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Electron Correlation
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The state of a real gas of electrons of uniform density is examined. An equation for the coordinate repre-
sentation of the density matrix for two particles is found which satisfies the various necessary conditions
and which gives a lower energy than the antisymmetrized Single Slater Determinant. The additional nega-
tive correlation energy found is proportional to the one-sixth power of the density at high densities.

Pp= X/V.

In order that the density of electrons be kept constant,
assume that there is a uniform density of positive charge,
epp. If the unit of length is chosen to be one Bohr
radius,

ap = lt'/4sr'rle', (1.2)

and the unit of energy is the atomic unit,

e'/ap= 27.21 ev,

then the Hamiltonian of the system is

(1.3)

l. INTRODUCTION

]P E wish to discuss the electron correlation energy
in a system of electrons of uniform density and

infinite extent. Start with a finite system of E electrons
in a volume, V, and of density:

Bohr radius. In these units the Hamiltonian is

i N
[e= ', cl P -—V,"V;+ci 2 2 (1/~'y)

N& ~&q'&1

i N

i 1& J J
N

(1/s;p)dxp

coo= (9sr/10) (sr/3)ici,

and the total potential energy per electron to be,

(1.8)

1 t
~ ~~+— (1/xpi)dxpdxg . (1.7)

N

The usual zeroth-order solution is to assume a Single
Slater Determinant of plane waves with a minimum

kinetic energy. With this zeroth-order solution, the
kinetic energy per electron is known to be,

i N
eo„=—(3/4) (3/sr) hci. (1.9)

N& $&2') 1

i N—aoopo P ' (1/r o)dro

V

+-', apopp' (1/r py) dred rp. (1.4)

x= GpPp~r = c&r, (1.5)

where r is the dimensionless coordinate used in Eq.
(1.4), and

C= PpCp,

so that c is the concentration of electrons per cubic

1

The last constant term is the self-energy of the con-

tinuous positive charge which is added to the Hamil-

tonian for convenience. This term depends upon the
shape of the system, and diverges at infinite volume, but
cancels with the major terms in the potential of the
electrons.

It is convenient to change to the equally dimension-

less coordinates, x, which are pp& times the metric

length,

The major terms in potential energy have been made

to cancel to zero by the inclusion of the self-energy of
the uniform positive charge. The term, eoo, of Eq. (1.9)
is due to the fact that the Single Slater Determinant
implies a certain correlation in the position of electrons
with equal spin, namely that no two electrons of the
same spin approach each other infinitely closely. The
term cp& is usually called the exchange energy. We shall

attempt in this paper to derive an expression describing

a state of the system which is no longer a Single Slater
Determinant, and which gives a lower energy, namely

one in which the energy is

e= eoi's+ coy++pcs (1.10)

where he. will be called the correlation energy and will

be given in units of double Rydbergs, e'/ao, Eq. (1.3).
The electron correlation energy, he. , is made up of

two terms, one of them pos&tive, namely an increase in

the kinetic energy, and the second term negative, due

to an increased correlation between the electrons such

that they are on the average less close together than

given by the Single Slater Determinant solution. The
units of length, pp &, which we are using are now such

that the density is unity. Let us define conceptually a
function, Fo(xi, xp), by the statement that Fo shall
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4m x'g (x)dx = 1. (1.12)

Due to the cancellation of the major terms, the po-
tential energy of the system is

e„=—2c~ " 4irxg(x)dx. (1.13)

The value of eo„given by Eq. (1.9), is obtained by
putting into Eq. (1.13) the value

g (*)= ufo'(x), (1.14)

where fo is the expression for the single particle density
matrix element in coordinate representation appro-
priate to a Single Slater Determinant of plane waves of
minimum energy, namely

sinL(3~2) &x] cosf(3n.2)&x]
fp(x) =3

P(3~'2)&x]3 L(3~ )&x]2

—1—(1/10) (3'') ~x'+ .. (1.15)

The kinetic energy is also determined by f and is

ei, ———32clL —(8'/Bx') f(g)). p, (1.16)

which leads to the numerical value of Eq. (1.8) with
Eq. (1.15) for f. The derivation of these relationships is

given in Sec. 2 of this paper.
The method which we propose to use is as follows:

we introduce the coordinate representation, p, (x,', x,";
x2', x2"), of the density matrix of two particles. ' The
diagonal element, namely that obtained when x
= x;"=x; in p2, is the function F2 of Eq. (1.11), and
hence by that equation determines g and the total
potential energy by Eq. (1.13). If x&' ——x2"——x2, is set
in F2 and the function is integrated over dr~, one ob-
tains a function f(x), where x=

~

xi' —xi" ~. This func-
tion, f(x) is the coordinate representation of the density
matrix for single particles, and determines the kinetic
energy by Eq. (1.16).

Now there are a number of necessary conditions
which must be satisfied by p2. Some of these are sym-
metry conditions and others are conditions which must

' Since preparation of this manuscri t a paper has appeared by
Per O. Lowdin, Phys. Rev. 97, 1474 1955), describing the prop-
erties of this and similarly defined density matrices.

represent the probability density that one will simul-
taneously have an electron at the position x~ and
another electron at the position x2. For large distances,
x», between the electrons, P2 should approach unity
in value. We therefore write

+2(xi x2) 1 g(x12) ~

Since the integral of F2 over dxidx2 over the volume of
the system, which in these units is S, must be equal
to X(N—1), we have that

be satisfied by the function f(x). The most significant
of the latter is imposed by the demand that the original
eigenfunction, f, be antisymmetric in all particle ex-
changes. This requires that if f(x) is regarded as a
function of two coordinates and brought into diagonal
form, the coeScients of any of the diagonal terms must
lie between zero and two, expressing the condition that
only two electrons with opposite spin can occupy one
single-particle quantum state. In this case of uniform
density, the diagonal form of f(x) is given by a trans-
formation to plane waves, and the condition simpli6es
to the statement that the Fourier transform of f(x) in
three dimensions is limited to lie between 0 and 2 in
value.

We then set up a simple form for p2 which satis6es
the necessary conditions and try to determine, subject
to this simple form, the function which minimizes the
total energy. Actually, even subject to the simple form
assumed, only an approximation to the best analytical
function to minimize the energy is found.

One may easily see what the minimum possible po-
tential energy is. The minimum value of e„given by
Eq. (1.13) in view of (1.12) is satisfied if

g (x) =1, 0&x&(3/47r)&,

g„(x)=0, (3/4ir)&&x& ~, (1.17)

namely, when no two electrons can get within a dis-
tance (3/47r)& of each other. With this g(x) in Eq.
(1.13) for the potential energy, one finds

op; ———(3/2) (m/6) 'c&

= (2m/3) 40„=1.637ep~.
(1.18)

2. DENSITY MATRIX ELEMENTS

In this section we propose to define the density
matrix element for paired particles, to discuss its
properties, and incidentally to derive some of the
equations introduced in the last section. The three
dimensional space coordinates that we use are x;=pp~
times the metric coordinate of electron i, so that the
volume of the system containing X particles is S.The
symbol q;= x;, 0.; is used for the three-dimensional space
coordinate and the spin coordinate, cr;. The state of the
system is given by the normalized eigenfunction

P(qi, q~, . ,q ). The Hamiltonian of the system is given

The correct expressions for Ae„Eq. (1.10), must lie
between zero and this value. The Single Slater Deter-
minant solution gives g(x)=~i at x=0 since there is
correlation only between electrons of the same spin.
It is interesting to look at the numbers obtained if one
sets go(x) =-', for x between 0 and (3/2g) &. This would be
the optimum form if there were correlation only be-
tween electrons of equal spin. One then satisfies Kq.
(1.12) and finds

e&;„(correlation same spin only)
= 2 4p;„=1.299co~. (1.18')
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by the Eq. (1.7), in which the self-energy of the uni-
form positive charge has been included. Now de6ne the
element of the density matrix including spin for two
particles by the equation,

p2~41 «8 «V2 «72 )

lar and even at x=0. One has

8/E = 2= -'2c*[—(d'/dx') f(x)] 2

boa—-', C& 42rXg(X)dX. (2.8)
0

=&9'—1) 4*(el V2 V2 C~)J

V2 V2
' ' ' V&)d92' ' 'dV» (2 1)

and the element of the coordinates of position alone by

p2(X1,X1 ,
' X2,X2 )

p2, (xl', a l,xl",a 1, x2', 0 2, x2",a2) do ld02, (2.2)

in which the integration is carried over the diagonal
elements of both spins. The density matrix element p&

in the coordinates of a single particle is deined by

Pl (xl', x2")

= [1/(&—1)] p2(xl «xl «x2«x2)dx2. (2.3)JJJ
The energy of the system is given by

The first term on the right is the kinetic energy of Eq.
(1.16) and the second term is the potential energy of
Eq. (1.13).

Even in the more general case the energy of the
system is completely determined by the density matrix
element, p2, of Eq. (2.1) provided none of the terms in
the Hamiltonian contain the coordinates of three
particles explicitly. As long as the Hamiltonian does
not depend upon spin, the energy is determined com-
pletely by the elements integrated over the spin given
by Eq. (2.2). Instead of seeking the eigenfunction P
which gives the lowest energy, one may seek the density
matrix element which leads to the lowest energy of the
system. However the function p2, must obey certain
symmetry conditions. If P' is an operator that com-
mutes the two primed indices, I'" an operator that
commutes the two double primed indices, and I'* an
operator that commutes the primes with the double
primes, then

&'p2g p2n«+ p2rr p2s« I' p2a p2r (2 9)~

E= P Hgdgl ~ dg~«

and the result is seen to be expressible as

(2.4)
Since the Hamiltonian is real, we can choose a real
solution, and write the third condition as I' p2, =p2, .
In addition to this an integral relationship on the
diagonal eleinent must be satisfied, namely

8= —2c& ~ [V" ~ V"pl(x'«x")]2'=2" =2 dx
J J

p2 (Xl«X1 «X2«X2)dx2
J

= (X—1)pl(xl, xl) =X—1, (2.10)

+-', c ) [p2(xl, xl, xl, x2) —1]dxldx2, (2.5)

where the operator V" operates only on x" in p~. The
diagonal elements of p2 are equal to the probability
density function F2 defined conceptually in the last
section, and we write

p2(Xl«Xl «X2«X2) =F2(xl«X2) = 1 g(x12)«

)

(2.6)

in which the fact that the number density is independent
of position and equal to unity has been used. The den-
sity matrix for single particles is written as

pl(x', x")=f(x), x=
i

x' —x"i, f(0)=1. (2.7)

Since both expressions in (2.5) are independent of the
diagonal coordinate, one may divide by the total
number of particles to obtain the energy per particle
by omit ting one integration. The operation (V" V"),
= [(2/x)d/dx+d /dx2]~2 ——3[d'/dx ] 2, since f is regu-

sin2xxt
f(x) = 4~Py(t) dt,

2~xt

(2.11)

as well as the condition that the density matrix element
for a single particle is given by the integral of Eq. (2.3).
The application of Eq. (2.10) leads to the limitation of
Eq. (1.12) on g(x), namely that its integral over three
dimensional space be unity.

The element p~ for a single particle must be Her-
mitian, and therefore, if real, f(x) must be even in x,
and if brought into diagonal form, p~ must contain
elements which lie between 0 and 2 in value, since only
two electrons of opposite spin can occupy one state.
Since p& depends only on the distance be'tween the co-
ordinates, its diagona1 form is obtained by the coefFi-

cients of plane waves, or is just the three dimen-
sional Fourier transform of f(x). This transform is the
function:

sin 2+xt
y(t) = 4~x2f(x) dx,

4 27rxt
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where t has the physical significance,

&=
I
p I/kpo',

and p= momentum. The condition,

0&4(/) &2,

(2.12)

(2.13)

density matrix,

Fo(x))xo)=L1——,'f'(xio)]L1 k(x12)$', (2.17)

and for g, from Eq. (2.6):

g(*)=if'(x)+L1——,'f'(x)$ L2k(x) —k'(x) j. (2.18)

must be satisfied. The physical significance of p(t) is
that it represents the total square amplitude of the
single particle plane-wave function of momentum p in
the total eigenfunction of the system. The condition
that f(x) at x=0 should be unity imposes the limitation
that

"4~Py(t)dh-1, (2.14)

P2 4P2A~4P2S) (2.15)

where the function p2A which is to be multiplied by the
three symmetric spin functions must obey the same
symmetry conditions as Eq. (2.9), whereas p&z, which
is multiplied by the antisymmetric spin function obeys
the conditions Eq. (2.9) with plus signs for the first
two operators. A function of the form

p2A, s=Lf( I
»' —»"

I )f( I
»' —xo"

I )
~f(l xi' —xo" l)f(l x2 xl I)j

&& L1—k(I »' —»' I)jL1—k(I xi"—»"I)j
satisfies the symmetry condition for p» with the minus
sign, and for p2g with the plus sign. The correct function
p2 could always be written as a sum of functions of this
form. %e will assume that there is only one function
of the antisymmetric kind with triple weight, and one
of the symmetric with single weight, and that they occur
with the same function f and the same function k,
where both f and k are real even functions of their
variables. If the expression obtained is inserted in
Eq. (2.3) for pi, one finds indeed that in the limit
X-+ oo, the function f is equal to pi, namely Eq. (2.7).
We thus obtain for the diagonal element of the pair

which can be readily seen by putting @=0 into the
second part of Eq. (2.11).The conditions of Eqs. (2.9),
(2.10), (2.13), and (2.14) with g connected to p& by the
sequence of Eqs. (2.2), (2.3), and (2.11), must be
imposed on p2, .

We now propose to suggest a very simple form for
p2 which satisfies the symmetry conditions for Eq.
(2.9). This form will not be that which gives the mini-
mum energy of the system, which in turn would be the
exact solution of the problem, but we will limit ourselves
to solutions which follow the form suggested. With
this form we shall then attempt to approximately
minimize the total energy subject to the other conditions.

Any additive term in p2, may be written as the
product of the function of the coordinates times the
function of spin. For two electrons one can write one
antisymmetric spin function and three symmetric
functions. We will write, therefore, for the spatial part

We now wish to find k and f such that

4n-x'g (x)dx= 1, (2.19)

y, (&)=2 0(t&(3/8~)~,
@,(&) =0 (3/8~)~&t & ~. (2.20)

This solution satisfies Eq. (2.14) as well as the condition
of Eq. (2.13). It corresponds to full use of every plane
wave of minimum energy up to t= (3/8o) &, or from Eq.
(2.12), the momentum, p, having all values less than
Pma~= po k(3/8~)'*. With this solution for f the condition
(2.19) demands that k be zero everywhere since the
integral over the three dimensional space of —',fo'(x) is
unity.

3. ANALYTICAL FORM OF THE FUNCTIONS

The next step is to find the analytical form of k and

f that minimizes the total energy, subject to the condi-
tions to be imposed on these functions. We first deter-
mine the form of k for fixed f, and secondly find a form
for f that minimizes an approximation to the energy.
We thus obtain a simple, but approximate, form for
f(x) containing one parameter to be adjusted so as to
minimize the energy.

Since k(x) does not directly enter into the expression
(1.16) for the kinetic energy the best form for k, with

f(x) fixed, is that which minimizes the potential energy,
Eq. (1.13), subject to the condition (1.12) that the
integral of g(x) over three dimensional space be unity.
This is best satisfied by having Ii2=1—

g as small as
possible near the origin, or from (2.17) having k=—1 for
0 &x &xp, and zero for greater x. The value of xp up
to which k be unity is to be determined from the condi-
tion (1.12) on the integral of g.

Define k by
k(x) =1 0&x &xo,

=0 xp&x& ~,
and since k'= k everywhere, from (2.18)

g(*)= of'(x)+I:1—of'(x) 3k(x)

(3.1)

(3.2)

g(x) =1
ifo(x)

0&x&xp,
xp&x& ~. (3 2')

that P defined by Eq. (2.11), satisfies the conditions
(2.13) and (2.14), and that the total energy be a
minimum.

The Single Slater Determinant solution of lowest
energy has f equal to fo given by Eq. (1.15) for which
the Fourier transform is po(t),



Now define four integrals of f,

Io 1———— 4mxof'(x)dx
2~

with X an undetermined multiplier of the condition
(2.14). Using the approximate form (3.6') for p„and
(3.7) to determine Io by an integral over qP, one finds

bp—,

I,=-oo(3/~) &—4~xfo(x)dx
2~

Jp(xp) =—
om xp' —— 4~x'f '(x)dx,

2~p

Ji(xp) =orxp' —— 4irxf'(x)dx

with u and b rather complicated constants, independent
of t. However, condition (2.13) limits @ to lie between

(3.3) zero and two. Hence we set P(t) 2 for 0&t&ti,
g(t) =2—b(1—P/tip) from ti&t &ti(2b ' —1)&, and p(t)
=0 for greater values of t. We leave b arbitrary, but use
the condition (2.14) on the integral to eliminate one of
the parameters, t& or t2. Finally it is simpler to convert
to a new variable,

The limit xp beyond which k(x) is zero is determined
by (1.12) as

(2s/3) xp'+1 —Ip+ Jp(xo) = 1,
go ——(3/2or) &[Io—Jo(xo)]~.

(3.4)

xo= (3/2ir) &Ip&.

The potential energy, p„, is given by (1.13) as

(3 4')

Since f(x= 0) is unity, f is even, and hence f'(x=0) =0;
we may then assume that for small xo the function J2
is negligible. Hence, approximately, 4 (t) =C'(r) = 2

=2[1/4V][(1+~)'—r']
=0

0(~(t-~,
1—y & r & 1+y, (3.11)
1+7(r(m.

The expression (3.10) for r p is so chosen that

r = rp (8ir/3) &t= rp (8'/3)'i y i/hpp&, (3.9)

where ro is related to the single parameter, p, by the
equation,

«= ([1/10m][(1+7)'—(1—v)']) '
= [1+2m'+ ov'?' (3 1o)

and write,

o„=——',c& 4orxg(x)dx

= —-,'c'*[-', (3/ir) &+~go' —Ii+Ji(xo)]. (3.5)

I 4~toy(t)dt= ;ro' tr'4 (r)-dr=1 (3.12)

Use the value of op„given by (1.9) to write this as

op= op@ oc~[7rxo —[Ii—J(xo)]] (3 6)

In this expression assume Ii—Ji to be negligible, and
use the approximation of (3.4') for xp. One finds

o„=op,—(3/4) (2m/3) &c&Ip&. (3.6')

We use this approximation to determine the analytical
form of f(x).

Actually it is easier to discuss the form of the three-
dimensional Fourier transform, g(t), related to f by
(2.11).The Fourier transform has the property that

4~toy'(t)dt= 4irfx'( )dgg=2(1 —I,). (3.7)

The kinetic energy is given in terms of Q(t) by the
relation,

We now have 4(r) that satisfies the necessary condi-
tions on the density matrix for single particles: namely
from (3.12) it follows that f(0)=1 and hence the di-
agonal element does give the correct number density,
and secondly, since C lies between zero and two there
are only two or fewer electrons in every plane wave
single-particle function. In the limit, y=0, the function
is that for the Single Slater Determinant of minimum
energy.

The kinetic energy is now, from (3.8), (3.9), (3.10)
and (3.11),

op= (97r/10) (ir/3) &c*'(5/2) ro' r%(r)dr

= (%r/1o) (ir/3) +( ir/ ) (~/ )&c*y'

X[1+2m +-'v'] "'[1+(4/15) v'+ (109/945) v'

f.,=2~'c~ 4~t4y(t)dt, (3.8) —(1411/6075)go+ .]. (3.13)

and of course p must be restricted to obey the condition
(2.14) on its integral over three-dimensional space.

Now find g that minimizes

which becomes poi, , Eq. (1.8) for y~0.
The function f(x) is the Fourier transform of p(t).

Introduce

p&+o, 7i~ 4~Py(t)dt, — and
z= (3ir') &rpx, zr = 2irtx,

f(*)=F(z)

(3.14)

(3.15)
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x&y, namely

(3.16) 3 (3) ' f ro''t ~'+"

After some rather painful manipulation one obtains

F(s) = rp'(1/2y) )
~1+y

y'Fp(sy)dy, (3.17)

Fp(sy) =3(zy) 'Lsinsy —sy cossyj. (3.18)

Obviously in the limit y —+0 we have F(s)=Fp(s),
which is necessary since in this limit one has the Single
Slater Determinant solution, Fp(s) = fp(x) of Eq. (1~ 15).

X d s(4/9)sF (ox )sFo(y )s. (4.3')I

dp

Ke now make various coordinate transformations.
First set ys=t, sds=y '(dt, then use f=x/y&1, x4dx
=y'$4df'. The limits on f are y '(1—y) and unity. Fi-
nally replace y by i? =y '(1—y), y'dy= —(1—y) oi? 'di?,
with limits unity and (1—y)/(1+&)=1 —2y/(1+7).
The limits on f are now i? and unity. The expression is

1

An ', ~dH'
&. POTENTIAL ENERGY

(1-y)'
2&s) I 2y'

~oo

X„d~ V(-N''o(n), (4.3")
~p 9

(4.4)

is found by direct integration to be

In order to compute the potential energy one must
evaluate the four integrals, Ip, Ii, Jp(xo), Ji(xo), of
Eq. (3.3), use Ip and Jo to find xo from Eq. (3.4), and
with xp, Ii Ji use (3.5) for ov. The operations are
reasonably straightforward, but tedious. One ends with
Eq. (4.15) expressing ov as proportional to c~y& times with o=2y(1+ y) '. The integral,
unity plus a power series of p' with numerical coefE-
cients computed for the first two members.

The first integral, I2, is most simply computed from
the Fourier transform C, by the use of Eq. (3.7). One
6nds

I,=1—4~PqP(&)dr=1 '„r,' r'—C'-(r)dr
2J

=1—ro'L1/70&'lL(1+&)' —(1—v)' —147(1—y)'3

= 1-L1-v+2&'—-.'y'+!y'+(1/35)7'1

XL1+2y'+-;y &-

00) =lf'+lf' —lr(1-f')'1 L(1+t-)/(1-f) j
= —P L4/(2v —1)(2v+1) (2v+3)j|z "+ .

v)0

This can be integrated to give

0(f)df.= o. (~)

(4.5)

=vL1+ oy'+ (1l35)v'][1+2y'+ ov'j ',

which is zero, as it must be, when y —+ 0.
To compute Il, use

1
Ia=z(3/ir)' ——

~ 4irxf'(x)dx
2J

(4.1) = (1/36) 8+3i?—8i?'—3i?o—-'(1—i?')' ln- — . (4.6)

Setting o=2y(1+y) ', 1—o= (1—y) (1+y)—', one finds

~l
J(x)=)~ di?i?

—
oO(i?),

=-', (3/s.)' 1—(4/9) o-' "sF'(s)ds, (4.2)

and substitute (3.17) for F(s), to find

JL(1—7)(1+&) 'j=2y'(1 —v) '{1+(v'/18)

Xj 35+10''+91''—12 ln(y ')j). (4.7)

Finally, with Eq. (3.9) for rp, one finds that

I,= (3/ir)'y'Dn(y ')+1.0833j+O(y4). (4.8)3 (3) ~s (r 4 ) 1+r pl+y

2 For) E9y') &i ~ To compute Jp(xp) and Ji(xp) of Eq. (3.3) we assume
xp to be small and And the asymptotic expansion of
F(s), Eq. (3.17) for small s to beX, ds sFp xs Fp ys . 4.3

It is convenient to take double the integral with limits

F(s) = 1—(1/10) [1+3y' — js'+ (1/280) z4

—(1/15 120)s'+, (4.9)
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and with (3.14), (3.15),

f'(*)= 1—(1/5) (3~')'[1+(5/3) ~'+.
+ (3/175) (3~o)+ox —(4/4725) (3~')'x'+ . (4.10)

Using this in (3.3) one has

one electron per three Bohr radii cubed, one has p equal
to about one-half. The correction terms are signi6cant
at these low densities. Using (5.3') for P(p), and re-

placing In(p ') by the zeroth-order approximation,
ln(P ') =

o inc+1.35274, one finds

o= ( ~'/ 5)(~/ )'L +(5/ )v'+ 3xo'
—(18m' /1225) (3/or) 'xo + (87r /4725)xo, (4.11)

J = (3or'/10) (or/3) &[1+(5/3) 7'+ jxo4
—(3or'/175) (3/or) ~xo'. (4.12)

P=0.25854c "'(1+0.1169
—[2.0805+0.19241 inc jP'+ . }

=0 25854c "'{1+0.0302c '~'

—[0.1381+0.01286 1nc]i &+ .}. (5.5)

In these employ the zeroth-order expression, Eq. (3.4'),
(2orxo'/3) =Io, with Io from (4.1), to obtain a zeroth-
order approximation for J~, and continue to iterate.
One Ands

xo'= (3/2or) y(1+2y'+-'y4) '[1—0.70160'*
+1.0715'"'—1.512''"+ j. (4.13)

With this, in (4.12) for Ji one has

Ji= (9or/20) 2 &y+'[1—1.20063'&+ j. (4.14)

One now has the necessary quantities, xo from (4.13),
Ji of (4.14), and Ii of (4.8) to compute d, o~ from (3.5).
The leading term is seen to be that due to xo', propor-
tional to y&, which alone was used in Sec. 3 to obtain
the "best" analytical form for f(x) We fin.d

2.87123c& atomic units,
= 78.134 c& ev,

Aoo= 0.08269c"'k(c) atomic units
= 2.250 c"'k(c) ev,

(6.1)

(6.2)

k(c) =[1+0.0346c &$ @'{1+0.0907c 'I'
—[0.4117+0.0386 inc]c &}

X[1+0.0046c &+ j, (6.2')

~o„=—0.73856'& atomic units
= —20.098 c& ev,

(6.3)

{j.RESULTS

Enter (5.2) for the kinetic energy and (5.3) for the
potential energy with (5.5) for p. One obtains

e„=oo~ —
4 (2or/3) &c&y&[1+2''+-,'y4j &F(y), (4.15)

where

ho~= —0.24890c"'p(c) atomic units
= —6.751 c"'p(c) ev,

(6.4)

I"h) =v '[1+2m'+ox'1'
X[(2sxoo/3)'+m' i(2m'/3)~(Ji —Ii)]

= 1+0.11693'&—0.5982y4i'
—0.51311''~' ln (y

—'). (4.15')

5. ENERGY MINIMIZATION

p(c) = [1+0.03456c 'j '*[1+0.0604c 'I'
—(0.2459+0.0214 inc) c &+ . $. (6.4')

The total correlation energy is

Ao, = —0.16540c"o[o'k (c)+2P (c)) atomic units,
(6.5)= —4.500 c"'[-'k(c)+2p(c)j ev.

Set

and the kinetic energy, o&, Eq. (3.13) is

(5.1)

In these equations c, of Eq. (1.6) is the concentration
of electrons per cubic Bohr radius,

c=0.1481Xnumber of electrons per (angstrom)'. (6.6)

og = ooo+4.78539c*P'[1+2P'+0.2P'j "E(P), (5.2)

E (P) = 1+0.26667P'+0. 115348'
—0.23226P'+ . (5.2')

The potential energy from Eq. (4.15) is

o„=oo„—0.959579caP[1+2Po+0.2Po) 1P(P), (5.3)

P (P) = 1+0.1169P—0.5982
—0.7696P' In(P ')+ . (5.3')

Differentiation of the sum with respect to p gives zero
when

P =0.25854c "'[P+dP/d inP)', (5.4)

plus terms of order p'. From the zeroth-order approxi-
mation, P=0.258c "', one sees that with c—1/27, or

The distance, xo, out to which k(x) is unity is given

by (4.11) as

xo= 0.39742c ~[1—0.1502c i~o+ ~ ~ j, (6 7)

I fiI =po= (3/8~)'kuo' (6.8)

are ulled with two electrons each. For the "correlated"

which is measured in such units that the number
density is unity. The volume, vo, occupied by this
"hole" around each electron is then

no= (47r/3)x '=0.26283c &[1—0.4506c '~'+ j, (6.7")

measured in units of the volume per electron in the gas.
The momentum distribution of the electrons is de-

termined by C(r) of Eq. (3.11), with r related to
momentum by (3.9) and y~=P. For the Single Slater
Determinant all momentum states up to
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system the momentum states up to

l pl ~= pp(1 —P')(1+2P'+o 2P') '
—pp(1 —0.1314c &)

are filled with two electrons each, and all above

l pl ~pp(1+0.1314c *)

(6.9)

(6.9')

c=0.001256, Cs, one electron,

P =0.7870L1+0.092—0.483+ . . j.

are empty. The number per state decreases monotoni-
cally from 2 to 0 with a term proportional to l p l

' be-
tween lplt and lpl .

To obtain some idea of the range of applicability of
the equations we may try them with the alkalis. If one
considers the valence electron alone, so that one treats
only one electron per atom, the concentration c is
lowest for cesium than for any other metal, and is
generally low in the alkalis.

For cesium one has

The convergence of the series approximation (5.5)
for P is obviously nonexistent at these low concentra-
tions. For k(c) and p(c) the convergence is equally
bad, and direct calculation with the equations given
leads to an expression for d e„which is greater in mag-
nitude than the value 0.637ep„ found from Eq. (1.18)
as the lowest possible reduction in potential energy
due to electron correlation.

However for lithium, with

c=0.00686, Li, one electron,

P = 0.5931L1+0.069—0.390+

there is some sign of nearing convergence.
The general integrations given in Sec. 4 are actually

adequate even for the low-density examples quoted.
Equation (4.1) for Is is exact. Even with the maximum
possible value of xp, xp' ——3/4tr, the quantity Js is given
by (4.11) adequately. The evaluation of xp is then
awkward, but possible, and the other integrals are
satisfactorily given.
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Cadmium Sulfide with Silver Activator
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Further experimental evidence is presented in connection with a model which has been proposed by Lambe
and Klick for CdS(Ag). In this model, the silver activator is assumed to give rise to a level which is approxi-
mately 0.4 ev below the conduction band, and that luminescence occurs when an electron in such an activator
level recombines with a free hole. It is shown that irradiation in the 1p, infrared region stimulates lumines-
cence by generating free holes, while also causing well known quenching effects in photocurrent. It is also
shown that 3p irradiation gives rise to photoconduction by exciting electrons from the activator levels into
the conduction band. The proposed model indicates that irradiation in the 3p region should quench lumi-
nescence by removing electrons from activator levels, and this is found experimentally. These experiments
further substantiate the proposed model for CdS(Ag).

I. INTRODUCTION
' 'N a recent paper' (referred to as LK), a model for
~ ~ CdS(Ag) was discussed based on observations of
infrared stimulation of photocurrent and luminescence
and on relationships observed between photoconduc-
tivity and luminescence. The essential point of this
model was that silver activation in CdS gave rise to an
activator level about 0.4 ev below the conduction band
(see Fig. 1). It was assumed that luminescence occurs
when an electron in this level recombines with a free
hole. This model diGers from earlier models" for sulfide

phosphors in the position of this activator level. Xt had
previously been assumed that the activator level was

just above the valence band, and that luminescence

' J. Lambe and C. C. Klick, Phys. Rev. 98, 909 (1955). This
paper will be referred to as LK.

s M. Schon, Z. Physik 119,463 (1942).
s H. A. Klasens, Nature 158, 306 (1946).

occurred when a free electron returned to this level
from the conduction band. The purpose of this paper
is to report further experimental evidence which relates
to the model proposed in LK for CdS(Ag).

The cadmium sulMe crystals used in these experi-
ments were activated by 6rst immersing them in a
0.5S solution of AgN03 for approximately 30 seconds
and then, after washing with distilled water and drying,
firing at 800'C for one hour in a helium atmosphere. All
experiments here were done at 77'K and temperature
control was obtained by direct immersion of the crystals
in liquid nitrogen.

II. EFFECTS OF 1p IRRADIATION ON
PHOTOCONDUCTION AND LUMINESCENCE

In LK, experimental evidence was presented showing
separately the effects of 1p irradiation on luminescence
and photoconduction. The ip, irradiation produced a


