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The kinetic behavior of systems in which processes occur which are distributed over a range of activation
energies is considered. The sects produced by the initial distribution, the order of reaction, and the fre-
quency factor are discussed. Imaginary and actual experimental situations are used to illustrate the large
errors which can result when the distribution of the processes in activation energy is neglected. Some of the
complications which can result from successive reactions and varying frequency factors are mentioned.

INTRODUCTION

VAND' introduced the concept of a group of
processes distributed in activation energy in order

to explain the kinetics of the irreversible resistance
changes which take place in heating evaporated metal
deposits. The same concept was used by Curie' and by
Randall and Wilkins' to explain the decay of the long-
period phosphorence. Neubert4 used the concept to
explain the annealing behavior of radiation damage.
The merits of the alternative kinetic treatments con-
sidered by Brown, ' Dienes and Parkins, ' Bowen, ~ and
others will not be discussed for it is the object here to
consider in a general way some of the kinetic behavior
resulting when processes are distributed in activation
energy. Overhauser' studied the annealing of resistance
changes in copper induced by high-energy deuterons
and concluded the 6rst part of the annealing could be
explained by a distribution of processes over a range of
activation energies followed by a single process in which
the annealing proceeded by kinetics of order 2.5.
Honig considered the integral transformation of one of
the equations arising in the kinetics of processes dis-
tributed in activation energy. These references fur-
nished the background for the present paper and are not
intended to represent an exhaustive survey.

The above investigations all involved solids which

may be considered to be molecularly inhomogeneous in
some sense. In the case of evaporated metal 6lms, the
crystal structure consists of random mosaic deposits;
in the case of radiation damage by energetic particles,
the stopping process is itself localized, the displaced

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.
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atoms may be trapped at various points in the solid, or
in varying groupings, and the solid may eventually
break down into a mosaic structure; in the case of
phosphors, the electron traps may have different
depths. Thus the different activation energies would
appear to be associated with different portions of the
solid. If reactions of order other than one are con-
sidered, it may be necessary to introduce a local con-
centration in addition to the average volume concen-
tration.

p=p, L1—(1—e)At(f/ps)" "'e "J'" "'
= psL1 —(1—m)Bte ")"""&

(4)

(5)

1. FORMAL THEORY OF THE KINETICS OF
PROCESSES DISTRIBUTED IN ACTIVATION

ENERGY; ISOTHERMAL ANNEALING
AND TEMPERING

1.1.It has been customary to consider that in analogy
with the kinetic processes in gases and in solution, the
annealing processes obey a differential equation of the
kind

—(dq/dt) =kq", (1)
where q is the concentration of possible kinetic proc-
esses, t is the time, k is a constant, and e is the order of
reaction (not restricted to integer values). In general,

q cannot be measured directly. If a property is measured
which is proportional to the number of processes which
can occur, then for the processes which proceed at a
particular value of the activation energy,

—(dp/«) = &f(p/f) ", (2)

where f is the change in property accompanying the
occurrence of a kinetic process (termed the importance
factor) and p is a property or property change which
can be used to measure the concentration of kinetic
processes which can yet occur. It is usually assumed
that the rate constant, k, can be equated to the
Arrhenius expression for the activation energy. Then

(dp/dt) —Qfe etr (p/f )n—(3)
where e is the activation energy (units of ev will be
used here), r is the product of Boltzmann's constant and
the temperature, and A is a constant having the dimen-
sions of frequency when n is unity. In the case of
isothermal annealing, this equation can be integrated
to give
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The rate of annealing is"

dI' d
pde

dt 4 ~p

0

FIG. 1. The characteristic annealing function for isothermal
annealing, O. „=L1—(1—rt)Bte 't'g't&' "& a=rtr, b=rt't&' "~

so= T Iil(Bt),

where ps is the value of p at t=o. The quantity 8
which is defined by Eqs. (4) and (5) has the dimensions
of frequency for all orders of reaction. If the processes
are distributed in activation energy, p and ps are dis-
tribution functions (the dependence of 8 and f on the
activation energy will be disregarded in this section)
and the measured value of the property is"

or

PsL1 (1 th)ate etr]li &i——
nl&Ee

~o
(6)

-P(f)= Po(e)0 (e t)de
0

' In applying limits to integrals involving the characteristic
annealing functions it is necessary to exercise some care when the
order is not unity. If the order is less than unity the characteristic
annealing function is zero from e=0 to e=r in/(1 —rt)Btl while
the functional form given is negative in this region, and thus
integrals involving O~«~ or dO«i/dk should be taken from
r lnL(1 —rt)Btj as a lower limit when the functional form given
is used. If the order is greater than 2, —10 (dO~„/dt)de diverges
and hence a finite upper limit must be employed with this integral.

"This term was introduced in the course of studies by Neubert
(reference 4) in 1944 and has been in common use in the subject
since then.

where I' is the observed value of a suitable property.
The function 0 defined by Eqs. (6) and (7) is termed
the characteristic isothermal-annealing function. The
distribution of processes over a range of activation
energies is termed a spectrum. "

1.2. In dealing with a broad activation-energy
spectrum, the annealing behavior is dominated by the
exponential dependence on e appearing in O~„, and the
modifications introduced by ps, the initial activation-
energy spectrum, and the dependence of 8 and f on e

may be treated as perturbations of the gross behavior.
The characteristic annealing function for isothermal
annealing is shown schematically in Fig. 1.Solving for e,

e=r{ln[(1—rt)Bj+lnt —in[1 —0&' "lg), (8)

it is seen that as the isothermal annealing progresses&

the curve is displaced along e, but does not alter in
shape. The point of inQection is termed here the charac-
teristic activation energy and is designated eo. It is seen
that

t'" ( dp'&

/

——/d.

( do„q
p,]-

dt )
Thus neglecting, for the moment, the effect of the
initial activation energy spectrum, of the processes
occurring simultaneously, those at the maximum of
d0 /dt make the maximum contribution. Since in
isothermal annealing dO„/Ct and dO' /&Ee (regarded as
functions of e) are proportional to each other (again
neglecting any dependence of 8 and f on e), they possess
a maximum at the same value of c, and hence the proc-
esses possessing the characteristic activation energy
make the maximum contribution to those occurring
simultaneously. However, because (dp/dt) (e) is usually
unsymmetrical about eo, the average activation energy
of the processes undergoing simultaneous annealing is
slightly displaced from eo, an eGect which is small and
which will be considered later. From the value and the
slope of the characteristic annealing function at the
characteristic activation energy

Og (es) —Nit &i—n)

dO„
(ep) =

de

+nf(y —n)

it is seen that for reasonable values of e, most of the
processes occurring simultaneously lie in a narrow band
of activation energies of the magnitude several times mr

(Fig. 1).
1.3. The presentation of the activation-energy spec-

trum as a function of time is a complete representation
of the formal kinetic behavior of a suitable property for
any kind of annealing program. Experimentally all that
is observed is the integral of the activation-energy
spectrum as a function of time. The customary kinetic
interpretation of the data would consist of finding the
initial activation-energy spectrum; and then through
a proper choice of order and frequency factor (8), the
activation-energy spectrum as a function of time would
be given by the equations. If this could not be done,
complications of kinetic behavior would be assumed.
This matter is discussed later.

1.4. The kinetic behavior for isothermal annealing in
the case of a broad activation-energy spectrum is easily
visualized and is drawn schematically in Fig. 2. As time
proceeds, the initial activation-energy spectrum is
swept out as the characteristic annealing function
advances in activation energy. If the initial activation-
energy spectrum is very broad, many times nr, the
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po(e)de,
4p

characteristic annealing function may be approximated
by a step function. Then Eq. (7) becomes

(13)

the case of tempering, i.e., an annealing conducted by
raising the temperature in a gradual manner. For a
case in which the temperature of the sump/e is raised
according to the law

(16)
and

From Eq. (9),
dP/dm po —(eo) (dao/dh). (14)

when annealing a group of processes characterized by
a discrete activation energy, the diGerential equations
are

pot. r»(~~)3= —(~/r) (dP/«) (»)
1.5. The result Eq. (15) which gives the initial-

activation-energy spectrum from the isothermal an-
nealing data, was derived by Vand' for first-order
processes, but is seen here to be quite general and
applies to processes of any order. The order does not
affect the initial activation energy spectrum (for it was
present before annealing was started) but rather the
shape of the changing portion of the activation-energy
spectrum as the annealing proceeds. This shape was
ignored when a step function was used to approximate
the characteristic-annealing function, and hence the
result applies to all orders. It is seen from Eq. (15) that
the eGect of the frequency factor in isothermal annealing
is to cause a simple displacement along the activation
energy axis. Thus the result gives the correct approxi-
mate shape for the initial activation-energy spectrum,
but does not fix its location. For the usual range of
times which can be realized in careful isothermal an-
nealing, about three decades, it can be seen from Eq.
(15) that the portion of the activation energy spectrum
which is revealed is but several tenths of an electron
volt, only a small portion of the several electron-volt
wide activation energy spectra observed in disordered
solids. If the whole spectrum is to be found by isother-
mal annealing, it is necessary to conduct isothermal
annealings at a number of diGerent temperatures.
However, in this case the parts of the spectrum
revealed at the diGerent temperatures will not 6t
togther unless the frequency factor is correctly chosen
(however, see paragraph 4.3) since the displacem, ent
along the activation energy axis involves a product of
temperature and (logarithm of) frequency factor. If
this is used as a method to obtain the frequency factor,
it is important to 6t the parts of the activation energy
spectrum together rather than the observed property
changes as is shown in paragraph 2.3.

1.6. The treatment given here may be extended to

/I
I

I
1
II

/

FIG. 2. An activation energy spectrum in isothermal annealing.
The portion of the initial activation energy spectrum which has
been annealed is shown as a dashed curve.

—(dq/cdr) =Ae '~'q"

—(dp/fcdr) =Ae 'I'(p/—f)",
for which the solution is

(17)

(1g)

P= paL1 —(1—rI)BcrE2 (e/r) $'I &' "&de) (20)

or

P(r) = po(e)C (e,r)de,

where C is the characteristic annealing function in
tempering.

The functions E (x) are defined as

(22)E (x) =x™—1 u "e "dN, — —
m

and have been tabulated. "A property of interest is

dE„(x)/dx= —E i(x). (23)

For the range of x of interest here (20—50), the first
term of Blanch's asymptotic expansion, "

E (x)=( +xnz)-'e —*, (24)

is a satisfactory approximation, and when used with the
approxim, ation

(x+u) (x+ fi) (x+j ) (x+k),

where a, b, j, and k are small integers and

u+b=j+k,

(25)

(26)

the algebraic operations with these exponential integrals
are greatly simplihed while their identi6cation is pre-
served. Often diGerent expressions result from intro-
ducing the approximation at diGerent stages of the
algebraic operations; but because the values of x of
interest here are so large, they do not diGer signi6cantly
from each other numerically. Where alternative ex-
pressions were obtained, one convenient for the purpose
at hand was chosen.

'2 G. Placzek, National Research Council of Canada Report
NRC-1547, 1946.

p= p,t1—(1—n)BcrE2(e/r) j ~~ "~ (19)

If the processes are distributed in activation energy, p
and po are distribution functions, and the measured
value of the property is
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1.7. As in the case of isothermal annealing, the
annealing behavior in tempering is dominated by the
exponential dependence on e appearing in C„which is
here termed the characteristic annealing function for
tempering. It is sigmoid-shaped, somewhat like the
curve drawn in Fig. 1, and varies from zero to one.
Upon solving for e using the approximation, Eq. (24),

e+r 1nL(e/r)+2/—r{ln/(1 —n)Bj+ln(cr) —ln(1 —C „' ")}, (27)

it is thus seen that as the annealing proceeds (whether
plotted in temperature as is customary, or in time), the
sigmoid form of the characteristic annealing function
advances. in activation energy, and it also reclines
instead of retaining its original form as it does in an
isothermal annealing.

Using Eqs. (23)—(26), it is found that the point of
inQection of the characteristic annealing function for
linear tempering occurs at

eo—r{ln(Bcr)—lnL(ep/r)+2/}. (28)

The rate of annealing is

1.8.An approximate solution for the initial activation-
energy spectrum can be obtained in the manner used
previously. From Eq. (21),

P(r) —ppde, (33)

and taking the derivative with respect to r,

po(eo) =-
deo/dr dr

(34)

Writing yp for ep/r, Eq. (28) becomes

yp+ln(yp+2) = ln(Bcr). (35)

Since the annealing takes place in a small range of y
and since yp+ln(yp+2) is a very slowly varying
function, it is quite permissible to take

yo+»(yo+2)=~+ byo, (36)

where a and b are constants appropriate to the range of
y under consideration. Then writing $ for —a+in(Bcr),

dP/dr =— pp( —dC'~/d )dr. e (29)
ep=rP/b,

d op/d r (/+1)/b —1+g/b—
(37)

(38)

Neglecting, for the present, the eGect of the initial
activation-energy spectrum, the maximum contribution
to the annealing at any moment is made by the proc-
esses occurring at the maximum of dC„/dr wh—ich
does not occur at eo but at e, given by

(for b is close to unity), and

dI'

dr (g/b)+1
(39)

e,= r{lnBcr —ln((e, /r)+ 27
+1n[(e,/r)+eg(e, /7)-'}, (30)

which is at a slightly higher activation energy than the
characteristic activation energy. Because dC' /dr is
unsymmetrical about its maximum, the average activa-
tion energy of the processes undergoing simultaneous
annealing is even farther removed from the charac-
teristic activation energy. However these displacements
are usually small in comparison with the effects which
the initial activation-energy spectrum can exert. At the
characteristic activation energy, the characteristic func-
tion has the value

(e ) rti/o —m) (31)

The slope of the characteristic annealing function is

dC„1
(ep)=-e «'-"&i 1+—(,

de r ( ep)
(32)

which in a typical case would be a few percent greater
than in isothermal annealing. Thus, for reasonable
values of e most of the processes occurring simul-
taneously in tempering also lie in a narrow band of
activation energies, several times er. Hence, the mathe-
matical artifice used here, that of starting the tempering
at r=0, does not introduce a serious restriction.

p= pp exp( —Ate —'t'), (4 ), (5a)

P= pp exp( Ate ")de, — (6a)

e= rr ln(At) —lnp(1/0)), (8a)

Since g/b varies only slowly with temperature, the
initial activation energy spectrum is nearly proportional
to the tempering curve which plots ( dP/dr) ag—ainst
r when the heating rate of the sample, (1/c), has been
constant. The resolution is several times er (see Vand')
and the method applies when the activation-energy
spectrum is broad compared to ev- and to reasonable
orders of reaction. Changing the frequency factor causes
a displacement of the derived initial activation-energy
spectrum along the activation energy axis as described
for isothermal annealing in paragraph (1.5). However,
since in tempering the temperature is continuously
changing, a change in choice of frequency factor also
causes a distortion of the derived spectrum. Choosing
a larger frequency factor expands the spectrum along
its abscissas (activation energy) and contracts its
ordinates.

1.9.At e unity, the characteristic annealing functions
converge to the exponential. Then some of the equations
given previously can be written
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oo
——r ln(At),

O(oo) =e—',

(d 0/do) (oo) = (re)—',

Po(r ln(At)) ——(t/r) (dP/dt),

p= po exp[ —AcrEo(o/r)],

(9a)

(11a)

(12a)

(15a)

(19a)

po exp[—AcrE2(o/r)]do,

(2Oa)

o+r in[(o/r)+2]=r[ln(Acr) —lno(1/C)],

C(eo) =e-',
(27a)

(31a)

dC—(eo) =
de

1+(r/oo)
(32a)

where ln2(x) =—ln(lnx).
1.10. In tempering, if the heating rate is given by the

equation
$
—g~tS (4o)

where nz is integral and greater than unity, the equa-
tions may be integrated by the methods given here,
and it is found that the characteristic-annealing furic-
tion involves the exponential integral E~o(e/r)

2. SOME EFFECTS PRODUCED BY THE INITIAL
ACTIVATION ENERGY SPECTRUM

2.1. The exact mathematical inversion of the iso-
thermal annealing data P(t) to obtain po(e) by means
of a Laplace transform has been given by Honig. ' In
order to do this, it is necessary to know the function
dP/dt suKciently well analytically to determine its
behavior over the whole of the complex plane. From
the discussion in paragraph (1.5) it is obvious that
this is impossible in practice. Honig's conclusion that
a constant initial activation-energy spectrum cannot
exist, while entirely correct, has no practical signi-
ficance. Since, electively, only the processes over a
small range of activation energies occur simultaneously,
and since only a small portion of the possible range of
activation energies can be observed in an isothermal
annealing, the portion of the initial activation-energy
spectrum which for practical purposes can be considered
to be involved in a particular experiment can be
constant. "In this case the annealing behavior is essen-
tially that of the characteristic annealing function.
When the initial activation-energy spectrum is not
constant, some care is needed in interpreting the data.
This is especially true when attempting to find the
frequency factor or the order of the reaction, for the
eGects which they produce and which are studied, occur
in a range of activation energies of magnitude er, the
range over which the processes are occurring simul-

taneously, and any variation of the initial activation-
energy spectrum in this region will weight the processes

(41)

Then Eq. (15) may be written

po(r lnB+rx) ——r '(dP/dx). -(42)
Over the small portion of the activation energy spectrum
which is revealed, the distribution may change very
little. Thus dP/dx will change very little, perhaps within

the experimental error of the data. It is tempting to
draw P (x) as a straight line and thus miss the variations
in the initial activation energy spectrum, po. It is
necessary to be extremely cautious in interpreting
isothermal annealing data extending from several
minutes to several hours, but two decades in time.

If the data P(x) for a number of independent iso-
thermal annealings conducted at diGerent temperatures
are plotted, they will form. a family of curves which are
nearly straight lines, the higher temperature curves
lying below the lower temperature ones. These curves
are nearly parallel as can be shown by taking
8(dp/dx)/Br which is seen to be small when the relation
Bte 'I' 1 t Eq. (9)]is inserted. If the temperatures are

occurring in some parts of this range with respect to
those occurring in other parts of this range. Some of
the effects which are observed are treated by giving
two illustrations, one treating the analysis of isothermal
data, and the other treating the analysis of step-
annealing data.

2.2. It is useful here to introduce a comparison
between the shape So of the rapidly rising portion of
the characteristic annealing function and the shape S~
of the portion of the activation-energy spectrum existing
at that time in the same range of activation energies.
The qualitative effect of a rising initial activation-
energy spectrum is that S~ is steeper than So. Thus if it
is not realized that po is rising, it may be considered
that the frequency factor is greater than its correct
value. It may also be considered that the order is less
than its correct value. However the point of inflection
in S„may not correspond to this latter interpretation
for, in general, it will be higher than for So correspond-

ing to a greater order of reaction and would be lower

than in So only if po although increasing possessed a
negative radius of curvature, small compared to e7-.

It is also readily seen by sketching some of the pos-
sible forms of initial activation-energy spectra and the

S„ they yield that the maximum displacements of S~
with respect to So can be of the magnitude nr for the
most steeply rising initial activation-energy spectra.
The reverse displacements will occur with falling
initial activation-energy spectra. Accordingly, with the
use of Eq. (14) or (39), processes occurring at a discrete
activation energy will yield an approximate spectrum
of width several times er, and a smaller distortion will

be found when the actual initial activation energy
spectrum is less steep than a delta function.

2.3. In isothermal annealing, it is convenient, to plot
the measured value of the property (P) against

lnt —=x.
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sufficiently close together, the first measured values of
the property at the beginning of one annealing will be
greater than the last measured values at the end of the
annealing performed at a lower temperature. Respective
points on the two curves having the same measured
values of the property are related kinetically as follows:

F00 F00

P= poC')n(r1&t1, &)do= poO~(ro, t2, 0)do. (43)
J,

The approximation introduced in deriving Kq. (15)
would lead to the result

l

61 6

FxG. 3. The appearance of the characteristic annealing functions
and the activation-energy spectra for two isothermal annealings
conducted at diferent temperatures when the measured value of
the property is the same.

«p/«) —= f '"(p/f)",

(dp/«) =—~fe '"(p/f-)"
(48)

(49)

At the beginning of the second stage, the value of the
property is the same as at the end of the erst stage.
Designating the ratio of the rates at the two tempera-
tureS at thiS pOint aS R and r1r2/(r1 r2) aS I', it —iS Seen
that

the intersection of the characteristic annealing functions
to occur over any part of their steep regions. Thus if r&

is about 0.05 and w2 is 0.055, 8 can differ from 8' by
factors ranging from 10 4" to 104".

Even if the initial activation-energy spectrum is
constant in the region of activation energies which are
annealing, 8 must, in general, diGer from 8'. It is
readily seen that with a constant initial spectrum, if the
region of the initial spectrum undergoing annealing is
not too close to the end of the initial spectrum, the con-
dition of equality of areas between the activation-
energy spectra on either side of their intersection
requires the ordinate of the intersection decrease for
pairs of points at greater times; accordingly Ae decreases
and from Eq. (47), lnB' also decreases. The same
reasoning requires that lnB' increase when the region
of the initial spectrum undergoing annealing is close to
its end. These effects are several orders of magnitude
smaller than the possible effects of the rising and falling
regions of the initial spectrum.

2.4. For two successive stages of step-annealing, if
the processes occur at a discrete activation energy, then

00(r1,t1) =001 =002 = 0(02ri 2t)i (44) e= lrxR, (50)

where Cps Gp2 are the characteristic activation energies
at the respective temperatures, and hence the approxi-
mate value of lnB is lnB', where

ln(B ) (r1+1 r2+2)/(r2 r1) (45)

The behavior of ln(B') can be visualized with the aid of
Fig. 3. The characteristic annealing functions for the
two annealings will intersect at some activation energy,
e&, and' hence the activation energy spectra will also
intersect at this activation energy. The condition Eq.
(43) requires that when the measured value of the
property is the same for the two annealings, the area
between the activation-energy spectra to the left of ~&

must be equal to the area between the two spectra to
the right of e~. In general, the characteristic activation
energies, Cps and Gp2 respectively, will not be at eI, and
hence defining Ae as

a relation pointed out by Overhauser. ' When the proc-
esses are distributed in activation energy, it is obvious
that this relation can at best hold only approximately
since di6erent distributions of processes are taking
place at the two temperatures. The number which is
obtained in this case upon introducing the experi-
mentally determined rates and temperatures into Eq.
(50) will be designated E and its meaning is investigated
here.

If the erst of the two particular stages of step-
annealing considered has been conducted for a time fi
suKciently long to advance the characteristic annealing
function at least several ev-&, the activation-energy
spectrum will have become

p1 ——poL1 —(1 22)Bt1e 'l"]'l&' "—&

ol fol Q= 1
AC = Cps

—
Gp2~ P1 Po exp( —At1e 'l"). (51a)

lnB= ln(B') —ao/(r2 —r1). (47)

For a rising initial activation-energy spectrum it is seen
that e~ is advanced relative to op~ and ep2 and hence hc
is increased, and the reverse is true for a falling initial
activation-energy spectrum. These variations in Ae can
be of the magnitude ( Nr) since it is reasonable for

If at this point another annealing is started, the rate
at which the property changes is

dI
por 1—(1—22)Bt]e 'l"yo "~

Jp
(1 02)Bte ii~2 j&l (' ~)Be ~l~2do. —
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At the beginning of the second annealing t=0, and
hence'o

where g is the beta function; and hence

It.= (1+no) (Bti)' I'(a.), (60)

(dP)
ddt)p 4p

ppt 1—(1—n)Btie 't"y&' "'Be ""dp,

(52)

where

and for first-order processes

(dP )t
pp exp( At—ie '~")Ae 't'&do

(dt)p &p
(52a)

The respective values of n2 for e=g 3 4 are 0.056,
0.040, and 0.032. The same treatment can be employed
for orders 1(n(2, and then Eq. (52) becomes

The integrals, Eqs. (52) and (52a), are various forms of
the Euler integrals. If the initial activation-energy
spectrum is constant, then for first-order processes,
upon setting s=Atie '" and o = ri/r, , Eq. (52a)
becomes

~dPq
I

=po—(Bti)' '
( dt i o ti "o

d3'

I 1+(n 1)y]i/&n —i)

and since Bt~ is a large number, upon marking the
upper limit in6nite, this becomes

(dPy r tIAh

I
=po—(Ati)"-'

0 dt ) p ti ~ p

e 's' "ds. (53)
pdPy r p 1

I
=p,—(Bt,)'-.(n —1)- yI o,

(dt)o ti 4 n —1
(63)

Since At& is a very large number, the upper limit may
be taken to be infinite. Hence,

and hence

where
R= (1—np) (Bti)'—I'(o.), (64)

I =po—(At)" 'I'()
( dt ) o

(54)
(1q(1

1— —= (n —1)' 'I'I —
I

I'I —1 I. (65)
En —1 ) Ln —1 )

~s/(i —n)

&& Li —(1—n)S]"" "'S' '4' (58)

t'=p.—(Bt.)
—(1-n)- OI -,

t, &
'1—n)

(59)

where I' is the gamma function. The rate at the
end of the first annealing stage is obtained by setting
0.=1.As before, designating the ratio of the rate at the
beginning of the second stage to that at the end of the
6rst stage as E.,

R= (At )' ~r(o)—
and

(1—o) ln(Ati) =1n[E/P (o)]. (56)

If it is assumed that the processes which are annealing
simultaneously may be characterized by the charac-
teristic activation energy at the end of the annealing at
the lower temperature, from Eq. (9a),

pp
——f' lnt R/I'(o. )].

Usually 0.9(o.(1, hence I"(o) is near unity, and the
result may seem to be insignificantly different from
Eq. (50). However, this small correction is but one of
a number which it will be seen are quite important in
interpreting the kinetic significance of the annealing
data. If the order is less than unity, and the initial
activation-energy spectrum is constant, by setting
Btie "'=y Eq. (52) maybe written"

The respective values of ns for orders m=1.5, 1.9, and
1.99 are about 0.133, 0.497, and 0.9142. Part of the
large correction e3 for large values of the order arises
in the region of large values of e which in practice
would not exist, while part of the smaller correction in
the region of e of significance would be partially com-
pensated for by the displacement of the average activa-
tion energy of the processes undergoing simultaneous
annealing from the characteristic activation energy. If
the order is 2 or greater, it is necessary to limit the
extent of the initial activation-energy spectrum in order
to perform the integrations. However, it is seen that
the deviations of the behavior of processes distributed
in activation energy from Eq. (50) can all be cast into
the same form. The deviations will be estimated here
for several kinds of initial activation-energy spectra for
processes following erst-order kinetics. The same kind
of corrections would apply when the order differs from
unity, but the magnitudes of the corrections would, in
general, diGer somewhat. The corrections to be con-
sidered are those arising from the first of two con-
secutive stages of step-annealing being insufficiently
protracted and from rising and falling regions in the
initial activation-energy spectrum. To indicate the mag-
nitude of the corrections, the results will be applied to
the step-annealing data published by Overhauser. '

(a) Length of the steps in step annealing -It was.—
shown (Fig. 1) that most of the rising part of the first-
order-characteristic-annealing function lies in a range
of activation energies 37. Hence for first-order proc-
esses, if one of the stages of a step-annealing is con-
ducted for a time suflicient to advance the charac-
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teristic-annealing function about 3r, practically none
of the activation-energy spectrum lies under portions
formed in previous stages of annealing, and hence the
spectrum is practically that which would have arisen
if the B.nal annealing were the only annealing which
had been performed. Since in isothermal annealing, the
characteristic-annealing function moves to higher acti-
vation energies without altering its shape, its motion
may be followed by choosing any point on it; and in
the present case the characteristic-activation energy is
a convenient point. Then the length of successive stages
of step annealing should be determined from and hence

pp= he", (74)

energy spectrum .—These can be easily investigated by
setting pp proportional to powers of e or to negative
powers of e "1.Two effects are produced: a correction
factor equivalent to increasing n is obtained, and the
average activation energy of the processes undergoing
simultaneous annealing is altered relative to the
characteristic-activation energy.

If the initial activation-energy spectrum in the
region is rising proportionately to an integral power (p)
of e,

or

and hence

ops= eot+3rt,

rs 1n(Ate) = rt ln(Att)+3rt,

tp
——tte"(Att) -'—=Mt

(66)

(67)

(68)

(dp r s+t ~An
h (Att)

Edt)p

&&Lln(Att) —lns)"de, (75)

If At~ were about 10",a number which seems reasonable
for Overhauser's data (V.I.), and if it were desired to
conduct each stage of step-annealing for the same length
of time, 0- should be about 0.9j..Actually for most of his
annealings o.=0.94 and Eq. (68) suggests each stage
should have been three times as long as the previous
one; i.e., X=3. Since it has not been, a residue of the
spectrum of the previous annealing remains and hence
Eq. (52a) is altered to

(d&i
Pp exp( Atte 'I" A—toe 't")A—e 't'ado.

i dt ~op ~o

=k8"'I Igo—

where k and v are constants. Hence

(76)

f'dP'l rt f'

[
=h—(Att)' ' ' e *s' " 'ds, (77)

4dt1p tt ~p

which is seen to consist of a sum of products of gamma
and polygamma functions. "The result can be cast into
the form of Eq. (73) but rr is now greater. Typically,
when approaching a peak in the initial activation-energy
spectrum, the spectrum rises so rapidly that it is best
expressed by an exponential as

(69)
and therefore

Now p is small, and regarding it as constant gives a
somewhat greater effect than it actually exerts. For a
constant activation-energy spectrum it is approximately
true that

(dI') =po—(Ate)' 'I'(o)(1+p) ',
4 dt ) ps ts

(71)

and hence, upon altering the subscript on 3 to correspond
to the nomenclature of Eq. (55),

R= (At t)'—I'(o) (1+P)'—'. (72)

Since I'(a) is nearly unity, this can be written

R= (At,)'-.L1+ y (1—)pg, (73)

where a is a small number.
For Overhauser's conditions, (1—o.)P is about 0.002

to 0.010 which, it will be seen, is small compared to the
value of 0,.

(b) The effect of rising regions in the initial activation

Letting ot ——rs/rr, a.=rp/rs, r=Atr/Ate, s=Atse ' ",
and p=r(At, )' ~sp-

t dPq r ~its
~

=—(At,)t-. Poe- «+el'-tds (70)
&dt) „

~ (dP/dt) cde (dp/dt) d.. (79)

For spectra rising as powers of e LEq. (74)$, the inte-
grals in Eq. (79) are like those of Eq. (75) and are
easily evaluated with the aid of tables of gamma and
polygamma functions. " It is found that while the
activation energy at which the processes annealing
simultaneously possess the maximum rate of annealing
is about

(1+10—'p)rr ln(Att), (8o)

the average activation energy of the processes annealing
simultaneously is about

(1.017+2@10 s)rt ln(Att) (81)

for small integral values of p. For exponentially rising

'3 H. T. Davis, Tables of Higher Mathematical Functions
(Principia Press, Bloomington, 1933), Vol. 2,

R= (At, )' I'(a —v)/I'(v). (78)

Since I'(o.—y)/I'(v) is nearly unity but is greater than
I'(a), Eq. (78) can be written in the form of Eq. (73)
and hence the effect of the exponentially rising dis-
tribution is to increase o.. The average activation energy
e of the processes annealing simultaneously is
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spectra, Eq. (76), Eq. (79) becomes

At(

(rP/iq) (Att)" '~ e 'z' 'fin(AI&) —lns]ds
0

p At1

(rt/It) (At t)"—' e-'s' 'ds—

(82)

= L1—+(1—v)/ln(Att) jrt ln(Att). (83)

and hence
e= (1+8) ln{R/L1+o.+ (1—o)P]), (86)

~=-(1—~) +9+(1—-)P3 (87)

The corrections o., P, 6 are to be considered approximate
and maximal since the finite character of each type of
behavior has not been taken into consideration. From
Eqs. (84) and (9a), it is seen that the average activation
energy of the processes occurring simultaneously e at
equal values of 2]& in a region in which the initial
activation-energy spectrum is constant is proportional
to the absolute temperature at which the annealing is
conducted. When the initial activation-energy spectrum
is rising, this average activation energy is above this

O
Q

O

2.0—
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FIG. 4. The approximate activation energy spectrum from
overhauser's isothermal annealing data assuming first-order
kinetics and a frequency factor 10'.

where 0' is the logarithmic derivation of the gamma
function. The quantity %(1—v)/ln(At&) is a small
negative number; and hence, as found for spectra
rising as powers of e, e can be expressed as

I= eo(1+8),

and for a constant activation-energy spectrum (v=0),
8—0.02 as before. For a falling initial activation-energy
spectrum 8 and e will assume values less than their
values with a constant initial activation-energy spectrum
in about the same proportion as- for rising initial spectra.
Thus, taking into account the eGects of the lengths of
the annealing stages, Eq. (72), the effects of the
initial activation-energy spectrum Eqs. (75) and (78),
and the nomenclature of Eqs. (73) and (84), Eq. (57)
may be written

es=l ln{R/t 1+n+ (1—o')Pj), (85)

and the average activation energy of the processes
undergoing annealing simultaneously is therefore

p.e,

0.6

0.4R
O
I-

0.2
I
CD

0 I I I I I

- I 80 - I 40 - I 00 -60 -20
TEMPERATURE 4C

FIG. 5. The behavior of E (plotted points) and, 1.02&0"'(solid line)
as a function of temperature.

line; and when the initial activation-energy spectrum
is falling, this average activation energy is below this
line. Since n increases nearly proportionately to 8, the
effect of the initial activation-energy spectrum on E is
less than its effect on this average activation energy.
In Overhauser's case, f was about I/2 and hence in this
case the deviations of E from a linear dependence on 7.

would be about half as great as the deviations of e from
a linear dependence on g and opposite in sign.

The results published by Overhauser' illustrate the
sects shown here. An approximate value of A may be
obtained from the slope of the curve E as a function of
temperature given in Fig. 5, taken from Overhauser's
Fig. 4, and is about 10. The approximate initial
activation-energy spectrum obtained by introducing the
slopes at the end of his stages of step-annealing (his
Fig. 3) into Eq. (14), no correction being made for
previous stages of annealing, is shown in Fig. 4. The
sharp peak is readily apparent; and from the discussion
in paragraph (2.2), the actual peak must be somewhat
sharper. The peak in Fig. 4 rises about as r"' (or e"'~"),
changing n and 8 by cu 0.02; and falls about as t, "',
changing o. and 6 by ca —0.04. Now { can be written

f = rt/(1 —o), (88)

and since for these experiments o.—0.94, { 1/5 Thu—s, .
since e—0.6, the deviation of E from a straight line
should be about —0.01 ev just before the peak and
should be about +0.02 ev just following the peak. This
expected deviation is readily apparent in Fig. 5 when
the straight line (solid line) is drawn at slightly greater
slope than was done by Overhauser (dashed line). Thus
the data shown in Fig. 5 cannot be taken as proof of a
2.5 order; they can be as easily explained by first-order
kinetics. Within the precision of the data and of the
approximations of the theory, the results could be
explained by any order of reaction over quite a range
of orders. The data given by Overhauser are aGected
mainly by the initial activation-energy spectrum, and
as was shown in Sec. 1, such data is rather insensitive
to order or frequency factor. That short isothermal
annealings in the region of the peak can be fitted by
kinetics of order 2.3 using a discrete activation energy
is but an expression of the fact that the peak obtained



1686 W I L L I A M P R I MA K

by inserting isothermal annealing rates into Eq. (14)
is of width several times 2.3r. Since r=1/30 ev in the
region in which the peak anneals, the expected width is
shown in Fig. 4. It is evident that the rates in short
isothermal annealings in this region could equally well
be explained by any order 0 &e &2.3 if one assumes the
processes to be properly distributed over a range of
activation energies several times 2.3 r/n. It would seem
that the method of step-annealing used by Overhauser
might be more useful for evaluating the frequency factor
than the order.

dI
=p.

dt
Ac

Xexpt At&e '" —AcrE2(e/r—) e/r jde, —(89)

where the isothermal annealing has been conducted for
a time t~ at a temperature r~. When the isothermal
annealing has been conducted for a long time, at the
initial part of the tempering curve the condition
t&»cr/(y+2) where y= e/r maintains. Letting p= r&/r,
Eq. (89) becomes

dI' —p ~~ Acr exp) At&e "~' y]dy, —(90)—

which is seen to be

dI' ('cr ) ~

-p.
l
—

I
(Acr)~- pr(p).

dr I t)]

3. DETERMINATION OF THE ORDER BY A
COMBINATION OF ISOTHERMAL

ANNEALING AND TEMPERING

3.1. A possible method for determining the order of
a group of processes which occur over a range of activa-
tion energies is suggested by the physical picture pre-
sented in paragraphs 1.3 and 1.4. The method is best
applied when it is found that the initial activation-
energy spectrum is quite constant over a sufhcient range
of activation energies. This fact can be easily ascer-
tained, for then the approximation, Eq. (39), is quite
good. If a sample of a substance possessing such an
initial activation-energy spectrum is subjected to an iso-
thermal annealing at a suitable temperature for a suf-
6cient length of time, the rising portion of the resultant
activation-energy spectrum has the form of the corre-
sponding portion of the characteristic annealing func-
tion. If a tempering experiment is now conducted on
the isothermally annealed sample, the nature of the
characteristic isothermal annealing function is revealed.
The portion of the tempering curve of interest is that
resulting from the steeply rising portion of the iso-
thermal annealing curve. Here the approximation of
Eq. (39) is useless. However, since the original initial
activation-energy spectrum was constant (here desig-
nated p,), the equations can be integrated directly. The
tempering rate if the processes are erst order is

Equation (91) is useful for values of 0 up to —', in
practice.

Similarly, when the order is not unity,

dP ~ao

=p, L1 —(1—n)Bt~e "'p)"~' "~

dr ~o

X/1 —(1 n)—BcrE2(y) j"~~' "~Bere "dy,

and when t&»cr/(y+2),

(92)

dI'
=P, L1—(1 n)Bt~e—&~&$'~o "~Bere "dy, (93)

dr 0

which, for the particular case of orders between 1 and
2) is

dP fcr) '
p. l

——
I

(B«)' 'PI'(p)
dr Et )

1 l f
X (n —1)-I( —p I

I'i
i

. (94)
EN-1 ] (n —1)

The quantity in the brackets approaches unity when e
approaches unity and increases when e increases over
the range 1—2. Since the expression refers to the
beginning of the rising portion of the tempering curve,
that on the low-temperature side of the inQection point,
it is in accord with the physical picture that the temper-
ing curve is nearly proportional to the initial activation-
energy spectrum, and that the slope of the rising
portion of the isothermal annealing curve decreases with
increasing order. Because the frequency factor sects
the characteristic annealing function and the charac-
teristic tempering function differently, it is necessary
to choose a correct frequency factor (and indeed is a
useful method of determining the frequency factor). If
the frequency factor has been established, a com-
parison of the actual tempering curve with the results
which are expected for first-order processes can be a
method for investigating the actual order of the
processes. The method is not necessarily conhned to the
initial portion of the tempering curve or to the simple
experimental conditions chosen here if graphical inte-
gration is resorted to. It may then be possible to deter-
mine both frequency factor and order from the same
experiment since they aBect the functions differently.

3.2. Expenmentat Nse of tempering rates. For sig-—
nificant kinetic studies, it is essential that the tern
perature of the sample be raised strictly in accordance
with a known law. Since thermal changes whose tem-
perature derivatives are of the order of magnitude of
the heat capacity often accompany annealing, it may
be insufhcient to raise the ambient temperature accord-
ing to the known law, the customary procedure. The
eGects of not raising the temperature of a sample ac-
cording to a known law are qualitatively the same for
the kinetic systems considered here; they are easily
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where y=e/r. From Eq. (24):

dI
ppAcr

Jp
exp[ y A—cre—"/(y+2)]dy. (96)

Let v= exp/ Acr—e &/(y+2) j; then, using the approxi-
mation Eq. (36),

y+ln(y+2) = ln(Acr) —ln& (1/v) —a+ by, (97)

and hence

y=

(1/b)fin�(Acr)

—lns(1/v) —aj. (9g)

Over the eGective range of y, the variable v ranges from
nearly zero to nearly one; hence

de pl—psA cr e vvdv/bv ln—
(1/v)

p

=ppAcr
4p

exp[ —ln (A cr) +lns (1/v)

+ln(y+2) $dv/b ln(1/v)

1

=(ps/b)~~ (y+2)dv
p

= (pe/b') Dn(Acr) —lns(1/b) —a+2b)dv
4p

= (ps/b') Dn(Acr)+y —a+2b], (99)

where p =0.577
The quantity dP/dr, which w—ill be called the

annealing rate, is greater the lower the tempering rate,
for c is the inverse tempering rate. This is to be expected,
for the lower the tempering rate, the longer the sample
remains at any temperature. If the tempering rate is
not constant, but starts changing, an exaggerated eGect
is observed. The qualitative nature of the effect is
easily shown for an increasing tempering rate such as
that governed by the law of Eq. (40). The annealing
rate corresponding to Eq. (99) is then

—(dP/dr) = (ps/s')fin(Anscr )+7 r+ (ns+1)sg,—

demonstrated for processes obeying first-order kinetics
and possessing a constant initial activation-energy
spectrum. Then

dP goo

=p,Acr expL —y —AcrE&(y)fdy, (95)
dV 4p

would be about 10'Po less than if the tempering rate
were constant. However, if the tempering rate were
originally constant, and were to change to a parabolic
one at some particular temperature, the decline in
annealing rate would obviously be greater than the
difference between the annealing rates for the two
powers es because the activation-energy spectrum at
the particular temperature for the constant tempering
rate is smaller than for the parabolic one. Such an
increase in tempering rate is common at the beginning
of a tempering experiment, and since the tempering
curve is usually interpreted as if the tempering rate
were constant, it may be said that the initial portion
of the tempering curve is depressed. As the constant
tempering rate is approached, the tempering rate is
declining, and here the tempering curve is elevated.
The same effect frequently occurs at the end of the
tempering range where a declining tempering rate is
common. The result of these variations in tempering
rate is the introduction of "false peaks" into the tem-
pering curve. When thermal changes accompany
annealing even Inore severe eGects can occur. '4

p=fl"r (102)

then the property will obey kinetics of order n/r.
4.3. Variations in frequency factor. The results wh—ich

were derived here were based upon a slow variation of
frequency factor with activation energy. This may seem
a rather severe restriction, especially when the order is
not unity and the frequency factor contains a concen-
tration. However, this concentration is the original
concentration, that given by the initial activation-
energy spectrum. Since the annealing which is observed
is due mainly to processes for which

4. COMPLICATIONS

4.i. The treatment given here has considered the
behavior of processes distributed in activation energy
when the frequency factor and order are constant. The
physical justification of this treatment is that the
experimentally observed range of activation energies
aGects the gross kinetic behavior more severely than
the range of expected orders and frequency factors.
Despite the lack of any detailed kinetic investigations,
it is worth noting some of the eGects which may be
treated as variations of order and frequency factor.

4.2. Variations inorder d, ste to the property chosen for
ievestigatiae. —It was pointed out by Brown' that if a
property is proportional to a power of the number of
processes which can occur,

(100) (~ ln(Bt) —eg 0, (103)
where ln(y+ns+1) —r+sy ['see Eq. (36)j. Since r and
s have nearly the same values as a and b, the major
effect is due to the power of the temperature appearing
in the logarithm term. For a typical case at a tempera-
ture several hundred degrees centigrade, if the temper-
ing rate were parabolic (nt=2), the annealing rate

the variations in 8 needed to aGect the results are
variations orders of magnitude larger than the ranges
of e being considered. Such variations in concentration
have already been excluded in many of the results given

'4 W. Primak (to be published).
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here by the requirement that the initial activation-
energy spectrum be broad compared to several times ez.
However some physical circumstances might give rise
to large variations in frequency factor and perhaps
diffusion controlled processes might be so treated.

From Eq. (103) it is seen that if 8 changed greatly
enough to affect lnB to an extent comparable to the
ranges of e under study, the processes with the changed
8 would be attributed to some other activation energy,
despite the fact that they occur with the same activation
energy. Then when an isothermal annealing is per-
formed at another temperature, the processes would be
attributed to still another activation energy. Thus when
the frequency factor shows marked variations and it is
assumed constant, the initial activation-energy spec-
trum seems to be different at different temperatures. The
effect is easily seen by considering a case in which the
activation energy is constant but there is a distribution
of frequency factors and is illustrated here for processes
obeying 6rst-order kinetics.

In an isothermal annealing of processes of one acti-
vation energy distributed in frequency factor and
obeying 6rst-order kinetics, the annealing rate is

dp
po(A) exp( —Ate 't')dA, (104)

and taking as a specihc example one in which the dis-
triburion po(A) is a constant p over a range Ai to A~
and zero elsewhere,

d'P ~
A2

=p, exp( Ate 'I')dA—,
dt

(105)

If it is erroneously assumed that the system consists of
processes possessing a single frequency factor A&, but
distributed in activation energy, then A&t=e "~' and
inserting Eq. (107) into Eq. (15a) there is obtained

Po(eo)=Pal(1+e ' '0") exp( —e '~'o"). (108)

In Eq. (108), e is fixed and cp is the variable. The
hctitious activation-energy spectrum given by this
equation resembles the form of a characteristic-an-
nealing function because both are dominated by the
negative exponential of a negative exponential. For the

dI' pr
P(1+Aite ")exp( —A&te 't')

Pe
—(1—A2te 't') exp( —A~te 't')]. (106)

From Eq. (105), it is seen that at the instant the
annealing starts, the rate is p, (A 2

—A i). However, after
any appreciable time, since A& will be greater than A&

by orders of magnitude, the annealing rate becomes

dI' p,r
(1+Aite ' ') exp( —Aitc 't'). (107)

]2e—e/r

fictitious activation-energy spectrum: the point of
inflection occurs at eo

——c+r ln2 where the slope is
poAi4e 2/r, ' most of the rise occurs over a small range
of eo several times v,' no change takes place in time since
it is an initial spectrum; and the ordinate 2poAi/e
remains 6xed at co=a for all temperatures. Thus the
segments of the fictitious activation-energy spectrum
obtained by isothermal annealings at different tem-
peratures do not join. For a series of segm, ents obtained
with successively higher temperatures, points obtained
at higher temperatures will lie above points having the
same value of eo obtained at lower temperatures when
eo (2ppA i/c. When eo) 2ppA i/e, the higher temperature
points will lie below the lower temperature points of
the same eo. It should be noted that the lower values of
the frequency factor dominate the kinetic behavior.

The effect of using a higher frequency factor in Eqs.
(15) and (15a) is to displace the derived initial-
activation-energy spectrum to higher energies, and in
Eq. (39) to displace the spectrum, to reduce its height,
and to spread it over a greater range of activation
energies. A twofold distribution of processes in fre-
quency factor and activation energy could be repre-
sented in Cartesian space, and its projection on a ver-
tical plane parallel to the activation energy axis would
be a band. If the experimental rates of isothermal an-
nealing at various temperatures are inserted into Eqs.
(15) and (15a), there results an effect similar to that
obtained in considering a distribution in frequency
factor alone: the segments of the 6ctitious initial
activation-energy spectrum obtained at various tem-
peratures do not form a continuous curve; and for an
appropriate mean frequency factor fall within the
band.

4.4. SNccessise reactions. I5—Successive reactions are
possible for the systems considered here. The effect is
the occurrence of a process which involves a property
change and which thereby generates another process
which will occur at a higher activation energy. The
appearance of such additional property change at
activation energies close to those at which the original
process occurred would steepen the activation-energy
spectra in these regions; and if the data were analyzed
by the methods given here, an apparent order lower
than the actual order and/or a frequency factor higher
than the actual frequency factor would be derived.

4.5. ExPerirnental elldicotion of the kinetics. —It is
seen that once the kinetics of annealing is admitted to
have complexities as great as a distribution of at'tivation
energies, other complexities of behavior can be excluded
only by experimental evidence. It is necessary (1) to
ascertain that the property measured is a suitable one,
(2) to exclude or ascertain successive reactions, (3) to
ascertain the frequency factor, and (4) to ascertain the

'~This possibility was suggested by others in the course of
radiation damage studies at the Metallurgical Laboratory and the
Argonne National Laboratory, among whom are Simpson,
Neubert, and Hennig.
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order of reaction. Each of these requirements must be
met by suitably planned sets of annealings or combin-
ations of annealings over the whole of the temperature
range to be investigated. The writer is not familiar with

any investigation sufficiently detailed to meet these
requirements. Since much of the complexity commonly
results from the fact that the properties which are
studied do not identify particular chemical species in

particular environments (an analogy which could be
taken in chemical kinetics would be the measurement
of pressure in the pyrolysis of a gaseous mixture of
organic compounds which was not simultaneously sub-
jected to chemical analysis), it may be hoped that when
suitable properties or combination of properties are
studied much of the complexity of a particular system
can be removed.
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Exciton Absorption in Cuprous Oxide
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The exciton absorption spectrum of Cu20 has been measured at low temperatures. As reported by Gross,
the observed lines 6t a hydrogen-like series formula. The wavelength shift of the position of the optical
absorption band edge has also been measured as a function of temperature. The dependence is approxi-
mately quadratic.

INTRODUCTION

'N a series of papers, Gross and his collaborators' have
~ ~ reported on the exciton absorption in crystals of
Cu20. This absorption appears as a series of lines near
the main optical absorption edge which occurs in the
red end of the visible region. The observation is made
at low temperatures (77'K or lower) and with thin
crystal slabs (of the order of 10 to 50 microns thick-
ness). The observed lines may be empirically fitted to a
hydrogen-like series formula with astonishing accuracy.

Wannier, ' in 1937, postulated the existence of the
corresponding energy levels, and proposed the following

as a model. When an electron in an otherwise perfect
dielectric crystal is raised to an excited state, it may
be thought of as belonging to the crystal as a whole

rather than to any particular atom. If its energy is
insufficient to raise it to the conduction band, then it
will remain within the Coulomb inffuence of the positive
hole which it has left behind in the lattice. This electron-
hole system may exist in stationary states, and will

behave with respect to the remainder of the crystal
as if embedded in a dielectric medium. The system is,
however, free to migrate within the crystal.

The expected energy levels, measured from the ioniza-

tion continuum (the conduction band), will be given
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by the Bohr expression:

Ws = —tte'/4sre'k'chs,

where tt = srta*rrt. */(rrts*+rrt, *), the reduced mass of the
electron-hole system; e is the dielectric constant of the
dielectric material; k is the ordinal number of the level
and takes on integral values. The other symbols have
their usual meaning. The radii of the Bohr orbits will
be given by

a = kse$/tres

These expressions for the energy and the radius diGer
from those obtained in the Bohr theory for atomic
hydrogen only in that the value for the reduced mass
is much different, and that a dielectric constant has
been introduced into the force equation. It should be
noted also that the "ground state" for this system is
the recombined state in which the electron has collapsed
into its hole. This occurs at an energy W, (the width
of the forbidden energy gap) below the conduction
band. Consequently the series formula for the expected
lines will be given by

t =W —Ws/k' k=1, 2, 3,

EXPERIMENTAL

We have repeated the earlier measurements of Gross
e$ al. , using the apparatus shown diagrammatically in
Fig. 1. The spectrograph was a three-meter concave
grating machine having a dispersion of roughly Ave
angstroms per millimeter. The source was a tungsten
6lament. A water cell was placed between source and


