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values at the. higher energies, they are larger than the
corresponding Bethe-Heitler cross section.
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We study the interaction of a nonrelativistic particle with a scalar field, with particular application to
the theory of polarons. The approach is based on a general classical method for the integration of equations
of motion. The Hamiltonian is transformed by successive canonical transformations, the first corresponding
to describing the motion relative to special solutions of the equations of motion. This stage as applied to
suitably ordered Heisenberg equations of motion is identical with intermediate coupling theory. The second
transformation treats the coupled small oscillations of particle and field oscillators about the chosen special
solution. This affords a natural extension of intermediate coupling theory for this problem. Differences
between the classical and quantum theories arise in the ordering of operators; the differences play a crucial
role in determining the effective cutoG in wave vector space.

l. INTRODUCTION

HE theory of the interaction of an electron with
lattice vibrations has received much attention

recently. Aside from the question of oversimplihcations
customarily made in describing the physical system,
there is the problem of finding quantum theoretic
methods powerful enough to analyze the structure of
the typical Hamiltonians encountered. The present
deficiency hampers progress in the theory of normal
and super conducting metals at low temperatures, and
makes uncertain, estimates of lattice mobility in polar
crystals and semiconductors. The electron-lattice
interaction is also interesting from the point of view of
the theory of elementary particles. The Hamiltonian
corresponds to a simplified nonrelativistic field theory
with a boetJ /de cutoff. One is concerned with developing
theories of source recoil for intermediate and strong
coupling which may have implications for the general
theory of 6elds. The studies have already given rise to
a new adiabatic theory. '

We will here be chief concerned with the polaron
problem —loosely speaking, the theory of the inter-
action of a free electron with the optical modes
of a polar lattice. It possesses the simplification that a
minimum energy ~ is required to excite a quantum of
optical vibration (te is the common frequency of the
vibrations). For the lowest states of the system, one has
a pure self energy situation with no free quanta present.
A range of such states is possible; they are characterized
by an integral of the motion P with the dimensions of
a momentum, where P satisfies P'/2m &Ate. Most

N. Bogoliubov, Ukr. Math. J. T II, No. 2, 3 {1950); S.
Tyablikov, Zhur. Eksptl. i Teort. Fiz. 21, 377 (4951).

studies' ' have dealt with the properties of the above
class of states as a function of coupling strength, in
particular the energy of the very lowest state with
P=O, and the nearby states for which P'/2m((Ate.
Less attention has been paid to the case where P'/2m
=Ace and to the nature of the excited states. These
regions are of interest in the theory of dielectric break-
down and in mobility calculations. The determination
of the energies of the low-lying states has involved
mainly variational techniques. The most successful
methods are those of Hohler and Feynman. The
advantages are known; the disadvantages are that it is
hard to make a picture of the behavior, that the intrinsic
structure of the Hamiltonian is lost sight of and that
the determination of the excited states is made dificult.

In the following, we note that classical theory points
to a natural attack on the problem, and we explore some
of the consequences. In the theory of orbits one 6nds a
solution of the equations of motion (stable orbit) for
which the initial conditions have been chosen in a
particular way. Then one studies small oscillations
about the orbit. If the orbit is stable, there is a region of
phase space in which the full freedom in choice of initial
conditions is present. At the edges of the region of
stable motion the small-oscillation assumption is not
valid; however, classically the amplitude may be made
arbitrarily small so that there is always a domain
where anharmonic terms can be neglected. For the

~S. I. Pekar, Untersuchungen uber die Elektronentheorie der
Ertstalte (Akademische-Verlag, Berlin, 1954).

s H. Froh]ich, Advances in Phys. 3, 325 (1954).
' G. Hohler, Z. Physik 140, 192 (1955).
~ R. P. I'eynman, Phys. Rev. 97, 660 (1955). These papers

contain references to earlier vrork.
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Since there are no terms with a time dependence at
the frequency of the free oscillations of the lattice, the
solution must be closely related to the quantum
solution for the lowest state where no free quanta are
present. The quantum eigenstate will be seen however
to involve at least an additional range of classical states,
in which particles and oscillators undergo coupled forced
oscillations of a particular type in the vicinity of the
special classical solution.

The general equations have, in addition to the energy,
the integral of the motion

polaron problem there is such a stable motion; the
electron moves with uniform momentum and the
lattice modes undergo forced oscillations. There are then
neighboring states in which electron and lattice
oscillators undergo coupled small oscillation. This
classical picture will be applied here to the lowest
states; the intimately phased motion of electrons and
ions leads to lowering of the energy, and may be of the
type needed in the theory of superconductivity.

Mathematically both classical and quantum theory
involve a series of canonical transformations. ' The
first introduces coordinates relative to the stable orbit,
and the second is a normal mode transformation; later
transformations are perturbation treatments of the
anharmonic terms. However, because of the finite
de Broglie wavelength of the electron and the zero-point
motion of the lattice, the classical and quantum
transformations differ. The differences are most signifi-
cant for short-wavelength modes and provide a cutoff
in the quantum theory not present classically. This
advantage is offset by the fact that the concept of small
oscillations is not entirely natural in quantum theory,
since the minimum amplitude of zero-point vibrations
may take a problem inherently anharmonic. This is
reQected in the mathematical formalism in questions of
ordering of creation and annihilation operators, and in
approximations beyond the classical scheme.

k lr Yp' M&op'
P=p+P —

~
+ Xp' (.

top ~2M 2

The special solution (2) yields for H and P;

k gIP= yo+Z
~ 2M~, [(k pp/m) —~,]''

po' gp"/Mppp gp"/M
H= +P +-',Q

2m (k po/m) —cpu [(k po/m) —too]'

The special solution thus involves a relationship
between H and P through the intermediary of yp.

Equations (2) and (4) have singularities for waves
whose phase velocity cpk/k' is at the particle velocity
pp/nt If on. e restricts consideration to sufficiently
small values of pp so that ~k po/m( ((p~, ) for all
oscillators, the results depend on the cut-off value of
k. For a classical electron in a crystal the maximum
value of k is given by the lattice spacing, and the
singularity means that excitation of natural lattice
oscillations must be considered. Quantum theory
provides a cutoff arising from wavelength of the
particle. For weak coupling this has been discussed by
F.P.Z. and is k,„(2nuo/h)' *which leads to an energy
proportional to g'. One can also estimate the effective
mass for small yp by using (4). For strong coupling the
cutoff will depend on the strength of interaction,
representing a tendency to confine the particle in a
potential well. The question of the behavior of the
cutoff is thus vital, and is inherently quantum
mechanical.

We now go further into the structure of the equations
of motion by studying small oscillations. The results are
simplified by making the following canonical trans-
formation:

2. CLASSICAL THEORY

For details of notation and the analysis leading to
the Hamiltonian we refer to Frohlich et a/. ' The
Hamiltonian is

k (Yp' Mp~p'Xp')
P=P+2 —

I + I, O=q, (5)
k tppE2M 2 )

Qp'=Xp cos(k q)—
Mcoj,

sin(k q),

~k =Xp sin(k. q)+
Mo)A, 3fcoj,

cos(k. q).

H =p'/2m+ —'p p{ (Yp'/M)+Mtp p'X p'}

+P gp'{Xp sin(k q)+ (Yp/Mtpp) cos(k q)}, (1)
where p and q are canonical coordinates of the particle
of mass m; coI, is the frequency of a lattice oscillator with
wave vector k; Y~ and Xp are canonical momenta and
coordinates of the oscillators; M is a constant with
dimensions of the square of a time; Xpo and Yo'/M
have dimensions of energy; gI,

' has dimensions of a
square root of energy. We may write g&' gk/I. *', ——
where L is the length of the cube enclosing the system
(periodic boundary conditions). Then k takes on the
values k =n2pr/L, where the triplet n consists of
negative and positive integers.

One verifies that the following is a special solution of
Hamilton's equations for the system':

p= po= const; q = (pp/nz) 1+qp,

g&' sin(k. q) cos(k q)Xp- ; Ye=go' . (2)
Mtp& (k pp/m) —

cop (k' pp/m) —top

6The approach is a special case cf the general method for
integration of classical equations of motion. See Whit taker,
Analytica/ Dynamics {Dover Publications, New York, 1944),
Chap. 16.' Frohlich, Pelzer and Zienau (hereafter denoted F.P.Z. ),
Phil. Mag. 41, 221 (1950).

8 E. P. Gross, Technical Report No. 55, Laboratory for Insula-
tion Research, Massachusetts Institute of Technology, December,
1952 (unpubhshed).
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In terms of the new variables the Hamiltonian is

P' P&' 1 p k Py
+Zg.'- +—ZI1-

2m M~oi, 2M & & muon)

There are two types of solutions. In the first type,

1PPRp,

Mo))

X (Pa"+M'ooo'Qs")+
(2M)' 2m

X P —(P~"+M'~o'Qa") . (6)

aild

gje'=e"=o, p.'=p"=
(k po/m) —o~„

P= po+P g(kPo"/2Mooi).

The solution (2) corresponds now to a simple shift in
the new momentum coordinates,

poPso

m (pro —Q)p)
(12)

For a given P R»=0 unless pI,2 ——0&2. The 0& are simply
the original lattice frequencies, (as modi6ed by the
Doppler shift), relative to a particle moving with
velocity po/m. Only a small fraction of the lattice
oscillators satisfy pA,

2 ——0&2, and. these are modes built
out of a small number of oscillators combined. so as to
form standing waves with a node at the position of the
electron. This is the reason why the frequencies are
unmodified by interaction.

The second type has Il&00 and

pdV'k(k gi)

mMQ7o (ptP —Qg )
P =P ' P', Q =—Qo'. (13)

Then H=g~o'P;, with Pi=0 and

To introduce variables describing the motion relative The Ili are determined by the normalization condition
the stable orbit, we perform the following canonical on EI,q. The 0q are determined from
transformation:

Poo Pgo M ( Pi,o )'
&o= +2 gI' +—2 ~oo(

2m i Mo~i, 2 I (Motto)

1 ( kPioPi, ) ' 1 ( k po)
I+

2m & & Moog ) 2M & E moio)

These modes are built up from small contributions from
all the lattice oscillators and contain the coupling
constant for the electron lattice interaction. The normal

(9) frequencies are found between the poles of the right-
hand side of (13).

3. QUANTUM TREATMENT

&& (P '+M'o) 'Q ').

We have not written down the cubic and quartic
parts of H. The constant part Ho is just the energy of
Eq. (4). The next stage in the solution is to find the
normal modes for H2. This is always possible in principle,
but here H2 has a particularly simple form which
permits explicit calculation of the normal frequencies
and modes. We write

Q~= Zx&i, &., P~= Ed@)ni„ (10)

where $&, and gq are the new canonical coordinates and
momenta and R» is a real, orthogonal matrix. The
quadratic portion of the Hamiltonian is diagonal in
terms of the new coordinates with 0~ as the normal
frequencies. The E» and 0& are determined by writing
the equations of motion using only H2, and inserting
into them Eqs. (10) together with

Because of the similarity of the operator equations
of motion in the Heisenberg representation and the
classical equations the classical theory may be taken
over. The new points all involve the appropriate
ordering of noncommutative factors. We introduce
the creation and destruction operators

~

by t'M(ai) ~

)
(Q~'~~Po'/M~a),

lb,.

satisfying [b&,bi*1=5&&. Introduce the purely imaginary
quantity (dimensions of energy),

Vo ———igo'(h/2M~op) ',

and rewrite Eq. (6) as

1P oui
H= +Q h~ ooo

— + )by*br,
2m

We 6nd

(p~' —O~')&o), =—pAPoo 1Pio&n,

mg & Mco)

+Q (&obo+ &a*4*)

gg2

+g (k 1)by*bi*bgbi. (16)
&.& 2fÃ

0

where pi=coi, (1—k po/mioo). We have made use of the fact that the zero-point



15N F P GROSS

momentum PAk/2 is zero and have discarded the
zero-point energy P Aevi, /2. The operators have been
ordered so that the creation operators stand to the
left of the destruction operators; this arrangement
brings out the term P(A'k'/2m)b&*b& from the quartic
part of the Hamiltonian (6). This term comes originally
from the p'/2m term, i.e., from the particle kinetic
energy and represents physically the DeBroglie
wavelength cutoff. Now perform the shift, Eq. (8).'
The ordering of operators is unaltered. We have

as=4+ f(k), a~*=&a'+f*(k),
(17)

Qa= Qa', Pa= Pa' Pa'. -
Here ai ——(3Eoia/2A)»{Qa+iPa/3foia}, and we will later
show that f(k) is purely imaginary. Thus P&' ——

—(2MAoia)»if(k) We .will discuss the choice of f(k)
in detail below. Equations (9) are replaced by H'= p„,'
)(H&"), where

P'(1 —ri)'
+2 I

A ~+ IIf(&)I'
2m & ( 2m

H&'& =+ {Apaf(k)+ Va*}ag*+c.c.,
H&'& =P Api.ai.*ay+ (A/2m)P k 1f(k)f(l) {ag,*a)*

have been motivated by a study of the equations of
motion of the operators rather than by a variational
approach. The fact that the diagonal matrix elements
of G~2), H(3), 'V~4) are zero means that the true ground-
state energy is below the value obtained with Ho.

Now our object is to take into account the coupled
vibrations of electron and lattice oscillators. We shall
therefore find the normal modes of H&si. If one takes f
as in the intermediate coupling theory, we find that
including eGects of the oscillations gives a solution
valid for larger coupling strengths and lowers the
energy at all coupling strengths. However, one does not
obtain results valid in the strong coupling limit. This
is connected with an important point. The aA, will be
linear combinations of new creation and annihilation
operators belonging to the new normal modes. Thus,
the Hamiltonian will not be appropriately ordered in
terms of the new variables. In so ordering, B(') contains
linear terms and the process of 6nding the normal
modes destroys the stable orbit. It is therefore more
appropriate to keep f free until the normal modes have
been found and to determine it by then setting the
linear terms equal to zero.

Now introduce coordinates and momenta appropriate
to the Doppler-shifted waves. We have

(18)—aa ai+asai —ai aa},

H&@= (A'/m){P kaI, *f(k) P lai*ai

+Q lai*ai Q kagf*(k)}

H&'& = (A'/2m)P 1 la,*a,*a„ai,

where now

Then

H'2) becomes

aa (3IIpi,q»
I

(G,—iF,/Jvp, ,).
a~* (2A)

(19)

iiP=Q kI f(k) I'.

One can now choose f(k) so that HN is zero. This
ensures that there are no constant "forces" in the
Heisenberg equations of motion of the operators a&

and a~*. Thus there are no linear increases of these
operators with time and we have found the stable
orbit. As in the classical case, there are contributions
from the quartic terms of the original equation (6) to
the determination of f(k) . A reason for adopting
the above order is that the terms H(2), H('), H&4)

have no first-order contribution to the energy of
the ground state in a perturbation calculation in a
representation where aI,*aI, is diagonal. The results then
agree with quantum perturbation theory in the limit
of weak coupling.

This'stage of the procedure is precisely the inter-
mediate coupling theory of the polaron. ~" Here we

9 Lee, Low, and Pines, Phys. Rev. 90, 297 (&9531.
@M. Gnrari, Phil. Mag. 44, 329 (1953)."S.Tyablikov, Zhur. Eksptl. i Teort. I'iz. 25, 688 (1953).

(&I,' MpÃ ) 1 ( AkfF„q '
H"'=El + =" I-

I Z
E23f 2 ] MAm( p, ' )

The lowest states are characterized by zero quanta in
each of the normal modes. There will therefore be a
zero-point energy P, (AQ, /2). Thus, the contribution of
H(" to the energy is

The reordering of B~4) gives in general an additional
contribution to the energy which can be found after
the normal modes are determined.

4. ENERGY OF LOWEST STATE

In this section, we treat the lowest state of the polaron
for which P=O. For simplicity of presentation we go
through the calculations for a one-dimensional case.
Measure energies in units of Acr, momenta in units of
(2mAco)», and introduce

4= (p./~)', s= (~./~)'.
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+ n„' t n'(t)dt (mo (s) )=P ' +xns(s) cot~ ~, (31)
~s—t„J s t — E e(s) P

(23)sp(k) = ts ——(1+k')'.

For a given so&0, there are two values of k:

Consider modes of type 1, and label them with the uses the result
index so. Then the frequencies are given by

Ta+.p= Ta .p= 1/V2. (24)

The last step follows from the normalization condition

T+sp +Tk ap = 1.

Thus, for normal modes of type (1) and P=O,

~ p= (1/~) (Q~++Q~-) (25)

There is no shift in zero-point energy for type-1 modes.
The frequencies of type-2 modes are determined from

4(ts) &k'f'(k)
7

(s—ts)
(26)

4( o) = +L( o)'—1j'
Since one must satisfy P (kfTIsp/ps&)=0, and since
f(k) is an even function of k for P=O, we have

where I' stands for the principal value of the integral
and

For our problem, n s=4t„~(~2+/L) f (2&re/L), so that

n'(t) = (L/2~)f'L(t'-1)'jP(t'-1)3' (33)

Inserting Eq. (31) into the eigenvalue equation, we
Gnd

no(s) t
"n'(t) dt )=tan ' —~n'(s)

~
1+P '

~
. (34)

e(s) s t, J—
The normal modes of type 2 are related to the original

lattice coordinates by the transformation coeKcients:

4ts&f(k)P,k k f(k) Ts &sl

Ts,&'&= — P,=Q . (35)
with t&= (1+0')' or k'=t&& —1. This type of eigenvalue
equation has been treated in the literature. ""The poles
of the right-hand side are at s=ts with k=2'/L the
spacing of poles is

tA,
—s

The TI„&2) satisfy the orthogonality relation:

(36)

e(t.)~ 4( 2~ /L)(t. i—1)it„~, (27)

which gives the spacing as a function of frequency.
Let s be the root lying between t and t~&. Then

introduce the shift 0-

s„={1+(2~m/L)')'+o. „, 0 (o. (e(t„). (28)

e(t„)= t~r —t„= (2e+t) (2m/L)'{ (2s./L)'

X (2m+ 1)+2+2(2n e/L)s)

Inserting the value of 2mn/L as a function of t„, we
have as L—+~:

as may be seen by breaking the left-hand side of (36)
into partial fractions and using the eigenvalue equation
(26). The P, are normalization coefficients and are
determined by

1 4t in i'

" (t —s)'
(37)

To evaluate this we need the sum" P„Ly„'/(t„—s)'],
where y'(t)=y„'/e„(t) =4t~n(t) ~'. In the limit L~~,

The ratio o. /e is less than unity and tends to a non-
zero value as L—+~, but 0- —+0 as L—+~. The total
shift is zero-point energy of type-2 modes is therefore
(in dimensionless units),

2m (s&—1)&
sin (7I o'/e).

L s'(s)&in'(s) i

For type-two modes, we therefore have

(38)

!2 (s--:—t-') =-:2 (--/t-),
all ssrp

(29) P,=QsT, st"Qs. (39)

where we keep only the 6rst term in the expansion of
s & since 0. —A as L—+~ and t is finite. The energy
shift is then

o (s ) e„(s„) I" o(s) ds
)

e (s ) gt ~. re(s) 4's
(30)

since As—+e„as L—&~. To find the ratio o.(s)/e(s), one

n Wigner, Critch6eld, and Teller, Phys. Rev. 56, 530 (1939l.
'3 N. V. Kampen, Kgl. Danske Videnskab. Selskab, Mat. -fys.

Medd. 26, No. 15 (1951).

The inverse transformation giving the Qs and Ps in
terms of the p„rt, will be needed in order to rewrite
the Hamiltonian in terms of the new variables. A given

Q& involves both types of normal modes. We have

Qp= (I/~) bp t~l+ Z.Ts.t"$., (40)

where so is the single value of s for the type one mode
arising from k.

The above information concerning the transformation
coeKcients enables us to complete the calculation of
the energy. We introduce creation and annihilation
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operators for the normal modes:

d, (MQ, ~
'

I (P,~i~,/Mn, ),
E 2f't ) (41)

A simple choice for f(k) is

(k =
1+k'/b'

(46)

and
$,= (f't/2MQ, )'*(d,+d,*},

irt, /MQ, = (A/2MO, )-**(d,—d,*}.
We work in a representation where d,*d, is diagonal

and consider the ground state %0 for which d,%'o=o.
Then B&" and H&'), have an odd number of creation
and annihilation operators and thus have the property

U'b' (t&—1)~

(47)

For weak and intermediate coupling b=2, but for
stronger coupling it depends on the interaction strength,
i.e., the DeBroglie cutoff for a free particle is no
longer appropriate. We have

(ep,Ho~op) = (ep, H eo) =0.

The energy of the system by our method is therefore

E (0'o H%'o) H(o)+ (@oH(o&o)+ (@oH(g@o) (42 where

r
"n'(t)dt U'b4

P I = (E(s,b)+J(s,b)},
s—t 2m$

The true energy must always be less than this value.
We now show that the quartic contribution to the

energy is zero (for P=O). One has

(ep,H~'%p)= (i't/2m)go i(k I)(a)apep, a(apep).

Now

dpo(&) (Mpo)t ~ 7 p (pp t
~

+I IZ
v2 ( 2A) e 2 (0,)

Q, q ( Q, q
X d.

l
1+—I+d,*l 1-—

I
. (43)

pp) ( pp)

(x—1)ixdx
E(s,b) =

(s+x) (x+b' —1)'
= —J(—s, b)+2m

2s(1+s)& 2m 2b(1+s)&+1+b'

(b' —s)' b Lb'+ (1+s)~]'

(x—1)'xdx

s (1—3b') —(b' —1)'
x

(s—1+b')'

~ 00 2x
J(s,b) =P

(s x) (x+—b' 1)' —b

~e have made use of the fact that sp(k)=t& (type-1 The integrals have been evaluated by the method of

modes). Then residues. Examine first the case b=1 (intermediate
coupling theory). Then the total energy of the system is

a.+o=Z.2'"'"(pp/~~. )'*(1—& /p p) d *+o.

The term a~a~+0 involves TI„T~, as a factor, and the
entire inner product (a&a&%'p, a~aj+p) involves TI„Tp„
XT~, T~„which is an even function of both 0 and l.
The summation over k and l involves the odd factor
k l so that (O'o, H'o%'o) =0.

The complete expression for the energy is therefore
H ~'+ (4'o,H"'4'p), where f(k) can still be chosen freely.
From this point of view, the method contains a varia-
tional principle. It will be of interest later, however, to
seek to determine f(k) in a natural way in accordance
with our basic physical picture. The total energy is

E=gp(Vpf+Vp*f*)+Pppplf(k) I'

00

p
I Ulp+.

2m. ~ ~g

)&tan ' (r—1)'*

(50)
("/I UI') —C(1+r)& —2J

I
UI'(min (2g

I (»—1)'—2+ (1+r)'I
In addition, for

Now tan 'x has the expansion

tan 'x=x —x'/3+x'/5 for x'(1.
For this expansion to be suitable for all r, we must have

I
Ul'(min &1.6,

I
(1+r)'—2I( t "e'(t)dt)

I&(tan ' —pm'(s) I 1+P '

I . (44).-t ) I one can expand the denominator in powers of
I
Ul'.

The result is
In the one-dimensional problem, Vp = V (a constant).

Introduce the pure number

U'= L V'/(ho))'jL(h/2nuo) '.
E= ——'

I
Ul' —

I
Ul'(I/6' —1/16)+ . . (51)

(45) This result is probably accurate for
I
Ul' somewhat
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&1.6 since the region of r where convergence fails is
small. The additional energy is always lower than
——', I

U
I
', representing an improvement over the

intermediate coupling theory. However, for very large
coupling strengths the term containing the tan '

saturates, and gives a dependence which is slower
than I UI'. The energy is then roughly —xaI UI' rather
than the weak coupling value of ——,

'
I
UI'.

Thus with the choice of f suggested by intermediate
coupling theory we do not get the correct strong
coupling energy given by the adiabatic approximation
(E —0.1I UI4). From the present point of view this
arises because the intermediate coupling choice of f
has implicit a cutoff related to the DeBroglie wave-
length of the free particle. The cutoR in reality must
depend on the coupling strength, so as to represent the
"binding" of the particle in the potential well created
when it polarizes the lattice.

We have checked numerically that letting b'=1
+@ (U) improves the energy in the region

I
UI'=10,

but have not discovered whether b' can be chosen as a
function of coupling strength so as to obtain the strong
coupling limit. In the next section, a 'natural' way to
specify f is discussed.

The energy for the three-dimensional situation is
easily expressed in terms of the one-dimensional results.
The eigenvalue equation is a vector relation:

(t~)'f'(&)
y, =4+ 1(k.y,).

(t~—s)
(52)

There are three independent modes of type 2 for a given
frequency s. We take these to have g, along the x, y, z

axes respectively. To find the frequency shift of these
modes, consider, for example, the mode with g, along
the s axis. Then

(t~)'*k*'f'(k)—1=4+

(35). Corresponding to the one-dimensional choice (46),
in three dimensions we may take

f(k) = Vp/(1+k'/b').

In dimensionless units, '

Vg = —(i/k) (4m'/L') &.

Insert in Eq. (55) for n'(t) and compare with Eq. (33)
for one dimension. With

I
UI'=zn' and with the

factor 3, the arc-tangent term in Eq. (44) is correct
for the three-dimensional case. The total energy is
then

3 p ds
E=Z (V~f+V~'f*)+2

I f(k) I'+—
4~~, ggs

~"n'(t)dt)
&(tan-' I — '(s)

I
1+P I

I. (56)J, s—t)
Again, as in one dimension, the three independent
type-1 normal modes of a given frequency are standing
waves with modes at the particle. '

5. REORDERING OF H&')

We return to the question of the systematic deter-
mination of f The diag. onalization of H~'& destroys the
ordering of the cubic term. We investigate the process
of determining f by the requirement that the linear
terms in the Hamiltonian vanish when it is expressed
in terms of ordered operators for the new normal modes.
We order H&'&, as given in Eq. (19), so that the d,
stand to the right of the d,* and select the linear
portion.

Examine first P kfaq (for P=O). From (43), noting
that dsp(k) =dsp(-k) one sees that there is no contribu-
tion from type-1 modes. Then for the one-dimensional
case,

&AH' (ps) '
»r the P=O case f(k) and t& depend only on the p kfa„=p kf(k)
absolute value of k. We may therefore perform the W2 EQ, )
angle integrations and find

Ils ) ( ~ls)
x d.

I
1+—I+d.*I 1—

I (57)4~ t L ~
'

r
" k'(t, )~fm(k)1~4— —k'dk.

t,—s
Next consider P kaq*aq. Since Tq, &@ is an odd function

of k, only the terms consisting of products of one
operator of type 1 and one of type 2 will survive the
summation over k.

The eigenvalue equation is of the same form as the
one-dimensional one. Here we take

8~ p2n. eq ' (2mey p L q
'

-'= —,I(, )
'-'f'I, , )II,—,.)I (55) kiss~" (ps) '

I
f ftsl

2 (n, ) I & pg)or
(L ) 3

n'(t)=(t'- )1-:f'L( '-t)1'll —
I 3~ ( Qs ) i

dsp(l)
+d,*I 1——

I
+C.C. . (58)„)I ~

With this expression for n'(t), the energy shift of the
type-2 modes is then 3 times the value given by Eq. The linear portion of H'" is then Lusing f*(k)
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= —f(k)),

y (1—Q,/p$) (d s{k}—d Q(k}*). (59)

Since dop(k}=dsp( —k} and d.o(k}= (1/42)(ak+u k), one
can express Hi; &3) in terms of the aj„al,*.

h' (pt) &

+), (s) — P (]t .])f(])T'k (s) T( (s)
I

(Pk j
Q, p

&& I
1——

I (&k—&k*) (6o)
p, j

Combining this with B&'), we determine f(k) by setting
the coefhcients of a&, a&* equal to zero. The condition is

(ptl'(
pkf*(k)+Vk+kQ 1f(])T„()T..() I

—
I I

1——
I
=0.

Epj & pj
Now insert expressi6ns (35) and (36). We find

Q

f(k) = V
I

1+4k'Q
(pks —Q.s) j

The P, term is positive since P, (0, and the root Q, is
larger than the corresponding root for zero coupling.
The eGect of ordering of the cubic term is thus a
modification of the cutoff of f(k), in a way that depends
on coupling strength; the change is more complicated
than that of Eq. (46).

With the help of Eqs. (27), (31), (35), and (38),
one finds

Q,pkp. s

I pk
—Q. f fn dt)

(w~') +I 1+P
pk'1

( p,ds sin'(wo(s)/s]
P . (62)

or's&n'(s) (pk' —s)

As the coupling strength —4 the sum tends to 1. In
principle f(k) can be obtained from this nonlinear
integral equation with a degenerate kernel. By direct
variation of the energy of Eq. (56), it can be shown that
f satisfying Eq. (61) yields the lowest energy attainable
by the present method. We have not succeeded in
using the results of this section to find the proper
explicit form of f(k) for large coupling strengths.

CONCLUSIONS

Our results underscore the value of analysis of the
structure of the classical equations of motion. If this
can be done by canonical methods, so that a portion of
the transformed Hamiltonian describes a set of classical
states accurately, there is the basis for an attack on
the properties of some quantum eigenstates. In the
present problem one is led to a natural extension of
intermediate coupling theory. It is interesting that the
quantum modifications arising from the ordering of
operators aGect mainly the proper cutoG. The first step,
leading to intermediate coupling theory, replaces a
classical theory sensitive to the maximum value of k

by a quantum theory with a cutoG arising from the
electron wavelength; the eGect comes from ordering
of nonlinear terms in the equations of motion. The
second step of treating the quadratic terms modifies
the cutoG as discussed in Sec. 5. The approach is
readily applied to the states I'=0; this will be done
elsewhere.

The important question whether the best f(k)
yields correct results for strong coupling has not been
resolved. " If not, one would like to know whether
anharmonic classical motions contribute, or whether
classically forbidden 'motions' are needed. One should
keep in mind that H&4) may contain quadratic terms,
if reordered in terms of creation and annihilation
operators for the normal modes. It appears formidable
to simultaneously remove linear terms, and have
quadratic terms diagonal and anharmonic terms
"properly" ordered; this may be an unwarranted exten-
sion of the small-oscillation concept to the quantum
theory.

'4 1Vote added in proof.—lt)vestigatiot)s of T. Schu1tz show that
results inferior to the adiabatic approximation are obtained in
the limit of strong coupling.


