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Two theories of the temperature dependence of ferromagnetic anisotropy in cubic crystals, the nearest-
neighbor quadrupole-quadrupole coupling theory of Van Vleck, and the more recent classical theory of
Zener, seem to be contradictory. Xt is shown that these theories are, respectively, high- and low-temperature
approximations to the same physical picture: namely, an anisotropy which decreases with rising temperature
due to statistical Quctuations from alignment of anisotropically-coupled neighbor spins. Zener s low-tem-
perature approximation shows that the anisotropy decreases as the tenth power of the magnetization,
Van Vleck s high-temperature approximation yields a lower power law. It is argued that most of the ani-
sotropy has vanished before suKciently high temperatures are reached for Van Vleck's approximation to
be appropriate. Van Vleck s nearest-neighbor dipole-dipole coupling theory, which has no classical analog
and cannot be compared with Zener's theory, is discussed from a spin-wave picture.

I. INTRODUCTION

'HE standard theoretical study of the temperature
dependence of ferromagnetic anisotropy in cubic

crystals has been given by Van Vleck. ' Recently Zener'
has proposed a very simple classical theory which, at
erst sight, seems to be at variance with Van Vleck,
both as to method and as to results. It is the purpose
of this paper to show that the methods of Van Vleck
and of Zener are different limiting approximations of
the same physical picture. We shall attempt to arrive
at the true state of affairs by taking a judicious middle
path between these two limiting approximations.

Van Vleck considers the anisotropy to originate
from an indirect coupling between nearest-neighbor
spins i and j produced by the series of interactions:
spin i—orbit i—crystalline field —orbit j—spin j. The
effective coupling energy is then expanded into a dipole-
dipole term

%11-p(;,,l c,,LS; S, 3r;; —(S; r—;,)(S; r;;)j, (1)
plus a quadrupole-quadrupole term

&o=Z(', ) 7'~' '(S' r')'(S "r')' (2)

Here r;; connects nearest neighbors, and C;; and y;;
are coupling constants, considered temperature-inde-
pendent and acting only between nearest neighbors.
The temperature dependence of the resultant anisotropy
is caused by statistical deviations of S; and S; from
maximum alignment.

In a cubic crystal whose bulk magnetization vector
makes direction cosines ni, n2, e3 with the three cubic
axes, symmetry restrictions require the anisotropy to
be an expression of the form

It 1((rl (22 +E12 (22 +(12 Erl )+E2(rl (12 (12 + ' '
~ (3)

Van Vleck's calculations are numerical, and he gives
his results in tabular form. For convenience we express

the temperature dependence of the anisotropy as a
power of the temperature dependence of the mag-
netization:

E,(T)/E', (0)= LM (T)/M (o)j-.
In Fig. 1 we present Van Vleck's results in terms of
the exponent e.

The anisotropy coming from Xg, as evaluated in the
molecular-field approximation, behaves with an ex-
ponent e dropping slowly from 6 to 5 as the tempera-
ture decreases. Van Vleck also gives an improved
calculation, in which part of the exchange energy is
taken explicitly into account; in this calculation the
exponent e drops from 10 to 5. For the anisotropy
from KD the exponent rises slowly from 2 to 4 as the
temperature increases. In Fig. 1 the values of the
magnetization are determined in the same theoretical
approximation as are the values of El.

Van Vleck makes no attempt to evaluate the tem-
perature dependence of E~.
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PIG. 1. The exponent pr in Eq. (4) plotted against M(T)/M(p).
Curve (A), Zener's tenth-power law; curves (8) and (C), pan
Vleck's quadrupolar results; and curve (D), Van Vleck's dipolar
result. In all cases M(T)/M(0) is evaluated in the same theory
as is the anisotropy.
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Zener's method, on the other hand, is both classical
and macroscopic. He considers the crystal to be com-
posed of many small regions of unspecified dimensions,
and in each region the magnetization vector is taken as
constant in length but subject to random fluctuations
in direction. The anisotropy energy of each region is a
function of the direction of magnetization in that
region, the functional form being taken as Eq. (3).
Local fluctuations in the directions of magnetization
then give rise to a temperature dependence of the total
anisotropy energy of the crystal. Zener then evaluates
the net effect of the fluctuations by a random-walk
calculation. He finds the exponent in Eq. (4) to be
10 for E~ and 21 for E2, independent of temperature.

Both Van Vleck and Zener obtain their temperature
sects from statistical deviations from maximum align-
ment. Van Vleck's calculation is somewhat cumbersome,
but his interactions are quite explicit and his approach,
except for the use of the molecular 6eld, is quantum-
mechanical. Zener's approach, although giving a classi-
cal fuzz to the nature of the interactions, is very direct
and simple, and his mathematical methods are ex-
tremely powerful. For example, he is able to evaluate
the temperature dependence of Its [and indeed of all
the other constants in the expansion (3)g in a quite
general manner.

As pointed out by Van Vleck, an interaction of the
form KD is incapable of yielding the anisotropy of
Eq. (3) in a classical approximation. This is because in
K~ the direction cosines of r,; appear at most in the
square, whereas Eq. (3) is at least quartic in the
direction cosines of the resultant bulk magnetization.
Quantum-mechanically, however, because of terms non-
diagonal in P;5,*, the dipole-dipole interaction in a
cubic crystal does give rise to anisotropy. This ani-
sotropy is calculated by Uan Vleck by means of
second-order perturbation theory, and the temperature
dependence is evaluated in the molecular-field approxi-
mation. In Sec. VII of this paper we discuss this tem-
perature dependence and conclude that Van Vleck's
molecular-field method gives too high a value of the
exponent in Eq. (4).

However, we are concerned here principally with the
interaction Kq, which classically is capable of yielding
an anisotropy of quartic form. Only for this interaction
can the Van Vleck and Zener theories be compared,
since only for this interaction do the two theories
represent the same physical reality.

II. VAN VLECK'S APPROACH TO $Cg

In the quadrupole-quadrupole Hamiltonian (2), the
spins are quantized with respect to the axis of mag-
netization. To exhibit the anisotropy it is necessary
to transform Eq. (2) into an expression involving

n;;, P;;, y;; (the direction cosines of r;; with respect to
the crystal axes) times an expression involving ni, ns, ns
(the direction cosines of the crystal axes with respect to
the axis of magnetization). This transformation is given

in detail in Sec. 11 of Van Uleck's paper, ' and we shall
not reproduce it here. (We shall present a similar
transformation in the next section. ) When account is
taken of cubic symmetry, the result may be written

~o=&o+sfls[fi+ fsj[ni'ni'+ns'ns'+ns'ni' j (5)

Here Ho is isotropic. The quantity 05 is a lattice sum
which is temperature independent:

fl.=-~E v [1-&( V'+e 'v, '+v ")7. (6)

The factor -', before 05 is a correction as noted in a
subsequent paper by Van Vleck. '

The temperature dependence of the anisotropy is
contained in the factor

[f,+f,7=2„, .„,.&(5,') [(5,') ——;(5,') j
——,'S,~S,"(5;~5;"+5;"5;~)). (7)

Since Kg is small compared to the exchange part of the
ferromagnetic Hamiltonian, we may evaluate the ani-
sotropy energy by taking the expectation value of (7)
with respect to the exchange (first-order perturbation).
To facilitate calculation we now introduce the operators
5+=5*+sSi'. Dropping all terms in (7) nondiagonal in
S+S, we then obtain

(f.+f)=(I l(5")'- 5(5+1)3[l(5,*)'--'5(5+1)j
+—'

I
(5')'(5 )'+(5' )'(5~+)'j

——,'(25 —1)S,+5; (25 *—1)
—~i 5; (25,'—1)(2S '—1)S;+). (8)

The problem of the temperature dependence of the
anisotropy constant E& is now reduced to the evaluation
of (8). The rapidity with which (8) goes to zero as the
temperature increases will depend upon the correlation
assumed between the directions of neighbor spins,
S; and S;. Unfortunately, we have no exact way of
taking into account this correlation. However, the
several approximations considered below put well-
dedned limits on the temperature dependence.

III. LIMIT OF NO CORRELATION —THE SIXTH
POWER LAW FOR $Qq

The limit of no correlation between neighbor spins
has been considered in detail by Van Vleck. ' Each spin
is independently quantized in a molecular field, and
Eq. (8) reduces to

(fi+fs) =[s(~')—sS(5+1)3' (9)

Here (m') is the expectation value of (5 )' in the
molecular field. Van Vleck evaluates (9) as a function
of temperature for 5= 1. His numerical results indicate
a temperature dependence going as (nz)' for T/T, &0.5
and dropping to approximately (m)s at higher tempera-
tures. Here (m) is the calculated Brillouin function for
S= 1, and not the experimental ratio M(T)/M(0). We
show Van Vleck's numerical results in Fig. 1.

3 J. H. Van Vleck, Phys. Rev. 78, 266 (1950), footnote 13.
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A simple physical picture of the eBect of temperature
on the anisotropy energy may be achieved as follows:
We apply the molecular-field approximation directly to
the Hamiltonian (2). Since S; and S; are independently
quantized, we may expand (r;; '(S;.r;;)') in a series of
I.egendre polynomials P„(8;;) where 8;, is the angle
between r;; and the axis of quantization. Reversing the
direction of r;; cannot change the sign of (S; r;;);
hence the odd Legendre polynomials cannot appear in
the expansion. Furthermore, since the direction cosine
between S; and r,; is present only in the square, no
polynomials beyond P2(8;;) can appear. Thus

(r,;-2(S; r;,)')=~P, (8,;)+bP, (8;;). (10)

The coeKcient a is determined by averaging over all
directions 8;;. In this average P2(8;;)—+0 and the left
side of (10), regardless of the "direction" of S;, goes to
the unweighted average of all possible values of ng'.

Hence

(sm2) =a+ b. (12)

When (11) and (12) are inserted into (10), we have

(r;; '(S, r;;)')"=-'5(5+1)+[(stt')——'5(5+1)jP2(8,;),

and hence,

&~(t)=~1+[(~')—25(5+1)j'Z(', a V'

X[-; o '(8;;)j'. (13)

In the above equation we have lumped some of the
isotropic terms into E&. As we have noted, the angles

9;;are defined with respect to the axis of quantization.
We now let this axis make the direction cosines e&, n2, n3

with the crystal axes. On taking account of the cubic
symmetry we find

+(', n 'Y't[-' cos'(8' )I'
+2+ 4()p(421 422 +&2 423 +(22 &1 1)) (14)

where E2 is isotropic and Qp is given by Eq. (6). We are
thus led to Van Vleck's expression Eq. (5) above, with

(f1+f2) as given by Eq. (9).
In the classical limit (large values of S), we note

from Eq. (9):

(f1+f2)= [P2(8)j' (15)

where 6 is the angle between the direction of the classical

spin and the axis of magnetization. We could have
obtained this temperature dependence of the anisotropy
of a classical spin directly from the Hamiltonian (2) on
using the addition theorem for Legendre polynomials.
Thus we see in a very direct way how the temperature
effect arises from statistical Quctuations.

S
stt2=-'5(5+1).

25+1 ~s
To determine the coefficient b we let 8;;=0.Then (10)
reduces to

It is interesting to calculate the temperature de-
pendence in the classical limit. We have

where

(P„(2:))= P„(z)e-ch
—1

e =gPH/kT.

Pp(x) e'*Ch, (16)

Here II is the molecular field. In terms of the Bessel.
functions of imaginary argument, 4

(P.(*))=I —:(e)/~:(). (17)

For n=1, the right-hand side of (17) reduces to the
familiar I,angevin function.

In the limit of large e (low T), Eq. (17) yields

(18)

Thus the classical limit, as well as Van Vleck's case
S=1, starts out with a sixth-power law. In fact, for
the entire temperature range there seems to be no

significant difference between the classical and quantum-
mechanical averages when expressed as functions of (sl),

IV. LIMIT OF COMPLETE CORRELATION —THE
TENTH-POWER LAW FOR SCAN

The limit of complete correlation has been considered
by Zener. ' In this limit a region of spins may be thought
of as pointing in the same direction and moving to-
gether as a unit. Zener considers the total spin of this
region to behave in a classical way. The anisotropy
energy of the region depends on the direction cosines
of the total spin in a manner described by Eq. (3). As
the temperature rises the various correlated regions of
spins will point in diGerent directions, and the total
anisotropy will be a statistical average of expressions
of the form of Eq. (3).

We may derive Zener's result from Uan Uleck's
approach. We let the direction of S; coincide with the
direction of its neighbor 5;. From Eq. (8) we then
obtain

(f1+f2) = —',(35(sst4) —5[6S(5+1)—51(stt2)

+35(S+1)[5(5+1)—2$), (19)

where S is now the quantum number of the system of
two spins. We note that (19) yields zero for any value
of S less than 2. This is because we are considering
spins S; and S; "locked" together as a unit, and in
order for this unit to exhibit anisotropy in a cubic
field it must behave as a 24 pole.

We have obtained (19) from Van Vleck's calculation,
but it may also be obtained from the quantum-
mechanical analog of Zener's method. As in the steps
leading to Eq. (10), we now assume

(r;; '(S,"r;,)')=cPp (8,;)+dP2 (8;;)+ eP4(8;,).
4 Numerica1 values are given in C. %. Jones, A Short Table for

the Bessel FNNetiesss I„+,*(ss), (2/2)E„+2(s) (Cambridge University
Press, Cambridge, 1952).
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The constant c is evaluated by averaging over all
directions 6;;:

1 s
nz4= 5(5—+1)(3S'+3S 1). —

2S+1 ~s 15

We may determine d and e from the equations obtained
when 8;,=0:

(m4) =c+d+e,
and when 8;;=s./2:

((5' )')= —ld+ l'
Equation (19) then follows when we invoke cubic
symmetry, and when we use the general relation

&(5,') )=-;((5+5— ))+-', ( )—;(5+5).
We have derived (19) by this alternate method be-

cause it is now clear that if an entire region R of spins
may be thought of as correlated, and not just the
neighbors S; and S;, we may expand

(Z '; '(s'. ')'(s" ')')
=cPo(8;;)+dr, (8;;)1er, (8,;).

Again we are led to Eq. (19), with S now the quantum
number of the total spin of the region. If this spin is
large enough we may make a classical approximation,
and Eq. (19) becomes

(f+f.)=P (8)) (20)

This is precisely Zener's result. We note that in the
limit of complete correlation it makes no difference
whether we use a Hamiltonian involving the inter-
action between neighbor spins, such as Eq. (2), or a
Hamiltonian involving single spins in some sort of an
anisotropic crystalline 6eld. In either case the tempera-
ture dependence of E~ will go as (P4(8)).

It now remains to evaluate (P4(8)) in terms of the
magnetization. Zener does this by imagining the direc-
tions of magnetization of the various regions as points
on the surface of a unit sphere. At O'K all these points
are at the pole of the sphere, and as the temperature is
increased the points are to be envisioned as undergoing
a random walk (diffusing) on the surface of the sphere.
On solving the resultant diffusion equation, Zener finds

This is the same as Eq. (18), except that it holds for all
temperatures, and not just in the low-temperature limit.
The reason for the high-temperature disagreement be-
tween (17) and (21) may be traced to the omission of
any molecular field in Zener's random walk. That is,
Zener assumes it just as probable that a point on the
sphere of diffusion moves away from the pole as it is
that the point moves towards the pole; on the other
hand a IBoltzmann average in a molecular 6eld may be
thought of as a random walk in which the probability

of returning to the pole is greater (random walk in a
6eld of force).

Now if nearest neighbors are to be thought of as
correlated, the ordering eGect generally thought to
take place in ferromagnetism has been completely
taken into account. Thus, in the limit of complete
correlation, we believe Zener's method of averaging to
be correct. It will break down at temperatures at which
neighbor spins move appreciably out of alignment,
that is, at the same temperatures at which the general
method of this section also breaks down.

VI. THE SPIN-WAVE APPROXIMATION TO BC'

By means of the spin-wave approximation we gain
some appreciation of the manner in which the limit of
complete correlation fades into the limit of no corre-
lation as the temperature rises.

Following Holstein and Primakoff5 we define:

S,"=S—e;'S)

5,+= (2S)'*fa

5; = (25)&a;*f;

f s= 1—(I;/25)

(22)

Here e, is the "spin-deviation" and equals u;~a; where
a;* and u, are creation and destruction operators. We
insert the operators (22) into Kq. (8) and make the
following low-temperature approximations:

4 T. Holstein and H. Primakoff, Phys Rev. .58, 1098 (1940).

V. VAN VLECK'S APPROXIMATION OF PARTIAL
CORRELATION IN $Cq

The two approximations of complete correlation and
of no correlation are extremes, representing respectively
low- and high-temperature limits. We now examine a
calculation also given by Van Vleck' in which the corre-
lation is partially taken into account.

Van Vleck focuses attention on the spins S; and S;
for which he is calculating the interaction energy of
Eq. (2). He takes the exchange interaction between
these two spins rigorously into account, representing
only the interaction between these spins and the rest
of the neighbors by the molecular field. The justification
for this method is that the quadrupole-quadrupole
interaction energy between two spins is most sensitive
to the relative alignment of those two spins. However,
since all neighbor spins are coupled together, the form
of the total quadrupole-quadrupole energy will not be
identical to the sum of Van Vleck's partially-corre-
lated terms. Nevertheless, we should expect the results
of this calculation to lie between those of Secs. III
and IV, i.e., between the sixth- and tenth-power laws.

The results are given in Fig. 1 under the label
"Van Vleck Improved. " It can be shown that in the
low-temperature limit the anisotropy goes as (m)". It
drops very quickly to approximately (m)4.
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(1) We drop all terms involving two creation or two
destruction operators on the same spin;

(2) We assume I; is 0 or 1. Thus we set e;s= e;;
(3) We assume f;=1.

The result is

106M 2E
(f,+f,)=(S—-', ) S S— + 1

M(0) SJs I

(30)

where E is the density of spin-wave energy. YVe may
now write (25) in the form

(fi+fs) = (S—')'SLS—6(~')—4(a'*a )j
Introducing spin-wave operators al,* and a~.

(23) To relate E to AM, we note that for spin waves of
small k,

we obtain:

a;=1V—lPs exp( —ik r,)as,
a,*=lV—:Psexp(ik r;)ag*,

(24)
hM c" E'*dE

=const
M(0) "o exp(E/kT) —1

Here
(fi+fs) = (S——',)'S[S—iV

—'Pg e~(6+4ys)g (.25)
E:dE

exp (E/k T)—1

yg
——s-'Ps exp(ik rs), (26)

or

1— =1—s
Ei(0) M(0)

DER AM

Ei(0) M(0)

Now according to the spin-wave picture,

hM/M(0) =iV '+gris. (28)

Comparison of (25), (27), and (28) shows that:
(1) In the approximation of no correlation, since

(a;*a,)=0, we have only the term in (25) with the
multiplicative factor 6. Thus we get a sixth-power law
in agreement with Sec. III.

(2) In the approximation of complete correlation,
only spin waves of very long wavelength are excited.
Thus, in eGect, k=0, and we have the tenth-power
law of Sec. IV.

Now standard spin-wave theory' gives as the energy
of a spin wave of wave number k:

Es =2SJs(1—ys),

where J is the exchange integral. Hence

Qg ei,ys ——Ps vs[1 —(Eg/2S Js)$

(AM E

EM(0) 2SJs)
(29)

where rI,= r;—r;, and the sum is over the z nearest
neighbors j to any spin i.

We have obtained (25) with the aid of Van Vleck's
transformation (Sec. II); the same result can be
obtained, but with more trouble, directly from the
Hamiltonian (2).

Equation (25) points out the correlation problem in a
very illuminating way. If we assume the power law (4)
and introduce

DEi =Ei(0)—Ei (T),
AM=M(0) —M(T),

then, at low temperatures,

Thus,

AM 1.782
kT.

M(0) 2.315

(S+1)Tq ~M
(fi+fs)=(S s)'S—S—

I
10—

I
t. (31)

ST, )M(0)

We have approximated 2Js by [3kT,/(Ss+S)), where
T, is the Curie temperature.

From Eq. (31) we note that the "tenth-power"
gradually drops with increasing temperature. Long
before the drop is important, however, Kq. (27) has
ceased to hold, and furthermore the spin-wave approxi-
mation itself has broken down.

Nevertheless, the general picture of the way the
anisotropy energy behaves with temperature is now
clear.

VII. SOME REMARKS ABOUT /AD

As we have seen in Sec. I, since the anisotropy arising
from KD, for cubic crystals, appears only in second-
order perturbation theory, it has no classical analog
and cannot be approximated by Zener's theory.

In addition to the second-order perturbation approach
of Van Vleck, this anisotropy may be evaluated in the
spin-wave approximation. Holstein and Primakoff have
indicated the general spin-wave method of handling
dipole-dipole interactions. The resultant anisotropy at
O'K has been calculated (a) in the presence of a strong
applied 6eld (or in a molecular field)'; and (b) in the
absence of exchange interaction (dipolar ferromag-
netism) r

It is clear from the above-mentioned calculations
that the anisotropy at O'K arises from the zero-point
spin-wave energy. Furthermore, it is clear that the
overwhelming part of this anisotropy comes from short-
wave (high-energy) spin waves. This is readily seen

' J. R. Tessman, Phys. Rev. 96, 1192 {1954).
r M. H. Cohen and F. Eever, Phys. Rev. 99, 1135 {1955).

where the constants are the same. Carrying out the
integration, we have
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when one recalls that the long-wave spin waves merely
cause changes in the direction of magnetization of
large regions of spins; and the energy cannot be sensi-
tive to these changes of direction, since there is no
classical analog to dipolar anisotropy in cubic crystals.
Anisotropy can only appear in a cubic array of dipoles
when the dipoles near one another become significantly
misaligned, and this misalignment can only be caused
by short-wave spin waves.

I.et us picture our cubic ferromagnetic crystal at O'K
with its zero-point anisotropy energy. As the ternpera-
ture is raised, gq eq spin waves will be excited, and
their energy will add to the zero-point energy, so that

To a 6rst approximation, E& will be given by the
exchange energy alone, and will be proportional to tlat,

".
Thus the majority of excited spin waves are of low k
and, in accordance with our above remarks, add a
negligible amount to the anisotropy. A detailed calcu-
lation of the temperature dependence of the anisotropy
would present a formidable numerical task, but it is
clear that this temperature dependence cannot be very
strong —at least not until quite high temperatures are
reached and the occupation number of high-energy spin
waves is signi6cant compared to —,'.

It is seen from Fig. 1 that Van Vleck's results show
that the dipolar anisotropy disappears m, uch more
slowly than does the quadrupolar. Furthermore, the
value of the exponent e for the dipolar case increases as
M(T) drops. This general trend bears out what we

have said above about high-temperature effects. Never-
theless, we think that the difference between the dipolar
and quadrupolar must be even more pronounced than
obtained by Van Vleck. His molecular-field method
allows too many neighbor spins to take angles with
respect to each other at low temperatures. In all
likelihood the dipolar anisotropy energy does not
change very much at all up to a large fraction of T,.

VIII. CONCLUSIONS

In attempting any comparison of theory and experi-
ment we must first bear in mind the following two

points which have been emphasized by Van Vleck:
(1) Depending upon the sign of the coupling con-

stant y, ;, the interaction SC@ can lead to a positive or
negative sign of E~. On the other hand, since the
coupling constant C;; is squared in the second-order
calculation, the interaction BCD can lead only to a
negative sign of E~.

(2) Unless the spin quantum-number of the indi-

vidual atom is larger than —„the interaction 3C@ is zero.
Since the average nickel atom has a spin of even less

than ~~, it is probable that the only interaction present
in nickel is of the type 3'.D. This leads to the correct
(negative) sign of ICt, but the temperature dependence

is completely oG. The anisotropy in nickel disappears
with temperature as something like the twentieth
power of the magnetization. We can only conclude
that this anisotropy is of an entirely diferent nature
than dealt with here.

On the other hand, there are both theoretical' and
experimental indications that the spin quantum-num-
ber of an iron atom is very nearly 1. The positive sign
of Ei in iron indicates an interaction BC@. As Zener has
pointed out, experimentally the constant E& falls with
temperature as the tenth power of the magnetization
at all temperatures.

We have shown that this tenth-power law is to be
expected only if the spins of neighbor atoms are very
highly correlated. Now, as the spin directions of
neighbors begin to misalign, the tenth-power law will

give way to a law of lower power, eventually to a
sixth- or 6fth-power law. However, we make the
following point: if at the temperature where the
misalignment has become appreciable, the anisotropy
has essentially disappeared, or has become so small as
to defy accurate measurement, it may well appear that
the tenth-power law is holding, as Zener maintains, at
all temperatures. We believe this is the situation in iron.

There are several experimental confirmations of
strong correlation in iron:

(1) The magnetization curve falls well above the
Brillouin curve for 5=1 at high temperatures.

(2) Neutron diffraction experiments" indicate that
small but coherent domains are present in iron even
through the Curie point.

(3) A sizeable fraction of the area of the curve of the
speci6c-heat anomaly is above the Curie point.

These facts indicate considerable correlation even at
temperatures above the point of "zero" anisotropy,

0.8T,. Thus it is quite reasonable that at 0.8T„at
which temperature M(T)/M(0)=0. 8, the correlation
is nearly complete, or at least sufBcient to maintain
the tenth-power law.

The same arguments should hold, but with even
more force, for Zener's twenty-first power law for E2.

In this entire discussion we have been using the
atomic model of ferromagnetism. A band model has
been used by Brooks, "and more recently by Fletcher, '
to yield in a very rough way the anisotropy of nickel
at O'K. Neither author attempts to explain the tem-
perature dependence. We are well aware of the limita-
tions of our atomic model. Still, we believe the're is

P. Argyres and C. Kittel, Acta Metallurgica I, 241 (1953).
These authors conclude from the value of the ferromagnetic
resonance g-factor that, of the 2.2 Bohr magnetons per iron atom,
approximately 0,2 magneton comes from orbital magnetization.

9 S. B. Gunst and L. A. Page, Phys. Rev. 92, 970 (1953).These
authors, using 2.62-Mev gamma rays, measured directly the spin
(as contrasted with orbit) magnetization of an iron atom."C. G. Shull and M. K. wilkinson, Phys. Rev. 94, 1439 (1954).

"H. Brook.s, Phys. Rev. SS, 909 (1940).
"G.C. Fletcher, Proc. Phys. Soc. (London) 467& 505 (1954).
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much truth in the picture of a change in anisotropy
with statistical Ructuations, and we feel that any
further synthesis of the band and atomic methods must

take this picture into account.
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The interaction of mobile carriers in semiconductors with im-

purity atoms and ions tends to reduce the impurity activation
energy. This eBect is studied using the familiar model of the
semiconductor as a uniform medium of dielectric constant E in
which randomly distributed impurity ions appear as 6xed unit
charges and the mobile carriers as charges with opposite sign and
effective mass m*. The treatment is based on the solution of Har-
tree equations for nonlocalized orbitals P; describing mobile
carriers and localized orbitals q; describing electrons trapped in
the neighborhood of impurity ions. Determination of the in-

dividual nonlocalized orbitals is made unnecessary by a method
that expresses the Quctuation in mobile carri(. r density approxi-
mately as a linear functional of the fluctuations in electronic
potential due to impurity atoms and ions. On use of this relation,
Poisson s equation becomes a linear integro-differential equation
for the electronic potential energy, which can be solved in terms of
integrals involving the localized orbitals y;. All localized orbitals
are taken to have the same form q, satisfying an integro-differen-
tial equation obtained by averaging the potential energy for a
trapped electron over all configurations of the other impurities;
this is solved by a vacational procedure. All orbitals in the theory

depend on temperature T, the Fermi level f, and the impurity
density 17/V, since the distribution of qauntum numbers of the
occupied orbitals depends on these quantities. The free energy Ii

of the system, first expressed in terms of the orbitals, T, and f,
is then reduced to a function of f, T, and Ã/V. For given T and
1V/V, the physically significant r is determined as that which
minimizes F; the carrier density and the effective impurity activa-
tion energy are then computed as functions of T and 1V/V. The
theory divers from all others in predicting a marked T-dependence
of the activation energy, especially for high impurity concentra-
tions. This appears because the polarizability of the mobile carrier
distribution, which has an important effect on the interaction of
impurities and mobile carriers, is temperature dependent in the
present theory, and is completely ignored in earlier theories. For
moderately high T the reduction in impurity activation energy
predicted by the present theory is of the order of that predicted
by Shifrin, and by Pearson and Bardeen; at low temperatures it is
much less. Existing data on germanium and silicon suggest that
the theory underestimates the reduction in activation energy at
high impurity concentrations.

ap ——aHEm/m*, (1.2)

where aH is the Bohr radius. Shifrin assumes that in
the impure semiconductor the impurity states with

* Based in part on a thesis presented by G. W. Lehman in partial
ful6llment of the requirements for the degree of Doctor of Phi-
losophy at Purdue University, January, 1954.

t Now at North American Aviation, Inc. , Downey, California.
' K. S. Shifrin, J. Theoret. Phys. (U.S.S.R.) 14, 43 (1944).

l. INTRODUCTION

~ 'HE first theoretical attempt to compute the
ionization energy of impurity atoms in a semi-

conductor as a function of concentration was made by
Shifrin. ' Shifrin used the hydrogenic model of the
impurities, which pictures the neutral atom as con-
sisting of a single potential carrier (hole or electron)
with appropriate eGective mass m*, moving about a
fixed po.'nt charge (the atom core) in a medium of di-

electric constant E.The ionization energy of an isolated
impurity is then

Ep ——print*/mE',

where m is the true electronic mass and EH the ioniza-
tion energy of a hydrogen atom; the "radius" of the
atom in the ground state is

principal quantum number e merge with the contin-
uum, and form its lower bound, when the "radius"
e'uo of the corresponding orbitals is the radius of a
sphere of volume V/1V, where N/V is the density of
impurity atoms. He thus concludes that the activation
energy of the impurity is given as a function of impurity
density by

(& 3)

A less schematic calculation has been made by Pear-
son and Bardeen' who note that the energy required to
remove an electron from an impurity atom is reduced
by the interaction of the resulting ion with the free
carriers in the system. Treating the free carrier dis-
tribution as unaffected by the presence of the ions, and
assuming that almost all impurities are ionized, they
arrive at a formula resembling that of Shifrin:

~4w ~
~ f'X~ -'

(3 3 KVi

Like Shifrin, they thus conclude that the decrease in

s G. L. Pearson and J. Bardeen, Phys. Rev. 75, 865 (1949).


