
PH VSI GAL RE VI EW VOLUM E 100, NUM 8 ER 5 DECEMBER 1, 1955

Scattering of Pions by Nucleons in Interirsediate Coupling*

M. H. FRIEDMAN AND T. D. LEE Colwnbia University, Ãenr York, 5'em York

R. CHRISTIAN Los A/amos Sceent@c Laborafory, Los A/amos, llew 3fexsco

(Received July 14, 1955)

An intermediate-coupling method of calculation is applied to the meson-nucleon scattering problem for
the case of symmetric pseudoscalar mesons, coupled to a Axed extended source through derivative coupling.
It is found that the experimentally observed I'-wave phase shifts can be explained by taking the coupling
constant f'=0.712 and the cutoff co~ =6.21 meson masses. (This corresponds to a renormalized coupling
constant f,'= 0.105.)

I. INTRODUCTION

ECENT experimental evidence' on the scattering
of mesons from nucleons indicates that in the

energy range 50—200 Mev, the cross section can be
completely accounted for by considering the P-wave
state of isotopic spin —,'and angular momentum —,', plus
small contributions from S-wave phase shifts. In order
to understand this simple behavior, Chew has investi-
gated the consequences of a symmetrical pseudoscalar
meson theory. In this model the meson field interacts
with a fixed extended nucleon through pseudovector
coupling. In the weak-coupling limit, the predictions of
this model are in complete contradiction with experi-
ment. However, using a method of approximation
similar to that of Tamm and Banco', Chew was able
to show that for stronger couplings, the experimental
P-wave phase shifts are explainable. One may under-
stand this by recalling, that in the strong-coupling
calculations of Pauli and DancoP the first isobar state
is the J=I=-', state. Chew's results indicate that while

the coupling is not strong enough for the existence of a
stable isobar, it is sufhcient to give a resonance at
approximately 190 Mev. In view of this it seems desir-
able to investigate the above model by using a method
that, unlike the Tamm-DancoG treatment, does not
limit the number of mesons in the field. With this in

mind, we have applied a previously described inter-
mediate-coupling method to the meson-nucleon scatter-
ing problem.

The problem divides into two parts. The first is the
solution for the ground state (i.e., physical nucleon)
using the Tomonaga variational method. ~ The details
of this procedure are discussed in Sec. III. The scatter-
ing state is then obtained by again using a variational
technique. Here, we construct a trial function by multi-

plying the ground-state wave function by a scattering
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Commission.
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function for the meson. The determination of this
scattering function and its consequences are discussed
in Sec. !V.

Our results seem to substantiate the principal findings
of Chew. The b33 phase shift agrees with experiment, if
the coupling constant f'=0 712 an.d the cutoff ~,„
=6.21@, where p is the meson mass. (This corresponds
to a renormalized constant f,'=0.105.) The hst and bit
phase shifts are small, being, e.g., —1.60' and 5.99'
respectively at 200 Mev.

II. THE HAMILTONIAN

We describe the interaction of pions and nucleons

by using the following Hamiltonian:

1 f
(Vd .)'+p'y '7d'r

2J .
+(4sr)&(f/Is) U(r)r (a V'y )dsr, (1)

where the p and sr, are the three Hermitean field vari-
ables and conjugate momenta describing the mesons.
U(r) is a spherically symmetric, normalized source
function. Since only P-wave mesons will interact with
the nucleon in this model, it is convenient to expand
sr and @ in spherical waves. Thus:

4 -(r) =Z (2~.) O', .La'-(k)+a'-*(k) 7

+S waves+ D waves-+-

~-(r) = —Z(s~s)'O', :La'-(k) —&'-*(k)7

+S waves+ D wave-s+, (-2)
where

P, ~
——(3/2srR) s(y,/kr') (sinkr —kr coskr), i =1,2,3 (3)

corresponding to the three P-wave functions normalized
in a sphere of radius E, with k as the magnitude of the
meson momentum and co&= (k'+is')& the meson energy.
a;„(k) and a; *(k) represent the annihilation and crea-
tion operators respectively.

Substituting Eq. (2) into Eq. (1), we obtain for the
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P-wave part of the Hamiltonian:

H= Q (usa; *(k)a; (k)+(f/p)(3(asR) &

k, i, a

XI(k)k'o, r.[a; (k)+a,.*(k))),
where

where the a; and a; * are independent of k and obey
the usual commutation relations for annihilation and
creation operators. We thus obtain for the reduced
Hamiltonian':

H +X—=Qa, *a, +(G/42)o;r (a; +a; *), (9)

e(k) = U(r) exp(ik r)d'r.
where

and
Q=ggosI f(k) I',

The four ground states of this Hamiltonian correspond
to the physical nucleon with its four possible values of
spin and isotopic spin. The scattering of a meson by a
nucleon will be described by the 6rst excited states. '

with Eo as the self-energy of the nucleon. To carry out
this variation we shall take advantage of the special
functional form assumed in Eq. (6). It can be shown"
that it is convenient to use a reduced Hamiltonian K
instead of the original H in the variation. This reduced
Hamiltonian is obtained by replacing a; (k) and a; (k)
in the Hamiltonian H, Eq. (4), by

and
a;.(k) ~f(k)a;,

a'-*(k) ~ f*(k)a'-*
~For the scattering problem we restrict ourselves to those

values of f for which there are no stable isobar states.' fee T. D. Lee and D. Pines, Phys. Rev. 92, 883 (1953).

III. PHYSICAL NUCLEON

The ground-state wave function will be obtained by
using a variational method, similar to one introduced
by Tomonaga' for the charged scalar 6eld. In this
Tomonaga method, one takes advantage of the Bose-
Einstein statistics obeyed by mesons, by assuming a
trial function in which there is no limitation on the
total number of mesons, but in which all mesons are
required to have the same radial distribution.

Let
I 1V,) be the state vector of a physical nucleon in

a spin, isotopic spin state p (p=1, , 4). In the Pock
representation of such a state the probability amplitude
for 6nding a bare nucleon in a spin, isotopic spin state
p' and m; mesons of the i, o. type with a radial mo-
mentum distribution k~' ~ kn; ' is assumed to be

(kt', . k,.'; p'IE, )=C,(p', ts,.) g f(k '"), (6)
s, CL, SL

where i and n run from 1 to 3 signifying the possible
angular momentum and isotopic angular momentum
states of the mesons. Invariance under rotations in the
ordinary space and isotopic spin space requires that the
radial distribution f(k ' ) be the same for all i and n
The function f(k) is chosen to be normalized to unity.

2 If(&)l'=1

where the sum extends over the magnitude of k only.
The functional form f(k) and the constants C, (p', ts; )

will now be determined by the variational method:

G= f(2/3R) l Ps[f(k)N(k) k'/((us) &pj.
The best values of the constants C, (p', ts; ) of Kq. (6)
are then directly given by the ground state

I K,) of the
reduced Hamiltonian R. Furthermore, the value of the
self-energy Eo is precisely the corresponding eigenvalue,
given by

xIx,)=EpIK,), (10)

where p=1, , 4 representing four degenerate spin,
isotopic spin ground states.

By minimizing Eo with respect to an arbitrary func-
tional form f(k), we obtain

f()=—[f () '& .I '- '-I
X [jg(3R~)'*(a)+X)(Xn I a' *a'

I &~) '~ (11)
where ) is a constant determined by the normalization
condition on f(k).

In the limit of f +0 and f~—~, Eq. (10) can be
easily solved. As pointed out by Harlow and Jacob-
sohn, ' the values of Eo in these two limits are identical
with that calculated by the rigorous weak- and strong-
coupling methods using the original Hamiltonian II.
In order to solve Eq. (10) for an intermediate value of
f, it is convenient to introduce the canonically conju-
gate variables x,, and p;, given by

x;.= (a;.+a;.*)/v2,
and

p; =(a; —a; *)/v2i. (12)

Equation (10) then becomes

(p '+x' '+fo & x' ) I &.)= e
I
&.)~

where f=2G/0 and e=2(Ep/0)+9. The state vector
I
3I,,) is seen to be a spinor with 4 components each of

which is a function of nine variables. The problem is
thus reduced to the solution of one involving nine
coupled harmonic oscillators.

Further simplification can be achieved by making
use of the symmetry properties of Eq. (13). In order to
study this question we introduce the following rotation
operators. The components of the orbital angular
momentum of the mesons are given by

L;=x; P&
—x& P;; i, J, k in cyclic order (14)

with the total angular momentum

L2 L.2
s In Eq. (8) as well as in the following, we shall nse the contrac-

tion convention with respect to the indices i and e such that a
sum is required whenever the index i or a appears twice.' F. Harlow and B. Jacobsohn, Phys. Rev. 93, 333 (1954).
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T2=T 2 (17)

The components of the total angular momentum J;
and total isotopic angular momentum I are then

~'1 L4+ 2 o%

and
&~= &u+~ra

One may readily verify that J', J3, I2, I3 commute
with the Hamiltonian K. The ground state

i X,) corre-
sponds to a state with J=I= ~~. Thus, it is only neces-
sary to consider meson clouds with T and L equal to
zero and one.

Since L and T are themselves each the sum of three
individual angular momentum operators, it is interest-
ing to 6nd that their eigenfunctions are restricted to a
few simple classes of functions. It is useful to define the
quantities s&, s2 and sa as follows:

~1=&ie&ia)

Sp —6sj $~&pySs+Sj pXQy~

The components of the isotopic angular momentum of
the mesons are similarly given by

Ta=xjpPgy xgyP 'p
~ Q P& 7 in cyclic order (16)

with the total isotopic angular momentum

nucleon in terms of the bare nucleon as

ix,)= S'+PS"/ ia~r ie, ),
(Bx,.)

where
i n,) is the bare nucleon spinor. The S"

(X=O, 1, 2, 3) are scalar functions. They are deter-
mined by substituting (23) into (10). This yields four
coupled partial diGerentials equations in three inde-
pendent variables s&, s&, s3. Unfortunately, these equa-
tions still appear to be too complicated for analytic
solution, and even for numerical solution by present
electronic computing machines. Therefore, in the spirit
of a variational calculation, we restrict ourselves to the
subset of functions given by limiting the S~ in Eq. (23)
to be functions of the nine-dimensional radial variable
s& only. "With this approximation, the equations that
determine the S" now become four coupled diGerential
equations in one variable.

For practical purposes, it is convenient to choose a set
of orthogonal angular functions which are linear com-
binations of the Bsz/Bx; . They are:

9t ) kx,.

(2'4!n.4) r

and
$3—Ss~Sjpg jpSj~) (19)

11X9'l ~ (1l f'Bs2 )
(2"4!s'j (6) (Bx; ) (24)

where e;j& and e p, are the usual isotropic antisymmetric
tensors of third rank Li.e., e;;q=(+1, —1) for an
(even, odd) permutation of the indices, and is zero
otherwise]. It is easy to see that s&, s2, and s& are three
functionally independent eigenfunctions with L= T=0.
In fact, one can prove that the most general form of
any eigenfunction of L and T with L and T equal to
0 or 1 can be expressed in terms of these quantities s;
and their derivatives. This is stated by the following
theorems (proved in Appendix I).

Theorem I.—If S(x; ) is an eigenfunction of L and
T with L=T=O, then

(13X9!y& p11y ( 1 Bs, 7 x; )
E2'4!7r ) F10) (4r'Bx; 11 r J

where
r= (x;.x;,)&. (25)

t V, "Y,p"'O'Q=Bgg8, ,5 p, (26)

These satisfy the following orthonormal relations on
a unit sphere in the nine-dimensional x; space:

S=S(sy)s2)Sg). (20) where d 0 is the solid angle in this unit sphere. The
state vector now becomes:

Theorem II.—If V;(x; ) (j=1,2,3) are eigenfunctions
with L=1, T=0, then 3

(27)
(21)V =0'

similarly for eigenfunctions with L=O and T=1. The differential equations for the p), are then ob-
Theorem III.—If 'U;p(x;~) are eigenfunctions with tained by applying the Rayleigh-Ritz variational pro-

L= T= 1, then

(Bsx )
*U,p(x,.) =P i iS'(sg, s„s3),

I (Bx~p)
(22)

where the S" are three scalar functions.
With the aid of the above theorems, and the require-

ment that the wave function be an eigenfunction of
I=J=~, we may immediately express the physical

"In Appendix I, we introduce the three scalar functions Q1,
Q2, and Q3. If the four partial differential equations referred to
above are written in terms of these variables, then the resulting
system of equations exhibits cubic symmetry in the Q1, Q&, Q3
space. This fact was pointed out by Stuart P. Lloyd in private
communication.

Since s1=Qp+Q22+Q32, the dependence of S" on s1 only essen-
tially assumes that, for this problem, it is a reasonable approxima-
tion to replace cubically symmetric functions by spherically sym-
metric ones. The best form of the latter is determined by a
variational principle.
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cedure to Eq. (10)'

r 0
t ~I+esp +fez=cps„sd„( dr )

1 d ( sl+ p+rsps
dP, 18

„sdr 4 dr )

I
p, =cps

50) i
+p —

I

—
I p~+

I/143)&11)

g)f1 d ) dPLI g
+ sp~)„Ps—

I

—
I Ps ='"'I+-p~ " ',sdr E dr ) r'

O.I50

O.IOO—

( dps) 30
+f I I

ps cps, —(zgI+—+""'„sd„("dr)
0.050

. 13.wheref and e were in
then solved nu-

introduced in Eq.
These deere ia q

thod" by using the elecerically by a relaxat
~

ty of Qlinois. Inuter at the niversio c d'gita
a roximate t e con i

Th oblr by two hundred discrete lattice poin
r ten different va ues o1 off ranging fromwas then solved for

1 tted in Fig. 1 forhe r'Pq(r) are p o
f will be ounf= . T ue 0 f

agreemen t between the scattering ca
experiment.

examine the accuracy of theIt is of interest to
troduced by restricting
. In both the imi s o1 't f ll dfunctions of r only. n
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verifies that the resulting rigorous

1 th t of (27), i thwave function is

ate form 27 does not go over
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dh
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approxima ete wave function (2 an
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&e;Ir, lap&

&K~ Io&r lx~)
&Npl~;r. imp&

&K~. lx; [Kp)
&ap. [~;~ [ep)

0.073 —0.014

0.381 0.323

—0.152' —0.14/

f~ ao

(exact
solution)

culated by using the exact weak-
that obtained by using t ese are identical with t a

elements in Column 2
1 d by using the solution of Eq.
calculated by usi g

Rev. 45, 815G. H. Shortley, Phys. Rev."See G. E. Kimball and
(1934).
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where Eo is the self-energy of the physical nucleon and
coo is the total energy of the incident meson.

On taking the variation (30) with respect to Dzrp,
one obtains

Drrp= — p 9 plxzr(k)C, p'(I J)a,a*'(k) I&p'& (31)
k, i,a, p'

which of course is the same as the requirement that the
ground states be orthogonal to the scattering states.

The variation with respect to an arbitrary functional
form of Xzr(k) is performed in a manner identical to
that in the charged scalar case.4 %e then obtain the
following integral equations:

(zoo—ohio)Xzr (k) =Qo Kzr (k,k') Xzr (k'), (32)
where

Krr(k, k') =-',ArrCf(k)~'f(k')+f(k')~f(k))
+Bzrf(k) f(k'), (33)

and A~g and B~g are constants which depend only on
the structure of the physical nucleon. They are most
conveniently given in terms of the matrix elements
K, I, M, 0, P, Q, R which in turn are defined as
follows:

(&; I
zz'-*zz,v I

&p& =K~*p&-p&p"

+~LL~'po--&u" I r. I up&+~-po'p. &u; I
~.

l up&j
+MCoija. ap, &pip~

I
o'or,

I Np& j,
&Kp Io;r a,,pIK, &=08@b p8pp

ya P;; .„&u, I, IN, &+a.p;;,&u, .I,lu, &q

+QCo*z"-pv&N;
I
~.r, I pip& j,

and

(Kp Ia; IKp&=R(e, Io;r Imp), (34)

where lap& is the bare-nucleon spinor and IKp& is the
corresponding physical-nucleon wave function in the
reduced space.

The constants Ayg and B~g can then be expressed
for various IJ=—'„~ states as

E
A;, —;

= —(K+2L M) + —(0+2P—Q), —
0

E
B;,)=X—(0+2P—Q)+~o(K+2L —M),0

E
A;, ;=A;, ;=—(K L+2M—)+ (0 P—+2Q—),

E
B),;=B;,;=X (0 P+—2Q)+—ohio(K L+2M),—

E
A;, ;=—(K—4L—4M) +—(0—4P—4Q),

0
E

B;,;=&—(0—4P—4Q)+ooo(K —4L—4M) —9R'ohio (35)

where X is defined in (11).
We note that the kernel (33) is separable and hence

Eq. (32) can be solved by elementary means. The re-
sulting phase shifts br' for various IJ are given by

where

ooo f '(ko)
tan8gg=--

1 y" g(k)
(g(k))=—-(P dk

Arroyo+ Bzr+ (Arr'/4) C~o'&f'(k) &+&oPfo (k) )—2ooo&oof'(k) ))
ko .1—Azr(ufo(k)& —Bzr&f (k)&+(Azr/4)C&Mfo(k)& —(~of (k)&&fo(k)&]

(36}

u(k) =1 for k(k
=0 for k)k, . (37)

This form of u(k) enables us to analytically perform
all the integrations that appear in (36). The phase

for any function g(k) and (P signifies that the principal
value of the integral is to be taken.

In the weak-coupling limit these phase shifts are
exactly correct as is expected. It should be note that in
using a trial function of the form (29) we have implicitly
assumed that no stable isobar exists. This of course
does correspond to what one actually hnds in nature.
Unfortunately, it makes direct comparison with the
exact strong coupling limit impossible.

In order to compare the phase shifts (36) with recent

experimental results, ' it is necessary to choose a form

for the source function u(k). Following Chew, we take

u(k) to be a step function:

shifts then depend on only two parameters, the cutoG
k,„and the coupling constant f. These were deter-
mined by requiring that 8&, ~ passes through the experi-
mentally deduced values for incident kinetic energies
of 65 Mev and 189 Mev (in the laboratory system).
They are

oo . =(k .'+p')&=6. 21@,

f'= 0.712,
(38)

where p, is the meson mass. Using these values, all four
phase shifts were then computed over the energy range
0 to 247 Mev. They are plotted in Fig. 2. One sees that
only 8;, ~ is appreciable throughout most of the energy
range. It is of some interest to notice that, although it is
very small, B~ y is positive, while it would be negative
if the coupling constant were much smaller.

One may now ask. if in using the parameters of Kq.
(38) we are near either the weak- or strong-coupling
1imit. As far as the distribution of the number of mesons
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()'s' y') 1
Frz((u) =u'(k)1 —cot5rg—

1
—,

Eo) to)pReferring to Table I, one sees that the various matrix
elements in the reduced space are very close to the
strong-coupling limit values. "On the other hand, for
this case the )i that appears in Eq. (11)has the value

FrJ(0) 4J
exactly, where

in the Pock space is concerned, the relevant quantity is property. If the function Fzz(to) is defined as
f, which in this case is

(43)

(44)

) =3.39. (40) 4, *,
= (4/3)f s,

However, in the strong- and weak-coupling limits X is
identically zero. Thus we see that while the distribution
of the various numbers of mesons resembles that of the
strong-coupling limit, the meson orbital momentum
distribution is quite diferent from either the strong- or
weak-coupling limits.

In order to compare with other methods of calcula-
tion for the same problem, it is convenient to compute
the mesonic charge renormalization Zs/Zt. This can be
done by utilizing the identity"

where f„ is the renormalized coupling constant. Using
the value of this matrix element given in Table I, we
find that

f,'=0.105 (42)

100'

80'

60'
I-
U

r. 40'
CO

ILI
(0
T
CL

-20
0 50 100 150

(Mev)

I

200 250

FIG. 2. Plot of phase shifts vs T&,b. The open circles are the
values given by de Hof'fmann et c/. , while the solid dots are those
given by Glicksman and by Bodansky et al. (see reference 1).

'3 See Appendix II for numerical values of other matrix elements."T.D. Lee, Phys. Rev. 95, 1329 (1954); G. F. Chew, refer-
ence 2.

rs F. E. Low, Phys. Rev. 97, 1392 (1955); G. F. Chew and
F. E. Low (to be published).

~6 R. Serber {private communication). ,

in the present case.
It is of interest to notice that the same f„' may be

obtained in a semiempirical way. By using a general
result obtained by Chew and Low," it is possible to
show" that the rigorous scattering solution of the
original Hamiltonian H, Eq. (1), has the following

and
)ti, :=—(g/3)f'.

(43)

APPENDIX I

In this Appendix we wish to study the general func-
tional form of the variables x;, which are simultaneous
eigenfunctions of the operators L3, L') T3) and T' with
eigenvalues L=0,1 and T=0,1. These operators are
given in Eqs. (14) through (17). Since the polynomials
x;, x; xjp, , form a complete set of functions
(Weierstrass' theorem) and since the operators L;, T
commute with the operator x;.8/Bx; (thereby preserv-
ing the degree of any homogeneous polynomial), it is
only necessary to consider homogeneous polynomials.

It is convenient to define the following tensors (all
repeated indices to be summed):

Cap —XjaXjp)

Tapy &sj kX&aXj pXIry

= ~&apy)

where T is evidently a scalar quantity given by,
v 1—6 Ejjlrtap7XjaXjpXj'gym

(1A)

(2A)

(3A)

(4A)

Since C p is a real, symmetric matrix it may be
diagonalized by an orthogonal transformation. Let us
denote its eigenvalues by Qts, Qss, Qss. Then, since T is
the determinant of the matrix (x; ), one can write

&=QrQsQs (5A) .

By using the experimentally deduced values of the 8»
phase shift up to about 175-Mev incident meson energy,
the function Ft ~. (~), plotted against o&, is found to be a
remarkably straight line. One may graphically extrapo-
late the function F;, , (ra) back to the point to=0. The
renormalized coupling constant f„' can then be deter-
mined by using Eq. (44). Thus one obtains

f s=0 10, .

which agrees with Eq. (42). Inclusion of phase shift
data beyond 1"Is Mev would add a curvature to Fi, ; (~)
in a direction as to make f,' slightly larger.

The authors wish to thank Professor R. Serber for
stimulating discussions. We would also like to acknowl-
edge the hospitality of the Institute for Advanced Study
and the University of Illinois where part of the work was
carried out.
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The three scalar quantities s~, s2, s3 introduced in
Eq. (19) are then related to the Q& by

si= C..=Q22+Q2'+Qa',

s2= 6QiQ2Q2,

s =Qi'+Q2'+Qs'. (6A)

We now wish to prove the following theorems.
Theorem I.: If S(x; ) is an eigenf unction of I. and T

m~th L= T=O, thee
S=S(si,s2,s2). (7A)

Contracting with respect to the 0, indices, we Gnd this
polynomial can be written as (or sums of)

S„=gTrace(C e) &=+(QP "+Q22 "+Q22 ") (10A)

(or sums of such terms), where

ggn2g ——n/2.

Proof: Let us consider a homogeneous polynomial of
nth degree,

8„—~=Aii ~iz,ai ~ agxiia]' ' 'xi~a~. (8A)

We thus wish to contract a tensor of nth rank (in both
the i and i2 indices) into a tensor of rank zero. Thus the
coefficients Ai] ~ ~ ~ i„,a] ~ ~ a must be made from products
of the isotopic tensors 8;; and 2@2 (similarly for the i2

indices). Furthermore, we note the identity:

Nij2&lma= gilgjm4e+ gimgjn'4k+ gin~i l~&m

&a&;—~4 &'~&—g~4i &'mg—ii4n (9A)

Thus we will never have to use more than one &;J~

and e p~ in contracting the indices.

(a) We first consider homogeneous polynomials of
even degree. Using the above statement we take
Ai 1 ~ ~ i,ag ~ .a to be a product of 8;; and b p only. After
contracting on the i indices, we And that the poly-
nomial consists of sums of terms, each of the form

Caza2Ca3a4 Ca~lan

with
Vp = Ga&a2a3Ca] p Ca2a3 S~y

k~

2(k+t)+rn=n, (11A)

where, if 0 is zero, then C ~p'=8 ip. Since C p is a
symmetric matrix, we have Vp=0.

(b) Let Ve be a polynomial of odd degree. After
contracting with respect to the i indices, Vp consists of
sums of terms of the type

TEa],a2a3Ca4a5 ' Ca~ ia~&

which, as in the above case, becomes zero after con-
tracting with respect to the n indices.

Theorem III: If '0; (x;e) are eigenfenctions of
L=T=1, thee'U; car be written as

'U' = El IS"(si,s2,s2),
&-i EBx;

(12A)

where the S" are three scalar functions.
Proof: (a) Let 'U; be a polynomial of odd degree.

Then we need only use 8;; and 8 p in order to contract
the indices. After contracting with respect to the i
indices, 'U; consists of sums of terms of the type

SiayCa2a3Ca4ag ' ' Ca~ pa~&

which, after contracting with respect to the n indices,
becomes

It is evident that we need explicitly consider the
L=O, T= 1 case only.

Proof: (a) Consider a polynomial of even degree. We
must then simultaneously contract an eth-rank tensor
in the i indices to a zero-rank tensor and an eth rank
tensor in the o. indices to a first-rank tensor.

After contracting with respect to the i indices, the
polynomials consist of sum of terms of the type

Ca]a2Ca3a4' ' ' Ca~]a~.

After contracting with respect to the o. indices we find,
Ve can be written as (or sums of)

Thus (7A) is true.
(b) We now consider polynomials of odd degree.

After contracting on the i indices, we Gnd the poly-
nomial to be a sum of terms of the type

Teaya2a3Ca4a5 ' ' ' Ca~ ]a~.

Using the identity,

+~a1Ca1a Sg-2~j.

8
I Ceo =2lxiaiCa]a

&ax;.i (13A)

Upon contracting with respect to the 0. indices, these
terms become

TEaia2a2Calel Ca2P'2 Ca2e2 2ele2e2Sa'q

where S„ is an even polynomial of the form (10A) and

2(k+l+n2)+n'= n —3.

Thus, upon using (5A), (6A), and (9A), we complete
the proof.

Theorem II:If Ve(x; ) (P= 1, 2, 3) are eigenflnctions

of L=O, T=1, thee Ve=O. Similarly, if V;(x; )
(j = 1, 2, 3) are eigenflnctions ofI.= 1, T=0, then V;=0.

(1)

(2)

(3)

'U; "'=x;pCp„'S
U ja SQ 6aPyCXpl CP v Cytis 6pvr2tSyp

0Ax ~Qk~app+QQCpp +It+C+p Sqe(3)— tn /. e Q (14A)

one completes the proof for this case.
(b) Let 'U; be a polynomial of even degree. We must

use one e;I,& and one ~p». By writing the polynomial ex-
plicitly in terms of the isotopic tensors, it is clear that
the index i wi11 be carried by either x;p or e;;I,. Similarly
for o.. Thus we only need to consider the following
three cases:
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S=x; V;&~". (15A)

Without loss of generality, we need only, in the de6ni-
tion of 'U; ('&, to consider the case S,=1.

Differentiating (15A), we obtain

Utgg —(BS/civet~) ccjPsjttePTsCa7 cctsCes
—x;pe;I,;ep~gxl, kg~ C g"

ccj—pscsi oct„eistep, s(it/Bx; ) (Ci,r"C„s"). (16A)

We notice that the second and third terms on the
right-hand side of (16A) can be reduced to a linear
combination of 'U; &'&. By using Eq. (3A), the last

Using (13A) immediately completes the proof for
U /gal ~

. 0)

Using (9A), we notice that 'U; "I can be written as a
linear combination of the type 'U; &'~.

For the third case, we introduce the scalar function

term can be explicitly written as

Tep—g„ep,s (rj/rjsc;. ) (Ci „"C„s"),

which, on using (9A), can be written as the product of
scalar functions by the derivatives of scalar functions.
Thus we complete the proof.

APPENDIX II

In this section, we list the numerical values of matrix
elements and other quantities used in the scattering
calculations for f'=0.712 and co, =6.21ts.

f'=0.1048, X=0.19906, 1.=0.07704, M= —0.05538,

0= —0.32145, P= —0.08626, Q=0.17631,
R= —0.32145, f=3.0, )i=3.39, 0=4.7557,

where E, I., M, , R are defined in Eq. (34) and
f, X, 0 are defined in Eqs. (9), (11),and (13).
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Anomalous Magnetic Moment of the Nucleon
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The ground-state solution of the physical nucleon problem in the Tomonaga approximation is used to
compute the anomalous magnetic moment of nucleons. When computed on the basis of parameters that
make the phase shift calculations in the Tomonaga approximation consistent with meson-nucleon scattering
data, the values obtained are +1.48 for the proton and —1.48 for the neutron.

I. INTRODUCTION

HE meson-nucleon scattering, calculation in the
J . Tomonaga approximation' seems to give a correct

description of the experimentally observed data in the
low-energy range. Furthermore, a weak-coupling treat-
ment of the same Hamiltonian' (with a gauge-invariant
electromagnetic interaction added) yields &1.44 nu-

cleon magnetons for the anomalous magnetic moment of
the nucleon (plus for the proton and minus for the
neutron). This result is also fairly close to the experi-
mental one, and hence it becomes of interest to do this
last calculation again, but now using the Tomonaga
approximation.

II. METHOD OF CALCULATION

The Hamiltonian used will be the same as that of
reference 2. As was done there, we will not include the

* Submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy, in the Faculty of Pure Science,
Columbia University.

t Present address: Physics Department, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts.

' Friedman, Lee, and Christian, Phys. Rev. 100, 1494 (1955).' M. H. Friedman, Phys. Rev. 97, 1125 (1955).

effect of the nucleon current or the Dirac moment in
intermediate states. We will proceed by evaluating the
matrix element

( c)A r)4 I)
j A=e Ail $I —Ps ldx,

E ax, ax, ) (2)

where &I, ps are the first two components of the meson
field and are real. (Repeated indices are to be summed
over all values from one to three, throughout. ) A is the
electromagnetic vector potential and is chosen to be
transverse for the purposes of this problem. For

A=V 1 Q, A(q) exp/ —itl. xj,
and

@.= v-& QRL2co(lkl) j-*(a.(k) exppik. xj

(3)

+a *(k) expL —ik x)) (4)

(&' )=(+olj Al@'o),

where %0 is the state vector representing the physical
nucleon. (Natural units to be used throughout. ) We
write


