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Independent-Particle Model of the Nucleus. III. The Calcium Isotopes*
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The isotopes of calcium of mass number 41, 42, and 43 are analyzed using the methods given in papers
' I and II of this series. It is found that the experimental data on Ca4' and Ca4' is sufficient to predict the

low-lying odd-parity levels of Ca4' as well as the magnetic moment. Detailed agreement between theory
and experiment is obtained for the levels of Ca4' of spin and parity 7/2, 5/2, 3/2, and 9/2 and the
experimental Schmidt line magnetic moment deviation of 0.595 n~ is in agreement with a predicted devi-
ation of 0.60 nm. The relative importance of particle forces and surface forces due to collective motion is
investigated and it is concluded that for the isotopes investigated the surface forces are so weak. as to have
a negligible effect on the level spacings. As a measure of the upper limit of the strength of the surface forces
the magnitude of ko (the surfon energy) .is set at & 15 Mev. An eifective two-particle interaction potential
is derived which divers to some extent from the two-particle scattering potential in that it has a longer
range and is more shallow.

INTRODUCTION
' 'N this paper, we shall apply the methods outlined
~ ~ in papers P and II2 to the nuclei Ca4', Ca4', and Ca4'.
The empirically determined single-particle levels of
Ca4' determine the zero-order scheme and define the
relevant cofigurations in Ca~ and Ca4' and their energy
spacings. The experimental level scheme of Ca4' then
serves to determine the necessary information about
the two-body interaction which allows us to calculate
the level scheme, wave functions, and magnetic moment
of Ca4'. In order to apply these methods it is essential
that the low-lying "single-particle" levels (i.e., fr/2,

ps/2, fs/2, pi/2, gs/2) of Ca" be well represented by
independent-particle wave functions. If the Ca' core
were truly inert and rigorously replaceable by a single-
particle potential well, then the method described above
would be exact. As a matter of fact, Ca" has its first
excited state at 3.25 Mev and core excitation states in
Ca41 seem to appear at 2.6 Mev and higher. Since
empirical information concerning the levels of Ca4' and
Ca~ is used it is clear that some corrections due to core
excitations are automatically included. For example,
all corrections to the level spacing of Ca~ which can be
interpreted as corrections due to core excitation that
should be present for one of the extra core particles
alone are already included since the empirical levels of
Ca4' are used in setting up the problem. Similarly a
large class- of core excitation corrections to the level
scheme of Ca" are included since the potential has been
adjusted to the empirical levels of Ca4' and Ca4'. This
problem has been investigated in detail by Brueckner,
Eden, and Francis' who 6nd that in adjusting a two-
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body interaction to the empirical levels of Ca4' the core
excitation corrections are automatically included for
this problem. In the case of Ca4', the approach again
includes most of the corrections and one can expect a
high degree of accuracy in the final results. If core
excitation corrections are indeed small, then the
empirically derived matrix elements for the Ca~ prob-
lem should be derivable from a two-body potential
which fits the nucleon-nucleon scattering data. If, on
the other hand, these corrections are appreciable then
the eGective potential may be somewhat diGerent from
the scattering one.

The only easy way to take explicit account of core
excitations is through the collective model of coupling
to nuclear surface oscillations. %e have attempted to
include such coupling in the calculations as a pertur-
bation to the more detailed shell model treatment, but
with the result that the closest agreement to experiment
is obtained with zero additional surface coupling. This
does not rule out, of course, that effects of a deformable
core on the energies are already included in the semi-
empirical approach outlined above. Diagonal contri-
butions of weak surface coupling and of direct particle
interaction are in fact indistinguishable in this ap-
proach. Off-diagonal contributions (configuration mix-

ing) are, however, somewhat different.

I. LEVELS OF Ca4'

Ca41 consists of a doubly magic Ca" core and a single
neutron. According to the shell model, this neutron has
an fq/2 ground state and excited states of ps/2 fs/2 pl/2,

g@2, d5~2 and g7/2 in that order. ' The first seven excited
states of Ca" are according to Braams at 1.947, 2.015,
2.469, 2.582, 2.611, 2.675, and 2.890%0.010 Mev. ' The
ground state of Ca" has an experimental shell model
assignment of fq/2. 2 The 1.95- and 2.47-Mev levels have
experimental spin and orbital angular momentum

4 P. F. A. Klinkenberg, Revs. Modern Phys. 24, 63 (1952).
5 P. M. Endt and J. C. Kluyver, Revs. Modern Phys. 26, 9S

(1954).
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values of ps/s and p, /, .' These levels bracket the 2.01-
Mev level which from shell model considerations we
take to be the fs/s state. The gs/s level assignment is
the hardest to make. In ssY", the pi/s —

gs/s spacing is
experimentally fixed at 0.913 Mev. ' Y" has a magic
neutron core and closed proton subshells up to but
not including 2pt/s and one 2p&/s proton. The levels are
therefore close to single-particle levels and the spin of
the excited state is fixed by the fact that it is isomeric.
It is hard to say what this spacing corresponds to in
Ca" since the mass number A is so different. Two
effects that are certainly present are: (a) the oscillator
level spacing increases for Ca" thus tending to increase
the p, /s

—
gs/s separation; (b) the spin-orbit interaction

increases' thus tending to decrease the p, /s
—gs/, sepa-

ration in Ca4' (i.e. , gs/s is pushed down further and pi/s
is pushed up further). As a guess the 2.89 Mev level in
Ca" was taken to be the g9/2 state, thus corresponding
to a p, /s

—
gs/s separation of 0.42 Mev. The gs/s level is

probably not lower than 2.89 Mev. It resulted that
with the g9/2 level taken at this value the spin 6, 4,
and 2 states of Ca" were not appreciably influenced by
its presence. The e8ect of the g9/~ level on the spin-zero
state, while considerable, did not vary appreciably if
the g level were raised up by one Mev. With the g9/~

state at 2.89 Mev the spin-zero ground state in Ca4'

contained a 9%%uo admixture of the gs/s' wave function.
In order to fix the position of the g7/2 level in Ca",

it was thought best to compute the gg/~
—

g7/2 doublet
splitting from theoretical considerations and experi-
ments designed to measure this splitting. Harvey' finds
the energy discontinuity in neutron binding energy at
magic number 50 (i.e., the gs/s

—
gr/s splitting) to be

2 Mev for cores of 86 and 84 particles. We wish the
splitting for a core of 40 particles. Assuming the spin-
orbit splitting goes as A:,' we get a splitting of 3.2 Mev
for the Ca4' core. Alternately, taking the 2-Mev f-state
splitting for Ca4' as given and assuming a (21+1)
dependence on the splitting for fixed A, we get a
gg/2 g7/g splitting of 2.6 Mev. These values are suffici-

ently close for the purposes of this calculation, so we
arbitrarily assigned a value of 3 Mev to the g9/2 g7/2

splitting and thus took the gv/~ state of Ca" to be at
5.89 Mev. The 2d5/2 state has 2 nodes to one node for
the 1fr/s state, thus giving a small overlap. In addition
it is assumed to be far away in energy, and we therefore
neglect its contribution to the calculation. Although
the g&/s state is just as far away in energy from the f&/s

state, it has only one node and almost exactly overlaps
the fr/s state (see Fig. 1). Hence we keep it in the
calculation. Higher excited single-particle states of the
Ca4' odd neutron were neglected because they were

supposed to be too far away in energy or else overlapped
' J. R. Holt and T. N. Marsham, Proc. Phys. Soc. (London)

A66, 565 (1953).
'7 Evidence summarized by M. Goldhaber and R. D. Hill,

Revs. Modern Phys. 24, 179 (1952).
s D. R. Inglis, Revs. Modern Phys. 25, 390 (1953).' J. A. Harvey, Phys. Rev. 81, 353 (1951).

the fr/s state badly. Parity considerations also decrease
the coupling between the f configurations and those in
the next shell. Consider Ca" with a zero-order f'
configuration. In order to couple with f', the configur-
ations in the next higher shell must have plus parity.
This immediately dispenses with the fg, fs, and fd
configurations and leaves the configurations g', gd, etc.,
which lie two times higher in energy then the odd-parity
levels and in general have small interaction matrix
elements with the f' configuration.

The states in Ca" corresponding to core excitations
have been discussed in the introduction and are neg-
lected for the reasons referred to there.

II. LEVELS OF Ca4'

SchiRer'0 finds levels in Ca" at j..51&0.03, $.95~0.07,
2.29&0.05, 2.59&0.07, 3.02+0.05, and 3.75~0.07
Mev." The 1.51-Mev level has an experimental spin
assignment of 2 from beta-gamma angular correlations. "
To zero order the lowest states of Ca4' should correspond
to an f' configuration with spins 0, 2, 4, and 6. (No
odd spins due to the Pauli principle. ) Any reasonable
assumption for the interparticle forces together with
any strength of surface coupling will give the level
order 0, 2, 4, 6."The third and fourth excited states of
Ca4' were accordingly assumed to have spins 4 and 6.
The identification of the spin-six level is the least
certain since the lowest levels of the f7/spg/s configur-
ation must lie nearby. However, the position of this
level is su%ciently uncritical for the purposes of pre-
dicting the levels of Ca4' that an error of a few tenths
of a Mev will not change the computed Ca4' levels
appreciably. The experimental relative level spacings
are shown in I'ig. 2. In order to fix the absolute value
of the ground-state energy of Ca4', information on
binding energies" was used, . On the basis of the model
used here, the two neutrons in Ca4' core are each bound
to the core by the energies of the Ca4' nucleus. These

Y'

FIG. 1. Radial wave functions for the f, p, and g states of Ca"
where the central potential is constant and the nuclear wall is an
infinite barrier.

"J.P. SchiGer, Phys. Rev. 97, 428 (1955)."Braams and Buechner find levels at 1.53, 1.84, and 2.43 Mev.
This information reached the authors after the calculations had
been performed. They would not change the results appreciably.

"D.T. Stevenson and M. Deutsch, Phys. Rev. 84, 1071 (1951).
"Dieter Kurath, Phys. Rev. 91, 1430 (1953).
'4 Summarized in reference 13.
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bonds we call core bonds. In addition there is an extra
binding due to the interparticle force. This binding is
due to the particle bond. The ground state binding
energy due to the core and particle bonds in Ca4' is
simply the difference between the binding energies of
Ca4' and Ca4' which is 19.8 Mev. Hence we take
Ep —1——9.8 Mev for Ca4'. Then the Hamiltonian Hp+ V
for the Ca4' problem has a lowest state at —19.8 Mev.
It is more convenient to write Hp —16.6——Mev+AHp
since the frts neutron in Ca4' has an 8.3-Mev binding
energy. This makes AHp 0 for——the f7/ss configuration
and positive for all other configurations. Our problem
is then to find the eigenvalues of AHp+ V with lowest
state at —3.2 Mev. The —3.2 Mev can be looked at
as the contribution to the energy due to the particle
bond alone.

III. SOLUTION OF THE TWO-BODY PROBLEM

3
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As a first approximation we shall consider the sects
of the fpts, gptp, and grts 'states on the zero-order frtP
configuration in Ca4'. As shown in Fig. 1, the radial
dependence of the g state is almost identical to that of
the f state. We shall assume they are identical and thus
all radial integrals will be independent of l, the orbital
quantum number.

We now make substitutions into Eq. (11) of I. The
values of /i, lp of interest are only f', and g', since the
state fg has odd parity. It is easier to work with the
expression

P(Jltts) =
n(Jltls)

1(~tfsJI ji'j, 'l, l,) I'
(1)

~i'im' EJ—H p (44ji'js')

(fsJ( V~fsJ)—= V, (3)

and
~
f'J) is a two-particle wave function in an IS

TABLE I. Values of A„z to three decimal places. Ie "=ZJ A,JVJ'.

—0.103
0.766
2.017
2.276

0.204—1.457—5.034
4.716

0.367
3.448
1.845
0.940

0.529
4.147
1.181—7.948

"G. Racah, Physics 16, 651 (1950).

Then, by a slight manipulation of Eq. (11) in I, we get

(f'J
I
V

I
f'J) P(Jf') — (f'J

I
v

I
g'J)

(2)
(g'Jl V If'J) (g'Jl V

I
g'J) &(Jg')—

From the data given in Secs. I and II plus the values
of LS—jj transformation coeKcients, " one can easily
evaluate the P's. Equation (2) represents four equations,
one for each value of J. In order to get unique answers,
we express our unknown matrix elements in terms of
the four matrix elements VJ, where

FIG. 2. The first three level diagrams on the left give the level
spacings. and spin assignments of Ca", Ca~, and Ca~ which are
taken as the "empirical" levels. The diagram on the right repre-
sents the predicted level spacings of Ca4' based on the empirical
levels of Ca~ if configuration interaction is neglected.

representation for /&
——l2 ——3, S=O, L=J. Now each VJ

can be expressed in terms of four Slater parameters"
and inversely the Slater parameters F", (It=0, 2, 4, 6)
can be expressed in terms of VJ. The Ii"'s are the radial
integrals of the problem and are independent of l~, l2 as
pointed out above. These relations can be written:

Vg=+„Bg„p", F"=Qg A„JVg.

8J„ is given in Condon and Shortley" and 2„J is given
in Table I. We also need expressions for Ii" for I(:=1, 3,
5, 7, 8. In general, Ii" is a smooth function of g. In fact,
for zero-range forces, F"=(21'+ 1)F . Examples of Slater
parameters appear in Kurath's" work. We therefore
take the values of Il" for I(:=1,3, 5, 7, 8 to be given by
linear interpolation or extrapolation on the Ii"'s for
f(.=0, 2, 4, 6, i.e.,

F'= '(F'+F') F'=-'-(F'+F') F'=2F' F'—
PP r (F2+P4) P7 —t (3P6 P4)

(3)

Now all the relevant Slater parameters can be
expressed in terms of the four VJ's. The matrix elements
(g'J~ V~g'J) can be expressed in terms of F"fr=0, 2, 4,
6, 8. The matrix elements (g'J

~

V
~

f'J) can be expressed
in terms of I'"~=1, 3, 5, 7. Hence we finally write all
matrix elements in terms of VJ, J=0, 2, 4, 6 and then
solve for Vg. The expressions for (g'J

~
V

~
g'J) in terms'r

of F" and the other diagonal matrix elements" are
given in the literature and the off-diagonal elements
are given in Table II. Equation (2) can now be solved
in a straightforward manner and one finds for the values

"E. U. Condon and G. H. Shortley, The Theory of Atornee
SPeetro (Cambridge University Press, Cambridge, 1951).

"G.H. Shortley and B. Fried, Phys. Rev. 54, 739 (1938).
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TABLE II. Off-diagonal matrix elements of a singlet central
force in IS coupling. R&"'(l&lm, l'3l4) is de6ned as on p. 175 oi
Condon and Shortley. '6

(f'I U/I fp) = —(2/5) (42)iW(3331; J2)R&»(f' fp)—4(7/33)iW(3331 J4)R'4&(f' fp)
(f'I V~ I P') = (9/5) W(3311i J2)R"'(f' P')

+(4/3)W(3311 J4)R&4&(f' p')
(f'I VgIg')= —4W(4433; J1)R&'&(fs g')—(18/11)W(4433 J3)R&'& (f' g')—(180/143)W(4433; J5)R&'& (f' g')—(245/143)W(4433; J7)R&'&(fs g')

(P'I V~lfP) = —s6~3W(1131;J2)R"'(p' fp)
(g'I VgI fp)=12(3/77)1W(4431; J3)R&»(g' fp)

+30/11(6/13)1W(4431; J5)R&'& (g' fp)
(g'I Vz I

p') = —(12/7) W(4411.J3)R"'(g' p')—(15/11)W(4411;J5)R'"(g'; p')

of V/ and P(Jfs)

Vp= —3.33 Mev,

V2= —2.49 Mev,

V4= —2.10 Mev,

V6 ———2.20 Mev,

P(0 f'")= —4.20 Mev,

P(2,f') = —2.50 Mev,

P(4 f') = —2.16 Mev,

P(6,fs) = —2.22 Mev.

(6)

We note that only Vp divers much from the corre-
sponding P(0,f'). The P(JJ')'s are the V/'s one would
find if only the fs/s state were taken into consideration.
In other words, it is the spin-zero ground state of Ca4'

that is most affected by the presence of the states g9~2

and g~g2. The other states are hardly inQuenced at all.
In order to find the effect of the p states we need to

know the radial integrals involved in the matrix ele-
ments like (PJIVlfpf) and (f'~IV I ') A upper
limit on these matrix elements can be established by
assuming that the p state radial wave function is
identical to the f state radial wave function. In this
case, the matrix elements can be expressed, in terms of
the VJ's by the methods described above. In this limit,
the p states still leave V4 and Vs unchanged and change
V2 from —2.49 Mev to —2.47 Mev. Since the overlap
is only the order of 50 percent

I
see Fig. 1j, we will

take V2 ———2.48 Mev. The general accuracy of our
calculation is such that more detailed investigation of
this point is not necessary. In a similar fashion, it was
estimated that Vp is changed. from —3.33 Mev to
—3.25 Mev. The fact that Vp sustained the greatest
change again reQects the fact that the spin-zero ground
state of Ca4' is the most strongly affected state by
con6guration interaction. Finally we list here our
semiempiricany determined values of V&.

We can also 6t a potential well to our empirically
derived diagonal matrix elements. Let Dg be the
diagonal element for spin J in a jj representation.
We then have:

Dp= —1.86 Mev, D2= —1.27 Mev,

D4 —0.7——7 Mev, Ds —0——.31 Mev.

We have given graphs of Dg for various assumed
potentials in I. It is important to notice that (Ds—

D&&)/

(D4—Ds) = 1.18 while (Es—E&&)/(E4—Es) =3.43. We
see that we must 6t to two almost equal spacings and
not to a ratio of 3.43 which would be the case if con-
figuration interaction were neglected. In Table III
are listed the best 6ts for potentials of the form
V&&exp[—r'/r&&sj. These tables were computed from
Kurath's" evaluation of the Slater parameters for the
above potential using oscillator wave functions which
go as r' expl —rs/r„'$. The parameter )& = r&&/r„measures
the ratio of the force range to the spread of the nuclear
wave function. The best value of P lies between 1.11
and 1.25. A good 6t is obtained with Vp ———14.4 Mev,
X=1.18. If in addition we demand that this well have
a bound state at zero energy thus approximating the
singlet well binding strength we obtain an effective
range 'r, gg

——4&(10 "cm and rp ——2.79&10 "cm.
On the other hand it seems more realistic to 6x r„at

some value consistent with the radius of Ca. Kurath"
has proposed a value of r„=2.9&10 "cm on the basis
of best approximating a square well wave function
whose constants are determined from the experimental
evidence in the mass number 40 region. This value of
r„gives for the mean square radius, (r')1, 4.35)&10 "
cm, which is to be compared with an "outside" radius
of 4.95)&10 "cm for A =43, based on R= r)&A&, with
r=1.41&(10 "cm. Since ) =1.18, we find the range of
the interpartic]e Gaussian potential is rp ——3.42)&10 "

42
ca IIE v

Vp= —3.25 Mev, V2= —2.48 Mev,

V4= —2.10 Mev, V6= —2.20 Mev.
(7) 3/P.

It is interesting to compute the diagonal matrix ele-
ments for the Ca~ configurations fr/ss (J=O, 2, 4, 6)
since the diGerence between these values and energies
for these states is the energy due to con6guration
interaction. This comparison is shown in Fig. (3).

7/&

FIG. 3. The level diagrams on the outside represent the contri-
bution due to diagonal matrix elements alone to the observed
levels. The difference between these energies and the total energies
is due to con6guration interaction. The levels labeled by spin
values are the observed levels.
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cm. Combining this with the well depth of 14.4 Mev,
we find a well depth parameter" s=1.5 (i.e., this
potential is strong enough to bind two particles) and
effective range of 3.82&(10 " cm. Fitting a Gaussian
to low-energy singlet scattering data one finds t/'0 ——35
Mev, 'r gq=2. 7)&10 " cm, and ro ——1.78&(10 " cm. If
our results are correct we must conclude that the
effective nuclear interaction potential in Ca4' is indeed
not well represented by a Gaussian constructed to fit
the low-energy scattering data but is better represented
by a Gaussian which is about one-half as deep and two
times longer-ranged. There are two possible explana-
tions for this result:

Fro. 4. Radial inte-
grals Fg" and Iii" for
Gaussian and Yukawa
interparticle potentials
with infinite scattering
lengths as a function of
effective range.

B

2
2.5 3.0 3.5

r.«(10 "cm)

Fy
2.

FO
9

FO
Y

F2

4.0

where P and x are themselves harmonic oscillator wave
functions. If g corresponds to a 1s state of relative
motion, then one finds a probability distribution of
relative energies given by:

p(e)de=4(2/a-)'(h&e) ' expL —2e/Ace]e&de, (10)

where e is the center-of-mass kinetic energy of the two

TABLE III. Diagonal matrix elements predicted for an (fr/Q)
con6guration with J=O, 2, 4, 6 using a Gaussian potential of the
form Vs expL —r'/rosg and an oscillator wave function of the
form P~r' exp) —r'/r„'g. The best value of Vs is listed for the
given values of X (X= ra/r„) such that the predictions agree most
closely with the matrix elements deduced from the empirical
analysis. All numbers but the dimensionless values of X are in—Mev.

Empirical
analysis

t/'0 18 6
X 1.00

15.8
1.11

14.4
1.18

13.3
1.25

11.9
1.33

0.31
0.77
1.27
1.86

D6
D4
D2
Dp

0.35
0.59
1.14
1.92

0.37
0.66
1.22
1.88

0.38
0.70
1.27
1.87

0.38
0.74
1.30
1.84

0.39
0.78
1.33
1.82

' J. M. Blatt and V. F. Weisskopf, Theoretical ENclear Physics
(John Wiley and Sons, inc. , ¹wYork, 1952), p. 55."I.Talmi, Helv. Phys. Acta 25, 185 (1952).

(1) The presence of the core excitations which were
neglected in the calculation cause the modifications.
This effect is predicted theoretically' but it remains to
be calculated for the case of Ca4'. In particular, collec-
tive core excitations should be in the direction to
produce an effectively longer-range interaction. (Com-
pare figures showing energy shifts in papers I and II.)

(2) The relative energies involved between the extra
core particles are so great that a potential which fits
low-energy scattering only is inappropriate.

It is a simple matter to investigate this second point
further since, as shown by Talmi, " the independent-
particle two-body wave functions corresponding to a
harmonic oscillator central potential can be easily
expressed in terms of the relative (r) and center-of-mass

(R) coordinates of the two particles. The two-particle
wave function can always be written in the form

particles and Aor is the characteristic energy spacing of
the single-particle central oscillator well. The average
energy is &=43k~. Equating the energy of the top
particle in the well to a Fermi energy of 30 Mev, we
find Aco=8.6 Mev for 0" and Ace=6.7 Mev for Ca"
(Elliott and Flowers'e use 7 Mev and Redlich" uses
10 Mev for 0".) The average relative scattering energy
then amounts to 6.45 Mev in 0" and 5 Mev in Ca4'.
These numbers are lower limits on the average scattering
energy since they are based on a 1s state of relative
motion. Since the shape-independent analysis of pp
scattering breaks down around 10 Mev, some shape
dependence for the effective nuclear interaction is to
be expected.

The shape dependence of the matrix elements can
also be demonstrated by computiog them with a
Gaussian and a Yukawa potential, both adjusted, to
give the same effective range and scattering length.
This calculation was performed for the 1p' radial inte-
grals. The scattering length of both potentials was
chosen to be infinite, thus corresponding to a bound
state at zero energy, and the results are plotted as a
function of the effective range in Fig. 4. The integrals
plotted are given by Swiatecki. " The parameter r„
giving the range of the nuclear wave function was taken
to be 2.33)&10 " cm. (r„=V2as in Lane's notation")
following the results of Elliott in fitting Coulomb energy
data in the 1p shell as reported by Lane."Table IV
gives the diagonal matrix elements for the states
1PsrssJ=0, 2 which are derived from the corresPonding
radial integrals. It is immediately seen that Ii' is not
very shape dependent while Ii' has a considerable shape
dependence for the larger effective ranges. For a very
slowly varying potential all F"'s are very much smaller
than Ii', and for a delta function potential F"
= (2x+1)F'. Thus, roughly speaking, the values of F"
for I(:&0 should be expected to increase as the potential
is made to vary more rapidly with r. The trends in
Fig. 4 can be interpreted as rejecting this. Longer
effective ranges correspond to less rapidly varying

"B.H. Flowers, lecture at University of Chicago, March, 1955
(unpublished)."M. Redlich, Phys. Rev. 95, 448 (1954).

ss W. J. Swiatecki, Proc. Roy. Soc. (London) A205, 238 (1951).
"A. M. Lane, Proc. Phys. Soc. (London) A68, 197 (1955).
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TABLE IV. Diagonal matrix elements in Mev for the spin zero
and two states of the 1p3122 con6guration using Gaussian and
Yukawa potentials with in6nite scattering lengths and effective
ranges in 10 "cm as shown in the first column. The wave func-
tions used are described in the text. 60 and Ay are the first-order
energy spacings for the Gaussian and Vukawa wells and the last
column gives the percent di6'erence in these spacings.

potentials and a Yukawa well varies more rapidly than
a Gaussian. Configurations involving higher angular
momenta also require radial integrals F" for higher
values of I(: in order to express their matrix elements.
Hence energy levels corresponding to higher configur-
ations should show an increasing shape dependence.
From Fig. 4 and Table IV one sees that if the eRective
two-body singlet potential acting between 1p nucleons
has an eRective range near 2.7&&10 " cm (the singlet
scattering eRective range) then one can expect a slight
shape dependence for the matrix elements. However,
if for some reason the eRective range of the internucleon
potential in nuclear matter is closer to 4)&10 " cm,
then the problem becomes considerably shape-de-
pendent.

Comparing the empirical values of Dg with the
predictions of the modified Gaussian wells in I, we see
that the "singulated Gaussian" cannot possibly fit the
data and the "hard core Gaussian" gives a best fit
around X=0.79. Especially for high /, the shape de-
pendence of the results is sufhcient to raise the hope
that studies of nuclear energy levels may yield infor-
mation on the shape of the potential. This point is
under further study.

The wave functions for the four states of Ca4' can be
written out in the L—S or jj coupling representations.
The mixture parameters Ldefined in Eq. (16) of I for
the case of jj couplingj resulting from the semi-
empirical values of Vg given above are given in Tables
V and VI.

IV. Ca43 AND THE THREE-BODY PROBLEM

The level energies and spin assignments given by
Lindqvist and MitchelP4 supplied the necessary infor-

TABLE V. Mixture parameters for the spin 0, 2, 4, and 6 states
of Ca~ in the L-S coupling representation based on the semi-
empirical analysis of the levels of Ca" and Ca~.

f2'
0.884
0.896
0.872
0.864

f"(J—~) f"(J+~)
~ ~ ~

0.351
0.455
0.503

—0.315—0.276—0.194

g2 1J

—0.335
0
0
0

g"(J+&)

0.098
0
0
0

24T. Lindqvist and A. C. G. Mitchell, Phys. Rev. 95, 1535
(1954).

F ff D0(G) Do(F) D2(G) D2(F) bg hr difference

2.5 4.62 4.60 1.48 1.34 3 14 3.26 3.7
3.0 4.26 4.45 1.53 1.35 2.73 3.10 13
3.5 3.81 4.32 1.50 1.36 2.31 2.96 25
4.0 3.48 4.25 1.46 1.39 2.02 2.86 34

mation about Ca'. They find levels at 0.369, 0.627,
and 0.81 Mev with spins 5/2, 3/2, and 9/2 in that
order. The ground state spin of 7/2 and magnetic
moment of —1.3152+0.0002 nm come from the work.
of JeRries." Levels at 0.38 and 0.61 are seen by
8raams. "

A very general test of the presence of configuration
interaction independent of the exchange properties or
space dependence of the two body potential was
described in Sec. IV of I. If configuration interaction
is small the relations between the levels of Ca4' and
Ca4' should be simply given in terms of fractional
parentage coeKcients. One might name the levels of
Ca" predicted from those of Ca4', assuming pure con-
figuration, "projected" levels. As shown in Fig. 2,
the projected levels of Ca" are not in good agreement
with the observed levels (although the level order is
the same). This proves that there exists no two-body
potential which can predict the observed level spacings
of both Ca4' and Ca4' and give negligible configuration
interaction within the framework of the independent
particle model.

The two-body analysis of Sec. III of I can be general-
ized to include three bodies so that Ca4' could be

TABLE VI. Mixture parameters of the states of Ca" in a jj
representation based on the semiempirical analysis of the levels
of Ca4' and Ca~.

&7/22

0.87
0.948
0.915
0.794

f7/2f&/2

~ ~ ~

—0.212—0.369—0.610

f5/2'

0,34
0.238
0.170

g9/2

—0.31
0
0
0

g'I/2

—0.15
0
0
0

treated in a manner similar to Ca4'. There result four
equations for the same unknowns Vo, V2, V4, and V6.
In this case the coefficients in these equations involve
the empirically given energies of the excited states of
Ca' and Cas instead of the states of Ca" and Ca'.
One can solve for the Vg's and compare with those
found from the Ca" analysis. Alternatively one can
eliminate the Vg's from the equations and obtain
relations between the levels of Ca" and Ca". These
relations would then include the eRects of configuration
interaction. This approach will not be reported. on
further in this paper but instead a less elegant but
more straightforward one is used, .

Since all the two-body matrix elements are given as
linear functions of Vz, we can apply Eq. (15) of I and
obtain all the three-body matrix elements as linear func-
tions of VJ. It then remains to diagonalize the resulting
Ca4' matrices of the Hamiltonian. Upon calculating
the various matrix elements, it was found that most of
the nondiagonal elements were quite small with some
notable exceptions. A series of transformations was

"C. D. Jerries, Phys. Rev. 90, 1130 (1953).
M C. M. Braams, Phys. Rev. 95, 650 (1954).
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then applied to the matrix in question to reduce the
magnitude of the larger nondiagonal elements below a
certain preassigned value. When this process was com-
pleted the eigenvalues were obtained by using second
order perturbation formulas. The results of this calcu-
lation and comparison with the experiments are shown
in Table VII and Fig. 3. The spacings and spin assign-
ments agree remarkably well with the experimental
results. The difference in binding energy between Ca4'

and Ca' is 27.8 Mev. Subtracting out the 3.57 Mev
calculated for the particle forces and dividing by three
leaves 8.08 Mev for the single-particle bond rather
than the 8.3 Mev used for Ca4'. This can be interpreted
to mean that the single-particle bond has a dependence
on the number of nucleons A. If we assume the 1/A
dependence discovered by Kurath" in his analysis of
the binding energies in the fr/s shell, then the 8.3-Mev
bond in Ca4' would be an 8.1-Mev bond in Ca" which
agrees quite well with the calculated results.

The almost exact agreement between experiment and,

theory is probably fortuitous. First, the perturbation
method of obtaining eigenvalues is only accurate to
about 0.02 Mev. Secondly, some errors in the "em-

TABLE VII. Comparison of calculated and experimental energies
for Ca~ in Mev. The experimental energy for the J= 7/2 state is
normalized to the calculated result. The diagonal matrix elements
are given in order to illustrate the e8ect of configuration inter-
action.

7/2
5/2
3/2
9/2

Expe rime ntala
energies

—3.57—3.20—2.94—2.76

Calculated
energies

—3.57—3.19—2.96
2.77

Diagonal matrix
elements

—2.84—2.77—2.63
20 13

a See reference 24.

pirical" levels of Ca" and Ca" are probably present.
(Position of gs/s state in Ca", spin 6 state in Ca", etc.)
Thirdly, the odd-state tensor force discussed in I has
been neglected. This error is considerably reduced by
the small triplet admixtures in the final wave functions
as shown in Table V. Consider the spin-zero state of
Ca". In zero order (pure f&/ss) it contains a 43 percent
triplet admixture but this decreases to a 10 percent
admixture in the final wave function. Since the tensor
force is a triplet interaction and gives no contribution
in singlet states, its effect is greatly diminished com-
pared to its eGect on a zero-order state which is given
in Fig. 4 of I.

In order to investigate further the inQuence of
triplet forces, the following idealized problem was
solved: The Hamiltonian was taken to be

H= Hp+//Ps+bPr,

where Pq and Pp are singlet and triplet projection
operators, u and 5 are numbers measuring the singlet
and triplet potential strengths, and Hs has two single-

TRIPLE T ADMIXTURE

b-a

4p

20

-2 2 3

Pro. 5. percent of triplet component (P) in the lowest spin
zero wave function corresponding to the Hamiltonian of Eq. (11).
p is defined just under Eq. (11).

particle levels f,/s and, fs/s separated by an energy 6/2.
The two-body two-by-two energy matrix for t:he spin-
zero state was set up and the percent of triplet state
admixture P was computed. P is a function of one
parameter p, where p= (b a)/6 —P(p) is. shown in Fig.
5. In the case of Ca" we take a=/(f'0)~ 4Mev-
where P(f'0) is given in Eq. (6). b, is 4 Mev and b=0
which gives a 12% triplet admixture. Now if a repulsive
triplet force is added, the amount of triplet admixture
decreases. For instance, if b= 2 Mev we get a 7'Po triplet
admixture. As mentioned in I, scattering data implys
that the triplet odd-state force (triplet even forces do
not occur between neutrons due to the Pauli principle)
is indeed repulsive. We conclude that the neglect of
triplet forces in the calculation is a good approximation,
owing to the fact that the predominantly singlet forces
tend to create predominantly singlet wave functions.

The ground state of Ca4' was further investigated in
order to find its magnetic moment. The general formulas
for calculating three-body magnetic moments are given
in Sec. V of I. The admixtures fr/s'(2) fs/s, fr/s'(4) fs/s
and fr/s'(6) fs/s (the number in parentheses gives the
value of J' to which f;/ss is coupled before being coupled
to fs/s to make a total J of 7/2) are the only ones which
are coupled. to the f&/s' dominant mode by the magnetic
moment operator defined in. Eq. (19) of I. These
admixtures are mainly responsib]e for the shift of the
magnetic moment from the Schmidt line value given
by (fr/ss7/2~//,

~
f7/ss7/2) = —1.91 nm because they con-

tribute a value linear in the mixture amplitudes while
other states can only give a contribution quadratic in
the mixture amplitudes. The state fs/ss(0) f7/s was the
only state not directly coupled to the f&/s state that
gave an appreciable contribution to the magnetic
moment. The magnitudes of the relevant mixture
parameters and the contribution of each admixture to
the magnetic moment (both diagonal and off-diagonal)
are given in Table VIII.

We also include a small correction due to the motion
of the core about the common center of mass of core
and extra core particles, because it is easy to include
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TABLE VIII. Magnetic moment contributions of the various
admixed states to the ground state of Ca" in nuclear magnetons.
The empirical value is —1.315 (reference 25).

Admixed state

7/2'(2) 5/2
7/2'(4)5/2
7/2'(6)5/2
5/2'(0)7/2
7/2'
Center-of-mass motion

Mixture
amplitude

—0.025—0.081—0.108—0.209
0.961

Total

Magnetic moment
contribution

+0.033
+0.211
+0.271—0.117—1.764
+0.061
—1.305

approximately, although other omitted effects may
contribute corrections of the same order of magnitude.
The magnetic moment of a system composed of an
extra core particle structure and a core is given by

, where g, and g~ are the gyromagnetic ratios for the
core and particle structure respectively and I, and Ig
are their total angular momenta about the center of
mass of the system. This magnetic moment can be
split up into two parts p& and Ap„where

Ace&15 Mev, (15)

where fey is the surfon energy, and the mass parameter

Now p~ is the part computed when one assumes the
total angular momentum is associated with the particle
structure and Ap, , is the correction term associated with
a nonvanishing value of I,. g, is taken to be Z/A and

gq is taken to be —0.377. (I,) we approximate as 3h/A,
since the dominant state ('Fr~s, seniority 1) represents
an orbital angular momentum of three units carried in
effect by one particle. In this way, we obtain the crude
estimate for Ap, .

Ap, =0.061 nm.

The agreement of the predicted and observed magnetic
moments is nearly perfect and surely better than one
could have expected. It shows, however, that the
configuration mixing obtained for the ground state
must be of the right order of magnitude.

Two low-lying levels in Ca~, so far unobserved, may
be predicted by using the same empirically determined
matrix elements. These have spins 11/2 and 15/2, and
predicted energies above the ground state,

Egg(2= 0.835 Mev, Egs(2= 1.00 Mev.

V. SURFACE COUPLING

The results of II were employed to try to obtain a
Gt to the data with a combination of direct coupling
and surface coupling. Best fits to energies and magnetic
moment were obtained with zero surface coupling. A
rough upper limit to the strength of coupling is ex-
pressed by

8 and coupling parameter k are defined as in II. With
stronger surface coupling, one can still approximately
(but not well) fit the energies, but in order to do so it
is necessary to reduce the strength of direct particle
coupling. This in turn reduces the directly induced
configuration mixing and causes the predicted magnetic
moment shift to be appreciably less than the observed
shift, in spite of the surface contributions to this shift.
This argument applies in the region of weak surface
coupling. Still stronger coupling has not been investi-
gated closely, but intermediate coupling would predict
such a large 0—2 spacing in Ca" that the additional
particle forces required would be unreasonably small.
In the region of strong. surface coupling, the surface
induced 0—2 spacing would decrease again, but diK-
culties would arise in accounting for the relative
spacings in Ca4' and for the level order in Ca4'. There
is in any case no theoretical reason to expect strong
surface coupling in these nuclei.

We conclude that the Ca" core is an unusually rigid,
undeformable, structure, like the analogous 0" core,
for which the properties of 0" lead to the same conclu-
sion."The "hydrodynamic" value" of the surfon energy
in Ca ' is about 4 Mev, to be compared with the limit
in Eq. (15). As discussed in the introduction, however,
it is not ruled out that some weak surface coupling is
already included in our effective two-body potential,
because of the semiempirical nature of the analysis.
The only experimental test of the role of surface
coupling in the calcium isotopes will be afforded by
measurements of electric quadrupole eGects, e.g. , the
E2/M1 ratios in p decays in Ca4' or the ground-state
quadrupole moment of Ca4'. Such data is not yet
available. The problem of cascade versus crossover in
the 3/2=+7/2 transitions in Ca4' is discussed in II.

VI. CONCLUSION

A remarkably accurate prediction of level spacings
and magnetic moment of Ca4' has been made on the
basis of the shell model perturbed by central two-body
forces. Zero-order level spacings and interparticle inter-
action matrix elements were obtained empirically from
Ca" and Ca". The force was assumed to be central,
two-body, and singlet for equivalent particles. The
empirically determined potential appeared to be shal-
lower and of longer range than that required to fit
low-energy scattering. A study of the dependence of
results on the radial shape of the potential suggests in
a preliminary way that potentials with central repulsion

may give a better simultaneous fit of scattering and of
interparticle matrix elements in the nucleus than the
Gaussian or Yukawa shapes. The analysis leads to the
conclusion that surface coupling is not playing an
important role in the calcium isotopes investigated.
Configuration interaction is quite significant.

We have emphasized only energies and magnetic
moments, Other important properties of the nuclear
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states considered which will be signi6cantly a6'ected

by configuration mixing are gamma decay rates and

(p,d) or (d,p) cross sections, in addition, of course, to
beta decay. These properties will need to be calculated,
and similar analyses made of other nuclei in the vicinity
before it can be concluded that the successful calcu-

lations reported here indeed represent an adequate
description of the nuclear state.

It is a pleasure to acknowledge the many enlightening
conversations we had with Professor Keith Brueckner,
Dr. Richard Eden, Dr. Norman I'rancis, and Dr.
Leonard Kisslinger.
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Gamma-Ray and Neutron Yields from the Proton Bombardment of Boron

J. K. BARR, J. D. KIKGTON, AND H. B. -WILLARD

Ouk Ridge Sutionu/ Luborutory, Ouk Ridge, Tennessee

(Received June 21, 1955}

Yield curves of the gamma rays and neutrons resulting from the proton bombardment of boron have been
measured for proton energies from approximately 2 to 5 Mev. Both the 0'.and 90' yields for the B"(P,p) C"
reaction have been measured for the ground state transition and for the transition to the 4.43-Mev state
in C", as has the yield of the 2.14-Mev 7 ray resulting from the inelastic scattering of protons on B'~. The
neutron yield from 8"(p,n) C"is given at 0 and for almost 2m solid angle in the forward direction. New levels
were observed in the C'~ compound nucleus at 18.3, 18.39, 18.84, 19.2, 19.41, 19.66, 19.87, 20.25, 20.48, and
20.64 Mev. Preliminary data are given for the B"(P,e) C 0 and B"(p,y) C" reactions.

I. INTRODUCTION

~~AMMA-ray yield curves for B" bombarded by~ protons have been reported by Huus and Day, '
by Cochran, Ryan, Given, Kern, and Hahn, ' and by
Gove and Paul, ' who give references to earlier data.
In the present work, the p-ray yields have been ex-
tended from the previous limit of 2.8 Mev to about
5-Mev proton bombardment energy for the reactions

Bll+p ~ C12+~

B +p~C +pl~ C +pl+f2

Bll+p ~ Bll@+p~ ~Bll+p~+p

Measurements were made at both 0' and 90' with
respect to the bombarding proton beam. sfI flI

Richards, Smith, and Browne' have found the
threshold for the reaction

Bll+p ~ Cll+I

to be 3.015~0.003 Mev. Blaser, Boehm, Marmier, and
Scherrer' have reported observation of the yield. of C"
by a stacked foil technique. Neutron yield curves are
given in the present paper for proton energies from
threshold to approximately 5 Mev.

II. EXPERIMENTAL PROCEDURE

Protons from the ORNL 5.5 Mv Van de GraaG
were magnetically analyzed by a 90' magnet whose

Yorben Huus and Robert B. Day, Phys. Rev. 91, 599 (1953).' Cochran, Ryan, Given, Kern, and Hahn, Phys. Rev. 87, 672
(1952).

'H. E. Gove and E. B. Paul, Phys. Rev. 97, 104 (1955).
4 Richards, Smith, and Browne, Phys. Rev. 80, 524 (1950).
5 Blaser, Boehm, Marmier, and Scherrer, Helv. Phys. Acta 24,

465 (1951).

slits were adjusted to about 0.1 percent energy resolu-
tion. A proton moment device was used to measure the
magnetic field. Energy calibration is believed to be
accurate within &0.2% relative to the Lit(P, n)Bet
threshold at 1.882 Mev. 6 An electrostatic strong focus
lens system was used to focus the beam on targets
located 15 to 25 feet from the magnet.

Thin boron targets were prepared by evaporating
elemental boron of natural isotopic ratio on tantalum
backings. Target thicknesses used for the data given
here were about 30 kev at 3 Mev, although thinner
targets were at times used. Target thicknesses were
determined by measurements on the geometrical peak
of the neutron yield from a very thin target, and then
comparing the yield of this and the unknown target
at a proton energy where the neutron yield was slowly
varying. Similar targets of 96% B" were available*
and were used to check that the reactions measured were
due to B".Although the B"targets were free from serious
impurities, considerable effort was necessary to produce
suitable B" targets. In addition to the usual fiuorine
contamination on the backing material, the first boron
used contained an impurity, probably aluminum, which

gave rise to a number of narrow resonances yielding
high-energy p rays and a rather intense low-energy

y ray of about 1 Mev. Targets made from natural boron
of greater than 99% purityr were finally used for the
y-ray work and were quite satisfactory.

6 Herb, Snowden, and Sala, Phys. Rev. 75, 246 (1949}.*Elemental B"was obtained from the Stable Isotopes Division
of this Laboratory.

7 Varlocoid Chemical Company, 116 Broad Street, New York
City.


