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Three-Body Contributions to the Triton Binding Energy
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A variational calculation shows that the central part of the Levy potential is not sufhcient to bind the
triton. One finds a bound S-state wave function only if the coupling constant is increased appreciably. Using
wave functions determined in this way, the author has computed the binding energy contributed by five
three-body terms, derived from the Ps —Ps theory. Results of this calculation indicate that the so-called
"leading" three-body term is not the dominant term, even if damping is taken into account. The total
contribution of the potentials considered here is attractive, not repulsive.

L INTRODUCTION

]~ALCULATIONS of the triton binding energy have,~ in the past, always neglected the effect of many-
body forces. '—' However, the existence of many-body
forces follows from the ps —ps meson theory. It has, in
fact, been suggested by Wentzel4 that many-body po-
tentials are largely responsible for the saturation of
nuclear forces. Recent calculations by Drell and Huang'
seem to support this contention. But the approxima-
tions in the work of Drell and Huang are only valid for
heavy nuclei. In view of the importance attributed to
many-body forces in heavy nuclei, we propose to in-
vestigate the contribution of three-body forces to the
binding energy of the triton. In this case, also, three-
body forces may be of considerable importance.

Despite difhculties which have been pointed out by
Klein' and others, we adopt here the point of view of the
Levy theory. ~ Because of the uncertainties inherent in
the ps —ps theory in general, and in the Levy theory in
particular, an accurate evaluation of the three-body
contribution is impossible. Even the treatment of the
two-body problem is not free of ambiguity. Only the
order of magnitude of the three-body effects can be
determined.

We shall select those terms in the three-body po-
tential which are of lowest order in the coupling con-

stant, G, and in the mass ratio, tt/3EH. It will be as-

sumed, in the spirit of the Levy theory, that these are
the most important three-body terms, though our re-

sults will show that the validity of this assumption is
questionable. In fact it is not at all clear that the series

of three-body potentials converges.
It seems reasonable to assume, here, that the two-

body potential is mainly responsible for the binding of
the triton. Since the accuracy of our results will neces-
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sarily be limited by theoretical difhculties, the two-body
potential alone may be used to determine the triton
wave function. This function then gives the expectation
values of the "major" terms in the three-body potential.
Speci6cally, the two-body Levy potential will be used to
determine the wave function. We shall adopt, also,
Levy's value of the core radius and of the coupling
constant, though larger values of the coupling constant
will also be considered. The effect of the hard core on the
wave function must, of course, be taken into account.

One of the three-body terms is of sixth order in G, and
zeroth order in the mass ratio. Though smaller powers
of G do occur, these are always associated with higher
powers of the mass ratio. Therefore this particular term
is usually referred to as the "leading" term. Of the
three-body terms considered by Drell and Huang, the
leading term is by far the largest in absolute value.
Now, the leading term depends only on the distances
between nucleons. For this reason one may argue that it
is primarily the S-state wave function which determines
the magnitude of the three-body contribution. An
attempt has been made to fj.nd an appropriate S-state
function by means of a variational calculation. For this
purpose, the central part of the Levy potential was taken
as the two-body interaction. The form of the trial
function (with no D-state admixture) and the details of
the calculations will be discussed below. With Levy's
value of G, it was found that none of the trial functions
give any binding energy at all, though functions with as
many as five variable parameters were considered. It
does not necessarily follow that this particular hard core
theory is unsatisfactory. Quite possibly the binding
energy of the triton is supplied by the tensor forces.

Our procedure, then, does not give the form of the
wave function. One can, however, establish a reasonable
range of values for the parameters in the trial function,
by a procedure to be described in Sec. III. Contributions
of various three-body terms have been computed for
this range of values. Within this range, the ratios of the
computed expectation values do not depend critically on
the wave function parameters. It is possible, therefore,
to determine which terms are large and, which are small,
and to arrive at some conclusions which will be inde-
pendent of the exact form of the function. We shall also
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attempt, in various ways, to compare the two- and
three-body contributions to the binding energy.

The eGect of some of the higher order terms has been
discussed by Brueckner, Gell-Mann, and Goldberger. '
This so-called "damping" eGect modifies the Levy
potential. If one takes damping into account, the
effective value of the coupling constant in the 64-term of
the two-body potential is diminished. Using a different
approach, Wentzel has arrived at essentially the same
conclusion. ' A potential, modified by the damping
effect, has been introduced by Jastrow. "We shall dis-
cuss here, brieQy, the modified Levy potential which
Jastrow uses, and the corresponding effect of damping
on the three-body potentials.

We take, for the function C (ij,k), the product of a
space-dependent factor y, and a spin-dependent factor,
S. Further it will be assumed that p is completely
symmetric, and represents an S-state. The spin function,
then, must be antisymmetric with respect to an ex-
change of neutrons, particles i and j, in this case). We
must write:

ol
&(sj,&) = (1/WL~(3)P(j) —P(2)~(j)3~(&)

S( jp) = (1/V2)( ()p(j)—p() (j)jp(&).

No other eigenfunctions of the s-component of spin are
antisymmetric with respect to the neutron pair, and
invariant with respect to space rotations. " It is clear
that our wave function satisfies Eq. (1).

There is actually another term, symmetric in the
neutron spins, which may be included in the S-state
wave function. However, Feshbach and Rarita" find
that this second term adds only Q.4 percent to their
computed binding energy. Furthermore, the two S-state
functions are coupled through the agency of the tensor
forces alone. Since we are neglecting tensor forces, we
shall also neglect the spin-symmetric term.

33rueckner, Gell-Mann, and Goldberger, Phys. Rev. 90, 476
{1953).' G. Wentzel, Helv. Phys. Acta 1S, 111 (1942)."R.Jastrow, Phys. Rev. 91, 749 (1953)."Ger juouy and Schwinger list the various triton spin functions.

'2 H. Feshbach and W. Rarita& Phys. Rev. 75, 1384 (1949).

II. S-STATE WAVE FUNCTION

A triton wave function, satisfying the Pauli principle,
may be written in the individual particle form:

P (123)= (1/V3) (4 (12,3)cV(1)1V (2)P (3)
+C (23,1)X(2)E(3)P(1)

+C (31,2)1V(3)X(1)P (2)7.

Here C (ij,k) is a function of spin and space variables,
antisymmetric with respect to the nucleon pair (3,j).It
can be shown that f(123), so defined, represents one
component of a pure charge doublet state if

C (12,3)+C (23,1)+C (31,2) =0.
III. EXPECTATION VALUES, SINGLE TERM

WAVE FUNCTIONS

It will often be necessary to evaluate integrals of the
form:

where

p
00 00 &23+31

da31
~

~2'23
~

f($12yx23px31)ds]2)
SQ XQ L

p
—Jtl~pp +ij —pf iq

Here I. iS the larger Of the quantitieS Xo,
~
X31 a23 ~. FOr

convenience we shall abbreviate the limits in such
integrals:

I=
J f(a12)a23px31)dÃ121fÃ23dÃ31.

The integral may be split into four terms:

(2)

where
I= Ip —Ig—I2—I3,

~o =
~ d&31 ~&23 d&12f (2 12y2 23y&31)p
ÃQ SQ gQ

I1= dX31 dÃ12 f(+12pa23)a31)8$23p (5)
Q ~.Q

f f
SQ J

Q &12+&23
f(a12 $23 F31)dX31 (6)

I3 d&31 d2 23 f(x 1~ 2z32px 3)ting 1.2(7)
f"

so &0

"G. Morpurgo, Nuovo cimento 9, 461 (1952).

As a trial function we take, 6rst:

3 (123)=p'(F12 —2o) (r23—ro) (F31—ro)

&(exPL—
zo1P (r12+r23+r31)j

=3 (12)3 (23)3 (31)

for r12, r23, rsi)ro, and to(123) =0, otherwise. Here ro is
the core radius, co the variable parameter. The function,
as written above, is not normalized. Normalization con-
stants will be computed in the next section. It will be
noted that the wave function vanishes for small
internucleon distances, in conformity with the require-
ments of the hard core theory.

When a better approximation to the true wave
function is desired, linear combinations of such trial
functions, with different values of co, will be used in the
variational calculation. One may object that the wave
functions, as we have written them, do not have the
correct asymptotic form. " Such trial functions have,
however, given fair results in earlier calculations. ''
Furthermore, we shall be interested, primarily, in rela-
tions between expectation values of the various three-
body potentials. Relations between these expectation
values should not depend critically on the asymptotic
form, because of the short range of the three-body
potentials.
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In evaluating Io, we treat the variables of integration as
independent variables. Because of the nature of the
limits in the integral I, these variables must, in fact
represent the lengths of sides of a triangle. Regions
where x12+xss X31(0 ol X12 X22+X21(0, or —X12+X23
+xst(0 do not contribute to the integral I. Therefore
contributions from these regions (the integrals I1, I2, and
Is) must be subtracted from Ie. Note that no two of the
preceding inequalities can be satisfied simultaneously.

We turn our attention, now, to the normalization
integral. We shall take, first, a wave function containing
only one term and, therefore, only one variable parame-
ter co. After evaluating spin and charge matrix elements
we get, for the normalization integral'

C
E=

~
pp(12) p(23) io(31)]'x»X23X31tfx12dx23dx31.

v

The value of the constant, C, need not concern us here.
We see that the normalization integral has the form (2).
It may be split into four terms, as above, and evaluated
exactly.

For the potential, we take the central part of the
Levy potential:

V,;= (e,"o,) (e,'x,) U(x, ,)—W(x;;),

~ /G l (»'(e *"'l
U(x' )=-I —

II
3 (42r) &2M) E x;; )

While the potential integral cannot be evaluated ex-
actly, it can be approximated with good accuracy by
means of a simple device. We plot the function x12W(x12)
on semilog paper for xo&x12&2.5. Within this range the
function is analyzed, graphically, into a sum of three
exponentials. We shall not describe this analysis in
detail. The same procedure is sometimes used to de-
termine the half-lives of elements in a mixture of
radioactive materials. '

The function W(x12), then, is represented as a series of
Yukawa potentials. Since U(x») is already a Yukawa
potential, all integrations may now be carried out
exactly.

Our analysis of W(x») gives:

x»W(X12)~1.533e """
+13.68e ' "'~"+72.97e "'""

If one uses this approximating function, the error in the
potential 3U(x12)+W(x12) is no greater than 2 percent
for x12&2.5. Over most of this range, the error is con-
siderably smaller, but it increases for large distances. At
x12=3, for instance, the error reaches 3 percent, but the
potential has dropped to one ten-thousandth of its
maximum value (i.e., its value at x12——xe). Since the
wave function should also be small for such large
distances, the contribution to the expectation value
from regions where x12)2.5 should be negligible. The
exact and approximate potentials appear in Table I.

TABLE I. Two-body potentials, Uz (exact) and UA (approximate)
as functions of g.'

2 p 2
X E,(2x;;)+ —E—,(x;;)

2M x
. .2X$J ~

As we have already pointed out, many unsatisfactory
features remain in the Levy treatment of the two-body
problem. In particular, the form of the two-body po-
tential has not been clearly established. But it is the
essential properties of the Levy potential which we are
interested in, namely, the presence of a very short-
ranged component, and the hard core. Since the parame-
ters in the original Levy potential have been fixed
through previous calculations, 7 we shall use the po-
tential in its original form here, and throughout most of
the work that follows.

Again, after computing spin and charge matrix ele-
ments we And for the expectation value of the two-body
potential:

C (3)
&l'&=—

I
—

I

"
L2 (12)2 (23) 2 (31)]'

X (ps) &v

0.38
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.30
1.50
1.75
2.00
2.50
3.00

154.4
127.9
82.63
55.61
38.54
27.46
20.00
14.84
11.19
8.555
6.626
5.190
4.107
3.280
2,642
2.145
0.9980
0.5096
0.2449
0.1298
0.04560
0.01952

153.6
127.6
82.80
55.75
38.70
27.56
20.06
14.86
11.19
8.552
6.619
5.183
4.108
3.280
2.646
2.151
1.011
0.5196
0.2494
0.1307
0.04469
0.01894

e Z 1 2 p, 2
V~ =—+ (9.7)——KI (2x) +——

K I(x) cx: V2e,
X X2 2r 2M

% Error

—0.48—0.19
0.21
0.25
0.42
0,38
0.30
0.17
0.067—0.034—0.098—0.12
0.021
0.010
0.14
0.31
1.3
2.0
1.8
0.69—2.0—3.0

XL3 U (X12)+W (X12)]X12xssxs ltfx12dx231f X31)

where E is the normalization integral. The above ex-
pression represents the contribution of all three nucleon
pairs to the potential energy.

Z 1
VA =—+ (9.7)-(1.533e 2 s»x+12.68e 6 &Sz+72.97e»'»z}.

x' x
Va and Vg are proportional to the exact and approximate two-body
potentials, respectively.

' See, for instance, D. Halliday, Introductory nuclear Physics
(John Wiley and Sons, Inc. , ¹wYork, 1950), p. 33.
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Again the integral to be evaluated splits into four
terms Lsee Eq. (3)7. One of these has the form:

l.4—

l.2—

t

d$23,
~O ~ *0 ~ ~23+~3&

I 3U(x»)+W(xg:)7
I.P—

E .8-

XLy(12) p(23) (p(31)7'xggx23xagdx»
.6—

t see Eq. (7)7. Since the potential is small for large
values of $12, this term should be small compared to the
other three. It has, therefore, been neglected. A rough
estimate shows that the resulting error is less than 3
percent of the expectation value of the potential. The
term we have discarded is positive. Consequently the
above approximation gives a potential energy which is a
little too large in absolute value. The error in the ap-
proximating function, f(x~2), which we have inserted in
the integrand has just the opposite effect for large
values of $12.

The kinetic energy may be written in the form:

.2—

0 I0,2 .4 .6 .8 I.O 1.2 1.4 1.6 1,8 2.0 2.2

C 3
E3 ———x„x»'I q (12)y (23) q (31)7E Mp4~ y

8 8
Lp(12) p(23) p(31)78x»Bx238xag (1.1)X

8$12 8$23

I'za. j.. Potential and kinetic energies as a function of cox0. See text
for fuller explanation.

K.E.= —(1/m) t (v„—v„)'
+(v23—v3i)'+ (v3i —vn)'7)

p, 8
V12 = $]2

$12 ~$12 ~$12

X12 X23 8 8
V12' V23 P

$12$23 ~$12 ~$23

since 5= 1 in our unit system. For the expectation value
we have

C 3
(K.E.)= ———~ r»rg3f3nt (123)

X M "r
XLvi2' —vi2 v2374(123)«»«23dr3i,

if one notes the symmetry of the wave function. Here

f y, q
' (G') (~, ~,)(e, a,) e

—~»

42M) (4n j 3 $12

All these integrals may be evaluated exactly.
Figure 1 shows the results of the above calculation for

single term trial functions. Curve I represents the kinetic
energy, plotted as a function of co$0. Curve II is a plot of
the absolute value of the potential. It will be seen that
the trial function gives no binding energy for any value
of the parameter. If one plots the diGerence between
curves I and II, the resulting curve shows neither a
minimum, nor even an inQection point.

Postponing the discussion of refined trial functions,
we consider next a modified two-body potential, intro-
duced by Jastrow. "In accordance with recent criticisms
of the Levy paper, ' Jastrow omits, from the two-body
potential, the term in LE'~(x~2) 7'. Two central potential
terms remain:

Hence:
$12$23

(K.E.)= Eg+Eg E3, — —

P $13 $12 $23

2 $12 $23

(xg2) xo)
( p ) ' (G' ) ' 2 Kz(2x»)—I'"'(»2) = —»I I I

—
I
—,(»»«)

L 2M) E4~ J m. xi22

where

C 3
K&——— t x»xaÃp(12) p(23) p(31)7

X M@4& r

X xgg[q (12)g (23) q (31)7dx»dx23dx3g, (9)
8$12

G 3
E2 x,P[q'(——12—) q (23)y (31)7

Ã 2Mp4 "p

The damping e8ect, discussed in the introduction,
should diminish the relative importance of the second
term. ' ' For this reason, a factor n(1. is inserted before
the potential V'4'. The central part of the two-body
potential then becomes:

(x12) I (x12) &I (x») ~

Parameters in the above expressions are chosen to 6t
various two-body data:

a=4, G'/47r=16, xi~=0.61, x„=0.40.
8 8

L~(12)~(23)~(31)7dx dx dx (10) Here x, & and x„are core radii in the triplet and singlet
8$12 8$23 states, respectively.



ELY M. GELBARD

TABLE II. Kinetic, potential, and binding energies for various
coupling constants and trial functions. All energies are given in
terms of the measured binding energy of the triton, 8.49 Mev. The
trial function is given by the expression f=f((apxp)+ac f(cucxp)
+apf(copxp) .

G&/4~ K.E. P.E. B.E. coo ~1 eu a& )&103 aa &(105

11.8 14.07 15.00 0.93 1.7 0.7 ~ 0.8 0
11.5 11.68 11.95 0.27 1.7 0.7 ~ 1.2 0
11.3 9.17 9.10 —0.07 1.7 0.7 0.3 1.6 0.2

Using a two-body interaction of this form, we have
calculated the potential energy for various values of co.

For n and G, we have taken Jastrow's values. However,
in order to make use of our previous results, we have
assumed the same core radius, xp=0.38, for both triplet
and singlet states. Again, the term V&'"(x12) was repre-
sented as a sum of Yukawa potentials. Curve III, in
Fig. 1, is a plot of the magnitude of the potential energy
against coxp. Here, also, one finds no binding for any
value of ~. In fact curve III lies below curve II over the
entire range for which integrals have been computed.
For larger core radii the absolute value of the potential
energy should be even smaller.

IV. REFINED TRIAL FUNCTIONS

So far we have considered only simple trial functions,
containing only one variable parameter. The single term
trial function gives no binding energy. We wish to
determine whether it is possible to construct a linear
combination of such functions (with various values of
co) which does give binding energy. For this purpose we
have adopted the following procedure.

The coupling constant is increased so that G2/4~
= 12.2. Now the variational calculation described above
is repeated with this larger value of the coupling con-
stant. For the optimum value, cop, of the trial parameter,
the binding energy so calculated is greater than the
measured binding energy of the triton. The single term
trial function containing this parameter will be called
f((opxp).

Terms are then added to the trial function one by one.
As a next approximation we take

Ft= f(~oxp)+a, f(artxp),

and vary a& and co& so as to maximize the binding energy.
Finally,

F2 f(~pxp)+atf(~tx——p)+asf(~2xp).

Keeping orp ay and coy fixed at their predetermined
values, we vary a2 and co2 separately. A small readjust-
ment of all parameters will then improve the binding
energy slightly. As a check, the entire procedure is re-
peated with a slightly higher, and a slightly lower,
initial value cop. In either ease the binding energy
diminishes.

Now the coupling constant is gradually reduced, while
the wave function is modified to keep the binding energy
at a maximum.

Results of the calculation are summarized in Table II.
For G2/4m =11.8 and G2/4m = 11.5, we list trial functions
with only two terms, since the addition of a third term
does not increase the binding energy appreciably. The
table shows that all binding energy disappears for
G2/4~= 11.3. The wave function listed for G2/4~= 11.3
minimizes the excess of kinetic energy. We find, then,
that no linear combination gives binding energy for this
value of the coupling constant, even if the (presumably)
repulsive three-body forces are ignored. Possibly it is
necessary to raise the coupling constant from G2/4~=9. 7
to G2/4n. =11.8 simply in order to compensate for the
neglect of tensor forces.

It will be seen that the quantities a~ and a2 are very
small. The energy and normalization integrals, however,
increase very rapidly as ~ decreases. For this reason, all
the terms in the trial function are significant.

V. LEADING THREE-BODY TERM

The leading term in the three-body potential has the
form"'

12X3p, 2
V3= ~1Lx12+x23+x81).

X&2X23X3].~

Here ~= (G/~)(p/2M) if the damping effect is neg-
lected. At this point we wish to calculate the expectation
value of t/'3, using single-term trial functions, for various
values of co. After computing spin and charge matrix
elements, we find:

12K' r

(~)= L (12)p(23) (31))'
"v

2
X ~1/x12+x23+xpl)4xlpdxppdxpl.

In order to evaluate this integral, we express the Hankel
function as a sum of exponentials:

(2/~)E1Lx»+x28+x»)—= (2/m)E, $S)
~Q 925s—1.198s+2 25s—3.072s+1Q Q

—10.87s

The error in the approximating function is less than 1
percent for 5&3.5. We insert this approximating func-
tion into the integrand. The resulting integral may now
be split into four terms, as in the previous calculations.
These four terms have been evaluated exactly.

We have calculated the contribution of the major
three-body term, using single-term wave functions, for
several values of co. The results (for G2/4m =11.8) appear
in the first column of Table III. Now, the refined trial
functions all contain the term f(1.7). No higher value of
~xp occurs in any of the functions, for any value of G.
For this reason we confine our attention to the range
exp&1.7. It will be seen that the contribution of the
leading term is significant when coxp) 1.

"G.Wentmel, Phys. Rev. 91, 1573 (1953).
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One may also use the refined wave functions to calcu-
late the three-body contribution. Since the leading term
is repulsive, it will reduce the magnitude of the potential
energy. For G2/42r= 11.8, the potential energy is dimin-
ished by 16.9 percent of the two-body contribution, to
12.5 times the measured triton binding energy. The
wave function listed in Table I then gives no binding. In
fact, if energies are written as multiples of the triton
binding energy (8.49 Mev), the kinetic energy exceeds
the absolute value of the potential by 1.6.

VI. THREE-BODY TERMS V3„V3g, AND V3,

We consider, now, the minor three-body terms dis-
cussed by Drell and Huang. Following the notation of
Drell and Huang, we call these terms V3, V3~, and V3,.'

coro (VI)

1.0 6.7 =—3.2
1.2 9.7 =—2.5 —6.6—+—7.0
1.7 18 —3.2~—3.4 —14-+—15 —1.1~+1.9

—9.3—14—30

compared to I0 and I1.Accurate values of I2 and I3 are
not required. We have computed upper and lower limits
for these latter quantities. As an example, we discuss the
treatment of the integral I2.

TABLE III. Contributions of the various three-body terms,
computed with single term wave functions. Each entry represents
a percentage of the two-body potential energy. A negative sign
indicates that the potential is attractive. Uncertainty in last col-
umn is negligible. These results were computed with G'/42. = 11.8.

p (32''33)(o'2'rls)(+3'rls) ( 1 $ t
I 1+—II 1+—I

M ~12~13 E x„) & x„)
F00 F00

I2"= dX12J., Cxss L32(12)32(23) sp(31)js
f

~ ~1W~~3

{&12+&31)

S]2$31
+symmetric terms .

2xls' ( 11 ( 11
x I 1+—II 1+—le-&»~»»ch»

2x12x31 ~ x12) ~ x31)

Averaging over all orientations of the three-nucleon
triangle, we get, for the "central" part of the interaction:

P
00 t000

8523
4 au+~23

rs (12)s (23)p(31)j'

l
' (~2 ~3) (322 323) (r12 rls) ( 1 ) (

V3 '=)2—
I 1+—II 1+—I

M 3 x„) & x„)
(~19+&31)

X +symmetric terms .
~12~31

Now r12'113 (x12'+xsl' x23')/2xlsxsl Because of the
symmetry of the wave function, the terms xjs'/2xlsxsl
and xsls/2xlsx» contribute equally to the expectation
value of V3 ', which is given by the expression:

|"3'
(Vs ')= —— L32(12)32(23)32(31)$2

X Mp4 ~p

2x»' —xss' t' 1 q p 1 q
X I

1+—II 1+—I

2h12xsl - E xl2) ( x31)

y 8 ~ $23d X12d$234X31

for single-term wave functions. Note that the potential
V3 contains two terms, in addition to the term ex-
plicitly written. This accounts for the factor three in the
above integral.

As in our preceding work, we split the integral into
four terms. From tabulated values of the exponential
integral, Ip and Il Lsee Eqs. (4) and (5)j may be
evaluated without great difhculty. An accurate compu-
tation of I2 and I3 would be laborious. Because of the
eGect of the potential, however, I2 and I3 are small

'6Drell and Huang give derivations for these terms. The
potentials Vs, and V33 (not Vsg nor Vslg however) have also been
derived by A. Klein. '

xss' ( 1q f 1i
x

I +—
lI 1+—le ''~'"cxsl.

2x12x31 ~ x12) ~ x31)

I2 f(x12)cx12 g (x23)cx23
4 ~o

1( 1)
X —

I
1+—I (x»—xp)se-&~»'»Cx»,

&.,~.„xsl l x„)

~-(01+1)S,
1—2xp+S 1

pl+1 (pp+1)2

—(olXps+2Xp) E1L—(el+1)Sj

Z 2&
—(~+~) 8

0
=A B+C. —

Suppose olxp ——1.7. Direct calculation shows that A/1. 72
(A B+C&A for 2xp(—S& po. If we neglect B and C
in computing I2~, we shall get a result which is too
large, by a factor 1.72 at most. Thus we get an upper
and lower limit for I2", and similarly, for I2~. The
integral I& has been treated in the same way.

where f and g are larger than zero. Let xls+xss=S.
Consider the integration with respect to @31.'

~" 1 ( 1p
-I 1+- I(*—xp)2;l-+»*Cx

"e x~ x)
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e
—(&12+&S3+&3&)

6p r12 r13I 1$ ( 1)
V„=~'

/
1+—i/ 1+—I

M 212113 ~ x12i ~ x23i

~12~23~31

e
—(~12+~23+~81)

+symmetric terms
+12+23+31

18 C e~12 ~31
(V„)=—X3 —

I [92(12)92(23) 92(31)]2
MP4% "8 — 2X12X23

We find that the expectation value of V3 is negative,
and lies between 3.16 and 3.55 percent of the two-body
patential energy, fOr G2/42r = 11.8 and 4oXO ——1.7. A raugh
calculation shows that (V3,')=2.5 percent of the two-

body contribution when coxo ——1.2. Since the term V3,' is
small, more accurate values will not be computed.

For the second of the above three "minor" terms we

have:

V12 V23+V23' V31+V81' V12
V3g='A3

M 2

Replacing the spin and charge operators by their
expectation values gives

6p,'
V3c = X (V23 +V 31 +V12 ) (~1+~2) Vl+ V2 ~

+2M

We treat the term in F1 first. Using well-known
properties of the cylindrical functions, one can show
that:

V 23 Ep (x23) Ep (x23) (1/x23) E1(x23)y

6p,' 1 Ei(2x12)
U, = —X3 E,(x„)——E,(x„)

+2M $23 g12'

(~'q 6p' G, (x23)Gi (x12)

E4i g23$] 2

Through the analysis of a semilog plot, vre get:

After averaging out the tensor term, we Gnd:

X' 6p,'
V3 o (&2 ' '23) (122 ' 823) (V 23 +V 31 +V 12 )P 1+~2)~

3 x2M

2 Ei(2x)
X) 1+—[( 1+—(e { '9+ 2~*31&dx dx dx Gi(x)= — =0.76e ""'

x„i & x„i 7r g
+6 0g—5.149m+364,—11.61m —

g (x)

for single term wave functions.
The integrals which occur in (V3,') and in (V35) are

very similar, and essentially the same procedure may be
used to evaluate both quantities. The results of these
two calculations, however, are considerably diferent.
One sees from Table III that (V35) and (V3) do not differ

greatly in absolute magnitude. In fact (V3,') and (V35),
taken together, practically cancel the repulsive contri-
bution of the leading term.

Using the refined wave function, we find that the
contribution of V3~ is 13.6 percent of the expectation
value of the two-body potential, when G2/42r=11. 8.
V3,' contributes about 3 percent as much energy as the
central two-body forces. Again, V3 ' and V3q, taken
together, practically cancel the leading term.

The potential V3, is given by the expression:

6P (22 ''23) (422 V 23) (422 ' V 28)
V3,=) ' F(X,2,X23)

m'M 2

+symmetric terms,

where

Similarly:

G, (x) = —(2/2r)x{Eo(x) —(1/x)E, (x))
~4 74e—3 66o*=g2(x) for 0.38(x&1

(with an error of about 5 percent), and

G, (x) &g2(x) for x) 1.

G2(x) remains positive till x) 1.4. It is clear, then, that
(Vi))0. To calculate an upper limit for (Vi), substitute
g1 for G1, and g2 for 62. Call the resulting potential e1. As
in previous calculations

(Vl) Ip I1 I2 I3) (51)(IO. —

Evaluating Ip, we find that (pi) is less than 3 percent as
large as the magnitude of the two-body potential
energy. (Ui) must be even smaller.

In order to calculate (V2), we make use of another

approximating function derived, again, from a semilog
plot:

—[xEO2(x)]~0.528e "'4'—0.230e 4 428*

7r2

P(xip, x23) =F

Ep(x23)E1(2x12) e "' 1
+ — ' xEp'(x) dx

X12 +23 ~12 g12
2

—Pi+P2

After substituting this approximating function into the
potential V2, all the integrations may be carried out
exactly. Using the upper and lower limits we have
computed for (Vi), and the value of (V2) determined by
the above procedure, we arrive at the following con-
clusion: taking 4oxp=1.7, (V8,') may be a repulsive
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potential 1.9 percent as strong as the two-body potential
(at most), or an attractive potential 1.1 percent as
strong as the two-body potential (at most). Since this
term is so small, we shall not discuss it further.

where p is the nucleon density, and p the meson wave
function. In a recent article on many-body forces, "
Wentzel discusses those potentials which arise from the
quadratic, or pair theoretical, term alone. For a system
consisting of three nucleons, the pair theoretical po-
tential energy becomes:

U = —3(8 i) 'f 484-i

X»r 1—(P12 +P12 +P28 )+2P12P28P13)

Here p;; is a function of the distance r;;, and of the
integration variable $ (see references 9, 15). Expanding
the logarithm in increasing powers of the p's (and each

p carries a factor X) one finds:

(P12 +P18 +P23 )+2P12P28P13)

=in[1+*)=x—
—2,~2+ ".

(P12 +P13 +P28 )+2(P12P23P18) 2 (P12 +P18

+P28 ) (P12 P28 +P28 P13 +P13 P12 )+ ' ' '
~

Terms not explicitly written contain powers of ) higher
than the fourth.

The first and third parentheses above contain terms
which give rise to two-body potentials. The term in the
second parenthesis corresponds to the leading three-
body potential. But the last group of terms leads to a
three-body potential which we have not yet discussed.
In Wentzel's notation, this potential has the form:

XA +1L2(+12++18))
V3d= p +symmetric terms.

2' 4p t'yo 0'y3

Here A~ represents an "effective" or "reduced" coupling
constant, smaller than the actual coupling constant Xp.

This reduction in the effective value of the coupling
constant is similar to the damping effect discussed in the
introduction. If damping is to be neglected, we must
also neglect the reduction factor, and replace X& by ) p,

which is equal to 82rll/44 in our notation. The potential
becomes:

16 E1L2 (X12+X13))
Vsg= ——X' +symmetric terms.

2Ã X]2 $/3

' F. J. Dyson, Phys. Rev. 73, 929 (1948)."L.L. Foldy, Phys. Rev. 84, 168 (1951).

VII. V3g

The ps —ps Hamiltonian transforms, by the method
of Dyson and Foldy' ' into the following expression:

H = (g/2M)48. p'(~ 99)p(r)+ (g2/2M) 992p(r), (13)

This expression contains three terms in all. Because of
the symmetry of the wave function we have:

C 48
(V84)= ———X4 I fq(12)99(23)99(31))'

N 2m "v

E1L2 (2:12+mls))
X dxyg8$23dxay&

$$2X3]

(2/2r) El(2 (2:12+2:31)]—= (2/2r)E1L2S)
~Q 61QS—2.194S+1 27S—4.148 S+5 $Q

—11.78S

The error is less than 1.5 percent for S&3. Even when
5=3.5, the error is only 2.2 percent. We substitute the
approximating function for the Hankel function in the
integrand above. The integral may now be written in the
form:

C 48
(V,.)= ———Z4L19 —I,—I,—13].

Ã2m

Ip may be expressed in terms of tabulated functions,
including the exponential integral. I~, I2, and I3 may be
approximated by the same procedure which we have
used in connection with the potentials V3 and V3~. We
show the results of this calculation in Table III. It will
be seen that the expectation values (U34) are greater, in
absolute value, than the expectation values of the
"leading" three-body term.

Using the refined wave functions, we Gnd that the
contribution of the term V3~ is 28 percent as large as the
two-body potential energy, for G2/42r = 11.8. Again, the
sum of V3 and Vad is attractive, not repulsive.

VIII. CONCLUSIONS

We have seen that ((V84) (
is larger than ~(V8)(, while

[(U») ~

is only slightly smaller than
~
(V3) ( . This is true

for a wide range of values of the parameter ~, if we work
with simple, single-term wave functions. We reach the
same conclusion if we use the refl.ned wave functions,
taking 11.3(G2/42r(11. 8. Therefore this conclusion
seems reasonably secure, despite our uncertainty as to
the exact form of the S-state wave function. We should
stress, here, that damping has so far been neglected.

In all. calculations discussed above we have taken
G2/42r) 11.3. Such large coupling constants were used to
compensate for our neglect of tensor forces. But we have
also computed expectation values for 9.7(G2/42r(11. 3.
This was done by progressively diminishing the coup-
ling constant, while adjusting the wave function pa-
rameters to maximize the ratio of potential to kinetic
energy. For parameter values fixed in this way, the
percentage change, in kinetic or potential energy, re-
quired to produce binding, is a minimum. We find that
decreasing the coupling constant to 9.7 leads to no
essential change in the relation between

~
(V8) (, ( (V88) ),.nd I(V„)).
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TABLE lV. ER'ect of damping on three-body potentials. Each entry
indicates a percentage of the two-body potential energy.

Vg 3a

/
war

v3b

cd%0

1.0
1.2
1.7

4.2
6.4

13
5 0—6.8

(Vein»

=—4.1—9.0—20 —1.6—++2.6

—4.0—6.3—14

)r
'C

i(

V3 V3a

FIG. 2. Feynman diagrams for various three-body terms.

It appears, then, that the character of the "leading"
term in the three-body potential gives no clear picture
of the properties of the three-body potential as a whole.
Since the three-body potential contains an in6nite
number of terms (some of which may also be large) we
cannot even tell whether this potential is attractive or
repulsive. The series may, in fact, diverge. There is no
reason to believe that the "minor" terms are less im-
portant in the other many-body potentials than they
are in the three-body potential. We must, then, consider
the sign, as well as the form, of all the many-body
potentials as uncertain.

At this point we note that the terms VS„V3b, and V3,
have been treated by Drell and Huang in their calcula-
tion of the binding energy of heavy nuclei. The expecta-
tion values of V3, and V3b are zero, within the frame-
work of approximations adopted by the authors. These
expectation values vanish because of the angular de-
pendence of the potentials. In agreement with our
results, Drell and Huang 6nd that (Va.) is negligible.
However, the potential V3d is not considered in their
calculation. Vs& depends, explicitly, only on the inter-
nucleon distances. The corresponding expectation value
will not vanish; it may very well be larger, in absolute
value, than ((V~) ~, since this is true for tritium. If the
attractive term V3& is included in the three-body
potential, we may ind that the many-body forces no
longer produce saturation.

A rigorous treatment of the damping eGect may be
expected to change this picture. Indeed, Wentzel's work

on pair theory ' indicates that the repulsive many-body
terms predominate for large nuclear densities. The pair-
theoretical potentials alone exhibit saturation prop-
erties, even without a hard core. It appears, then, that
the eGects produced by higher order terms are an
essential feature of the problem of heavy nuclei.

Returning, now, to our discussion of the tritium
problem, we find that damping influences the various
three-body potentials in different ways. The diagrams in
Fig. 2 may serve to classify the three-body potentials.
We shall assume that the two-body potential V&4& Lsee
Eq. (12)] carries a damping factor n. Then it follows
from Wentzel's discussion''~ that every purely pair-
theoretical potential (like Vs or V3~, for example)
should be multiplied by n:", where e is the number of
double vertices in the corresponding diagram. It seems
reasonable to suppose, here, that the same procedure
will be roughly correct for the other potentials. Com-
paring the various three-body terms with the leading
term, we see that damping increases the relative im-
portance of V3, U3b, and V3„while partially sup-
pressing U3~.

To make our argument more concrete, we have again
taken G'/4m = 14, n= 4, and @0=0.38. With these
parameters we have computed the expectation values of
the various three-body terms, each multiplied by the
appropriate power of o.. The results of this calculation
are shown in Table IV. Increasing the coupling constant
partially counteracts the eGect of damping. As a result,
both ((V»)( and ~(V3&)~ are approximately equal to
j(V3) ~

. An increase in core radius will, probably, further
decrease the relative importance of V3~, because of the
strong r dependence in this term. But, comparing the
forms of V3b and V3, the author sees no reason to believe
that an increase in core radius will drastically reduce the
importance of the "minor" term, V3b.
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