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and at the line center, taking a shape of the form

h (po, cop) = (Ts*/sr) exp[ —Ts*'(co—top)'/sr j,
we have

x'(po) = -', (0.62)xpco Ts*(yH„Ts*) cos (co„t)

+-,'xpcoTs*e sin(co„t)+0(e'). (2)

The lag angle, &=tan '(0.81/yH Ts*) 45' for AH
=1/yTs* ——19 oersteds. In Fig. 3 we show the set of
dispersion curves for KCl. The phase shift as determined
from these curves is consistent with the above estimate.
This confirms that rapid passage conditions are re-
sponsible for the observed effects.
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N every physical system at finite temperature the
- . momenta of distant particles are uncorrelated —that
is, there exists a "correlation length" A such that
particles which are farther apart than A have rapidly
decreasing momentum correlation. ' A is very large in a
lattice of particles; for nearly freely moving particles h.
is usually of the order of several mean free paths against
collisions, although there are exceptional systems in
which it can be much longer. No matter what the size of
the correlation length, its very existence has important
eGects on the behavior of a system in temperature equi-
librium when this system is rotated uniformly, or when
it is put into a magnetic field.

It has been shown' that London's equation, '
—Xc curlj, =B,

is incompatible with the existence of a finite correlation
length; i.e. , (1) implies an infinite correlation length
(more precisely a correlation length proportional to the
size of the container). This is illustrated by the fact that
the only model known to obey Eq. (1), the ideal Bose-

Einstein gas of charged particles below its condensation
point, ' does indeed have an infinite correlation length:
the momenta of bosons occupying the ground state are
correlated over the whole volume of the container.

It is therefore necessary to modify the London equa-
tion so as to be consistent with a finite correlation length
A. This can be done by rewriting (1) in terms of the
magnetization vector M rather than the supercurrent
density vector j,. The two vectors are related through

j,=c curlM,

so that Eq. (1) becomes

—Xc' curl curlM=B.

(2)

(3)

We now expand in an orthonormal set of vector
eigenfunctions u, (r) defined by

curl curlu~= q'u„ (4a)

u, is normal to the surface of the superconductor, (4b)
and

(u,)'d'r =1, (4c)

Equation (3) becomes

M, = —P.c'q') —'8, . (6)

In this form the equation can be modified. We introduce
a "kernel" E(q) which is a (so far unknown) continuous
function of q, and write

3f,= —P c')—'E (q)8,.
The values of q which appear in (7) are the discrete
eigenvalues of Eq. (4) for the particular shape and
volume of the superconductor under study. The con-
struction of Eq. (7) in terms of the eigenfunctions (4)
ensures automatically that the supercurrent is parallel
to the superconductor at its surface, provided only that
E(q) decreases suffi'ciently rapidly for large q.

It can be shown that, in terms of the kernel E(q), the
existence of a 6nite correlation length implies that the
quantity qE(q) must not become infinite as q approaches
0. Thus the London equation (6) gives an infinite corre-
lation length. An additional clue to the form of E(q) can
be derived from the observed agreement between the
London equation and the Meissner-Ochsenfeld effect.
This indicates that E(q) must behave like q

' in the
relevant region of q, i e., for q d ', where d=c()/4sr)' is
the London penetration depth. A simple kernel which
satisfies both requirements is

E(q) = 1/kq(q+t )3,

where p, is an inverse length, such that p ' is comparable

where the last integral extends over the volume of the
superconductor. These functions form a complete set.
We write

M (r) =P , M,n, (r), B(r) =P ,B,u, (r). (5)
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FIG. 1. Inductive skin depth d, «of a superconductor vs mean
free path ( of the conduction electrons. The points are Pippard's
measured values. Curve A is the best theoretical curve, with a
correlation length A. =3(, and lim~ „d,« —=d=5.9X10 ' cm. Curve
B is the best curve under the assumption d= 5.3X10 ' cm, which
is the value for very pure tin determined by Pippard in another
measureInent; the correlation length for curve B is A. =2(.

are precisely the ones responsible for supercurrent
charge transport (constant vector fields in a simply con-
nected region, "streamline Qow" fields in a multiply con-
nected superconductor). However, the method outlined
here is presumably sufricient for the discussion of phe-
nomena in which there is no actual charge transport.
Straightforward application of this method to our modi-
fied equations (7) and (8) is therefore sufficient to dis-
cuss microwave measurements on superconductors.

Equations (7) and (8) yield a static field penetration
different from (1), but the penetration depth measured
with small spheres in colloidal suspension remains equal
to d=c(li/4ir)'. At microwave frequencies, however,
there are significant differences. The inductive sk.in
depth determined from the inductive part of the surface
impedance of superconductors is no longer equal to the
statically measured penetration depth. The ratio be-

to the correlation length A. In order that (8) be con-
sistent with (1) in the region q d ', the correlation
length A. must be much larger than the penetration
depth d.

It is well known that London's second equation,

(9)

cannot be derived from (1) in general. However, a
partial derivation can be made as follows: We assume
that all relaxation times are small compared to the time
intervals of interest, so that we are allowed to diGer-
entiate the equilibrium equation (1) with respect to
time. We then use Maxwell's equations to get the curl
of (9). The divergence of both sides of (9) is automati-
cally zero. The terms omitted in this quasi-derivation

tween the inductive skin depth d, qq and the static
penetration depth d can be used to determine the
quantity p, in Eq. (8), i.e., to estimate the size of the
correlation length A.

This provides a natural explanation for an eGect
found experimentally by Pippard. ' Pippard observed a
strong dependence of the measured penetration depth
on the mean free path g of the electrons in the metal in
its normal state. The measurements of Pippard are
compared with our theory in Fig. 1. Curve A is the best
fit and corresponds to a static penetration depth d= 5.9
&&10 ' cm, and pal=0. 291 (i.e., a correlation length
A=p ' slightly more than 3 times the mean free path $).
Not only is the ratio of correlation length to mean free
path very reasonable, but the extrapolated static pene-
tration depth d agrees quite well with Pippard's micro-
wave value 8=5.3)&10 ' cm in very pure tin (for which
A is very large, and hence d,ii=d). It is dificult to
determine whether the difference between these two
values of d is significant, since the experiments are sub-
ject to considerable uncertainty. However, in curve 8
we show the best fit assuming d=5.3)&10 ' cm; the
corresponding value of the product pal=0. 493, i.e., the
correlation length h. is equal to twice the mean free
path g.

In view of the fact that the experimental measure-
ments are subject to unknown errors, and that our
theoretical kernel (8) is merely one possibility out of
many others, this agreement between theory and experi-
ment is entirely satisfactory.

It should be mentioned that the modified kernel (8) is
basically diGerent from the one proposed by Pippard
himself in order to account for his measurements. Our
modification cuts down the contributions from the loeg-
wavelength parts (q '))A) of the magnetic field;
Pippard's' equation (7) gives a smearing over small re-
gions of space, i.e., a cuto8 for the short-wavelength
parts of the field. Pippard's equation, therefore, al-
though in agreement with his experiments, contradicts
the existence of a finite correlation length just as much
as London's equation (1).

Similarly, Bardeen's' equation is inconsistent with a
finite correlation length and can therefore not be ac-
cepted. Bardeen obtains his equation by assuming a
finite energy gap between the lowest state of the electron
gas and all excited states. Such an energy gap cannot
occur in a system of finite correlation length.
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