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Dispersion Relations for Pion-Nucleon Scattering. I. The Spin-Flip Amplitude
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Dispersion relations are derived for the derivative with respect to sin8, taken at zero angle, of the spin-
6ip amplitude for pion-nucleon scattering. The derivation of these relations is based on general field-
theoretical concepts. It is shown that the condition of microscopic causality is sufhcient and essentially
also necessary for the existence of these equations. The special form of the dispersion relations depends on
the assumptions about the high-frequency behavior of the spin-Rip amplitude.

The exact dispersion formulas, which are derived under the more stringent boundedness condition for
the amplitude, can be reduced to the spin-Rip part of Low s equations for E-wave scattering. This reduction
involves approximations which correspond to those underlying the direct derivation of Low's equations.

Under certain conditions the dispersion relations may hold approximately at low energies even if the
causality condition is not valid in small but Gnite regions. This possibility is discussed briefly.

INTRODUCTION

~ XACT dispersion relations for pion-nucleon scat-
~ tering have been derived so far only for the forward

scattering amplitude. ' ' In this paper we will discuss
corresponding relations for a function S(to) which is
the derivative of the spin-flip amplitude with respect
to sin8 at zero angle. "One can also obtain dispersion
relations for higher derivatives of both spin-Rip and
nonspin-fhp amplitudes at 8 =0; these will be discussed
in a following paper.

We derive the dispersion relations on the basis of
covariant field theory, but we do not need to make
speci6c assumptions about the form of the interaction
between pions and nucleons. The asymptotic condition
for field operators is sufhcient to find an expression for
the scattering amplitude in terms of field operators and
to exhibit the energy dependence of the function S(&o).
The essential tool for the derivation of the dispersion
relations is the condition of microscopic causality which
is assumed here in the following form: two measure-
ments shall be independent of each other if they are
performed at points which have a finite space-like
separation. It is of course not certain that this principle
holds in very small domains, but in order to 6nd out
whether this principle is valid we must study its con-
sequences. The special form of the dispersion relations
depends on the extent to which the causality condition
is violated in infinitesimal space-like regions, because
these regions are responsible for the high-frequency
behavior of the amplitudes. As a connecting link between
dispersion relations and the causality principle, we use
in this paper the Titchmarch theorems about Hilbert

transforms. 4 These theorem state, roughly speaking,
that under certain boundedness conditions the vanish-
ing of the Fourier transform K ($p) of a complex function
M (&o) for &p(0 is necessary and sufficient for the relation

1 t +" M(co')
M(o&+iv) = dco'

2&ri ~ po' —(to+iv)

to hold for v&0 and for the existence of the limit
M(o&+iv)~M(o&) for v-+0. In order to make use of
these theorems, we use a function X(o&) which is equal
to S(co)/tl' for co) ts (ts= pion mass) and prove that the
causality condition is sufFicient and essentially also
necessary for the vanishing of its Fourier transform
%(gp) for negative values of gp. Thus we obtain for
X(o&) a relation of the type

1 t
+"$(io')

&(~)=—P
~

Nlrb ~ ~ Q)~ GO

where P denotes the Cauchy principal value. This rela-
tion has to be converted into equations involving dis-
persive and absorptive parts of the physical amplitude.
For the region of integration from —~ to —p, this is
achieved by use of the invariance of the theory under
charge conjugation; the region from —ts to +ts leads to
a contribution resulting from the neutron as a possible
intermediate state of the pion-proton system.

In this paper we have restricted ourselves to pion-
nucleon scattering, but the results can of course be
generalized to other boson-fermion scattering processes.

I. EXPRESSIONS FOR THE SPIN-FLIP AMPLITUDE

*This work was supported by a grant from the U. S. Atomic The elastic scattering amplitude for pions on nucleons
Energy Commission. formL Q ldb g Phy R 99 979 (1955) S l Q ll can be written as matrix in spin space in the o™
Mann, Goldberger, and Thirring, Phys. Rev. 95, 1612 (1954); in
this paper the existence of dispersion relations for the derivatives (~&~&&) ~(~& +)+~(~&
of the scattering amplitude with respect to cosD has been suggested.

s Qoidberger, Miyazaea, and Oehme, Phys. Rev. 99, 9g6 (1955) where q=m(to' —ts') is the momentum of the incoming
' R. Karplus and M. A. Ruderman, Phys. Rev. 98, 'I71 (1955). pion and k= x(hp —ts )1 the momentum of the scattered
"Calculations about this problem have been made inde-

pendently by W. Thirring; private communication from M. L. E. C. Titchmarch, I&o»rier I»tegrals (Oxford University Press,
Goldberger. Oxford, 1937), p. 119.
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meson. We restrict ourselves in this paper to the
laboratory system. By I and x we denote unit vectors
in the corresponding directions. We have m x=cos
and define in addition the unit vectors n and 1 by n sin8
=mXx and 1=nXm. ':,The functions F and G are
matrices in isotopic spin space. We indicate by 5 +,

5 o, etc. , the amplitudes corresponding to the reactions
s.++~P+s+ and w'+P —+P+s' respectively. Through-
out this paper we consider only the interaction due to
nonelectromagnetic forces. The quantity which will be
mainly discussed here is defined by

S(o») =q'G(c0) =limjq~ [k(G(co, cos8);
0~0

(2)

1 (8
S(co)=—Tr o n~

—T(o»,8,9 ~

2i &8$

This expression will be useful in the derivation of the
dispersion relations.

%e can describe the pion Geld by three linear Her-
mitian operators p (x) in Hilbert space. For our pur-
poses it seems to be of some advantage to use the
equivalent set

for simplicity we call S(o») just the spin-fhp amplitude.
In order to express this function by the full scattering
amplitude T, we note that

lql lklG(~, cosa)=(ii») Tr{~ nT(~ ~ 9)).

Because G(c0, cos8) and
~
k

~

= k(o», cos8) are even
functions of 8 or g—=sin8, we find

behavior of 6eld operators. It states, physically speaking,
that the particles of the interacting system behave
essentially as free particles if one only waits a sufB-
ciently long time. This means that the particles tend to
become far separated from each other and do not form
stable bound states. For the elastic scattering processes
we are dealing with, this seems to be a reasonable as-
sumption. Mathematically the asymptotic condition is
usually expressed in the form

11m 4(X) =gin, ont, (X)»
Qp ~~ 00

where @;, and p,„c are creation and destruction
operators for free physical particles. In the case of
pions we have then (Cl —p')ct;, ,„t,(x) =0.

In addition to the asymptotic condition, we assume
invariance of the theory under translations in time and
space (this not necessarily), rotations in isotopic spin
space, etc., and Lorentz invariance. The essential
condit'. on for the derivation of the dispersion relations
is the principle of microscopic caus.1lity: operators cor-
responding to physically measurable quantities shall
commute at points which are separated by a Gnite
space-like distance. Because all these operators are
built up by 6eld operators, this condition is satisfied if
all boson field operators commute and all fermion 6eld
operators anticommute at space- like points. The
causality condition is closely connected with Lorentz
invariance, because it guarantees that the time ordered
product in Eq. (4) does not depend on the choice of the
time axis.

We describe the interaction between pions and
nucleons by a current operator j(x) so that

It has been shown by several authors' that one can
express the scattering amplitude T for charged pions on
nucleons in the form

T "(P~P' pr V)

t'
=Ci d4xd4ye 's'e""(0, 1c') (U„——p')

X(p I T(y *(*)A,(y)) I p;&, (4)

where
~ p;) and

~ p~) denote initial and final state of the
proton with four-momentum p; and p~ respectively;
the spin states are not indicated explicitly. The symbol
T(pn(x), tt (y)) stands for the time-ordered product of
the Geld operators and the coeKcient C is unity in the
laboratory system if we use Gaussian units for the
meson 6eld; all operators are in the Heisenberg repre-
sentation. One obtains a corresponding equation for
neutral pions. Equation (4) can be derived on the basis
of the well known condition about the asymptotic

'Lehmann, Symanzik, and Zimmerman, Nuovo cimento j.,
1 (1955); M. L Goldberger, P. hys. Rev. 97, 508 (1955); F. E.
Low, Phys. Rev. 97, 1392 (1955);Y. Nambu, Phys. Rev. 98, 803
(1955).

+00

Tf'(o»P, 9») =i l dy e '"» „d'ye's~0

where

X f T j*o,jyyo
8@—s(»,)»'(o)(»,»,) tp;), , (n)
Byo

(2~)'~(P' Pi+( &)T"(~49)—=T"(P—ih P'a).

(&-~')4+(*)= —i+(*),
(&—~')A(x) =—is(x).

These current operators are functionals of the boson
field operators g(x) and the nucleon field operators
f(x), P(x)» and they will in general also contain deriva-
tives of these quantities. For simplicity let us assume
in the following that the currents do not depend on
time derivatives of the pion 6eld. The generalization
of the discussions is straightforward.

We perform now the differentiations in Eq. (4) and
obtain, using translation invariance and Eqs. (5),
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Here and in the following we omit the subscripts m.+

and m wherever it is clear what has to be inserted for

j and p in order to obtain the special amplitudes. Fur-
theremore we have in the laboratory system p;= (O,M)
and pr

——(p,po) = (q—k, M+or —ko), where

(p'+Mor) cos8+ (or+M) (M' Ir,
' s—in%) i

(or+ M)' —(or' —p') cosV

and &o= (k'+p')&
The spin-Rip amplitude S(or) can be obtained from

Eq. (6) by the prescription given in Eq. (3). Let us
first discuss the term proportional to 5(yo) in Eq. (6).
The causality condition demands that the commutator

invariance,

&P,p, l j*(o)l && I j(o)l O,M&
P'(orb o)=

n, pn=q En—M—
GD
—z6

&p pol j(o) l~&(NI j*(0)
I
o M&

(7)
n, pn k En po+or —zo

P&P,Pol j*(0)I m„,p„,E„&(m„,p„,E„Ij(O) I O,M&

=a++ib+a (PXp.),

P&P,Pol j(0) I m„,P„,E„&(m„,P„,E„Ij*(0)IO,M&
(g)

The numerators are matrices in spin space and must be
of the form

=e +ib e (p&&p„),

where a+, b+, u, and b are functions of (p p„), po, p„o,
vanish for y )0.Therefore the matrix elements of this and E„. Qm„denotes the sum over all remaining
commutator can only lead to expressions of the form quantum numbers of an intermediate state with 6xed

energy E„and momentum p„. Inserting Eq. (8) into
~"b(y)(P,Po o(y) o,M& Eq. (7), we obtain

or
gradb, "b(y)(p,polo(y) IO,M),

where 6 is the three-dimensional Laplace operator and
e=o, I, ~ . The term proportional to d "8(y) does not
contribute to the spin Qip amplitude S(or). This is
evident for m=0, because in that case the matrix ele-
ment cannot contain terms proportional to e, it
depends only on the one polar vector p and must be
invariant under rotations and space inversions. If e&0
we find by use of Eq. (3) for the contributions to S(or):

8
d'ye'or Tr o n —&prpolO(y) IO,M) 5"8(y)

a(
' ',=, I

d'y'"f(y') (q y)~"b(y).

=L~"( ""(» y)f(y')) j.-o=o.

Those terms which contain gradh"8(y) lead to con-
tributions to S(or) of the form r7'q'" C, where C is a
constant. We will see later that the special form
of the dispersion relations depends on the high-fre-
quency behavior of the spin-Rip amplitude. It turns
out that the terms q'q'". C either cannot occur at all
because of the boundedness condition, or they drop
out in the Gnal dispersion relations. To avoid unneces-

sary complications we will therefore neglect these
terms in the following considerations.

Let us assume now that the positive energy states of
the interacting system form a complete set. ' Then we
can decompose the matrix element in Eq. (6) with
respect to these states and And, using translation

' Naturally we assume also that the one nucleon state is stable.

T(or, d, q)

a+(q', q k,po,'E )+ib+(q', q k,po, E )e (»Xk)

E„—M—a)—ze

u (q', q k,po, E )—ib (q', q k,po, E„)e (q)&k)
(9)

E po+or r,o— —

Here the quantities a+ and b+, as well as the energy po
of the recoiling nucleon, are even functions of $= sing.
Thus, using Eq. (3) and the relation (Bk I 8$) t. o=

I q I b,
we find for the spin-Qip amplitude

b+(q', E-) b (q', E )

IL ANALYTIC CONTINUATION

The spin-Qip amplitude S(or) is u priori only defined

on the real axis and for co &p. In order to derive dis-
persion relations we want to continue this function
analytically into the upper half-plane. More speci-
fically, it is our aim to find a function E(X)=X(or+iv)
such that

(a) X(or+iv) is analytic for v) 0,

(b) the Lesbesgue integral t d jXo(r+i or)I2 vexists

and is bounded for v&0, (A)

(c) limlV (or+ iv) -+ G(or) =S(or)/q' for or )p.

S(~)=q' E (lo)E„M—or —ie —E M+or ioj— —
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to hold for v&0 and for the existence of the limit

X(or+i v) ~ X(nr) for v —+ 0

almost everywhere, i.e., except possibly for a set of
measure zero. Performing this limit in Eq. (11), we
find that the conditions (A) are necessary and suf-
6cient for the relation

1
I

~ cV(or' )
lV(or) =—P der'

7l 1 a cc CO M

to hold almost everywhere. '
Direct continuation of S(or) by use of Eq. (10) does

certainly not lead to an analytic function in the upper
half-plane, because the second term introduces poles
slightly above the real axis. But these poles can occur
only for co&@, because there are no states of the pion
nucleon system with E„&M—p. The lowest inter-
mediate state is a neutron at rest so that we have
always E„&M&.The quantity —ie in the denominator
of the second term in Eq. (10) is therefore irrelevant
for the physical region co&p. Ke use this freedom by
changing isin—to '+is and continue instead of G(or)
the function

b+(q, '~-) b (q',E„)
(13)

into the upper half-plane. This function coincides with
G(or) in the physical region or)ru. Writing 1V(or) as a
Fourier integral corresponding to Eqs. (3) and (6),
we find

p
+00

X(or) =— dyori( —yo)e '""' d'ye'or
q2

XlTr ~ nl Hp poll:j*(0) j(yyo)jl0~& I (14&
(8
Ea( )t

Here rf( —yo) is the step function and delned by

I0 for yo)0
m(

—yo)= r

for yo&0.

Because of the appearance of the commutator and the
step function, the space-time integration in Eq. (14)
extends only over the region inside and on the past
light cone, provided the causality condition holds. We

' This function E(or) corresponds to the function M(or) which
Goldberger uses in the case of the forward scattering amplitude
(see reference 1).

It has been shown by Titchmarch4 that the conditions
(a) and (b) are necessary and sufhcient for the relation

1 t
+" X(or' )

X(or+iv) =
2iri ~~ or (or+tv)

assume in the following that these space and time
integrations exist and that they are bounded. For finite
co their existence is guaranteed if the matrix element
of the commutator is sufficiently well behaved and
bounded at time-like points y' —yo'&0, which is cer-
tainly the case for physically reasonable interactions.
The high-frequency behavior of X(or) depends on the
matrix elements at the light cone, which may have
there singularities of the form 8 (y' —yo') or even
derivatives thereof. The causality condition demands
that the commutator Lj*(0), j(y,yo)] vanishes for
every finite space like distance y' —yo'&0, and therefore
only derivatives of finite order can occur. These sin-
gularities at the light cone correspond to violations of
causality in infinitesimal regions. The order of the pole
of X(or) at infinity depends on the order of derivatives
of 5(y' —yo') occurring at the light cone, which in turn
is determined by the properties of the interaction. There
may of course occur cancellations due to terms like
that involving 8(yo) in Eq. (6).

Let us first assume that the interaction is such that
E(or) is L'(—~, +~), i.e., that E is Lesbesgue square-
integrable from —oo to +~. In this case we can use
another theorem of Tichmarch4 which states that the
vanishing of the Fourier transform

&(4)=)
p+00

defoe '"t'1V(or)

Because of p(/=0) =0 and po()=0) =M, we find for
the derivative with respect to $ at )=0:

I Hp, poILjl(o), j(y,y,)*logs& I

hag )( o

= IqIiB(y' yo' yo', O,M)Xt—r (yX1), (17)

where B(y'—yo', yo) retains the property of the com-
mutator to vanish for space-like points y' —yo'&0.
Insertion of Eq. (17) into Eq. (14) yields

f+
X(or) =—' dyorf( —yo)e 'v' d'ye'or

X&(y'—yo', yo) (y «). (18)

Here we can perform the angle integrations and Gnd,

for b(0 is necessary and sufficient for the conditions
(A) to hold. In order to prove that R(po) =0 for Po(0
we start from the representation of E(or) given in Eq.
(14). The matrix element of the commutator can be
written as matrix in spin space in the form

(P,Po I Lj*(0),j(y, y.)j I oyer&

=A(y' —yo', yo;p y po)

+is(y' —yos, yo; p y, Po)~ (pXy). (16)
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making use of the causality condition,

iV((o) = (2~) t

4p
dy p'Lotflp y dye~(y yp yp)

&&~ (y( '—t ')')/I:y( '—
t ')'j', (19)

F00 QQ

&(b) = (2~)'*
I

dyp y'dyIt(y' —yp' —yo)
&p ~p

where y=—I yl. To calculate the Fourier transform
9l(gp), we may use either Eq. (18) or Eq. (19) and inter-
change the co integration with the space-time integra-
tions. This interchange is certainly permitted because
X(pp) has been assumed to be L'(—~, +~). By use
of Eq. (19), we obtain

vanishes for all Pp&0. In this sense we say that the
causality condition is also necessary for the vanishing
of the Fourier transform of E(~) for negative Pp. If the
behavior of the function 8 at spacelike points should
be such that 9l (gp) =0 for gp& —a, where a is a positive
constant, then X(co) is still the limit as v—4+ of an
analytic function tV(pp+iv), but we have instead of
(Ab)4:

p+QQ

IX(a&+iv) I'd~=O(e' ") for v~~. (23)

In fact the condition %(gp) =0 for Pp& —a is necessary
and sufhcient for X(pp+iv) to have an essential singu-
larity at in6nity. Under these circumstances the dis-
persion relation (12) holds for the functions e'~"X(&o)
where n )u:

~t(y(~' —t ')')
d(gc&~ (vo $0) (20)

Ly(~' —t ')'j'

1 t
+" e'-'cV((o')

e' "iV (co) = P—d(o'
ll Z ~

&g CO
—M

(23a)

t " 'exp(t —s2/4t)dt, c)0,

and yields

~-:(y(~'-t ')')
d&&t ~ (Vo—50)

So far we have restricted our discussion to functions
The ~ integration can be Performed by using, for

iV( ) wh;chare Lp( +.pp) A~t~~llytheconnect, on
instance, the Laplace transformation, between the validity of the conditions (A) Pand con-

sequently of the dispersion relation (12)$ and the

~()= vanishing of the Fourier transform is more general. Of
2"2x'$ 4 c—t~ course the function X(cv) must be suKciently bounded

to guarantee the convergence of the integral in Eq. (12).
Let us suppose now that the interaction is such that

X(~) is not suKciently bounded for &u-+~. Then we
can go through the same considerations as given above
if we use a function

«r lyp
—bl&y,

(21)
0

(2~)'
I (yo

—&o)'—y'j'J ( I (y —&o)'—y'1')
'. JM,y

«r lyo —bl &y.

If yp) 0 and fp&0 the integral (21) is zero for yp &y
and therefore it vanishes just for the whole region of
the space and time integrations in Eq. (20). Thus we
have g(gp) =0 for Pp&0; the causality condition is
sufhcient for the statements (A) to hold and conse-

quently for the validity of the dispersion relation (12).
We cannot prove directly that it is necessary because
this depends on the speci6c behavior of the function
B(y'—yp', —

yp) for y' —ypP) 0. But suPPose 8 does not
vanish in a space-like region of nonzero measure. In
this case we have for gp&0

lt(~) =iV(~) II (~—~-),
n 1

(24)

X(pp) 1 t'+"

(M M y) (M C02) r1 ~~ ((d M) (M —ld y) ((0 —Mp)

(24a)

Again here the square integrability could be too strong
a condition and it may be sufhcient to assume that the
integral in Eq. (24a) exists.

with Imago„&0, provided we have supplied sufhcient
powers of cv in the denominator. In the following we will

consider only the case that

&p(~) =&(~)/(~ —~~) (~—~p)

is L'(—pp, +m). Instead of Eq. (12) we obtain the
dispersion relation

&(& )= (2 )' dyp ydy~(y' —yo', —yp)

X '/pfy' —(yo Po)']V (i—tlI y' (y,—&,)'—J'), (22)

and it is dificult to believe that one 6nd a physically
reasonable function 8 such that the integral (22)

III. THE PHYSICAL DISPERSION RELATIONS

The dispersion relations (12) and (24a) involve the
function X(co) on the whole real axis, whereas u priori
it has a physical meaning only for or &p,. Invariance
of the theory under charge conjugation will enable us
to interpret X(cu) for co & —p by physically meaningful
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quantities. The region l n
l &p will yieM a "bound state

contribution" containing an undetermined constant
which can be related to the coupling constant of the
Chew-Low theory. ' This constant is therefore essen-
tially a measure for the strength of the P-wave pion-
nucleon interaction.

By use of Eq. (13) we divide lV(ro) into a dispersive
and an absorptive part:

For charged mesons D and 3 are given by

b+(q', E-) 4(q', E-)
D. (to)=P P —P

E„M—co —E„M+—(o

A. (~) =~ P{b,(tie,E.)5(E„—M—~)

+by(tie, E)5(E„M—+co)),

(26)

E((u) =D(co)+iA (o)).
where the numerators can be dedned according to Eqs.

(25) (3) and (8) by

b+(q'»-) =.
2Q

b (q', E„)=
2Q

8» ~ n —&(p "Pol j*(0)leam- y-=q, E-)(m„, p„=tl, E„lj(0) l0, M)
fSS g~p

8
Tr e n —p(y, ps l j(0) l m„, p„=—k, E )(m„, y„=—k, E„lj*(0)l 0, M)

m ( pl

(27)

From Eq. (26) we ftnd immediately the relations

D (—cv) = —D;(re), A (—co) =+A -(re).

to the relations

(28)
-', {D .(o))+D -((o))+-',i{A.+((u)+A. -((o)}

2(o f
"-', {A. ((0')+A -(ce'))

tlan 5 ~ e Go —te

For neutral mesons we have to replace the curr
operators j(0) and j*(0) in Eq. (27) by the Hermi
operator js(0) = js(0) and it can be easily shown that
we obtain in this case b+=b =bp. Thus we hand for
neutral pions the symmetry relations

2i l-" -', {D:((u')+D.-(o)'))co'——P chal
I l

CO
—OP

(30)It i
sically a consequence of the snvar ance o the theory
under charge conjugation. ' The functions b+, b, and bp

and therefore also the dispersive and the absorptive
part are real functions. This will be shown in the
appendix.

From Eq. (28) we see that the dispersive and ab-
sorptive parts of the combinations ts (1V +(ro) +E -(&o) )
are even or odd functions of ~. Therefore we write for
charged pions instead of Eq. (12)

("l{D-'( ') —D--( '))
P —de )

"o CO
—

OP

D.o(a&)+iA o(cu)

2' ~"A. ((u') 2i (."D. ((o')(o'=—P dc' ——P ' des
C0 —GP 8' ~ p 0) CO

These relations involve only integrations over positive
values of c0. We can split every one of the Eqs. (30)
into two separate relations, one for the even and one
for the odd part. Thus we obtain relations which express
dispersive parts by integrals involving absorptive
parts and vice versa. In the remainder of this paper we
will be interested only in the hrst-mentioned formulas,
which resemble the well-known Kramers-Kronig dis-
persion relations for the forward scattering amplitude.

It remains to discuss the region 0&M&@, where the
pion nucleon system has an intermediate state cor-
responding to a single neutron. Because of charge
conservation only the matrix elements (y,pal j+(0) le)
and (el j (0) l O,M) in Eqs. (27) are different from zero
in this case. Therefore b+(neutron) vanishes for charged
pions. If we equate neutron and proton mass, we obtain

-,'{1V. (a))acV.-((e))

1 f+"-,'{1V +((o')+E -((o')}=—P, I eke', (29)
~i ~ „ GO 07

and by use of the Eqs. (25), (28), and (28a), this leads

G. F. Chew and F. E. Low, Fifth Rochester Conference on
High Energy Physics, 1955 (Interscience Publishers, Inc. , New
York, 1955).

9 VVe might mention that invariance under charge conjugation
also yields S +, ~(co) =S +, {„)(~),where S „{„jis the spin Rip
amplitude for the process m++antiproton~m++antiproton. (We
use the notation Lpg for antiproton. ) Therefore we can write
instead of Eqs. (28)

D '.n(-~) = -D . M (~) A '.P(-~) =+A '. bl(~).

D 0( ~)— D 0(ro) A g( ~) —+A o(oi) (28a) s{D~+(&) D~ (&))+si{A~+(co) A~ (~))

2 ("-,'{A +(&o') —A -((u')}te'
s clear that the relations (28) and (28a) are intrin- =—P

1 f X ~p M GO
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from Eq. (22)

b (neutron) =b (q', E„=(q'+M')&),

because in this case conservation of momentum demands
that E„=(y '+M')&= (k'+M')& and for &=0 we have
k((=0) =q. Furthermore conservation of energy yields
q~= —p'+ (p~/2M)' and consequently

where the quantities hq are invariant functions of p„„p„,
p„„',p~', and where N(y), u(y„) are solutions of the free
Dirac equation for positive energy. Calculating the
matrix elements of the p operators in Eq. (33) we hand

that (y,E I j (0) I y,PO) can be written:

(y-,E-I j-(o) ly, PO)=~vugg(y-', y', y y-, E-,Po)

E„M=——p'/2M. && - Iy.(p+M)-y(E. +M)j (33 )
(2M)'

Thus we obtain for the absorptive parts in the energy
region 0&or &p. If we now insert Eq. (33a) into Eq. (22) for b (q', E„)

and perform the differentiation and the trace we obtain
A +(~) =~b (P,M)b(~ IJ /2M—), A -(~)=0, (31) w;th q~ ~~+(~~/2M)~.

and the corresponding considerations for neutral mesons
lead to

A o (Co) = 27rbo (IJ,,M)b (M IJ,'/2M)—, (31a)

2p
I', = p'b —(p,M)=, lgLq' 0, 0 (q'+M')& M)I'

(2M)'

where we have 2bp= b because of charge independence.
If we now introduce Eqs. (31) and (31a) into Eqs. (30),
we hand the physical dispersion relations for the forward
spin-flip amplitude S(~) divided by q'.

HD-'(~)+D--(~))

M+ (q'+M') &

IX
q.' = -u'+ 6 '1&M}'

2p
Igl'I 1—(p/2M)')=2f'I 1—(p/2M)']

(2M)'

(33b)

k(D-'(~) -D--(~))

M 1—F„
(u' —(p'/2M) ' p'

The constant f' can be interpreted directly as the
coupling constant of the Chew-Low theory and there-
fore is of the order 0.08.

The coefIicient appearing in the bound state con-
tributions to the dispersion relations for the forward
scattering amplitude' can be dehned by

2 t
"

—,'(A (cu') —A.-(co'))~'
=—P dM

m' 4„ M M

(32)
Ff

p
Tr(O, MI j *(0)ly„=q, E„)

2Q

(y-= q, E-I j-(o) I o, M)
a =-~~+(~/~M}~

(34)

F„
aP —(p'/2M)' 2M and this gives by use of Eq. (33a)

2(u r
"A ~((o')

D (a)) =—' da)'+
'r 4

p CO QP

M 1

a' —(p'/2M)' p'

2p
~f I g(q', o, o, (q'+M')', M) I'"=-.*+~"~&~)

(2M)'

here we have introduced the constant

I',—=—p'b (p,M).

%e will show now that for pseudoscalar mesons
this constant must be positive. Let ly„,E„) denote
a free neutron state and ly, po) a free proton state
(positive energy). Because of the invariance of the
theory under Lorentz transformations the matrix
element of the pseudoscalar operator j (0) must be of
the form

(y.».l j-(0) Iy Po)=~(y-)&-(P. P-)N(y)
=~(y-)(»&~+~»7. (P"—P.)h~

+~V ~.(p-.+P.)&+~~(~p" ~.~.)p-.p.h)~(y), (33)

=2 2. (34a)

Thus we have for pseudoscalar mesons F,=Fy if we
neglect in Eq. (33b) the term (p/2M)' against one; we
conclude that there appear essentially the same coef-
ficients in the bound state terms of the dispersion rela-
tions for the spin flip amplitude and in the corresponding
terms of the dispersion relations for the forward scat-
tering amplitude.

In case X(co) is not sufliciently bounded for Eq. (12)
to be valid we have to rely on dispersion relations of
the type given in Eq. (24a). In order to reduce this
formula to physical dispersion relations we choose
Goy=Gop —ie and or&= —~0—ie, where coo &p, and e&0 is a
small real constant which 6nally shall go to zero. By
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use of the relation individual amplitudes D + and D —.If we use instead
of G(pl) the forward spin-fhp amplitude S(o1) and write

(ld —Mp+23) (O1 +Pip+ Zp)

1 7ri=P — {8(P1'—Plp) —b(P1'+Pip) )
Go 4)p 2' p

we can write Eq. (24a) in the form

we 6nd the dispersion relations

+(s) (P1) =
p&2 —p2 l

" dpi' A +"'(o1')
P

'F al
& GO

—P 07 —Cd

S ~(p1) = 21'G +(p1) =D +&'(pl)+iA +&'(&u) (37)

&(ol) —2{&(pop)+&(—o&o) )——2{&(poo)—&(—olo) }
GOp

p1 pip
I

$(pl )(ol +pl) D t &( )
(p)"—oo') (a&"—olp2)

From Eq. (35) we can obtain physical dispersion rela-
tions using the same considerations which led to Eq.
(32).We 6nd

A -&'&(2)

po +op

1 GD
—p+2f2

p2 ol—p2/2M

o12—p2 t
" dpi' A.-t'& (lo')

P
7P 4 ~ CO

—P M GO

A +&'& (o1') 1 oo' —p,
'

+2f2
oo +pl p pl+a /2M

(38)

2{D. (~)+ --(~)}— 2{D-'(~p)+D--(~o)}

o12—plp2
t
"-,'{A +(oo')+A -(p1')}

2(u
GD GO CO COp

pl (oo' —lop2) 1—r
(&2/2M) 2j[pl o2 (~2/2M) 2$ ~2

In these formulas we have written the bound state
term with the coeflicient f', which can be identified
with the coupling constant of Chew and Low. Note that
Eqs. (38) are written in the laboratory system.

In the center-of-mass system the spin-Qip amplitudes
S +(co) can be easily expressed in terms of phase shifts.
%'e have

~ l(l+1)
S (ol) =S)(o&)=Q {a'3,2~1(oo) —a'3, 21-1(o1)},

I{=1

4{D '(~) —D -(~))—2{D-'(~p)—D (~p) }
ol —pip t 2{A~+(p1 ) A~ (M ))Ql

(~"—~') (M"-~o')

GO
—

COp

(36)

S -(&o) =-'3{S;(pl)+2Sg(pl))

~ l(l+1)
{a3, 21+1(p1) a 3, 21-1(&)

l=1 2

+2a 1, 21+1(p1)—2a'1, 21-1(pl) ),

(39)

F„
[ol'—(p'/2M)'([pip' —(p'/2M)2j 2M

D 0(o1)——D e(pip)
COp

pip t A ~0(ol )2'
~~2 ~2 ~~2 ~ 2

07 GO G)p 1—r, .
[&o2—(t22/2M)q[p)p2 —(JP/2M)q p2

If Eqs. (32) are valid, then Eqs. (35) are certainly
correct, but the reverse is not true.

Vf. DISCUSSION AND CONNECTION WITH LOVE('S
EQUATEONS

By adding and subtracting the erst two relations of
Eq. (32) we can obtain dispersion relations for the

where Sg and Sy denote the amplitudes for isotopic spin
-', and -,'respectively. The quantities a'2, , »(lo) are defined
in terms of phase shifts by

sins, 1 '(lo) exp[2tt, l '(oo)1 w'(ol)
a'2„2;(~)= — (4o)

(~'—~')' M2

where ~(p1) = (M +t32+2Mp&) &; as before p1 is the total
energy of the incoming pion in the laboratory system.
At higher energies the phase shifts are of course complex
because of the additional channels describing pion
production, nucleon pair production, etc. In order to
obtain from the dispersion relations (38) approximate
equations for very low energies which involve only P
waves, we make the following assumptions:

(1) We can neglect all inelastic process; (2) We can
neglect all contributions from phase shifts with l&1.
(3) We can neglect the recoil of the proton (M~ op).
Under these restrictions the phase shifts become real,
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and we obtain the approximate relations:

—;{sin2ass(po)—sin2asg(po) } W'(pp)/M'

g' t'" d~'
t »n'ass(~') —sin'asi(~') sin'a»(~') —sin'as/(co )+2 sin'a»(pp') —2 sin'a»(pp')1 W'(co') +2f, (41)s1 3 (o)'+co) M' p'pp

s{sin2aps(ro) —sin2as~(&u)+2 sin2a~s(co) —2 si n2 a~~(op) }. W (co)/M

g' t "du'[sin'ass(~') —sin'app(&o')+2 sin'a~s(cu') —2 sin'a»(cu') sin'ass(ro') —sin'as~(co')1 W'(po') p, 'ru
p +2f

q" 3 (po' —cv) cp +G) M' q'

where t/= (oP—p')l. These are essentially the spin-flip
parts of Low's equations. ' The nonspin-Rip parts can
be obtained directly from the dispersion relations for the
derivative of the nonspin Rip amplitude F(co, cos8)
Lsee Eq. (1)) with respect to cos8 at zero angle, "
provided we make the corresponding approximations.
Thus we obtain four approximare relations for the four
P-wave amplitudes, and by addition and subtraction
we can find four relations for the individual amplitudes
which are the same as Eqs. (3.11)of reference 10 if we set
a» ——a» and W/M=1. The imaginary parts of Low's
equations are of course identities. We conclude that,
apart from the approximations stated above, the Low
equations are a consequence of the general assumptions
leading to the exact dispersion relations. They are cer-
tainly approximate equations, because there do not exist
exact dispersion relations for amplitudes corresponding
to individual angular momenta. " If we make the ap-
proximations (1), (2), and (3) in the dispersion relations
for the forward scattering amplitude we obtain equa-
tions involving S and P waves. ' The P-wave parts are
essentially the nonspin-Qip parts of Low's equations
which have been obtained separately from the dispersion
relations for [BF(&v, cos8)/8 cos6]p p. Thus we find by
subtraction approximate equations for S waves only,
but the inhomogeneous terms of these relations contain
the two zero energy scattering lengths. "

Let us 6nally discuss the possibility that the condition
of microscopic causality is not valid in very small but
6nite spacelike regions. Suppose the commutator

t j*(0),j(y,yo)) vanishes only if ys —yP) /P, where /p is
a finite length. In this case we have according to Eq.
(22)

K(go) =0 for $p( —/p,

and, if E(~) is sufficiently bounded on the real axis,
and relation (23a) holds with a&/p. Splitting X(co) as
before into a dispersive and an absorptive part we

obtain for neutral mesons, instead of the dispersion
relations (30):
D o((u) cos/pv —A ((o) sin/ap

{A,a(ra') cos/pep'+D o( o)psin/go'}=—P,
m. CO GP

A, o(po) cos/por+D o(co) sin/par

2 t
" (o'{D 0(oo') cos/pro' —A 0(&o') sin/gv'}= ——P

1

c4'
~ ~o M CO

and corresponding equations for charged pions. We see
that the first of the Eqs. (42) reduces approximately to
the usual dispersion relation if /p and cp() p) are such
that co/p«1, and if the functions A (&o) and D(co) decrease
fast enough with increasing energy to allow the approxi-
mate replacement of cosl~ by one and sinl~ by zero
inside the integral. Even for very low energies these
approximations are certainly not possible if /0 is of the
order of the pion Compton wavelength. Therefore we
cannot expect the dispersion relations to be approxi-
mately correct if the dimensions of the acausal region
are of the order of 10 "cm.

In the above discussion we have restricted ourselves
to the spin Qip amplitude, but the corresponding con-
siderations can be made for the forward-scattering
amplitude. In this case we know that the dispersion
relations are in fairly good agreement with experiments
up to about 200 Mev in the laboratory system. "We
may conclude therefore that, if acausal domains exist
at all, one should expect that their dimensions are
small compared to the Compton wavelength of the pion.
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APPENDIX

In this appendix we will show that dispersive and absorptive parts of the amplitude E(&o), which were defined in
Eqs (25) and (26), are real functions of co. More generally we prove the corresponding statement for th«un«ion

1
~(~ y) =— dyori( —yp)e '""' dyse"'X-,'g {(a n)m, m '(11(ppo'm ')1Lj'(0)~j(y~yo)31+(0Ml~ ))» (»)

qk ~ Mssf+s

F. E. Low, Phys. Rev. 9?, 2392 (2955).
"This problem will be discussed in a forthcoming paper. The dispersion relations for the derivatives of F(cu, cosg) can be only'de-

rived under neglect of recoil.
n Anderson, Davidon, and Kruse, Phys. Rev. 100, 339 (19$$).



i512 REI NHARD OEH ME

which is equal to G(or, cos8) sin8 for or &p. If we write rf( —yp) =-,'L1—e(yp) j and

1V(or t'f) =D(prP)+iA (or r')), (A2)

then the dispersive part D and the absorptive part A are given by Eq. (Ai) with rf( —yp) replaced by ——,e(yo)
and ,—i —respectively. For the complex conjugate of E(or, t'f) we find, using invariance under space inversions,

1 f~
&*(~P)=—

~

qQ J dyop[1+e(yp) je *""'

X p 2 f (~ n)-. -.(+*(—y, Pp m ')
I Lj'(o),j (y —yo) j*l+*(0,~; m.)). (A3)

msrms'

\

note that we distinguish here explicitly between Hermitian conjugation (j') and complex conjugation (*).Now we
invoke the invariance of the theory under time reversal or inversion of motion. In order to de6ne this transforma-
tion, we follow S. Watanabe" and introduce a unitary operator (R such that

Q(x, —xo)=ps((R 'Q(x, xp)(R)r,

where Q represents operators corresponding to physically measurable quantities and roz is a sign function. State
vectors transform according to

Ql —g TQ4 ~

)

here 0 I represents the state of inversed motion corresponding to %.
For the boson current operators j appearing in Eq. (A3), we find, "with an arbitrary phase factor e e,

(&-'j(o) )'= "j'(o), ( 'j'(y, yp)(R)'=e "j(y —yo).

(A4)

Thus we can write by use of Eq. (A5) and the relation (Rr(R '=1:
Lj'(0),j(y, —yo)3*=(R "Ejt(0),j(y,yo)3(R'.

Introducing Eq. (A6) into Eq. (A3) yields by use of Eq. (A4)

1
E*(or,er) =— dyo-,'L1+e(yp) je '""'~ dy'e'p'r

qk~„

(A6)

X p Z ((rr n)m, 'm. (4'( , popo; —m. ) ~ Ljt(0),g(y~yo))~4'(O, M; m,)). (A7)
msrms

In order to perform the time inversion of the free single nucleon states +, we write

+(y,pp, m,) =g'(y, m, )Q

where gt(p, m, ) is the corresponding creation operator which transforms like's

((R—
rg(p +1)(R)&—

esagt ( p 2) ((R
—

rg(p 1)(R)T—
eiagt ( p + r )

From Eq. (A9) we find for the motion inversed state

+r(p, Pp, m, )= (Rrgr(y, m, )Q *= e' +(—p, Po, —m.).
/m. J

Application of Eq. (A10) in Eq. (A7) yields finally

(++00

1V*(pr,er) =— dyo-', (—1—e(yo) )e '""' d' ye' .
qk~ „

(AS)

(A9)

(A10)

p ((o' n)~, ,~,(y(p~ Po'm ) I Ljt(0)~j (y~yo)3~+(O, M; m, ')), (A11)
ms, ms~

because the trace involves only oG-diagonal matrix elements of the commutator in spin space. By comparison with
Eq. (Ai), we find that D(or, t'f) and A (&o,er) are real functions.

"S.Watanabe, Revs. Modern Phys. 27, 40 (1955); see also G. Liiders, Z. Physik 133, 325 (1952), and KgL Danske Videnskab.
Selskab, Mat-fys. Medd. 28, No. 5 (1954), F. Coester, Phys. Rev. 89, 619 (1955); these papers contain further references.


