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we obtain

where

C {t)= V(t)C {0),

U=Q(t) W(t,n),

ihBQ/Bt=HoQ,

(C2)

(C3)

i7iitW/Bt =Q 'HiQW. (C5)

Assuming Q(t) known for Eq. (C4), W(t,n) is, correct
to first order in Hi,

Let us assume the Schrodinger equation for the spin
function to be

ikae/Bt=ttH, {t)+H,{tn)ge,

where Ho(t) is independent of the orbital parameters n
and B~ is small.

If

Using (13), the definition (12), and the approximate
formula for U @re obtain

-2 t ace(b(0)7HW" (t))—(W.(t))'3&
D.P.=

tracep'(0) —-',

2 trace((p(0) WiQ 'p(0)QW)
—{p(0)WiQ ')(p(0)QWi))

(CS)
tr acep'(0) ——',

p(0) is the initial spin density matrix. The angular braces
denote averages with respect to n. Equation (CS) is cor-
rect to second order in Hr. (This follows somewhat indi-
rectly from an assumed Hermiticity of Hi. ) It may be re-
marked, that since the limitations on experiments are
obtained by requiring the depolarization to be small,
these could be derived directly using (CS) and

where
W(t, n) = I+Wi(t, n),

t

W, (t,n) =— Q-'(t')H, (t',n)Q(t')dt'.
iv ~,

(C6)

(C7)

Ho= f(t)ts h, (C9)

Hi(t, n) =b(t,n) tr, (C10)

with h a constant unit vector, f(t) a given function of
time, and b a small, variable vector.
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Diffusion of Like Particles Across a Magnetic Field
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It is shown that the diffusion rate across a magnetic field due to collision of like charged particles is
derivable from the macroscopic equations of the plasma. However, it is necessary to include the off-diagonal
terms in the stress tensor. The resultant diffusion rate does not obey Fick s law and is proportional to the
inverse fourth power of magnetic field strength. This diffusion rate is usually smaller than that due to unlike
particle collisions, but may sometimes dominate.

I. INTRODUCTION
' ANY of the gross properties of a plasma may be

- ~ obtained from a consideration of the hydro-
dynamical (or macroscopic) equations of the plasma. '
Thus, for example, for a gas consisting of ions and elec-
trons and assuming an isotropic stress tensor, one has
the following momentum equation in the steady state

VP= jXH+.E.

Here I' is the gas pressure, H and 8 are the magnetic
and electric Geld strengths respectively, j is the current
and e the charge density in the plasma. Note that a
nonlinear term in the velocity is neglected. In addition
to this equation, we have another expression represent-
ing the generalized Ohm's law:

Again, steady state has been assumed and nonlinear
terms neglected. The mass velocity of the plasma is
denoted by v, the ion partial pressure by P; and the
conductivity of the plasma by o.. The conductivity is
de6ned as

o.=tie'/stict, (3)

where e is the density of electrons, nz the electron mass,
and v is the collision frequency for electron-ion impact.

As Spitzer has shown, ' an expression for the diffusion
rate across a magnetic field may be readily derived from
Eqs. (1) and (2). Assuming that the density gradient
and the electron field are in a single direction (say x) and
the magnetic Geld is in the s-direction, one may elimi-
nate j between Eqs. (1) and {2).The result is

E+ (vX H)/c= j/o+ VP;/est. (2) o,= —(c/oIP) ( ttP eE). .—(4)
'Lyman Spitzer, jr., Phystes of Fully 1ottketGases t(Inter-

science Publishers, New York, to be published). This has the usual form for diGusion in that Pick's law
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is obeyed (e~V'n). The effective diffusion coeKcient is

D=cnkT/oH',

which is proportional to H ' and to the cross section for
electron-ion collisions. The mobility I has the usual
form

2p, 1 4
8~y+ (e~-~ e~—~) ' —Q)r

1+(16/9)oPr' 2 3

(e, +-',o)re, y),
1+ (4/9) oPr'

(12)

(13)
u= eD/kT. (6)

II. DIFFUSION IN A SIMPLE GAS

Consider a simple gas of charged particles. In this
case, Eq. (2) does not exist. Equation (1) is still valid;
however v and j are no longer independent and are
related by

It is the purpose of this note to point out that the
assumption of an isotropic stress tensor in Eq. (1) omits
the eGects due to like particle collisions and leads to a
contradiction for the case of a gas consisting of one type
of particle only (simple gas). Inclusion of the off-diagon-
al terms in the stress tensor removes the contradiction
and yields a diffusion rate for collisions of like particles
which is of an unusual form in that I'ick's law is not
obeyed and the diffusion coeKcient is proportional to
B—'.

where p is the usual coeS.cient of viscosity in the absence
of a magnetic Geld. Thus

p—3Ir. (14)

The mean free time between collisions is denoted by
r(=X/v) and &a=eH/4nc. The symbol e;; represents the
symmetrical and traceless tensor 7'v. The usual case of
interest is where err))1, which corresponds to a particle
making very many gyrations between collisions. Clearly
the opposite limit cur &1 is of no interest since the mag-
netic Geld is then unimportant.

By our assumptions e„=e,„=0 and hence T,=—0.
Equation (10) is thus satis6ed identically. It will be
seen from the form of the final result that IJ,e,„&&orrI'

and that e,„/e„)&cur. If one assumes these inequalities,
the remaining tensor components can be written as

j= v/4c= env/c. (7)

BT„/Ox=0 (10)

Chapman and Cowling' have derived the proper ex-
pressions for the stress tensor of a simple gas in a mag-
netic field. The relevant expressions are

T,= I' —--
1+(16/9)

o'er'

16 4
co'r'+ e,„~r, (—11)

3

2 S. Chapman and T. G. Cowling, The MathensaAcal Theory of
Xomuniform Gases (Cambridge University Press, Cambridge,
1952), p. 338.

As a result, Eq. (1) predicts that no mass flow occurs in

the direction of a density gradient which is perpendic-
ular to the magnetic Geld and hence that the diGusion

rate is zero. It is also clear from the resulting form of the
diffusion coeKcient in Eq. (5) that like-particle colli-

sions are not included in this expression; and hence the
paradoxical result for a simple gas, which was just
obtained, is not unexpected.

A very diR'erent result may now be obtained by in-

cluding the oB-diagonal terms of the stress tensor T;; in

Eq. (1) for a simple gas. Assume that the magnetic
field is in the s-direction, that all quantities vary only
in the x-direction and that the mass velocity in the
direction of the magnetic field is constant everywhere.
The resultant equation has the following three com-
ponents:

BT„/Bx= (new„/c)H+eE, (8)

BT,„/Bx= —(neo, /c) H, (9)

9 p, de„

16 ((or)' dx
(16)

Solving Eq. (8) for v„and substituting in Eq. (9), one
obtains

c d 9 p d c (dI
4E

i
. (1—7)

neH dh 16 ((ur)' dx neH E dx )
Assume a constant temperature in the gas and ignore
the electric field. By virtue of the fact that r e ' and
hence that p, is independent of n, Eq. (17) can be
rewritten as

3 v4 1 d l d Pi dn~
z, =- n'——

8co4r n2dx dx (n dx)
or

3tp 1 O'S 1dSdN
~—

7

8 r e dx' edx'dh

(18)

3rp4 d 1d'n
8

8 r tB Sdg.
(19)

Equations (18) and (19) can be expected to give the
proper form for the diGusion due to like particle
collisions even in a nonsimple gas. An expression which

where ro rnvc/eH is the Larm—o—r radius. Equation (18)
is the desired result. The diBusion velocity due to like
particle collisions is clearly proportional to H 4 and does
not obey Fick's law. Instead, the diffusion rate depends
on the second and third space derivatives of the
particle density. An alternative form for Eq. (18) is
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is identical to that given in Eq. (19), except for the
factor 8, has been obtained by Kruskal by the use of a
model based on individual particle orbits. '

It remains now to justify the approximation made in
deriving the results. All order of magnitude estimates of
the various terms which have been used above rest on
the following assertion. It is extremely unlikely that the
ion density e, in any practical problem, can fall oG
faster than with an e-folding length equal to the
Larmor radius rp. In fact, the actual e-folding length
should usually be considerably larger than this. Hence,
order-of-magnitude estimates may be made by replacing
each space derivative of u by the quantity (~ro) ',
where ~ is substantially larger than unity.

By combining this assertion with the result of Eq.
(19), it is seen that

v.=O[ro/rz'],

where the symbol 0 denotes "of the order of."
Similarly, by Eqs. (8) and (15),

AT 1 rp coo.—=0 ——
eH~rp v- a J

Hence
v„/v. =O[~m']&&~r.

As a result, then,

e~v Ovv/Bx
))cov,

e.. cjv./Bx

(20)

(21)

as was asserted earlier. In addition,

pe.„Pr8v„/(3x=—P O[u r/g'$.

Hence pe „&&co7-P as was also asserted earlier.

III. COMPARISON OF DIFFUSION RATES

It is of interest to compare the rate of diffusion of ions
due to ion-ion collisions with that due to electron-ion
collisions in a plasma consisting of both types of
particles (assumed in approximate space-charge neutral-
ity). The rate due to ion-ion collisions is obtained from
Eq. (19) and is of the order of magnitude

v =O[r,;/r, ~'$,
' Martin Kruskal (private communication).

-&e&&pi-

where, rp, is the electron Larmor radius and 7., is the
mean free time between electron-ion collisions. Hence,

V tpi 7e—=0
v

where equal temperatures have been assumed for the
electron and ion gas, and where M denotes the ion mass.
For the case of equal temperatures, P —X; and

—=O I—
v' & m)

(22)

Hence it is possible for the diffusion rate due to ion-ion
collisions to be larger than that due to electron-ion
collisions, since (M/m) & is of the order of 10'. However,
in most cases one might expect z))1 and then the self-
diffusion rate will become comparable to or smaller than
that due to electron-ion collisions.

A curious point which is worth noting is that if one
were dealing with a truly simple gas with density vary-
ing only in the x-direction then the electric 6eld E is
related to the density by Poisson's law dZ/dx=4vme.
Upon substitution of this relation in Eq. (17), one now
finds that a term proportional to de/dx contributes to
~,. Hence, to this extent, Fick's law is obeyed. The
coeS.cient of this term is still proportional to H 4.

Moreover, in a nonsimple gas, which is all that may be
obtained in practice, the electric 6eld gradient is no
longer simply related to the density of one species of
charged particle.
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where rpi is the Larmor radius of the ions and r; is the
mean free time between ion-ion collisions. The ion
diffusion rate due to electron-ion collisions is obtained
from Eqs. (4) and (3), (assuming E=O) and is of the
order of magnitude

~pe


