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much truth in the picture of a change in anisotropy
with statistical Ructuations, and we feel that any
further synthesis of the band and atomic methods must

take this picture into account.
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The interaction of mobile carriers in semiconductors with im-

purity atoms and ions tends to reduce the impurity activation
energy. This eBect is studied using the familiar model of the
semiconductor as a uniform medium of dielectric constant E in
which randomly distributed impurity ions appear as 6xed unit
charges and the mobile carriers as charges with opposite sign and
effective mass m*. The treatment is based on the solution of Har-
tree equations for nonlocalized orbitals P; describing mobile
carriers and localized orbitals q; describing electrons trapped in
the neighborhood of impurity ions. Determination of the in-

dividual nonlocalized orbitals is made unnecessary by a method
that expresses the Quctuation in mobile carri(. r density approxi-
mately as a linear functional of the fluctuations in electronic
potential due to impurity atoms and ions. On use of this relation,
Poisson s equation becomes a linear integro-differential equation
for the electronic potential energy, which can be solved in terms of
integrals involving the localized orbitals y;. All localized orbitals
are taken to have the same form q, satisfying an integro-differen-
tial equation obtained by averaging the potential energy for a
trapped electron over all configurations of the other impurities;
this is solved by a vacational procedure. All orbitals in the theory

depend on temperature T, the Fermi level f, and the impurity
density 17/V, since the distribution of qauntum numbers of the
occupied orbitals depends on these quantities. The free energy Ii

of the system, first expressed in terms of the orbitals, T, and f,
is then reduced to a function of f, T, and Ã/V. For given T and
1V/V, the physically significant r is determined as that which
minimizes F; the carrier density and the effective impurity activa-
tion energy are then computed as functions of T and 1V/V. The
theory divers from all others in predicting a marked T-dependence
of the activation energy, especially for high impurity concentra-
tions. This appears because the polarizability of the mobile carrier
distribution, which has an important effect on the interaction of
impurities and mobile carriers, is temperature dependent in the
present theory, and is completely ignored in earlier theories. For
moderately high T the reduction in impurity activation energy
predicted by the present theory is of the order of that predicted
by Shifrin, and by Pearson and Bardeen; at low temperatures it is
much less. Existing data on germanium and silicon suggest that
the theory underestimates the reduction in activation energy at
high impurity concentrations.

ap ——aHEm/m*, (1.2)

where aH is the Bohr radius. Shifrin assumes that in
the impure semiconductor the impurity states with

* Based in part on a thesis presented by G. W. Lehman in partial
ful6llment of the requirements for the degree of Doctor of Phi-
losophy at Purdue University, January, 1954.

t Now at North American Aviation, Inc. , Downey, California.
' K. S. Shifrin, J. Theoret. Phys. (U.S.S.R.) 14, 43 (1944).

l. INTRODUCTION

~ 'HE first theoretical attempt to compute the
ionization energy of impurity atoms in a semi-

conductor as a function of concentration was made by
Shifrin. ' Shifrin used the hydrogenic model of the
impurities, which pictures the neutral atom as con-
sisting of a single potential carrier (hole or electron)
with appropriate eGective mass m*, moving about a
fixed po.'nt charge (the atom core) in a medium of di-

electric constant E.The ionization energy of an isolated
impurity is then

Ep ——print*/mE',

where m is the true electronic mass and EH the ioniza-
tion energy of a hydrogen atom; the "radius" of the
atom in the ground state is

principal quantum number e merge with the contin-
uum, and form its lower bound, when the "radius"
e'uo of the corresponding orbitals is the radius of a
sphere of volume V/1V, where N/V is the density of
impurity atoms. He thus concludes that the activation
energy of the impurity is given as a function of impurity
density by

(& 3)

A less schematic calculation has been made by Pear-
son and Bardeen' who note that the energy required to
remove an electron from an impurity atom is reduced
by the interaction of the resulting ion with the free
carriers in the system. Treating the free carrier dis-
tribution as unaffected by the presence of the ions, and
assuming that almost all impurities are ionized, they
arrive at a formula resembling that of Shifrin:

~4w ~
~ f'X~ -'

(3 3 KVi

Like Shifrin, they thus conclude that the decrease in

s G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).
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the activation energy is proportional to (E/V) &

Castellan and Seitz' point out that it is usually not
su%ciently accurate to equate the density of free
carriers to the impurity density, and suggest other
changes in the theory. They conclude, consequently,
that the factors considered by Pearson and Bardeen
will not reduce the activation energy simply propor-
tionally to (X/V)', and cannot account for the experi-
mental results of Pearson and Bardeen. They examine a
number of other possible mechanisms, but do not suc-
ceed in fully explaining the observed effects.

The present theory again uses as the model of the
semiconductor a uniform medium of dielectric constant
E, in which randomly distributed impurity ions appear
as 6xed unit charges, and the mobile carriers as charges
of opposite sign and effective mass no*. (For simplicity
in terminology, the carriers will henceforth be thought
of as electrons, and the ions as positively charged donor
ions. ) It attempts to go beyond earlier theories in
giving a more systematic and consistent treatment of
what appears to be the dominant factor in reducing
the activation energy: the interactions of impurity
ions with trapped and with mobile carriers. This treat-
ment is based on the determination of one-electron
orbitals by solution of Hartree equations. It is unusual,
however, in that the electronic orbitals depend on the
temperature and carrier density as parameters. In
treating conduction electrons as free, one describes a
given state of electronic motion by the same orbital,
regardless of what other orbitals are occupied. When
the electrons are subject to external forces, such as
interactions with ions or atoms, this is no longer a
satisfactory approximation. One must expect solutions
of the Fock or Hartree equations to yield orbitals de-
pending on the quantum numbers of all orbitals in-
volved in describing the system —as is the case, for
example, in atomic and molecular problems. In the
present problem a change in the quantum numbers of
any single occupied orbital would have an insignificant
effect on any single other orbital; all that matters in
determining the form of an orbital is the distribution of
the quantum numbers of the other occupied orbitals.
This distribution is essentially the same for almost all
P's that might describe the crystal at any given T, and
is suf6ciently de6ned when one gives the energy level
distribution in the conduction band, the density e, of
free carriers, and the temperature. Thus the form of the
orbitals comes to depend on the parameters e, and T.4

Determination of this dependence adds another
element of complexity to the problem. The deter-
mination of the quantum numbers to be used in solving
the Hartree equations for the orbitals involves sta-
tistical considerations; these considerations, in turn,

3 6, W. Castellan and F. Seitz, Semiconducting Materials
(Butterworth Publications, London, 1950), p. 8.

4 Formal treatments of such problems have been given by sev-
eral authors; e.g. , K. Husimi, Phys. -Math. Soc. Japan 22, 264
(1940);W. M. MacDonald III and J. M. Richardson, Phys. Rev.
96, 18 (1954).

involve energies that have to be determined by solution
of the Hartree equations. Thus the statistical and wave-
mechanical aspects of the problem must be developed
in a self-consistent way.

A characteristic feature of the present theory is the
predicted temperature dependence of the impurity
activation energy. The formal basis of this temperature
dependence will be clear from the preceding paragraphs;
the physical basis can be pictured as' follows. The mobile
carriers form a polarizable charge distribution, made
nonuniform by its interaction with the impurity ions
and atoms. The polarizability of this charge distribution
depends on the distribution of electrons over the con-
tinuum states —on the electron density, and on the
temperature as well. Around each positive ion is an
induced average charge distribution of total amount
—e, which tends to shield the positive ion. In the neigh-
borhood of each neutral impurity atom there is also an
induced average charge distribution of total amount
zero, which modi6es the effective potential acting on the
trapped electron, and thus the activation energy, in
a temperature dependent way. Further, each mobile
carrier is regarded as moving in the 6eld of the fixed
charges plus the associated temperature-dependent
induced electronic distributions. These interactions
modify the energy levels in the conduction band, chang-
ing the position of the band edge and the distribution
of the levels within the band in temperature-dependent
ways. This again a6ects the activation energy, in a
way that appears to be much more important than the
change of energy of the trapping states. The two effects
are not, however, treated separately in the theory, but
appear as interdependent factors in a self-consistent
formalism.

The complexity of the calculation makes it desirable
to give a preliminary survey of the procedure used here.
Solution of the Hartree equations is based on the as-
sumption that the system can be properly described
by use of two types of orbitals: orbitals P; that extend
throughout the very large volume of the crystal
and describe conduction electrons, and 1s orbitals p;
that describe electrons trapped in localized states
about the impurity atoms (Sec. II). Each conduction
electron moves in a potential 6eld due to the trapped
electrons, the impurity centers, and rest of the con-
duction electrons. For very large systems this divers
negligibly from the potential energy V, (r) of an elec-
tron interacting with the total average charge dis-
tribution of the system; thus one can assume that all
conduction orbitals obey the same Hartree equation
with potential energy V, (r). On the other hand, it
would involve a large error to proceed as if the electron
in the localized orbital y; interacted with its own aver-
age charge distribution, as would be the case if the
effective potential energy for this electron were taken
to be V,. Hence one must use a different eGective
potential energy for computing each trapped orbital,
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that required for the calculation of q; being

, I ~ (r') I'
V(, (r) = V, (r)—dr'

I
r—r'I

For any given form of V, (r), one could in principle
compute the corresponding nonlocalized orbitals; given
the distribution of electrons over these orbitals, one
could then compute the total average density e,(r)
of untrapped electrons in the system. In practice, such
a procedure is out of the question. An approximation
method, developed in Sec. III, gives e, (r) directly in
terms of V, (r), the Fermi level f, and T, it being
assumed that the distribution of electrons over the
levels of the conduction band is of the Boltzmann form.

One could determine V, (r) by solving Poisson's
equation, if one were given the positions of the im-

purity ions, the forms of the occupied localized orbitals

y;, and the density m, (r) of the conduction electrons.
Substitution of the form of N, (r) mentioned above
converts Poisson s equation into an integro-di6erential
equation for V., which also involves the position of the
impurity ions and atoms, the orbitals p, , f', and T.
Section IV shows how this determines V, (r) and N, (r)
as a sum of contributions associated with the individual
impurity atoms and ions, and expresses these contribu-
tions in terms of t, T, and the localized orbitals q, .

The form of the localized orbitals would, ideally,
depend somewhat on the positions of nearby atoms and
ions. To simplify the problem, the effective potential
Vi;(r) for the orbital p, is averaged over all configura-
tions of the impurities (Sec. V). There results an integro-
differential equation for p;, the same for all j, which is
later (Sec. IX) solved approximately by a variational
method. In Secs. VI and VII the total energy, free
energy, and carrier density are expressed in terms of
T, f, and the averaged form p of the localized orbitals.
Simplifying approximations, discussed in Secs. VIII
and IX, then lead to complicated, but usable, expres-
sions for the free energy F and for n, in terms of T, f',

and the impurity density (Sec. X). For given T and
impurity density, the significant value of f is that which
minimizes Ii; when this is known, the carrier density
can be computed immediately.

Here R, and r are vectors giving the positions of positive
and negative charges, respectively; f, is the normalized
orbital to which the ith electron is assigned, and E; is
the corresponding energy parameter. The total energy
of the system is, in the Hartree approximation,

N p
— $2 g2 N 1

E=P ' dr/, *(r) — V' ——P p;(r)
@~=i IR,—rl

e2 p t drdr
+2& ' „',l4'()I'l4'(')I'

ol

N N

+QQ, (2.2)
R,—R, , l'

N N

+Z Z (23)
~*~' 2&

I
R,—R;

I

The quantity on the right of Eq. (2.2) is stationary to
variations of the iJ; that maintain normalization.

It is well known that the Hartree equations may
possess solutions that are without physical significance:
for example, Pekar' has pointed this out in connection
with the treatment of an assemblage of hydrogen atoms.
We shall assume that in the system under consideration
the physically significant solutions of the Hartree
equation involve orbitals of two types:

(a) orbitals localized about individual impurity ions,
representing electrons trapped by these ions. We shall
denote a is-orbital localized about the jth impurity
ion by q, (r). We shall neglect the possibilities that
electrons might be trapped in excited localized states of
other types, or that two electrons might be trapped by
a single impurity atom.

(b) orbitals extending through the whole system,
representing mobile carriers in the conduction band.
Henceforth the symbol P;(r) will be reserved for orbitals
of this type.

We shall write the particle density due to trapped
electrons as

2. FORMULATION OF THE HARTREE EQUATIONS

In formulating the wave mechanical treatment of our
model, we start from the standard form of the Hartree
equations for E carriers of charge —e, effective mass
m*, interacting with N fixed charges +e, in a medium
of dielectric constant X:

where

~ (r)=Z ~ l~;(r) I',

0 if orbital p, is empty,

1 if orbital q, is occupied.

(2.4)

2m* Z~-i
I R,—rl

g2 N

+—i, 2 lf'(r')I' 4'(r)=&'4'(r) (2 I)
E& Ir—r'I '~'

The particle density due to conduction electrons is, of
course, PIP, (r) I', where the sum is over all orbitals
occupied by the conduction electrons. Because of the
nonlocalized character of the P orbitals, no single term
makes an appreciable contribution to this sum. We

~ S. I. Pekar, Abhaedluegee aus der Soxj eti chen Physik, Folie II
(Verlag Kultur, und Portschritt, Berlin, 1951),pp. 61-72.



I NTE RACTION OF I M PURI TI ES AN D MOB I LE CARRIERS 1701

shall therefore take as the particle density due to con-
duction electrons

where f(E,) is the fraction of occupied orbitals P; in a
small energy range about E;, and the sum is over all
nonlocalized orbitals of both spins. The error involved
in using Eq. (2.6), with f(E~) a smoothly varying func-
tion, will be negligible for all statistically important
distributions of conduction electrons over the non-
localized states. The average potential energy of inter-
action of an electron with the total electronic dis-
tribution and the Axed positive charges is then

where p,; denotes the energy parameter of the jth
localized orbital, as distinguished from the energy
parameters e; of the conduction orbitals.

Equation (2.12), taken for each impurity j with a
trapped electron, and Eq. (2.8) for the conduction
orbitals, constitute the Hartree equations used in this
theory. Since V, (r) involves implicitly the parameters
a; and the function f(e), as well as the orbitals them-
selves, the solution of this system of equations will
depend on which ions are assumed to have trapped
electrons, and on the energy distribution of the un-
trapped electrons.

In terms of the quantities thus far introduced, Kq.
(2.3) for the total energy of the system can be written as

where

e;=E;—(U, (r)). (2.10)

Thus e, (r) and E; are the electronic potential energy
and the energy parameter of the orbital, measured from

(V,), the average value of U, in the crystal, which will

henceforth be taken as the zero of energy. Important
use will later be made of the obvious relation

The potential energy term in Eq. (2.1) differs from
this primarily in the restriction i'Qi in the sum over
electronic states.

In using Eq. (2.1) to determine a conduction orbital

f;, one will make only an error of relative magnitude
1/E if one includes the term i'=i in the electronic
potential energy, thereby including a spurious inter-
action of the conduction electron with its own averaged
charge density. To this approximation, all conduction
orbitals satisfy the same wave equation, which we write
as

e 1 8
I

p drdr
+ZZ

N N

XL~,(r)~.(r')+P P ~;~; [ q;(r) ['~ q,'(r') ['

In the first term, the sum over occupied conduction
orbitals has been replaced by a sum over all conduction
orbitals, just as this was done in formulating Eq. (2.6).
The first term in the double integral includes one half
the interaction of every electron with its own average
charge distribution. This corrects only in part for the
inclusion of such self-interaction terms in Eq. (2.8), used
in calculating the e;, but the fractional error is negligibly
small in any case, being of the order of 1/E.

In using the Hartree equations and the energy ex-
pression of Eq. (2.13), we shall be neglecting the ex-
change and correlation energies that play an important
role in the theory of metals. The reasonableness of
this, as concerns the exchange energy in nondegenerate
semiconductors, is easily checked. Wigner and Seitz
have shown that in the case of a completely degenerate
free-electron gas the exchange energy per electron is

(2.11) E. = —0.458e'/r„ (2.14)
Since the potential due to an electron trapped by an

ion is large just where the localized orbital is large, it
would be a serious error to include in Eq. (2.1) the
interaction of a trapped electron with itself. The
effective potential energy for an electron in the localized
orbital q;(r) must therefore be obtained by subtracting
from V, the potential energy due to an electron in the
orbital q;, to obtain U~, (r), as given in Eq. (1.5). We
write the corresponding wave equation as

=p, te;(r), (2.12)

where r, is defined in terms of the electron density
X/V by

(4rr/3) r,s = V/E. (2.15)

If one regards the electrons as moving in a medium of
dielectric constant E, as in the present model, an extra
factor of 1/E will appear on the right in Eq. (2.14).
By similar methods it can be shown that for a non-
d.egenerate gas of electrons with eGective mass en*, in
a medium with dielectric constant E, having a Boltz-
mann distribution of energies corresponding to tempera-

s E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).
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ture T, the exchange energy per electron is

+ex (2.16)

where 8 is the Dirac delta function. The presence of
the in6nite potential barrier at the surface S of the
crystal requires lf;(r) =0 and

Z(r', r; f) —=0, for r on S. (3.7)

where an is the Bohr radius. Err e /—2—an is the ioniza-
tion energy of the hydrogen atom, and m is the true
electronic mass. As an example we take E/V=10is/
cm', X=13, T=187'K, no*=0 45rt.s Th. en Eq. (2.16)
yields E, = —0.0018 ev, compared with the impurity
activation energy —0.036 ev found by use of the
hydrogenic model.

3. CALCULATION OF SUMS OVER STATES

In solving our problem, it will be necessary to evalu-
ate certain sums over the conduction orbitals, such as
ts, (r) [Eq. (2.6)]. Even if v, (r) were known to begin
with, it would obviously be impracticable to do this by
solving Eq. (2.8) explicitly for the individual P; and e,,
and then summing. Fortunately, when the distribution
of electrons in the conduction band is of the Boltzmann
form)

f(e,) = exp[ —(e;—f)/kT], (3.1)

such sums are easily expressed directly in terms of
integrals involving the electronic potential energy v, (r).

We shall assume that Eq. (2.8) is to be solved within
the very large volume U of the crystal, surrounded by
an infinite potential barrier. (Our theory will, however,
neglect surface effects due to the bounding barrier. ) Let

Z(r', r; t) =QyP, *(r'g;(r) exp( —e;t), (3.2)

where the sum is over all spirt, free sol-utions of Eq.
(2.8) normalized to 1 in the volume V. We shall assume
that Eq. (2.8) has only nonlocalized solutions, r and can
then write

ts, (r) =2e&t" Z(r, r; 1/kT). (3 3)

The factor 2 enters because Kq. (2.6) involves a sums
over spins, whereas Kq. (3.2) does not

In principle, Z(r', r; f) can be determined by solving
a diffusion problem. It follows from Eqs. (2.8) and
(3.2) that, for t) 0,

DV' 'Z(r', r; f)+u, (r)Z(r—',r; f) = t)Z/t)t, (3.4)—
where

From the closure property' of the P's, it follows that

Z(r', r; 0) =8(r' —r), (3.6)

In principle, Eq. (2.8) might possess localized solutions, which
would be without physical significance /since any localized orbital
should satisfy an equation of the type of Eq. (2.12)g and should
therefore be excluded from the sum over conduction orbitals. In
the practical cases under consideration here E is large and the
binding energy of localized solutions of Eq. (2.12) is small. Local-
ized solutions of Eq. (2.8) will have even smaller binding energy,
and their contribution to the sums seems safely negligible com-
pared to that of the numerous nonlocalized solutions.

s D. Bohm, Quoltum Theory (Prentice-Hall, Inc., New York,
19/1), p. 221.

For each r', Z(r', r; t) could be obtained by solving
Eq. (3.4), subject to the initial condition of Eq. (3.6)
and the boundary condition of Eq. (3.7). If the pa-
rameter f is interpreted as time, Z(r', r; f) can be
interpreted as the density of a system of diGusing
particles at point r, at time t,, per particle released at
point r' at time 3=0, when the following conditions are
satisfied: (a) the diffusion constant is D; (b) a particle
at point r" may disappear with probability e, (r') per
unit time if z,(r"))0, or give rise to another particle
with probability —u, (r") per unit time if z, (r")(0;
(c) any particle reaching the surface S is withdrawn
from the system.

An alternative interpretation of these equations
makes it easy to write down an equivalent integral
formulation of the problem. One can regard Z(r', r; f)
as the average density of particles at point r at time t,
due to release of one particle at point r' at time 3=0,
plus the release of —v, (r")Z(r', r"; t') particles per
unit volume and per unit time, for all r" in U and all
t'&0; as before, any particle reaching the surface S is
withdrawn from the system. Let Zs(r', r; LO) denote
the average density at r at time t per particle released
at r' at time t—ht. Then the total particle density due
to the system of sources described above is obviously

&&Z(r', r"; t')Ze(r", r; f t') (3.8)— .

)&Z(r', r"; t')Zo(r r"; t —t'). —(3.10)

This equation can be solved by a familiar iterative
method. Writing

Z(r', r; t) =Q,Z, (r', r; t), (3.11)

From the character of the diffusion problem, it is
evident that for

~
r —r'

~

small compared to the distance
of r and r' from the surface S of the crystal, and for not
too large t, the nature of the solution will be negligibly
changed by ignoring the boundary condition on S,
Eq. (3.7). Then Zs(r', r; t) can be taken as the solution
of Eq. (3.4), with v, (r) —=0, subject to the initial con-
dition of Eq. (3.6): that is, it can be replaced by the
familiar diffusion function

Z0(i r—r' (; &) = [4rDf] ' exp[ —
~

r—r'~ '/4Df] (3 9)

Making this approximation, we write
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where Z, is of the rth order in w, (r), substituting this
into Eq. (3.10), and equating terms on the two sides
that are of the same order in e„one finds

~t
Z,+i(r', r; t) = —

~
dt' I dr"p, (r")

p ao

XZ, (r', r"; t')Zo(r —r"; t—t'). (3.12)

The successive integrations over t' can be carried out
without diQiculty. One finds

In the present theory it is impractical to use terms
beyond those explicitly written out in Eq. (3.17). In
fact, this expression will be further simplified by re-
placing the last term by its average over r, thus re-
taining only the first-order fluctuations in e, (r), given
by the first integral on the right. Since the average
value of p, (r) is zero by definition [Eq. (2.9)], the
average value of the first integral in Eq. (3.17) is zero.
The average value of the second integral is easily ob-
tained by integrating in elliptic coordinates with r& and
r2 as foci. One finds, to our approximation,

Zi(r', r; t) =—
4~D~

Ir-ril+ Iri-r'I
drip, (ri)

ry —1'

(2vrm*kT) ' 2prm* 1

h' ) h'kT V
xzp(lr —ril+ lri —"I;t), (3»)

Zp(r', r; t) =
(4~D)»

I dri, ~dr, p, (r&)

1'—ry 1 y
—1'2 1'2—r

xp. (rp)
1'—ry rg —rg r2 —r

xz, (

the generalization is obvious.
If w,

—=0, one has Z, =O, for r)0. If p, (r) is constant,
it follows easily from the definition in Eq. (3.2), to-
gether with the fact that introduction of a constant
potential v, changes every e; by this same amount, that

Z(r', r; t) =Zp(l r r'I; t) e—xp[—p,t]. (3.15)

On the other hand, Eqs. (3.11) to (3.14) yield

Z(r', r; t) =Zp(l r—r'I; t) [1—v,t+-,'(p, t)' — ]. (3.16)

Roughly speaking, then, Eq. (3.11) gives an expansion
of Z in terms of increasing order in v, (r)t. It is easily
shown that, for bounded v, (r) and for t) p)0, the
series in Eq. (3.11) is uniformly convergent in t; it will

not, however, be rapidly convergent if e, (r)t is large
at many points. As applied in the present work, Eq.
(3.11) will yield expansions in powers of v, (r)/kT; the
practical necessity for dealing with only the first few
terms of the expansions will then limit the accuracy of
the results more severely the lower the value of T.

It follows from these results, together with Eq. (3.3),
that

(27im*kT q: 4~m* i p, (r,)
e, (r) =2erIPr

I I
dri

h' ) h' & Ir—ril

~,(r,)p. (r,)
Zp(2I ri —rpl; 1/kT), (3.19)

ry —r2

ri, (r) (e,)=—— "(ri)
ef/kT

xzp(2I i' —ril; 1/kT). (3.20)

Important simplifications and some characteristic
features of the present theory arise from the linearized
relation of m, (r) to p, (r), as given in Eq. (3.20).

Using Eqs. (2.4) and (3.20), one can reduce this to the
fol m

~, (ri)
7'p, (r) —«erlpr dri Zp(2lr —ril &

1/kT)
I
r —ril

4xe'
{—(I,)+P (1—at)6(r —R,)

IC

where

+P a,[b(r—R;)—I pp, (r—R,) I']}, (42)

«= 32ir'm*e'/Eh'. (4.3)

4. CALCULATION OF THE ELECTRONIC POTENTIAL
ENERGY

The potential energy p, (r) of an electron in the
crystal is related to the total charge density by Poisson's
equation, which can here be written as

4me'
V'p, (r) = [P 5(r—R,)—N, (r) —e,) r)]. (4.1)

E j

(2irm*) '
p

XZp(2
I
r —ril; 1/»)+ I h'

e,(r,)p, (r,)x— m, (~; 1/kT) —",
r—ry ry —r2 f2—r t

where
&= lr —ril+ Iri —rpl+ Irp —rl.

(3.17)

(3.18)

This constitutes a linear integro-differential equation
for p, (r), which is to be solved subject to the condition
that (v, (r))=0.

The bracket on the right of Eq. (4.2) describes what
may be regarded, at this stage of the problem, as the
fixed charges in the crystal: the average electronic
charge density, the charges of impurity ions without
trapped electrons, and the charge distributions of the



1704 G. W. LEHMAN AND H. M. JAMES

impurity "atoms"—ions plus trapped electrons. The
total 6xed charge is zero.

Because of the linear character of Eq. (4.2), its
solution is easily expressed in terms of the solution of a
similar equation with a single 6xed point charge. We
write

U.-(ri)
q'V;(r) Ke«"— dr, Zo(2I r —ril j 1/kT)

4+e'
~(r), (44)

K

to be solved for V; subject to the boundary condition
that V, (r) ~ 0 as r ~ ~. V;(r) can be regarded as the
electronic potential energy that would be produced in
the crystal by a single impurity ion placed at the origin;
it is the potential energy of interaction of an electron
with the ion itself, plus its energy of interaction with
the distribution of mobile electrons, of density P,(r),
induced by presence of the ion, V; and I'; must obvi-
ously satisfy the relations

47re'

Calculation of V; and P; for given i and T is thus re-
duced to a matter of quadratures. These functions will
be discussed in Sec. VIII.

It will also be convenient to define the electronic
potential energy V, (r) produced in the crystal by an
atom —ion plus trapped electron —at the origin. This
satis6es the relation

V.(ri)
'PV. (r) —Ke«) dri Zo(2I r—ril ) 1/kT)

r—r~

4xe'
{~(r)—I ~(r) I'} (412)

where q is the orbital of the trapped electron. V, (r)
consists of terms representing the interaction of an
electron with the ion, with the trapped electron, and the
distribution of mobile electrons, of density P, (r), in-
duced by presence of the atom:

e' 1 p I p(ri) I' ~ P.(r,)-
U. (r)=———+ ~ dri + ' dri . (4.13)z-

'7'U, (r) = jb(r) —P, (r) },E
e' & 1 p P;(ri)

V, (r) =———+, dri

(4.5)

(4.6)

Comparison of Eq. (4.12) with the obvious analog of
Eq. (4.5) shows that

1 p V (ri)
P.(r)= — e~"~ ' dri

Comparison of Eqs. (4.4) and (4.5), with use of Eqs.
(4.3) and (3.5), shows also that

U'(ri)
P;(r) = — e&"r dri

XZO(2I r —ril; 1/kT). (4.14)

Comparison of Eqs. (4.4) and (4.12) shows that

XZo(2lr —ril; 1/kT) (4 7) V.(r) = V, (r) — dr,
l &(r,) I V, (r—r,), (4.15)

From Eq. (4.5), and the boundary condition on V;(r),
while comparison of Eqs. (4.7) and (4.14) yields

drP;(r) =1; (4.8) P (r) =P'(r) —,«il ~(ri) I'P'(r —ri) (416)

the total charge of the ion and the induced electronic
distribution that surrounds it is zero.

Equation (4.4) is easily solved by Fourier transform
methods. One 6nds drP. (r) = drV. (r) =0; (4.17)

where

U'(r) =—
&'(p. r)

2~'E~ „p'+H( p)

e
—i(P-r1)

H(p) =ge«" fdr Z (2ri,' 1/kT).

(4.9)

(4.10)

both the net charge in the mobile electron distribution
induced by a neutral impurity atom and the average
potential due to the whole set of charges will vanish.

We shall assume that all the localized orbitals q

have the same form. Then from Eqs. (4.4) and (4.12),
and the linear character of Eq. (4.2), it follows that

On substituting Eq. (4.9) into Eq. (4.7), one finds v, (r)= P; V.(r—R;)+P; V;(r—R;)

P;(r) = d pe'&i" &

(2m-)'~ „
&(p)

p'+H(p)
(4.11)

atoms ions

—(e,) dr V, (r). (4.18)
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atoms iOIIS

Thus the mobile electron density is expressed as the
sum of contributions associated with each atom and
ion; the potential energy fluctuation v, (r) is similarly
expressed as a sum of contributions from the atoms and
ions, minus the average value of these contributions.
The possibility of expressing e, (r) and e,(r) in this way
depends entirely on the linearization of the theory re-
sulting from the assumption, expressed in Eq. (3.20),
that the mobile carrier density is a linear functional of
the potential energy Quctuation. It is this linearization
of the theory that gives it a relatively simple form, but
restricts its applicability to sufficiently small v, (r).

5. HARTREE EQUATION FOR LOCALIZED ORBITALS

In the preceding section we have seen how to deter-
mine the form of n, (r) for any specified i, &, and any
distribution of trapped electrons in localized orbitals
cp;, by a series of quadratures. Physically, one would
expect the localized orbitals to have slightly diferent
forms and energy parameters p;, because of the diferent
relative positions of the other impurity ions and atoms
with which the trapped electron interacts. To make the
problem more tractable, we shall replace the inter-
action of each trapped electron with the neighboring
impurities by an average interaction —the average
taken over all trapped electrons in a fixed random
arrangement of impurity atoms and ions, or, what is
equivalent, an average taken over all configurations of
the impurities surrounding a given trapped electron.
We shall accordingly write

Combining Eqs. (2.12) and (4.18), one can express
the Hartree equation for an electron trapped by an
impurity ion at the origin as

V'+ P V.(r—R,)+ P V, (r—R,)
2m* atoms ions

Averaging over all configurations of the neighboring
impurities, or over all R; (except that of the ion under
consideration), one obtains

(5.3)

by Eq. (4.17), and

Similarly, the mobile electron density is

e, (r) = P; P, (r —R;)+ P; P,(r —R,). (4.19)

tion average is indicated by double angular brackets.
This averaging removes from Eq. (5.2) all terms repre-
senting interactions with neighboring atoms, while the
average value of the interaction with the E; ions in the
crystal cancels out against the fourth term. Thus one
obtains

=~~(r) (5 5)

The dependence of this equation on q can be made
completely explicit by use of Eq. (4.15) for V, :

V'+V;(r) — dr&~ p(r&) ~'
2m*

g2

Use of Eq. (4.13) instead yields

e' e'
t

P (ri)
&'——+— dri q (r) =pq (r), (5.7)

2m* Er E~
I
r —r

which expresses the e6ective potential energy for the
trapped electron as the sum of contributions from its
interaction with the nucleus and with the mobile carrier
distribution I', induced by presence of the nucleus plus
trapped electron.

In connection with Eq. (5.7), it may be well to
emphasize the significance of the present application
of the Hartree approximation. The induced distribution
of mobile carriers is here treated as determined by the
time-average distribution

~ y(r)
~

of positions of the
trapped electron, rather than its instantaneous position.
In effect, the trapped electron is treated as moving
rapidly as compared with the conduction electrons. In
consequence of this approximation, the induced dis-
tribution of mobile carriers, P, (r), is treated as static,
and like the inducing atom, has zero net charge. The
electronic potential energy due to P, (r) falls off ex-
ponentially as r increases; thus the effective potential
energy for the trapped electron assumes the Coulomb
form e'/Er at large r. T—his is in contradiction to
another natural picture of the situation (inconsistent
with the Hartree approximation) which would have the
trapped electron moving slowly at large r in the 6eld
of an ion electively screened by the conduction electron
distribution induced by the ion alone. At least for large
r, the present theory appears to underestimate the
effect of shielding by the conduction electrons, by over-
estimating the effectiveness of the trapped electron in
keeping the conduction electrons away from the nucleus.

(5.4)((V;(r—R,)))=— dr V;(r),
pJ

6. TOTAL ENERGY OF THE SYSTEM

An expression for the total energy of the system has
where V is the volume of the crystal, and the configura- been given in Eq. (2.13).By use of Eqs. (2.4) and (4.19)
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this can be expressed in terms of the localized orbitals
q and the distributions of mobile carriers P, and P;
induced about impurity atoms and ions, respectively.
To this expression we apply the process of configuration
averaging, as discussed in the preceding section. The
calculation is elementary, but requires a little care.
Let E and E; denote the number of impurity atoms
and ions, respectively. Then one finds

((~»=((r.'f(') '»+E.
8 p t

drdr—E, P;(r)P, (r')

t,' p p drdr'
P.(r)P.(r')

2X" " lr —"I
e'

I p drdr'
+—,I ~(r) I'P.(") (6 1)

K~ ~ [r—r'[

As usual, the total energy appears as the sum of the
Hartree parameters of the occupied orbitals, corrected
by subtraction of the interaction terms that are dupli-
cated when one considers each electron in turn. Here
the configuration average of these subtracted terms is
expressed as the sum of the self energies of the mobile
carrier distributions induced by each ion and atom,
plus the energy of interaction of each trapped electron
with the carrier distribution induced about the same
center.

Configuration averaging has removed from Eq, (6.1)
all terms that refer explicitly to interactions of charge
distributions associated with different impurities. The
interaction of impurities is now entirely implicit in the
dependence of P;(r) and P, (r) on l, which depends on
S; and T, and is ultimately determined by T and the
total impurity concentration.

The relation between the number E; of mobile
electrons and the parameter f is implicit in Eq. (3.19).
To average this equation over all configurations of the
impurities, one can use Eqs. (4.18), (5.3), and (5.4) to
find

is the electron density in an ideal unperturbed semi-
conductor with the given l' and T. For a fixed number of
impurity atoms,

E=E +E;, (6 5)

Eq. (6.3) provides an implicit relation between E; and

f that depends on the values of E and T. (The de-
pendence of the integrals on f must not be forgotten. )
The complexity of this relation, as compared with the
usual Eq. (6.4), arises from the fact that the theory
takes some account of the change in the energy dis-
tribution of the conduction levels caused by interaction
of the conduction electrons with the impurity atoms
and lons.

A quantity of fundamental interest in the theory is
the average energy change per electron removed from
a localized level:

B((»&
(6.6)

BE~ ~, r BE, ~, r, r BE, ~, r Bf N, x;,v'

The first term on the right could be computed from
Eq. (6.1), after properly expressing ((f(e;)e;&) as a
function of E, E;, l, and T; it represents the average
energy required to bring into the conduction band an
electron trapped by an isolated impurity, i being held
constant. The second term could be computed by use
of Eqs. (6.1) and (6.3); it represents the additional
energy required, on the average, because of the change
in the interaction of the ionized impurity with the other
impurities, and the associated changes in the self-
energies of the charge distributions around those other
impurities. It would be complicated and unnecessary to
disengage these terms from each other before completing
the calculation.

/. CALCULATION OF THE FREE ENERGY

In preceding Sections we have seen how to calculate
((E&), the contribution of mobile and trapped carriers
to the internal energy of the system, as a function of E,
T, and f or E;. It remains to determine the physically
occurring values of f or (E,) as a function of E and T.
These are the values that minimize the free energy

(( ( ) ( ))&=E.((V.( )V.( )))
+E,(«,(")V;I"))&, (62)

F(E,Tg') = ((E&)—TS(E,T,t). (7 1)

after neglect of the quantity —E,((V;))', which is of
higher order in 1/V. Insertion of Eq. (6.2) into Eq.
(3.19), and application of Eqs. (4.7) and (4.14) yields

1 Ã
E;/V= ((e,&)=no(i, T)— —

~ drP. (r) V.(r)
2kT V &

S; p
+—

I drP;(r) V;(r), (6.3)
y8

where

The entropy S is given by

S=k lnW= k 1nW,+k 1nWi, (7.2)

where 8' is the number of ways of choosing occupied
orbitals, localized and unlocalized, consistent with the
specified values of E, T, and i, and W, and W~ are the
number of ways of choosing conduction and trapping
orbitals, respectively.

The number of ways of distributing S =E—E;
electrons over g impurities is

(27rpt kT) *

moQ, T) =2~
(

e&"r
] (6.4)

E.
2N—Ni

E . f (E—E;) I

(7.3)
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the last factor taking account of the two spin possi-
bilities for each electron. The corresponding term in
the entropy can be written, using Sterling's approxima-
tion, as

Sz
——k lnW z

——k( (1V—1V;)Lln2 —ln (1—1V;/1V) )
1V;—1n(1V,/1V)). (7.4)

The other entropy term, S„can be expressed in
terms of the distribution function f(e) LEq. (3.1)) by
familiar methods. ' Let p(c) be the density of conduction
band levels, both spins included. Then H/, is the number
of ways of distributing Z; f=(e,)p(e~)Ae; electrons over
1V;=p(e~) Ae; levels in each of the energy ranges Ae;, and

8. THE MOBILE CARRIER DISTRIBUTION P;(r)
INDUCED BY AN IMPURITY ION

The calculations in the present work have been based
on use of a simple analytical approximation to the dis-
tribution function P, (r), which must now be discussed.

The exact form of P, (r) is given by Eqs. (4.10) and
(4.11). On substituting into Eq. (4.10) the form of Z
given in Eq. (3.9), and carrying out the integration over
directions of r, one obtains

2zrlrrzp(i, T) z"
dr sin(Pr) exp( —kTr'/D). (8.l)

p J,
Let

S,=k lnW, = —k dep(e) and define"

q= ,'p(D/k-T)&, (8 2)

)&(f(e) lnf(e)+L1 —f(e)) 1nL1 —f(e))). (7.5)

Separate calculation of this quantity is unnecessary: it
is more convenient to associate it with the corresponding
term in ((E)),

(7.6) One can then write

=exp( —q') dh exp(x'). (8.3)J 0

4m.e'

and to compute

P.= &(E~f(e') '))—TS' (7 7)

With the assumed Boltzmann form of f(ez), this becomes

dep(e)(if(e)+kTI I—f(e))»l:I—f(e))) (7 8)

Treating f as small throughout the conduction band,
one can replace (1—f) ln(1 f) by f; —the integration
then yields

O(0) =1, (8.5)

0 (q)—1/2q', for q) 10. (8.6)

In the classical limit, h —+0, D —+0, and q
—+0. In

this limit one can replace H(p) in Eqs. (4.9) and (4.11)
by

&(p) = o(t', T) o'(q)
EkT

The function qO'(q) has been tabulated and discussed
by Rosser. "Here it is sufFicient to note that

F.=1V;(f—kT).

With this approximation we have

(7.9) 1 4me'
np (i,T),

rg' EkT
(8.7)

I
drdr

P;(r)P;(r')

+ (1V—1V;) p —kTI ln2 —ln(1 —X~/1V))

e' J.
I

drdr'

,
P (r)I:P.(r')+2

I p (r') I') (7 1o)

where p, P,, P„and zp all depend implicitly on t, and

f and 1V; are related by Eq. (6.3).

z H. A. Bethe and A. Sommerfeld, Pazzzfbzzek der P1zyszk (Verlag
Julius Springer, Berlin, 1933},Vol. 24, Part 2, p. 34.

and carry out the integrations without difficulty, to
obtain

V, (r) = —(e'/Er) exp( —r/ry), (8.8)

P,,(r) = (1/4rrrrsr) exp( —r/rr). (8.9)

The potential V;, due to an ion in the crystal thus
appears as a shielded Coulomb potential, with range of
the order of the distance ry. The length r~ is identical
with the characteristic length that appears in the
classical theory of potential fluctuations in semi-
conductors. " The infinity in P;,(r) at the origin is a

"The equivalence of the two forms for I=qO(zf} can be estab-
lished by noting that both satisfy the first-order equation dI/dg
=1—2' and assume the value 0 when g=0.

» J. B. Rosser, Ofhce of Scientific Research and Development
Report OSRD No. 5861 (unpublished).

'z G. W. Lehman, M.S. thesis, Purdue University, 1950 (un-
published}; also available as a Signal Corps Report.
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peculiarity of the classical limiting form, and appears
neither in the exact quantum-mechanical result, nor in
the approximate one next to be derived.

Convenient analytical approximations to P;(r) and
V, (r) can be obtained by introducing a simple approxi-
rnation to 0~(q). Equations (8.5) and (8.6) suggest that
one may be able to approximate O(q), with sufficient
accuracy for present purposes, by an expression of the
form 1/(1+de'). Here it is desirable to choose d so that
the approximation has its first and second derivatives
correct at the origin.

latter equation and integrating, one Ands

e2 1+3/+ P

2Kr. (1+P)3
(8.17)

(8.10)

This is a good approximation for small q, but it is in
error by a factor of 3 when g is large. For large q, how-
ever, O(q) is small, and contributes little to the de-
nominator in Eq. (4.9). We write this denominator as

9. APPROXIMATE FORM OF THE LOCALIZED
ORBITALS

Having determined the form of U, (r), one can turn
to the solution of Eq. (5.6) for the localized orbital
q (r) Av.ariational method will be used here to deter-
mine a simple approximate form for this orbital.

Solution of Eq. (5.6) is equivalent to finding functions

q (r) that make

A2

where g is a parameter defined by 11(V')= «p*(r)— |7'+V;(r) q (r)
2m*

6kT P 4me'

Numerical checks show that replacement of 0 in Eq.
(8.11) by 0, will introduce an error of no more than 12
percent for any q, so long as )&~i, as is the case in
most of our calculations; the corresponding approxi-
mate forms of V;(r), and P;(r) should be correspond-
ingly accurate. With this approximation, the integra-
tions in Eqs. (4.9) and (4.11) are easily performed by
contour integration. One Ands

(9.1)

stationary to variations of p(r) that maintain its
normalization. The corresponding value of p can be
written in terms of integrals involving V;(r), or, as is
most quickly evident from Eq. (5.7), as

g2

K(1—P) r

&&/exp( —r/r, )—P exp( —r/gr, )$, (8.13)

where

&Lexp( —r/r )—exp( —r/&r )j

(8.15)

These approximations will be used henceforth. Ele-
mentary integration yields

1+5+@
2Kr, (1+$)'

(8.16)

The approximate forms in Eqs. (8.13) and (8.14)
satisfy Eq. (4.5), and hence Eq. (4.6); applying the

We are interested in the form of y that makes H(p) an
absolute minimum. The functional p(y) is not sta-
tionary with respect to deviations of p from this form,
but, as in any Hartree calculation, the total energy of
the system is stationary with respect to variations of
the orbitals p, if the other orbitals f (and thus P, and
P ) are held constant.

Equation (5.7) expresses the efFective potential
energy for a trapped electron as the sum of a Coulomb
term and a contribution due to the presence of an
induced distribution of carriers about the impurity
atom. Since the inducing charge distribution has total
charge zero, the induced distribution P, (r) of carriers
will have total charge zero, and, moreover, will tend to
be small in magnitude everywhere. Thus the potential
energy term due to the induced carrier distribution can
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be expected to be very small; the total eA'ective po-
tential will be nearly of Coulomb form, and p(r) will
be approximately of hydrogenic form. For simplicity,
we shall base our calculation on the use of an approxi-
mate orbital of hydrogenic form,

f(n) =
11n4+28n'+15n'

(1+n)'

To minimize H(&p), one must have

(9.11)

q (n, r) = — exp( —nr/2r, ),
S~r,'

(9.3)
0,'1 Q—=1+— (g(n) —A(tn)),
np 161—P

(9.12)

where
x=r/r„ (9.5)

Ag ——

(nP 1)P

n4(4
A2= 1

p

(nPgP 1)2

$2

A3=0t2

(9.6)

where o. is an adjustable parameter so chosen as to
extremalize H(p). The adequacy of this approximation
will appear later.

On using this form of y, together with our approxima-
tions for V; and I';, one can compute the free carrier
distribution about a neutral impurity by use of Eq.
(4.16). One finds

1
P, (r) = —

I

—Ai exp( —x)+Ap exp( —x/$)
4n-(1 —P)r, ' x

+ (Ai —A2 Apnx/2) exp( —nx) j, (9 4)

where

a(n) =
75n'+ 119n'+65n+13

(1+n)'
(9.13)

For )&4 and ap) 4, the cases in which we shall be
particularly interested, Eq. (9.12) shows that n/np is
very nearly equal to 1; at worst, for (=xi, np ——4, one
has n/np=1. 007. We shall therefore take n=np in all
the calculations that follow. Equations (9.3) and (9.10)
show that this amounts to neglecting the change in
form of the trapped electron orbital due to the free
carrier distribution induced about the neutral impurity.
The small deviation of o. from ep suggests that the use of
hydrogenic orbitals is an adequate approximation, and
this is confirmed by test calculations of V;„which
show that this quantity is small and roughly constant
in the region where q is large.

The total electronic potential due to an impurity
atom is V,, plus the potential due to the unshielded
impurity atom:

ep ( nr)
V, (r) = V;,(r) ——

I 1+—
I exp( —nr/r, ). (9.14)x.i

n'P —1 n' —1 In calculating X;/V by Eq. (6.3) and F by Eq. (7.10)
we shall neglect the very small integral

The contribution of this induced carrier distribution to
the electronic potential energy is r drdr'

P.(r)P, (r') =—
~

drV, .(r)P, (r). (9.15)
Ir —r'Ig2

V;.(r) =
I By exp( —x) —Bp exp( —x/()

2Er

where

To this approximation one finds+ B2 Bi+Bpnx exp —n$, 9.7—
Bi=2A i/(1 —P)
Bp= 2PAp/(1 —8)
Bp ——A p/nP (1—P).

A tedious calculation based on Eq. (9.1) yields

(nq' Sn 1 n
&«)=&p

I

—
I
———

Enp) 8 np 8(1—P) np

(9.8)

d rV.(r)P.(r)—
2Er, 8n(1 —P)

where
X I:&(n)—h(&n)1, (9 16)

25n'+36n+13
h(n) =

(1+n)'
(9.17)

With our choice of p(r), Eq. (9.2) for p, becomes

X{f()—Pf(g )), (9.9)

np 1 Ep

2r, ap e'/2Z'
(9.10)

where Ep is, as previously defined, the ionization energy
of an isolated iInpurity, np is defined by the relation

e' p p drdr'
ii = —8 +— P.(r) I

pp (r')
I

'. (—9.18)Z» Ir r'I '—
The last integral in this expression also appears ex-
plicitly in Eq. (7.10) for F, but cancels out when this
value for p is introduced. Evaluation of this integral is
therefore unnecessary unless it is desired to determine

p as a function of S; and T.
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10. PARAMETRIC EXPRESSIONS FOR THE
FINAL RESULTS

The calculations and approximations described in
previous sections bring the problem into the following
form. The conduction electron density is related to
T, f, and the impurity density E/V by Eq. (6.3). By
use of Eqs. (8.16) and (9.16), this can be written as

1+5+8
((e.» 1- +

4KkTr, (1+P)s 8«(1—P)

In terms of $, one has

2= (1+(2)/(2r

spQ. ,T) = r~p/3rrspp(1+/)

r 2 —go2 (]+ t2) /4r(2

Equation (10.1) assumes the form

3 1+/+/ 1
+ —,(k(~p) —k(~«))

2~or - (1+5)' 8~p(1 —2)

(10.7)

(10.8)

(10.9)

X (k(«) —k($rro)) =«(f,T)

E e'
(k(~p) —k(E~p)) (1o.1)

U 4KkTr, 8np(1 —P)

3n'$2r2

and Eq. (10.2) the form

(k(no) —h(tarp)), (10.10)
(1+$2)2 16Qpsr(1 —P)

3 1+3(+P
+ln (ii,/rl, )—

2npr (1+()s

where k(n) is defined by Eq. (9.17), and «, f, r„and «F kT
are defined as functions by T and f by Eqs. (6.4), —= ri. »L(6sr)'8/(1+t')'j
(8.12), (8.15), and (9.10), respectively. The electronic
free energy per unit volume, as given by Eq. (7.10),
becomes, on use of Eqs. (8.17) and (9.18) and neglect
of the smallest integral,

p—= «-.» i--kTL1-»(«(-.»/»j
V

e' 1+3/+@ S
+ —((~.&&

4Kr, (1+$)' U

X f —Ep+kT lnL(cV —U((N »)/21V$) (10 2)

The physically significant value of l is that which
minimizes F, for fixed T and X/V. Given this, all
other quantities of interest can be calculated.

The carrier density depends on T, 1V/V, and the two
constants that characterize our model of the pure semi-
conductor: E and vs*, or the binding energy Eo and
radius ao of the impurity orbitals at zero impurity con-
centration, as defined by Eqs. (1.1) and (1.2). The
present theory establishes a relation between just three
dimensionless parameters:

r = sokT/Ep, -
which characterizes the temperature of the system, and

ii'= (1V/V) 3s &os, (10.4)

ii,= ((e,» 3praps, (10.5)

which characterize the impurity and carrier densities,
respectively. Except for a numerical factor of the order
of 1, introduced to simplify numerical calculations, q;
and g, are the average number of impurities and free
carriers in the volume occupied by a trapped electron
orbital.

For practical calculations it is convenient to replace
1 as the adjustable parameter by $ )see Eq. (8.12)j:

(6s r) **//(1+@)'=exp(l/kT), 0 &(&1. (10.6)

3
+ (rj, ii,) ——j—ln((rl; —rl,)/2~i;) . (10.11)

27.

(BF/c) t).,„=0 (10.12)
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FIG. 1. Ratio of carrier concentration to impurity concentra-
tion, plotted against reciprocal tern erature for various impurity
concentrations e; /see Eqs. (10.3), 10.4)j.

The last two equations define 3rra'F/VkT as a function
of r, ii, , and $ only. Solution of
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6xes $ as a function of r and ri;, 'whereupon Eq. (10.10)
gives p, as a function of these quantities.

I.O—

As thus defined, AE is the ionization energy required in
the usual model of noninteracting impurities if a con-
centration 1V/V of impurities is to give rise to a con-
centration e, of carriers at temperature T. The ratio of
hE to the ionization energy at zero impurity concentra-
tion, expressed in terms of our dimensionless parameters,
1S

(112)

Figure 2 shows m as a function of impurity concentra-
tion, for a series of values of temperature; it shows also
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Fro. 2. Solid lines give hE/Eo as a function of impurity con-
centration, for several temperatures r, according to the present
theory. Dashed lines indicate the temperature-independent re-
sults of the theories of Shifrin and of Bardeen and Pearson.

11. RESULTS AND CONCLUSIONS

The calculations described in the preceding para-
graph have been carried out on the punched card digital
computer of the Purdue Statistical Laboratory, using
a method of successive approximations. They have been
limited to ranges of the parameters for which $(4, to
assure the accuracy of the approximations for t/"; and
P; (Eqs. (8.13) and (8.14)], and for which I (—2kT,
to assure reasonable accuracy for the assumption of
classical statistics for the electrons in the conduction
band. The basic results of the calculations are pre-
sented graphically in Fig. 1, where the ratio of carrier
to impurity concentration is plotted as a function of 1/r
for various impurity concentrations. Curves for g;=10
and p;=100 would be scarcely distinguishable from
that for q;=1.

The difference between the present theory and earlier
ones appears more clearly in Fig. 2. The relation be-
tween the densities of carriers and impurities at a given
T can be expressed in terms of an effective ionization
energy:

Q75

0.5

Q25

IO

Fro. 3. Dependence of hE/Eo on reciprocal temperature,
for various impurity concentrations.

the temperature-independent values given by the
theories of Shifrin and of Pearson and Bardeen. The
present theory gives about the same reduction in
activation energy by impurity interaction as do the
other theories when the temperature is relatively high,
but a much smaller reduction at low temperatures,
where the carrier concentration is low.

The most striking result of the present theory is the
strong predicted dependence of effective activation
energy on temperature, when the impurity concentra-
tion is high. This is shown most clearly in Fig. 3, where
~ is plotted against reciprocal temperature for various
impurity concentrations. The existence of a minimum
in the curves, for not-too-high impurity concentrations,
is easily understood. When v is reduced from its value
at the minimum, m tends to increase because the carrier
concentration is decreasing, and with it the shielding
e6'ects that tend to reduce the activation energy. On
the other hand, m increases when v is raised, because
the relatively smaller increase in carrier concentration
is overbalanced by the decrease in polarizability of the
electron distribution, which also tends to diminish the
shielding eGects. The curves for the larger values of g;
presumably approach 1 as 1/r goes to zero, but no
attempt has been made to compute this part of the
curves.

The theory predicts that the family of plots of lne,
against 1/T, for different impurity concentrations, will
always have the same form for all semiconductors with
the simple band structure discussed here, and for all
impurities describable by the hydrogenic model. More
precisely, the plots will diGer only by a vertical displace-
ment determined by the value of as or E'm/no*, and
by a horizontal scale factor determined by the value of
Es or m*/mE'. If E and m* are known from other
sources, a family of theoretical curves can be super-
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FrG. 4. Solid lines
give carrier concen-
tration as a function
of 1/T, for various
impurity concentra-
tions in a semicon-
ductor with %=16,
m*= 0.25m, accord-
ing to the present
theory. The points
give experimental
data on six samples
of n-type german-
ium, "as obtained by
Debye and Conwell.

'3 The present calculation can be extended to band structures
such as those of n-type Ge and Si without appreciable dif5culty."P.P. Debye and E. M. Conwell, Phys. Rev. 93, 693 (1954).

imposed on a family of experimental curves with-
out arbitrary adjustment of any factors. Figure 4 shows
such a family of curves, drawn for E= 16, m*/m = s.

Even though the band structure of germanium and
silicon is more complex than that assumed in the present
model, " it is tempting to compare experimental data
for these materials with the theory, anticipating that
the tensor effective mass may be replacable by some
mean as*. As an example, we take the carefully analyzed
data of Debye and Conwell" for e-type germanium.
Figure 4 shows experimental data taken from their
work (Fig. 10), in comparison with theoretical curves
calculated for the observed value of E and a generally
appropriate value of m*—actually that used in the
theoretical analysis of Debye and Conwell. In the case
of the purer samples the fit is generally satisfactory,
except that the observed carrier densities begin to fall
more rapidly than is indicated by theory as 1/T be-
comes large. That this effect is due to the presence of
acceptor impurities is already indicated by both the
mobility and the concentration data of Debye and Con-
well. On the other hand, the experimental data on the
less pure sample 61 of Debye and Conwell deviates
from the experimental curves in a way that cannot be
attributed to the presence of acceptor impurities.
Debye and Conwell 6t a theoretical curve to this data
by assuming a decidedly lower activation energy (0.007
ev) than is predicted by the present theory. It seems
clear that the present theory, at least as applied to
germanium, underestimates the decrease in activation
energy at high impurity concentrations.

The observations of Morin and Maita" on m-type
silicon deviate from the theory in a somewhat similar

way; for instance, the behavior of their sample 126 of
silicon doped with arsenic suggests that the impurity
activation energy is temperature dependent and con-
siderably lower than would be predicted by the present
theory. (The larger value of Es and the smaller value of
ao make the continuous dielectric model of the semi-
conductor less reliable here than in the case of
germanium. )

Replacement of the scalar m* by a tensor effective
mass would make it easier to compare the theory with
observations on germanium and silicon. It is probable,
however, that the most serious approximation in the
present theory is the use of a linearized relation be-
tween the carrier density Quctuation and the potential
fluctuation [Eqs. (3.19) and (3.20)), and that this is
responsible for the underestimate of the decrease in
activation at high impurity concentrations. It appears
that this approximation can be removed by use of the
methods of Friedel, "together with other simplifications
suggested by the outcome of the present work. In
principle, the theory can also easily be extended to ma-
terials containing both donor and acceptor impurities-
an extension that is certainly required if careful quan-
titative comparison is to be made with existing experi-
mental results.

Morin and Maita have shown that it is often, though
not invariably, possible to obtain impressive agreement
between experimental data on carrier concentration
and a theory based on the assumption of constant acti-
vation energy, if one uses as parameters adjustable
separately for each sample the concentration of lna-
jority and minority impurities, the activation energy of
the majority impurity and, independently, the eGective
mass of the carriers. However, in view of the strong
indication given by the present theory that the effective
activation energy is strongly temperature dependent
when the impurity concentration is high, it seems rea-
sonable to attribute their success in part to the multi-
plicity of their parameters, and to doubt the physical
significance of the exact values assigned to these
parameters. This is in line with the doubts expressed
by Morin and Maita as to the significance of the mass
parameter determined by their method. It therefore
seems to the authors that further theoretical study of
the dependence of impurity activation energy on con-
centration and temperature is called for.

r~ F. J. Morin and J. P. Maita, Phys. Rev. 96, 28 (1954)."J.Friedel, Phil. Mag. (7) 43, 153 (1952); Ann. phys. 9, 158
(1954).


