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Impurity Band in Semiconductors with Small Effective Mass~
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(Received August 19, 1955)

The energy levels of ordered impurities in semiconductors are formally equivalent to the energy levels of
metallic hydrogen if a number of simplifying approximations are made. An approximate calculation of the
energy states for the 1s band of metallic hydrogen is carried out for smaller lattice constants than those
considered by Wigner and Huntington, or by Baltensperger. A simple transformation of the distance and
energy scales converts the calculation for metallic hydrogen to one applying to impurities in a semiconductor,
if values for the efI'ective mass and the dielectric constant are given. Experimental results for the optical
energy gap in InAs are reported as a function of impurity concentration. The effective mass required to fit
the optical data for InSb published by other workers is about 0.03m, as compared to the value 0.013m found
by cyclotron resonance measurements.

I. INTRODUCTION

STRIKING phenomenon observed in inter-
metallic semiconductors with small eGective mass

is the shift of the optical absorption edge to shorter
wavelengths with increasing impurity concentration.
This eGect was 6rst observed in indium antimonide by
Tanenbaum and Briggs additional data for InSb
have been reported by Hrostowski et al.' and by Breck-
enridge et al.' Data on the shift of the optical edge in
indium arsenide are given in Sec. 3 of the present paper.

Burstein' proposed that the shift of the optical
absorption edge is not related to a change in the band
separation caused by the impurities, but rather to the
fact that in impure samples the Fermi level lies well
above the bottom of the conduction band. Thus,
transitions to the ulled levels near the bottom of the
conduction band are improbable, and the absorption
edge moves to higher energies.

One feature of Burstein's explanation which requires
closer study is the distribution of energy levels in
impure material which causes the Fermi level to rise as
impurities are added. If all the impurity levels were
below the bottom of the conduction band, the Fermi
level could not rise sufEciently far to account quanti-
tatively for the observed eGect. In this paper, we will
extend the ordinary hydrogenic model of impurities
into the range of large impurity concentration, thus
extending to smaller lattice constants the treatment of
metallic hydrogen Qrst carried out by Wigner and
Huntington' and applied to semiconductors by
Baltensperger. '

*This work was supported in part by the Once of Naval
Research. Preliminary accounts were presented by Robert Talley
at the Symposium on Intermetallic Semiconductors, held April
26-27, 1955, at Baldock, England, and by Frank Stern at the
Symposium on Physics of Semiconducting Materials, held June
6—8, 1955, at Ann Arbor, Michigan.' M. Tanenbaum and H. B.Briggs, Phys. Rev. 91, 1561 1953).

'Hrostowski, Wheatley, and Flood, Phys. Rev. 95, 1683 1954).' Breckenridge, Blunt, Hosier, Frederikse, Becker, and Oshinsky,
Phys. Rev. 96, 571 (1954).

4 E. Burstein, Phys. Rev. 93, 632 (1954).'E. Wigner and H. B. Huntington, J. Chem. Phys. 3, 764
(1935).' W. Baltensperger, Phil. Mag. 44, 1355 (1953);see also G. W.
Castellan and F. Seitz, Semiconducting Materials, edited by H. K.
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2. Is BAND OF METALLIC HYDROGEN

The simple picture for explaining the ionization
energy of dilute donor impurities in a semiconductor
assumes that all but one of the electrons of the donor
atom participates in the binding (or bonding) of the
crystal, and that the remaining electron then sees the
donor ion as a single positive charge. Thus, the donor
ion and the extra electron look like a hydrogen atom;
the energy required to remove the electron to a point
far from the donor ion is given by the formula for the
ionization energy of atomic hydrogen if we replace the
free electron mass by m„ the eGective mass at the
bottom of the conduction band, and take account of
the fact that the dielectric constant ~ of the semi-
conductor weakens the attraction between ion and
electron. We then find for the ionization energy of a
donor atom in a semiconductor:

En=-'ztN, (e'/lr)'A '
= (m,/tn)z ' ry=13.60(tN, /m)lr ' ev, (1)

where m is the free electron mass and m, is the eGective
mass at the bottom of the conduction band. ' This
formula gives qualitative agreement with observed
activation energies for impurities in semiconductors.

A direct extension of the picture which identifies
isolated impurities with free hydrogen atoms is one
which relates interacting impurities to solid hydrogen.
The form of solid hydrogen which we consider is the
metallic form first studied by Wigner and Huntington
the restraining eGect of the semiconductor lattice will
keep the impurity atoms from clustering in the
molecular phase, which is more stable than the metallic
phase of hydrogen for large lattice constants. Our
calculation is similar to the work of Baltensperger, '
who applied the results to a discussion of impurity
band conduction. Because of the very small eGective
mass of InAs and InSb, the overlap between donor
electron orbits is much greater than in other known

Henisch (Academic Press, Inc. , New York, 1951), p. 8; C.
Erginsoy, Phys. Rev. 88, 893 (1952).

'A Rydberg (ry) is the ionization energy of atomic hydrogen
for a nucleus of innnite mass. One ry equals 13.60 ev.
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e(k) = en+Qk'. (6)

ha other words, the 1s band of metallic hydrogen is

semiconductors; thus, the usual picture of impurity
levels well separated from a conduction band will not
hold here except for very low impurity concentrations.
Our calculation extends the work of Baltensperger into
this region of larger overlap between donor electrons.

Let us first list some of the approximations under-
lying this calculation:

(a) The electron sees the donor ion as a single positive
charge; the interaction between electron and ion is

e'/Kr f—or all values of r.
(b) The interaction of the electron with the periodic

potential of the semiconductor lattice is taken into
account by assigning to the electron an eGective mass
%pe

(c) This effective mass is isotropic.
(d) The impurity ions form an ordered array of high

symmetry.
(e) The zero level of energy is identified with the

energy of the bottom of the conduction band in pure
material.

(f) No electrons are thermally excited from the highest
filled band to the lowest empty band, and the impurities
are uncompensated.

The Schrodinger equation for the motion of an
electron in the neighborhood of a donor ion in a semi-
conductor is, on the basis of our assumptions:

(A'/2sr4) (d'P~/dr')
—L(A'/2m, )l (l+ 1)r '—(e'/zr) E]Pi=0,—(2)

where I'~ is r times the radial part of the wave function
belonging to angular momentum /. We put:

r = (zrN/m, )x, E= (sN, /srslr') e . (3)

If we use Bohr radii as units of distance and Rydbergs
as energy units we can write:

(d'P)/dx')+L(2/x)+e —l(l+1)x ']Pi(x) =0. (4)

The energy e~ for the 1s wave function with propa-
gation vector k=0 is found from the usual Wigner-
Seitz boundary condition that the radial derivative of
the wave function vanish at the surface of the unit
sphere surrounding each ion. Our boundary condition is:

{d[x 'Pe(x)]/dx) x,——0 for e= err)

where x, is the radius of the unit sphere; see Eqs. (18)
and (19) for expressions relating x, to the impurity
concentration.

The solution of Eq. (4) with the boundary condition
given by Eq. (5) will give us e&, the energy of the bottom
of the 1s band, as a function of x,. To find the energy
levels for electrons with propagation vectors diferent
from zero, we use a method developed by Bardeen. We
assume that in the lower part of the band the energy
is given approximately by

to= (9sr/4)&rsx, s=3 6832.ax, s

Bardeen's formula for n is:

(8)

x,sLPe(x, )]'{dLx 'Pi(x)]/dx)*,

3Pg(x,) LPe(x)]'dx
~o

(9)

This method of finding n is diferent from the one used
by Baltensperger. e He found the energy of the top of
the band from the boundary condition P&(x) =0, and
used the band width to find the effective mass. Bardeen's
method is likely to be more accurate since it is valid for
the region near the bottom of the band where the
parabolic approximation holds best. A perturbation
theory expression for o. developed by Wigner and
Seitzo shows that o, will be less than or equal to one if
all the perturbing levels lie above the level in question.
Thus o. &1 for the 1s band, while Baltensperger finds
values between 1 and 1.7 for x,&2. On the other hand,
Baltensperger's method gives a quick estimate for the
width of a band, and can give such an estimate even
for p bands and bands of higher angular momentum,
where the parabolic approximation of Eq. (6) is no
longer applicable.

The solution of the reduced Schrodinger equation,
Eq. (4), which vanishes at the origin is given for
negative values of e by Whittaker and Watson' in
the form:

P((x) M„,s+.(2x/ss) x'+'e *'"

~ (1+l—rs) (2+l—rs) . . (i+l—rs)
X 1++ (2x/rs)'

~i i!(2l+2) (2l+3) (2l+i+1)
(10)

where
n=( —e) i.

It is most convenient to choose a value for e, say
e= ess evaluate Ps(x) by using this value, and then
find the value of x for which the boundary condition of
Eq. (5) is satisfied. Using this value of x„we then
calculate n using Eq. (9). A separate power series is

e J. Bardeen, J. Chem. Phys. 6, 367 (1938).
e E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934); see F.

Seitz, 3Eoderrs Theory of Solsds (McGraw Hill Book Compan-y,
Inc. , New York, 1940), pp. 352-3.I E. T. Whittaker and G. ¹ Watson, Moderrs ANalysss (Cam-
bridge University Press, Cambridge, 1950), fourth edition, Sec.
i5.l.

assumed to be parabolic in shape, with an eGective
mass o. '. Then the density of states (including a
factor two for spin) is given by:

p(e) =n &(e—e~)&/2srs Bohr radii s ry-'.

There is one orbital state in the 1s band for each atom;
each of these states may be occupied by two electrons
with oppositely directed spin orientation. We find for
the width of the filled portion of the 1s band:
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TABLE I. Calculated points for metallic hydrogen. '

0.03003
0.06765
0.12049
0.27258
0.7726
1.580

ag(ry)

—100—44.44—25
v 11—4—2.041

1.0000
1,0000
0.9999
0.9995
0.9954
0.963

0 (&.)/0 (o)

0.985
0.967
0.941
0.870
0.665
0.410

' xs is the radius of a sphere whose volume is the reciprocal of the concen
tration; it is given in units of the Bohr radius. ea is the energy of the bottom
of the 1s band relative to the energy of an electron at rest far from the
crystal. rr ' is the effective mass near the bottom of the 1s band. The last
column gives the ratio of the value of the 1s wave function at the edge of
the cell to its value at the center.

derived, using Eq. (10), for each of the factors needed
to evaluate Eq. (9). For the values of e~ which we
consider, i.e., e~& —2, the power series converge quite
rapidly and an accuracy of 0.1% is attained if ten
terms in the power series are used.

The power series solution of Eq. (4) given above is
useful for finding the wave function for the bottom of
the 1s band. We will list here a number of solutions
valid for other ranges of e. When —1&&&0, the
expansion given by Kuhn" is convenient. For &=0,
Eq. (4) has the solution:

Pi(x) (8x)Vs~r((8x) &), (12)

where J's~t is a Bessel function of order 21+1. When
~&0, we can use tables of Coulomb wave functions"
which cover the range 0&@&5. Finally, if e '~0,
we have:

P((x) (xQe) V~;(*pe). (13)

We list in Table I the results of our calculation for
e~ and for e as functions of x,. We used empirical fits
for e~ and n as functions of x, to draw up the more
complete list of values given in Table II. The entries in
this table are given as functions of x, ', since this
quantity is proportional to the density of metallic
hydrogen —and to the concentration of impurities in a
semiconductor. The proportionality factor is given in
Eq. (19).In Table II, we list en, n, and f, where f is the
position of the Fermi level at absolute zero and is
given by:

En/en=F/f=13. 60(m,/m)K '.

TABLE II. 1s band in metallic hydrogen. '
(17)

We can qualitatively characterize our results for the
1s band of metallic hydrogen by saying that for the
range of lattice constants covered in our calculation the
eGective mass is slightly larger than the free electron
mass. For small lattice constants, the energy of the
bottom of the band is given approximately by —3/x„
and the width of the band by 3.68/x, '. As the lattice
constant decreases, the Fermi level rises much more
rapidly than the bottom of the band falls. It is this
fact which is responsible for the shift of the absorption
edge to shorter wavelengths with increasing impurity
concentration in semiconductors with small effective
mass.

We have calculated the energy of the bottom of the
2s and 2p bands, with the boundary condition used by
Baltensperger, i.e., vanishing derivative at the edge
of the cell. (Note that the bottom of the 2p band will

not be at k=0, but at the edge of the Brillouin zone
along the cubic axes. ) Baltensperger found that in the
range of lattice constants covered in his calculation the
2s band was always well above the top of the 1s band,
while the bottom of the 2p band crossed the top of
the 1s band for x, 2. We have verified that for smaller
lattice constants the 2s band remains well separated
from the 1s band; the bottom of the 2p band remains
below the top of the 1s band for lattice constants
smaller than the crossover value. However, the bottom
of the 2p band never falls below the energy level at
which the 1s band is half-6lled. In other words, the
density of states below the Fermi level at absolute
zero is the density of states in the 1s band alone, with
no other band contributing.

Application to Semiconductors

Our calculation to this point, as summarized in
Table II, refers directly only to metallic hydrogen. We
can easily convert the results so that they apply to
impurities in semiconductors. The conversion factor
for the energy scale, as in Eq. (3) is:

f» eg+rn (14) f(ry)

The approximate empirical expressions we used in
calculating the entries for Table II are:

x,= —(3/eg) L1—(1/10e~)+ (1/15e EP)
—(1/20en')+ . .], (15)

o. '= 1+0.006g '+0.001g.'+0.002m, '. (16)

These expressions are good to within about 0.1% for
x, in the range covered by our calculations, i.e.,
0.03 &$,&1.58.

36 930
15 940

7630
3230
1521
571.6
246.1
117.4
49.38
16.31
6.36
2.168
0.690
0.253

3984
2257
1369
761
452.5
228.7
125.8
73.5
38.44
15.95
6.94
2.14
0.06—0.62

1.0000
1.0000
1.0000
1.0000
1.0000
0.9999
0.9998
0.9997
0.9995
0.9990
0.9980
0.9954
0.987
0.963

—100—75.6—59.2—44.4—34.6—25—18.9—14.79—11.11—7.72—5.67—4.00—2.78—2.041
"T.S. Kuhn, Quart. Appl. Math. 9, 1 (1951).
"Tables of Coulomb Wave Functions, U. S. National Bureau of

Standards Applied Mathematics Series (U. S. Government
Printing OfBce, Washington, D. C., 1952), Vol. 17.

a f is the Fermi level at absolute zero, i.e. the energy at which the 1s
band is half filled. The other quantities are defined as in Table I. See Eqs.
(17) and (19) to apply these numbers to impurities in semiconductors.
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x, '=6.2064&(10 ' (grN/m, )s/n, (19)

Here the units are electron volts for the quantities
referring to the semiconductor (Fs,F) and Rydbergs
for the quantities referring to metallic hydrogen
(es,f). F& and F give the energy of the bottom of the
1s impurity band and the energy of the Fermi level at
absolute zero, respectively, relative to the energy of
the bottom of the conduction band in pure material.

To relate x, to the impurity concentration we note
that the radius r, of the cell surrounding each impurity
atom is given by:

4~r,s/3 =Ei,",

where X& is the donor concentration. If we use Eq.
(3), we find
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where x, is given in Bohr radii and ED in cm . Using
Eqs. (17) and (19),with suitable values for the dielectric
constant and the effective mass, we can convert the
entries of Table II into graphs showing the dependence
of the Fermi level on impurity concentration.

3. COMPARISON WITH EXPERIMENT

The experiment to which the foregoing calculations
most closely apply is the dependence of the optical
energy gap on impurity concentration. The experiments
give AE, the difference between the optical energy gap
in an impure sample and the gap in a pure sample.
From the theory one can determine the position of the
Fermi level, given ~ and m, . The shift of the edge is
related to the Fermi level by the equation,

bE= [1+(m, /res„)$(F —qkT), (20)

where m„ is the effective mass near the top of the
valence band. Equation (20) is similar to an equation
given by Burstein, ' who used p=4. In general, p will

depend both on the value of Il and on e~, the value of
absorption constant used to define the edge. For
suKciently low values of nz, p will increase continuously
from zero as the Fermi level rises. Also, y will decrease
as az increases. This explains why the National Bureau
of Standards' points (ns 10') in Fig. 2 lie below the
Bell Telephone Laboratory' points (nE~10').

TAsLE III. Experimental results for indium arsenide. ~

Sample

9
8

15
25
27a
12
28a
24
29

11

Na —Nx (cm 3)

5X 10&6

2 X10'7
1X10»
3X10'

3.3X10»
6X10»

7.7X10»
1.8X10'9
2.1X10"
—7X10"

Optical
gap (ev)

0307
0.325
0.35
0.365
0.40
0.44,
0.46
0.475
0.57

0.295

Doping
agent

none
none
Se
Se
Se
Se
Se
Se
Se

Cd

a ND —Ng was determined from the saturation value of the Hall constant
at low temperatures. The optical gap given here is the room temperature
value, for @n absorption constant of 30 c~ ~,

FIG. 1. The top curve shows the theoretical Fermi level at
absolute zero for InAs as a function of donor impurity concen-
tration; the bottom curve shows the energy of the bottom of the
1s impurity band. Both are given relative to the energy of the
bottom of the conduction band in pure InAs. a is the dielectric
constant, m, is the effective mass at the bottom of the conduction
band, and m is the free electron mass. The points are our experi-
mental results for the shift of the optical energy gap with im-
purity concentration.

In comparing AE and Ii for InAs and InSb, we have
neglected the term (m, /m„) in Eq. (20), since no data
for m, are available. Thus our value for m, will be too
low by perhaps 10%%u~, which is within the uncertainty
in ns, . For a different method of analyzing the optical
data, see the paper of Kaiser and Fan."

Experimental Results for InAs

The results of our determination of the optical
energy gap as a function of impurity concentration in
indium arsenide are summarized in Table III. The
samples were prepared in evacuated sealed Vycor
containers, as described previously. " The optical
samples were about 1 mm thick, with ground and
polished surfaces. Large cleavage faces are not obtained
with this material, The transmission samples are poly-
crystalline, but in most cases they contain only a few
crystals. Two transmission curves have been previously
published. "

In order to make our determination of the optical
absorption edge independent of sample thickness, we
calculated the absorption constant as a function of
energy, assuming 50% reflection loss. The absorption
gap, or edge, was de6ned as the energy for which the
absorption constant is 30 cm '. This was a convenient
value because of the thickness of our samples, but has
no other special signi6cance. Lacking data for a very
pure sample, we estimate that the absorption edge
(at 30 cm ') for pure InAs at room temperature would
be 0.32 ev.

Our results for the shift of the absorption edge with
impurity concentration are given by the points of
Fig. 1. For comparison we draw a curve for the Fermi

is W. Kaiser and H. Y. Fan, Phys. Rev. 98, 966 (1955).
"R.M. Talley and D. P. Enright, Phys. Rev. 95, 1092 (1954),



1642 F. 5TERN AN D R. M. TALLE Y
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FIG. 2. Comparison of theory and experiment for InSb. The
curves and symbols are de6ned as in Fig. 1. The points marked
BTL and NSS come from references 2 and 3, respectively.

level at absolute zero based on Table II, using" 11.6
as the value of the dielectric constant. We have used
m, =0.055m for the conduction band eGective mass;
a smaller value would raise the curve showing the
position of the Fermi level, while a larger value would
lower it. In view of the considerations mentioned above,
the optical edge will lie somewhat below the Fermi level;
the theoretical curve for ns, =0.055m, therefore, agrees
approximately with the experimental points. We have
also drawn the curve for E&, the energy of the bottom
of the 1s band; this curve is quite insensitive to the
value of eGective mass used.

An interesting effect is observed in the three samples
in Fig. 1 drawn for a donor concentration of 2X10".
These samples were prepared from arsenic of about the
same purity, and are assumed to have about the same
donor concentration. They correspond to samples 8, 9,
and 11 of Table III, with sample 8, which is assumed
to be nearly uncompensated, having the biggest optical
gap. Sample 9, which we assume to be partially com-
pensated although no impurities were purposely added,
has a smaller gap. Sample 11 was purposely doped with
Cd, and was p-type; it has the smallest gap of the three.
We can explain this behavior by saying that the three
samples represent different stages of the emptying
of the 1s impurity band, with the electrons being
drained oG to acceptor atoms. This could account for
the observations, but a theoretical study of the de-
pendence of impurity band energy levels on degree of
compensation is needed, as well as further experimental
study of compensated samples.

In Fig. 2, we show a theoretical curve for the Fermi
level at absolute zero and experimental points for the
shift of the optical energy gap as a function of impurity
concentration for InSb. The experimental points are
taken from data of Hrostowski et ul. ' and Breckenridge

Ix F.Oswald and R. Schade, Z. Natnrforsch 9a, 611 (1954.).

et al. ,' marked BTL and NBS, respectively. The BTL
points correspond to various absorption constants of
the order of 10' cm '; the NBS points are in the 10'
cm ' range. The theoretical curve is calculated using a
dielectric constant of" 16.8 and an eGective mass for
the conduction band of 0.03ns.

4. DISCUSSION

A quantitative check of the value of effective mass
required to 6t the experimental results for the shift of
the optical absorption edge as a function of impurity
concentration is possible for InSb, where the eGective
mass in the conduction band has been measured by
cyclotron resonance. The value found by Dresselhaus
et a/. ts is (0.013&0.001)rN. This is to be compared with
the value 0.03m, which gives approximate agreement
between the theoretical Fermi level and the optical
points. One way to explain the discrepancy would be to
assume that there is more than one minimum in the
conduction band. There would then be a g-fold multi-
plicity in the impurity band, where g is the number of
minima in the conduction band. This has been discussed
in connection with impurity states in silicon and
germanium by Kittel and Mitchell" and by Kohn and
Luttinger. " The approximate eGect on our results
would be to decrease the eGective mass required to

- explain the optical data by a factor g&, since the optical
eGective mass is essentially a density-of-states mass.
The cyclotron resonance mass would still refer only to a
single minimum.

A second eGect which acts to improve the agreement
between the cyclotron resonance eGective mass and
the optical data as interpreted by our theory is the
lowering of the energy levels which results from the
fact that in the neighborhood of the donor ion the
dielectric constant- of the lattice is no longer efFective
in reducing the Coulomb attraction between ion and
electron. This effect is, in part, responsible fog the
diGerences between the ionization energies of diGerent
impurities in germanium, and in silicon. A quantitative
treatment would require a calculation similar to the one
described by Kohn and Luttinger. ' If this effect were
appreciable one would expect the shift of the optical
absorption edge to be measurably diGerent for diGerent
impurities in the same column of the periodic table,
e.g. , for S and Se or Te in InAs.

The most serious objection to a calculation like ours
is its neglect of randomness. The work of James and
Ginzbarg" and of Aigrain and Jancovici" has shown
that when impurities are randomly distributed, there
will be a tail in the density of states at both edges of

' Dresselhaus, Kip, Kittel, and Wagoner, Phys. Rev. 98, 556
(1955)."C. Kittel and A. H. Mitchell, Phys. Rev. 96, 1488 (1954).

'x W. Kohn and J. M. Lnttinger, Phys. Rev. 97, 883 (1955);
98, 915 (1955).

"H. M. James and A. S. Ginzbarg, J. Phys. Chem. 57, 840
(&953).

P. Aigrain, Physica 20, 978 (1954).
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the band. What inQuence this will have on our results
remains to be determined.
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Detection of Vacancies Created by X-Rays in Sodium Chloride

H. W. ETZEL
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The creation of vacancies in sodium chloride by x-rays is detected using optical techniques. The F-band
absorption produced by ultraviolet irradiation is measured and the band is then optically bleached. The
crystal is then x-rayed and optically bleached. The crystal is again subjected to the same ultraviolet radiation
as it received prior to x-raying, and the optical absorption of the F-band is remeasured. It is found that the
sensitivity of a single crystal of Nacl to ultraviolet radiation is enhanced by a factor of 100 after it has been
exposed to 40-kvp x-rays at 13 milliamperes for 30 minutes. Experiments are also performed to determine
the stability at room temperature of the excess vacancies under visible and ultraviolet radiation.

INTRODUCTION

HE generally accepted model for the P-center in
the alkali halides is that it consists of an electron

trapped at a negative-ion vacancy in the lattice. This
model of the P-center was tested experimentally by
Estermann, Leivo, and Stern. ' It had been determined'
that the F-band which is observed in various alkali
halides is greater than that which would be expected
on the basis of the number of vacancies in the crystal
before prolonged x-ray irradiation. If this model is valid
then the dimensions of the crystal should change under
or after such irradiation. This change was detected by
Estermann, Leivo, and Stern who measured the de-
crease in density of single crystals of KCl after x-ray
irradiation. More recently the increase in the dimensions
of alkali halide crystals under irradiation has been
measured by Sakaguchi and Suita' using an electrical
technique. Their experiment had been carried out in
air and it has since been repeated by Lin and Russella

in an inert atmosphere, thereby ruling out any surface
effects due to atmospheric contamination. The work of
Estermann, Leivo, and Stern did not show definitely
that the decrease in density observed was not in part
due to a change in the lattice parameter. Recently,
Berry, using an x-ray diffraction technique, has shown

that the contribution to the increase in volume due to
an increase in lattice parameter is negligible. The
present work is not intended to substantiate the P-
center model further, but to show that the creation of

' Estermann, Leivo, and Stern, Phys. Rev. 75, 62'7 (1949).
~ K. Sakaguchi and T. Suita, Technol. Repts. Osaka Univ. 2,

177 (1952).
s L. Lin and B. R. Russell, Phys. Rev. 99, 657 (1955).
4 C. R. Berry, Phys. Rev. 98, 934 (1955).

vacancies by x-rays can be detected by using simple
optical measurements.

EXPERIMENTAL DETAILS

The crystals used in this experiment were grown by
the Kyropoulos technique using sodium chloride which
had been treated with dithizone to remove any heavy
metal impurities. The 4 in. )&~ in. plates were cleaved
to 0.008 in.~0.001 in. in thickness to insure the useful-
ness of the data on a comparative basis even if the P-
band produced by the x-rays was not uniform through-
out the crystal.

The ultraviolet source was an Allen hydrogen-arc
lamp with a lithium fluoride window. The x-ray machine
used was operated at 40 kvp and 13 milliamperes and
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FIG. 1. The growth of the F-band in NaC1 during ultraviolet
irradiation at room temperature. Measured at X=4650 g.


