eight parameters, whose numerical
values are shown in Table III. In Table III, the vo's are
the frequencies which are obtained by subtracting the
effect of hfs, while a and b are quantities which were
defined in the formulas (11a) and (11b) of Part I and
which are related to Dousmanis' parameters' as follows:

TABLE III. The adjusted values of hfs parameters (Mc/sec).

a= 23.14
b= 14.065

8Qg = —1.7
eQq'= 22

v, p(J= 1/2~3/2) = 150 195.40
vg, p(J = 1/2~3/2) = 150 550.54
v, , p(J =3/2~5/2) =250 443 13
vd, o(J=3/2~5/2) =250 797.00

(J, n, z, v, ~H'~ J+I, n —I, z—I, v,)
= —(J+1) '[(2J+1)(2J+3)j-*'Q(J+1,M )

X [(J—n+1) (J—n+2) j~p(S,z)@pic,

(J, n, z, m,
~

H'~ J, n —1, z—I, m, )
= B[J(J+1)—n(n —1)fop(s,z)

—[J(J+1)3-L(J+n) (J—n+1)j-:

XP (S,Z)MzppR,

(J, n, 2, 3IziH'i J 1, n —1, Z —1, MJ—)
= [J'(4J'—1)3 '*[(J+n)(J+n—1)3'*

xQ(Jpr, )p(s, z)&pe,

(J, n, z, ~,~H'~ J+I, n, z, ~,)
= (J+1) '[(2J+1)(2J+3)r'*

x [(J+n+1)(J-n+ 1)]-:

XQ(J+1, Mg) (A+2K)@PC,

(J, n, z, mg~H't J, n, z, Mg)
=[J(J+1)) 'n(A+2Z)3fzppK,

(33)

a case (a) representation and treating the Zeeman
eGect, rotational distortion terms, etc., as perturbations.

The Hamiltonian of XO in a magnetic field exclusive
of the interactions due to the nuclear spin, can be
written as

H=Hp+H',
where

H'= 2B(J—,S,+J„S„)+pp(A+2S) X (32)

and H p is given in (1). In a representation where Z, A,
0, J, and MJ are diagonal, the matrix elements of the
first term in (32) are well-known, and the second term
can be expressed as

(h.+2S), =2)t, ,S,+2)t, „S„+X,, (A+2K),

where z', y', z' and x, y, z represent coordinate axes
systems fixed in space and in the molecule respectively,
and the X's are the directional cosines. The matrix
elements of (i1+2S), can therefore be calculated by
taking the direct products of X, , and S, etc. We thus
hand

1/2
G G

3/2
C G

5/Z
C

where

P(S,~)=[S(S+1)—~(~—1)j', Q(*y) =[*'—3"3'.
—6.66 68.37

0 0
—8.63 21.37

0.08 0.04
—6.77 12.52

0.04 0.008

"C.A. Burrus and W. Gordy, Phys. Rev. 92, 1437 (1953)."R.Beringer and J. G. CastJe, Jr., Phys. Rev. 78, 581 (1950).' H. Margenau and A. Henry, Phys. Rev. 78, 587 (1950)."A. Henry, Phys. Rev. 80, 549 (1950).' Beringer, Rawson, and Henry, Phys. Rev. 94, 343 (1954).

To calculate the energy levels in a magnetic field, we

apply the perturbation method to the third order.
Taking 124.2 cm ' as the value' of D and neglecting
the uninteresting terms independent of MJ, we obtain

'7 M. Guillery, Z. Physik 42, 121 (1927); Jenkins, Barton, and
Mulliken, Phys. Rev. 30, 150 (1927).
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TABLE IV. Experimental and calculated values of the microwave frequency for NO spectrum.

Line

Hg
H2
H3

H4
H6
H6

H7
Hs
Hg

Transitions
Mg, Ml Mg —1, MI

3/2, 1-+ 1/2, 1
3/2, 0~ 1/2, 0
3/2, —1~ 1/2, —1

1/2, 1-+—1/2, 1
1/2, 0—& —1/2, 0
1/2, —1-+—1/2, —1

—1/2, l~—3/2, 1—1/2, 0-+—3/2, 0—1/2, —1-+—3/2I —1

Resonance
field

(in gauss)

8398.61
8425.71
8453.44

8501.49
8528.28
8555.84

8600.97
8629.71
8656.46

Microwave
frequency
observed

(in Mc/sec)

9269.94
9270.65
9270.65

9270.65
9270.65
9270.65

9269,81
9270.65
9270.65

Frequency
calculated
(neglecting

Schwin ger's
spin-moment

anomaly)
(in Mc/sec)

9270.5
9270.7
9270.7

9269.6
9269.2
9269.5

9267.4
9268.5
9268.6

Frequency
calculated
(including

Schw1nger s
spin-moment

anomaly}
(in Mc/sec)

9275.6
9276.0
9275.8

9274.7
9274.3
9274.7

9272.5
9273.7
9274.2

for the energy levels:

E (in Mc/sec)
=P.777 1 3M&zzPQ+3. 917X 1 0-&M&2~ 2302—4 4699

X10-"M zz 'BC'+7.221X10-»M 'zz 'K' (34)

The interaction arising from the nuclear spin in nitrogen
consists of the nuclear spin-orbit, dipole-dipole, and
Fermi ~g (0) j2 couplings as given in Eq. (1) and the
nuclear quadrupole coupling. If we denote the operator
for these interactions by H~, it follows that"

(J,n, M, ,Mz
~
II„~J,n, M, ,Mz)

=$J(I+1)$ '[ah+ (b+c)Z/QMzMz
—eQq(J (J+1)—3Q'j

XL4I(2I—1)(2J—1)(2J+3)J(J+1)j '

XLJ(J+1)—3M'')LI(I+1) —3Mz2$.

The nuclear quadrupole eGect is small enough that a
first-order perturbation treatment is sufhcient. The
ofj-diagonal matrix elements for the magnetic inter-
action terms in H~ can be calculated by the method
described for H&. Calculations show that the only
second-order terms which amount to more than 0.1.

Mc/sec are those from the cross-term between II' and
H~ in

] (J) 0, Z, Mz) Mz (
II'+II'

( J, 0—1, Z —1, Mz, Mz) (
'

+J, Q, Z +J, Q—1, Z—1

and

)(J,n, Z, M„M, ]II'+II [J+1,n, Z, M„M,))
+J, Q, Z +J+l, Q, Z

For J=3/2 and 0=3/2, these two second-order terms
become

8 C. K. Jen, Phys. Rev. 76, 1494 (1949).

—0.0120b3IIzMz+ 4.197
X 10—'La+ (b+c)/2$MzM z'poR.

The total energy including the nuclear effect is therefore

8=0 77713MzzzoBC+3 915X10 Mz'Iz, 'X2—4 4699

X 10-»Mzzz oagQ3+ 7.221 X 1 0-»M z&zz O8303

+ f 5La+ (b+c)/2j —0 0120b}MzMz
+4.197X10 't a+ (b+c)/2)MzMz'zzoX,

+eQq(20 —4M ') (2—33II ')/80. (35)

If one takes the Schwinger spin moment anomaly" into
consideration, the term zzo(A+2$) K in Eq. (32) should
be replaced by zzo(A+2. 0022905) K and the matrix
elements in Eqs. (33) should be modified accordingly.
The equation corresponding to Eq. (35) in this case is

E=0.77756Mzzzo~+3. 9020X10 Mz'zz 'gP —4.4699

X 10—»Mzzz 3gQ3+ 7.221 X 10-»Mz3zzo3303

+j 5 La+-', (b+c))—0.0120b)MzMz
+4.197X10 ~)a+2 (b+c)$MzMz21zPC

+ eQq (20 4M '') (2—3M—z')/SQ

Table IV shows a comparison between the experi-
mental and calculated values of the frequencies corre-
sponding to the transitions dMJ=1 and AMz=0 at
various magnetic field strengths. It is readily seen that
when the Schwinger correction to the gyrornagnetic
ratio of the electronic spin is considered, all the theo-
retical frequencies are invariably higher than the
experimental values. As an error of 1 cm ' in the
spin-orbit interaction constant would cause a difference
of 2 Mc/sec in the microwave frequency, the uncertainty
in D may be responsible for the discrepancies in
Table IV.
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