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An intermediate-coupling method of calculation is applied to the meson-nucleon scattering problem for
the case of symmetric pseudoscalar mesons, coupled to a fixed extended source through derivative coupling.
It is found that the experimentally observed P-wave phase shifts can be explained by taking the coupling
constant f2=0.712 and the cutoff wmax=06.21 meson masses. (This corresponds to a renormalized coupling

constant f,2=0.105.)

I. INTRODUCTION

ECENT experimental evidence' on the scattering
of mesons from nucleons indicates that in the
energy range 50-200 Mev, the cross section can be
completely accounted for by considering the P-wave
state of isotopic spin % and angular momentum $§, plus
small contributions from S-wave phase shifts. In order
to understand this simple behavior, Chew? has investi-
gated the consequences of a symmetrical pseudoscalar
meson theory. In this model the meson field interacts
with a fixed extended nucleon through pseudovector
coupling. In the weak-coupling limit, the predictions of
this model are in complete contradiction with experi-
ment. However, using a method of approximation
similar to that of Tamm and Dancoff, Chew was able
to show that for stronger couplings, the experimental
P-wave phase shifts are explainable. One may under-
stand this by recalling, that in the strong-coupling
calculations of Pauli and Dancoff® the first isobar state
is the J=I=3 state. Chew’s results indicate that while
the coupling is not strong enough for the existence of a
stable isobar, it is sufficient to give a resonance at
approximately 190 Mev. In view of this it seems desir-
able to investigate the above model by using a method
that, unlike the Tamm-Dancoff treatment, does not
limit the number of mesons in the field. With this in
mind, we have applied a previously described! inter-
mediate-coupling method to the meson-nucleon scatter-
ing problem.

The problem divides into two parts. The first is the
solution for the ground state (i.e., physical nucleon)
using the Tomonaga variational method.® The details
of this procedure are discussed in Sec. III. The scatter-
ing state is then obtained by again using a variational
technique. Here, we construct a trial function by multi-
plying the ground-state wave function by a scattering
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function for the meson. The determination of this
scattering function and its consequences are discussed
in Sec. IV.

Our results seem to substantiate the principal findings
of Chew. The §3; phase shift agrees with experiment, if
the coupling constant f2=0.712 and the cutoff wmax
=6.21y, where y is the meson mass. (This corresponds
to a renormalized constant f,2=0.105.) The 831 and 11
phase shifts are small, being, e.g., —1.60° and 5.99°
respectively at 200 Mev.

II. THE HAMILTONIAN

We describe the interaction of pions and nucleons
by using the following Hamiltonian:

a=1

1 3
H = 2 [ra+ (Vo) 2 ppa>1dr
S (4n) (/) f U re(o-Vo)Pr, (1)

where the ¢, and 7, are the three Hermitean field vari-
ables and conjugate momenta describing the mesons.
U(r) is a spherically symmetric, normalized source
function. Since only P-wave mesons will interact with
the nucleon in this model, it is convenient to expand
7 and ¢, in spherical waves. Thus:

$a(r)= kZ (2wr) Wi il aia (k) +aia™ (k)]

+S-waves+D-waves+ - - -,
and

Ta(r)=— kZ Gor) Wi il aia(R)—ai* (k)]

+S-waves+D-waves+---, (2)
where

Vi = (3/2wR)¥(yi/kr®) (sinkr—kr coskr), i1=1,2,3 (3)

corresponding to the three P-wave functions normalized
in a sphere of radius R, with % as the magnitude of the
meson momentum and w;= (k*+u?)? the meson energy.
@ia(k) and a;.* (k) represent the annihilation and crea-
tion operators respectively.

Substituting Eq. (2) into Eq. (1), we obtain for the
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SCATTERING OF PIONS BY NUCLEONS

P-wave part of the Hamiltonian:
H= kz {wria™ (B)@ia(R)+ (f/u) (BuwrR)~?
Xu(k)koiro aia(k)+ai*(k)]}, (4)

where

u(k)= f U(r) exp(ik-1)d?r. (5)

The four ground states of this Hamiltonian correspond
to the physical nucleon with its four possible values of
spin and isotopic spin. The scattering of a meson by a
nucleon will be described by the first excited states.®

III. PHYSICAL NUCLEON

The ground-state wave function will be obtained by
using a variational method, similar to one introduced
by Tomonaga® for the charged scalar field. In this
Tomonaga method, one takes advantage of the Bose-
Einstein statistics obeyed by mesons, by assuming a
trial function in which there is no limitation on the
total number of mesons, but in which all mesons are
required to have the same radial distribution.

Let |N,) be the state vector of a physical nucleon in
a spin, isotopic spin state p (p=1, - -+, 4). In the Fock
representation of such a state the probability amplitude
for finding a bare nucleon in a spin, isotopic spin state
p’ and 7, mesons of the 4, « type with a radial mo-

mentum distribution %%, - - - knss'® is assumed to be
(klia’ R 2P P,]Np>=cp(9””ia>‘n f(kmia): (6)

where ¢ and « run from 1 to 3 signifying the possible
angular momentum and isotopic angular momentum
states of the mesons. Invariance under rotations in the
ordinary space and isotopic spin space requires that the
radial distribution f(k,**) be the same for all 7 and «.
The function f(k) is chosen to be normalized to unity.

2l fR)2=1

where the sum extends over the magnitude of % only.
The functional form f(%) and the constants C,(p’,#:a)
will now be determined by the variational method:

&N,|H—E,|N,)=0, : )

with E, as the self-energy of the nucleon. To carry out
this variation we shall take advantage of the special
functional form assumed in Eq. (6). It can be shown’
that it is convenient to use a reduced Hamiltonian 3¢
instead of the original H in the variation. This reduced
Hamiltonian is obtained by replacing @:.(k) and a:.*(k)
in the Hamiltonian H, Eq. (4), by

@ia(k) = f(R)Giay
aia* (k) - f* (k) aia*, (8)

8 For the scattering problem we restrict ourselves to those
values of f for which there are no stable isobar states.
7 See T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).

and
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where the a;, and a;.* are independent of % and obey
the usual commutation relations for annihilation and
creation operators. We thus obtain for the reduced
Hamiltonian®:

H — 3=Qa:.*aiat+ (G/V2)0iTo(Giataid™), (9)
where
Q=Zk¢% lf(k) Iz’

G=f(2/3R)* Til f(R)u(k)E*/ (i) ].

The best values of the constants C,(p’,7:a) of Eq. (6)
are then directly given by the ground state |9T,) of the
reduced Hamiltonian 3C. Furthermore, the value of the
self-energy E, is precisely the corresponding eigenvalue,
given by

and

3¢ [9T,)=Eq|,), (10)

where p=1, - - -, 4 representing four degenerate spin,
isotopic spin ground states.

By minimizing E, with respect to an arbitrary func-
tional form f(k), we obtain

J(&) = —[fu(R)F | 07 atia| M) ]
X[ BR)H @AM | @ia*aia| )T, (11)

where A is a constant determined by the normalization
condition on f(k).

In the limit of f— 0 and f— «, Eq. (10) can be
easily solved. As pointed out by Harlow and Jacob-
sohn,® the values of E, in these two limits are identical
with that calculated by the rigorous weak- and strong-
coupling methods using the original Hamiltonian H.
In order to solve Eq. (10) for an intermediate value of
f, it is convenient to introduce the canonically conju-
gate variables x;, and pi., given by

Xia= (aia+ aia*) /\/79

and
Pia= (aia_‘ aia*)/\/?-i. (12)
Equation (10) then becomes
(pi i Homania) |Mo)=e[T,),  (13)

where f=2G/Q and e=2(E/Q)+9. The state vector
|9T,) is seen to be a spinor with 4 components each of
which is a function of nine variables. The problem is
thus reduced to the solution of one involving nine
coupled harmonic oscillators.

Further simplification can be achieved by making
use of the symmetry properties of Eq. (13). In order to
study this question we introduce the following rotation
operators. The components of the orbital angular
momentum of the mesons are given by

Li=%japra—XkaPia; 1, J, k in cyclic order (14)
with the total angular momentum
L’=L2 (15)

8 In Eq. (8) as well as in the following, we shall use the contrac-
tion convention with respect to the indices < and « such that a
sum is required whenever the index 7 or « appears twice.

9 F. Harlow and B. Jacobsohn, Phys. Rev. 93, 333 (1954).
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The components of the isotopic angular momentum of
the mesons are similarly given by

To==%igpiy—%iypis; @, B, in cyclic order (16)
with the total isotopic angular momentum
=T an

The components of the total angular momentum J;
and total isotopic angular momentum I, are then

=L;+10; (18)
and

I,=T 4317,

One may readily verify that J?, J3, I?, I; commute
with the Hamiltonian 3¢. The ground state |91,) corre-
sponds to a state with J=7I=1%. Thus, it is only neces-
sary to consider meson clouds with T and L equal to
zero and one.

Since L and T are themselves each the sum of three
individual angular momentum operators, it is interest-
ing to find that their eigenfunctions are restricted to a
few simple classes of functions. It is useful to define the
quantities sy, 52 and s3 as follows:

S1=%ia¥iay
$2= €ijk€aByXia¥ifXky,

and
(19)

where e, and eqpy are the usual isotropic antisymmetric
tensors of third rank [i.e., e;x=(+1,—1) for an
(even, odd) permutation of the indices, and is zero
otherwise]. It is easy to see that sy, 53, and s3 are three
functionally independent eigenfunctions with L=T=0.
In fact, one can prove that the most general form of
any eigenfunction of L and T with L and T equal to
0 or 1 can be expressed in terms of these quantities s;
and their derivatives. This is stated by the following
theorems (proved in Appendix I).

Theorem 1.—If S(x:,) is an eigenfunction of L and
T with L=T=0, then

S=S(81,82,83). (20)

Theorem I1.—If V;(x:q) (=1,2,3) are eigenfunctions
with L=1, T=0, then

$3=XiaXjpXip%jas

V;=0;

similarly for eigenfunctions with L=0 and T'=1.
Theorem III.—If Vjs(x:o) are eigenfunctions with
L=T=1, then

@1

Vjg(Xia) = Z

=1 \9%;jg

)S (51,52,53), (22)

where the S are three scalar functions.

With the aid of the above theorems, and the require-
ment that the wave function be an eigenfunction of
I=J=%, we may immediately express the physical

FRIEDMAN, LEE,

AND CHRISTIAN

nucleon in terms of the bare nucleon as

3 s
jo)=[ L (2 Jowr ), 29
A=1 0%ia
where |[#,) is the bare nucleon spinor. The S*

(A\=0, 1, 2, 3) are scalar functions. They are deter-
mined by substituting (23) into (10). This yields four
coupled partial differentials equations in three inde-
pendent variables sy, 53, s3. Unfortunately, these equa-
tions still appear to be too complicated for analytic
solution, and even for numerical solution by present
electronic computing machines. Therefore, in the spirit
of a variational calculation, we restrict ourselves to the
subset of functions given by limiting the S* in Eq. (23)
to be functions of the nine-dimensional radial variable
51 only.® With this approximation, the equations that
determine the S* now become four coupled differential
equations in one variable.

For practical purposes, it is convenient to choose a set
of orthogonal angular functions which are linear com-
binations of the ds)/d%:.. They are:

L

Yuxl = ( )
2°4\xt)  r

11X9! as2
ri= () ()G @
2104 |74 0%ia
(13)(9! P11 1 9s3 7 %ia
= () (L) (L 2T 2,
2%4 It 10/ \439x;, 11 7
where
r= (xi,,xi,,)*. (25)

These satisfy the following orthonormal relations on
a unit sphere in the nine-dimensional x;, space:

f VitV gV d*Q=0\100, (26)

where @%Q is the solid angle in this unit sphere. The
state vector now becomes:

[9L)=[Fo (f)+élF Yol n,y.  (27)

The differential equations for the Fj are then ob-
tained by applying the Rayleigh-Ritz variational pro-

1 Tn Appendix I, we introduce the three scalar functions Qs,
Q2, and Q;. If the four partial differential equations referred to
above are written in terms of these variables, then the resulting
system of equations exhibits cubic symmetry in the Qi, Qs, Q3
space. This fact was pointed out by Stuart P. Lloyd in private
communication.

Since s1=Q124Q:2+Q4?, the dependence of S* on s, only essen-
tially assumes that, for this problem, it is a reasonable approxima-
tion to replace cubically symmetric functions by spherically sym-
metric ones. The best form of the latter is determined by a
variational principle.
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cedure to Eq. (10). Thus:

78 dr

r8 )+r2Fo+frF1= ellg
dr

dF1
)+'—F +1’2F1+ff|:Fo—( ) Fg]——eF1

r8dr
dF 2
- — )+-——F2+72F2
r8dr
)
() ()
11 143
1d

dF 3
- —( )+—Fs+r2Fa+fr(——) Fa=eFs, (28)

r8dr

where f and e were introduced in Eq. (13).

These differential equations were then solved nu-
merically by a relaxation method,"! by using the elec-
tronic digital computer at the University of Illinois. In
this method we approximate the continuous values of
r by two hundred discrete lattice points. The problem
was then solved for ten different values of f ranging from
zero to twenty. The r*Fi(r) are plotted in Fig. 1 for
f=3. This value of f will be found to give the best
agreement between the scattering calculation and
experiment.

It is of interest to examine the accuracy of the
approximation introduced by restricting the F) to be
functions of 7 only. In both the limits of very small and
very large values of f, one may solve Eq. (13) exactly.
One then easily verifies that the resulting rigorous
wave function is in fact identical to that of (27), in the
weak-coupling limit. However, in the strong-coupling
limit the approximate form (27) does not go over to
the exact solution. In Table I we have tabulated some
typical matrix elements, calculated by using both the
approximate wave function (27) and the rigorous

TaBLE 1. Some typical matrix elements for various
values of f=2G/Q.»

i ] ) foxnct
F=0 F=3 o solution)
Oyt |7al o) 1 0073  —0014 0
("’p’ | Ta | ”p)
Oy |oiral Ty) 1 0.381 0.323 3
<”p|¢7i‘l'alnp>
Oorlzial ) _yr _g1507  —0147  —j/6

(nprloitaln,)

a Matrix elements in Column 1 are calculated by using the exact weak-
coupling solution. These are identical with that obtained by using the
solution of Eq. (28). Matrix elements in Column 2 and Column 3 are calcu-
lated by using the solution of Eq. (28). Matrix elements in Column 4 are
calculated by using the exact strong-coupling solution.

(11‘3‘S§e G. E. Kimball and G. H. Shortley, Phys. Rev. 45, 815
9
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0200~
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F16. 1. Plot of #F)(r) for f=3. Note that F, and F; are nega-
tive. These functions are so normalized that

%‘ fo Fr3dr=0.6718.

strong-coupling solutions. One sees that in the strong-
coupling limit the agreement is fairly good.

IV. SCATTERING STATE

In order to describe the scattering of a meson by a
physical nucleon, we shall make use of a variational

principle for the calculation of phase shifts. This pro-

cedure has been discussed by Lee and Christian,* in
connection with the charged scalar theory. In a similar
manner, we assume that the trial function for the scat-
tering state of total angular momentum J and total
isotopic spin 7 is

Vrr= Z XIJ(k)Cw’(I J)Gta*(k)lN‘,)

ki, p

+2 Drs?|N,), (29)

)

where |N,) is the state vector of a physical nucleon in
the spin, isotopic spin state p (p=1, ---4). Cin?(I,J)
are the appropriate numerical factors for constructing
a state of total angular momentum J and total isotopic
angular momentum J from a nucleon in the state p and
a meson in the state 4, . The C;.?(I,J) may be directly
obtained from the Clebsch-Gordan coefficients.!?

The scattering wave function of the = meson is
described by the function xrs(k) which together with
the constants Dry* are determined by the variational
procedure,

(¥ 1s| H—Ey—wo| ¥r15)=0, (30)

13 Ci? and D;o” are functions of I, and J, also. However x7s
is not.
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where E, is the self-energy of the physical nucleon and
wo 1s the total energy of the incident meson.

On taking the variation (30) with respect to Dy,
one obtains

Diyp=— & (No|xs(0)Ca? (IN)aia*®)| N ),

ki, a,p’

(31)

which of course is the same as the requirement that the
ground states be orthogonal to the scattering states.

The variation with respect to an arbitrary functional
form of X;;(k) is performed in a manner identical to
that in the charged scalar case.! We then obtain the
following integral equations:

(wr—wo)Xzs (R)=2_wKrs(k,E)Xrs(K), (32)
where
K1y (kE)=3A1, f(R) f(B)+ f(R)wf (%) ]
+Brf(R)f(K), (33)

and Ars and Brs are constants which depend only on
the structure of the physical nucleon. They are most
conveniently given in terms of the matrix elements
K,L,M,0,P,Q,R which in turn are defined as
follows:

(9, ! aia*a;‘ﬁl Mp)=Kdii0adpp'
L[ Bij€apy(Mpr | To | 7o) B agesin{tp | o | 75) ]
+ M eijpeapr(ny |orry|n,)],
(N | oiTatip| Tp) =081 apd,p
i P[Bisjeapy (| Ty | 1) FBapesin(ny | ox]1,)]
+QLeijneapy ([ a174[1,)],

wOfZ(kO)[

FRIEDMAN, LEE,

ArswotBrr+ (A1 /4) [wd*(f2 (k) )+ (w2 (k) )— 2wolwf?(k)) ]

AND CHRISTIAN

and

(M| aia™| No)=R{n,|cira|n,), (34)

where |n,) is the bare-nucleon spinor and |9t,) is the
corresponding physical-nucleon wave function in the
reduced space.

The constants A7y and Brs can then be expressed
for various I7=1,3 states as

K
Ay g=— (K+2L—M)+6(O+2P— 0,
K
Buy=) (0-+2P—Q)Fwo(K-+2L~ ),
K
Ay y=Ayy=— (K—L+2M)+5(0—P+ZQ),
K
By1=Byy=N (0= P+20)-Hn(K— L+2M1),
K
Apy== (K—4L—4M)+(0—4P—40),

K
B%,%=)\6—(O—4P-—4Q)+wo(K-—4L—4M)—9R2wo, (35)

where A is defined in (11).

We note that the kernel (33) is separable and hence
Eq. (32) can be solved by elementary means. The re-
sulting phase shifts 877 for various 1.7 are given by

tandrs=

where

1
(g(k))=-¢

for any function g(k) and @ signifies that the principal
value of the integral is to be taken.

In the weak-coupling limit these phase shifts are
exactly correct as is expected. It should be note that in
using a trial function of the form (29) we have implicitly
assumed that no stable isobar exists. This of course
does correspond to what one actually finds in nature.
Unfortunately, it makes direct comparison with the
exact strong coupling limit impossible.

In order to compare the phase shifts (36) with recent
experimental results,! it is necessary to choose a form
for the source function % (k). Following Chew, we take
u(k) to be a step function:

u (k) =1 fOr k < kma.x
=0 for k> Ekuax.

This form of #(k) enables us to analytically perform
all the integrations that appear in (36). The phase

ko L= Ars{wf(8)— Bro( 2+ (Arst/ D[l (0) P — (LR (8))]

fw
0 W—wo

| (36)

k
g()dk

@7

shifts then depend on only two parameters, the cutoff
kmax and the coupling constant f. These were deter-
mined by requiring that &, 3 passes through the experi-
mentally deduced values for incident kinetic energies
of 65 Mev and 189 Mev (in the laboratory system).
They are

Winax = (kmaxz'*_.uz)*: 6-21“)

12=0.712,

where p is the meson mass. Using these values, all four
phase shifts were then computed over the energy range
0 to 217 Mev. They are plotted in Fig. 2. One sees that
only 83 3 is appreciable throughout most of the energy
range. It is of some interest to notice that, although it is
very small, 83 3 is positive, while it would be negative
if the coupling constant were much smaller.

One may now ask if in using the parameters of Eq.
(38) we are near either the weak- or strong-coupling
limit. As far as the distribution of the number of mesons

(38)
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in the Fock space is concerned, the relevant quantity is
J, which in this case is
f=3. (39)

Referring to Table I, one sees that the various matrix
elements in the reduced space are very close to the
strong-coupling limit values.®® On the other hand, for
this case the A that appears in Eq. (11) has the value

A=3.39. (40)

However, in the strong- and weak-coupling limits A is
identically zero. Thus we see that while the distribution
of the various numbers of mesons resembles that of the
strong-coupling limit, the meson orbital momentum
distribution is quite different from either the strong- or
weak-coupling limits.

In order to compare with other methods of calcula-
tion for the same problem, it is convenient to compute
the mesonic charge renormalization Z;/Z;. This can be
done by utilizing the identity™

fr/fZZ‘Z/Zl:(mp’lo'iTalmﬂV(”p’ ]‘”Talnp>’ (41)

where f, is the renormalized coupling constant. Using
the value of this matrix element given in Table I, we
find that ‘

£2=0.105 (42)

in the present case.

It is of interest to notice that the same f,> may be
obtained in a semiempirical way. By using a general
result obtained by Chew and Low,' it is possible to
show!® that the rigorous scattering solution of the
original Hamiltonian H, Eq. (1), has the following

100°)

80°)

PHASE SHIFT

85 8

-20° ! 1 1
o 50 100 150
T ss (Mev)

!
200 250

F1c. 2. Plot of phase shifts vs Tia,. The open circles are the
values given by de Hoffmann ef al., while the solid dots are those
given by Glicksman and by Bodansky ef al. (see reference 1).

13 See Appendix IT for numerical values of other matrix elements.

4T, D. Lee, Phys. Rev. 95, 1329 (1954); G. F. Chew, refer-
ence 2.

15 F. E. Low, Phys. Rev. 97, 1392 (1955); G. F. Chew and
F. E. Low (to be published).

16 R, Serber (private communication)..
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property. If the function Fr;(w) is defined as

k® i\ 1
Fry (w) =y (k) ("‘ COt&IJ—‘_‘)_‘, (4‘3)
w w/ u?
then at w=0
Fry(0)=Nrs/* (44)
exactly, where
M 3=(4/3)f 7,
M=M= —3f7 (45)

and
A y=—(8/3)fA

By using the experimentally deduced values of the §33
phase shift up to about 175-Mev incident meson energy,
the function Fj ;(w), plotted against v, is found to be a
remarkably straight line. One may graphically extrapo-
late the function Fj, 3(w) back to the point w=0. The
renormalized coupling constant f,* can then be deter-
mined by using Eq. (44). Thus one obtains

£2=0.10,

which agrees with Eq. (42). Inclusion of phase shift
data beyond 175 Mev would add a curvature to F, 3(w)
in a direction as to make f,? slightly larger.

The authors wish to thank Professor R. Serber for
stimulating discussions. We would also like to acknowl-
edge the hospitality of the Institute for Advanced Study
and the University of Illinois where part of the work was
carried out.

APPENDIX I

In this Appendix we wish to study the general func-
tional form of the variables %, which are simultaneous
eigenfunctions of the operators Ls, L?, T, and T2 with
eigenvalues L=0,1 and T=0,1. These operators are
given in Egs. (14) through (17). Since the polynomials
Xiay Xiakig, *++, form a complete set of functions
(Weierstrass’ theorem) and since the operators L;, Ta
commute with the operator x;,0/dx:, (thereby preserv-
ing the degree of any homogeneous polynomial), it is
only necessary to consider homogeneous polynomials.

It is convenient to define the following tensors (all
repeated indices to be summed) :

Cap=%ialis, (1A)
Tapy= €ijibiakiptuy (24)
=Teapy, (34)
where T is evidently a scalar quantity given by,
T'= %e€ijueaprXiakipiy- (44)

Since Cqp is a real, symmetric matrix it may be
diagonalized by an orthogonal transformation. Let us
denote its eigenvalues by Q:2, Qs Qs% Then, since T is
the determinant of the matrix (x:.), one can write

T=010:0s. (SA)
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The three scalar quantities sy, §3, s3 introduced in
Eq. (19) are then related to the Q; by
1= Caa= Q12+Q22+Q32)
32=6Q1Q2Q3,
33=Q14+Q24+Q34-
We now wish to prove the following theorems.
Theorem L: If S(x:a) is an eigenfunction of L and T

with L=T=0, then
S=.5(51,52,53)- (7A)

Proof: Let us consider a homogeneous polynomial of
nth degree,

(6A)

(84)

We thus wish to contract a tensor of #th rank (in both
the 7 and « indices) into a tensor of rank zero. Thus the
coefficients A1 +in,a1- - -an must be made from products
of the isotopic tensors §;; and e (similarly for the o
indices). Furthermore, we note the identity:

€iik€imn="0:10;mOkn+0imdindr1t0:nd;10km
— 0831020 km— 0:inBimOk1— 0m0;10kn-

Sp=Ai1- - ip,e1+ - an¥ite1* * * Xinan.

(9A)

Thus we will never have to use more than one e
and e, in contracting the indices.

(a) We first consider homogeneous polynomials of
even degree. Using the above statement we take
Ay -ina1--an to be a product of &;; and dap only. After
contracting on the ¢ indices, we find that the poly-
nomial consists of sums of terms, each of the form

Ca1a2Ca3a4' M Can,_la,,,.

Contracting with respect to the o indices, we find this
polynomial can be written as (or sums of)

So=]] Trace(Ceag)™= I)‘I(lem"‘}‘Qz?m)“i‘Qszm)‘) (10A)
x

(or sums of such terms), where

Z)\M)‘= n/ 2
Thus (7A) is true.
(b) We now consider polynomials of odd degree.
After contracting on the ¢ indices, we find the poly-
nomial to be a sum of terms of the type

Teata2a3Casos* * - Can—tan.
Upon contracting with respect to the a indices, these
terms become
Teara203Ca181*Caspo’Casps™ep18283S nr,
where S, is an even polynomial of the form (10A) and
2(k+14+m)+n'=n—3.

Thus, upon using (5A), (6A), and (9A), we complete
the proof.

Theorem I1: If Vg(x:ia) (B=1, 2, 3) are eigenfunctions
of L=0, T=1, then Vp=0. Similarly, if V;(%:a)
(5=1, 2, 3) are eigenfunctions of L=1, T=0, then V;=0.

FRIEDMAN, LEE,

AND CHRISTIAN

It is evident that we need explicitly consider the
L=0, T=1 case only.

Proof: (a) Consider a polynomial of even degree. We
must then simultaneously contract an #th-rank tensor
in the 7 indices to a zero-rank tensor and an nth rank
tensor in the « indices to a first-rank tensor.

After contracting with respect to the ¢ indices, the
polynomials consist of sum of terms of the type

Ca1a2Ca3a4‘ . 'Ca,,,.._lan.

After contracting with respect to the  indices we find,
Vg can be written as (or sums of)

Vﬂ = €a1a2a3CalﬁkCa2a3lSm,
with
240 +m=n, (11A)

where, if % is zero, then Caip?=0a18. Since C,s is a
symmetric matrix, we have Vg=0.

(b) Let Vg be a polynomial of odd degree. After
contracting with respect to the ¢ indices, Vg consists of
sums of terms of the type

TGalazasCa4a5' b Can_mn,

which, as in the above case, becomes zero after con-
tracting with respect to the « indices.

Theorem IIL: If Via(xjg) are eigenfunctions of
L=T=1, then V;. can be written as

3 35)\
Via= Z( )SX(SI,S%Ss),
A=l axia

where the S* are three scalar functions.

Proof: (a) Let Vi be a polynomial of odd degree.
Then we need only use 8;; and 8.s in order to contract
the indices. After contracting with respect to the ¢
indices, Vs, consists of sums of terms of the type

(12A)

xia1Cuza3Ca4a5 e Can._m”,

which, after contracting with respect to the « indices,
becomes
Fia1Ca1a™S n_gm—1.

Using the identity,

i}
( )Cﬂﬂl = 2lxiulca1al—l, (13A)
axia

one completes the proof for this case.

(b) Let Vsa be a polynomial of even degree. We must
use one €;x; and one egys. By writing the polynomial ex-
plicitly in terms of the isotopic tensors, it is clear that
the index ¢ will be carried by either x5 or €;x. Similarly
for . Thus we only need to consider the following
three cases:

1) ViaW=2:Cpa'Sm
(2) Via®=xneapyCri'Cp"Crru™€uresS py

(3) Via @)= fijkeaﬂ'yxj)\C)\BmxkuC ,.1”5 g (14A)
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Using (13A) immediately completes the proof for
Via®.

Using (9A), we notice that V;'® can be written as a
linear combination of the type Vi.®.

For the third case, we introduce the scalar function

(154)

Without loss of generality, we need only, in the defini-
tion of V:a®, to consider the case S =1.
Differentiating (15A), we obtain

S=2x50;5®.

Via® = (BS/axia) — x,-gemep.,;ca.,"‘xl,,c,,s"
— %8k i€87sXiACAy " Cas™

— XX AT14€i%1€875 (0/0%ia) (Cry™Cus™).  (16A)

We notice that the second and third terms on the
right-hand side of (16A) can be reduced to a linear
combination of Vi.®. By using Eq. (3A), the last

1501

term can be explicitly written as
— Tepruepys (0/0%:a) (Cry™Cus™),

which, on using (9A), can be written as the product of
scalar functions by the derivatives of scalar functions.
Thus we complete the proof.

APPENDIX II

In this section, we list the numerical values of matrix
elements and other quantities used in the scattering
calculations for f2=0.712 and wmax=06.214.

£2=0.1048, K=0.19906, L=0.07704, M=—0.05538,
0=—0.32145, P=—0.08626, 0=0.17631,
=—0.32145, f=3.0, A=3.39, Q=4.7557,

where K, L, M, ---, R are defined in Eq. (34) and
7, A, @ are defined in Eqgs. (9), (11), and (13).
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Anomalous Magnetic Moment of the Nucleon
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The ground-state solution of the physical nucleon problem in the Tomonaga approximation is used to
compute the anomalous magnetic moment of nucleons. When computed on the basis of parameters that
make the phase shift calculations in the Tomonaga approximation consistent with meson-nucleon scattering
data, the values obtained are -}+1.48 for the proton and —1.48 for the neutron.

- I. INTRODUCTION

HE meson-nucleon scattering ,calculation in the
Tomonaga approximation' seems to give a correct
description of the experimentally observed data in the
low-energy range. Furthermore, a weak-coupling treat-
ment of the same Hamiltonian? (with a gauge-invariant
electromagnetic interaction added) yields -+1.44 nu-
cleon magnetons for the anomalous magnetic moment of
the nucleon (plus for the proton and minus for the
neutron). This result is also fairly close to the experi-
mental one, and hence it becomes of interest to do this
last calculation again, but now using the Tomonaga
approximation. '

II. METHOD OF CALCULATION

The Hamiltonian used will be the same as that of
reference 2. As was done there, we will not include the
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degree of Doctor of Philosophy, in the Faculty of Pure Science,
Columbia University.

t Present address: Physics Department, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts.

1 Friedman, Lee, and Christian, Phys. Rev. 100, 1494 (1955).
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effect of the nucleon current or the Dirac moment in
intermediate states. We will proceed by evaluating the
matrix element

(Hem)=(¥o|j-A|¥o), 1)

where ¥, is the state vector representing the physical
nucleon. (Natural units to be used throughout.) We

write
. 02 Oy
]'A=6fAz(¢>1_'—¢2—— dX, (2)

ax; 6901

where ¢1, ¢ are the first two components of the meson
field and are real. (Repeated indices are to be'summed
over all values from one to three, throughout.) A is the
electromagnetic vector potential and is chosen to be
transverse for the purposes of this problem. For

A=V"2, A(q) exp[ —ig-x], ©)

and
$e=V"1 2 [ 20(|k[) T H{au(k) exp[ik-x]
+a.*(k) exp[—1k-x]} (4)



