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Statistical Theory of Delayed-Coincidence Experiments*
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The consistent use of a general statistical theory makes possible the elimination of ambiguities and of
idealizing assumptions from the interpretation of delayed-coincidence experiments. Introduction of the
concept of the "total coincidence counting rate" (which can be determined experimentally) makes possible
the de6nition of resolving time, thereby eliminating discrepancies between earlier de6nitions; it also pro-
vides means for relating the coincidence efFiciencies directly to the number of source events.

The effect of random time lags on coincidence curves is calculated and experimental methods for the
determination of time lags are derived. The statistical errors in the determination of moments of a coinci-
dence curve are calculated and outlined in detail for 6rst moment investigations. It is shown that: (1) the
best choice of the resolving time is a (experimentally measurable) weighted rms of all time delays present
in the measurement; (2) using the best choice of the resolving time the standard error of the centroid, ob-
tained by successive measurements of the points of a coincidence curve, is approximately twice the least
theoretical standard error (that could be obtained for the total time of observation); (3) the moment method
can be applied generally for the determination of mean time delays; other methods, while applicable with
some restrictions, can lead to similar or greater statistical errors.

I. GENERAL CONSIDERATIONS dence curve for the source whose decay time is to be
measured, P(T) (usually termed a "prompt" curve) is
the coincidence curve for a source of simultaneous
events, and w(t) is,'the normalized probability density
for the time interval t between entry of particles of the
source to be measured into the respective detectors.
P(T) and $(T) are meant to be taken with the same
source strength. Equation (1) is valid under the follow-
ing conditions: (a) the quantities f and T are inter-
changeable, i.e., the inserted delay mechanism does not
materially affect the pulse shapes; (b) the pulse shape
distributions in the respective channels are the same
for both sources. Condition (a) usually offers no experi-
mental difhculty, as one generally uses short delay
cables with negligible attenuation. Condition (b) can
be met either by assuring that the same type and
energy of radiation enters the detectors from both
sources, ' or by eliminating the eGect of any discrepancy
between the radiations by proper pulse shaping or
pulse height selection.

As has been pointed out earlier, " a consequence of
Eq. (1) is that the moments of E can be expressed in
terms of those of I' and zv by the relations

CONSEQUENCE of recent improvements' M in
coincidence counting techniques is that a re-

formulation of some basic definitions has become
necessary. For example, two hitherto equivalent de6ni-
tions of the resolving time of a coincidence circuit are
no longer equivalent or even, strictly speaking, meaning-
ful. We shall demonstrate that a consistent and un-
ambiguous set of definitions for all parameters needed
in the interpretation of delayed-coincidence measure-
ments can be formulated in terms of experimentally
observable quantities without any idealizing assump-
tions or approximations.

The basic equation for delayed coincidence experi-
ments is given by the convolution integral" ":

1V(T)= P(T—t)w(t)dt,
J

r

M„(1V)= Q M„s(P)Mg, (w),
s=o k!(r—k)!

(2)

where

p+00

T'E (T)dT.

This set of equations can be solved for the moments of
m, thus determining the latter function. If m is known
except for the values of a 6nite set of parameters, as
many of Eqs. (2) will be needed as there are parameters
to be evaluated. It is convenient to rewrite Eqs. (2) in
terms of the normalized moments p„=ALII„/Ms. Since
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M„(1V)=
J „

where T is the inserted time delay, E(T) is the coinci-
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Mp(1V) =Ms(P) for equal source strengths, one obtains

(3)

functions define the probability of a single coincidence-
countable pulse pair producing a delayed coincidence
count for a delay of value T. In terms of p and n, Eq.
(1) can be rewritten as

Since the normalized moments are independent of the
source strengths, Eq. (3) is valid for any source strength.

Another parameter, the "total coincidence counting
rate, " to be denoted by C, will be needed for a clear
understanding of the phenomena involved. " In par-
ticular, it is necessary for the definition and deter-
mination of resolving time and efficiency and for the
investigation of time lags and statistical errors. We
define a "coincidence-countable" pulse pair to be a
pair of pulses, one from each detector, having the
property that they will produce a coincidence count for
some range or set of ranges of T of nonzero measure.
The property that a pair of pulses be coincidence-
countable is then dependent on the shapes of both
pulses and the operation of the coincidence circuit but
independent of the relative time orientation of the two
pulses. The quantity C is then defined to be the number
of coincidence-countable pulse pairs which originate in
unit time from related events at the source.

The description of the following thought experiment may serve
.to clarify the definition of C. Let a multichannel delayed-coinci-
dence apparatus observe the pulses from two detectors, using a
source of related events. By a multichannel apparatus is meant
a system in which the detector outputs are branched and simul-
taneously observed by a number of delayed-coincidence circuits,
each having a diferent 6xed value of T but being otherwise
identical. Thus, a Gnite set of points spanning the delay curve is
obtained in one measurement. Now, let the discriminator outputs
of all the coincidence circuits go to one scaling circuit of suK-
ciently great dead time that only one count will be registered for
one source event, regardless of how many of the coincidence
circuits respond to it. Then the counting rate registered by the
sealer will (after substraction of the chance coincidence counting
rate in the usual way) asymptotically approach C as the number of
channels is increased indefinitely with a proportional decrease in
DT, the interval between adjacent T values.

Note.—The operational conditions of the coincidence circuit
change from time to time because of internal noise. Therefore it
may happen (in the case of small pulses) that the same pulse pair
which is coincidence countable in one state of noise is not coinci-
dence countable in another state. The quantity C, given by the
above definition and appearing as the result of the above thought
experiment, is an expectation over the pulse-shape distribution
and over the distribution of all noise parameters inherent in the
coincidence circuit.

Practical methods for the direct experimental meas-
urement of C have been devised" "; the general prin-
ciple will be described brieRy in Sec. IV and the methods
presented in detail in another paper. "

The theory can further be developed most simply in
terms of p(T)=P(T)/C and n(T)=N(T)/C, which
will be called "reduced coincidence curves. " These

's Z. Bay, Phys. Rev. 87, 194 (1952).'" Z. Bay, Phys. Rev. 83, 242 (1951).
"Bay, Meijer, and Papp, Nucleonics 10, No. 3, 38 (1952).» Bay, Henri, and McLernon (to be published).

pt($) =p, (P)+e, (6)

i.e., the mean life 8 is given by the displacement of the
centroids of the S and P curves.

In the event that both detectors have the same re-
sponse to either particles, which case is termed "sym-
metric" (as is true in a y —y experiment with y's of
similar energy), and in a coordinate system in which
pt(P)=0, Eq. (3) yields

"9) ="(P)+20
The generalization of the theory to the analysis of

the mean lives of a radioactive family will be given in
Appendix A.

II. RESOLVING TIME

A careful analysis shows that two diferent time mag-
nitudes are needed to describe the resolution of a co-
incidence device and the statistical accuracy of time
measurements" and by their use the inconsistencies
between several earlier definitions of the resolving time
can be eliminated. The problems encountered in
attempting to define the resolving time of a coincidence
circuit can best be appreciated by considering some
simple cases.

First, let us assume that all pulses in a given channel
are of the same shape and that no random time lags
between events and pulses are introduced by the equip-
ment. Then there will be a well-defined interval in the
time coordinate describing the separation of the mem-
bers of a pulse pair for which a coincidence will be

By applying the moment theorem of Eq. (2) to p
and n, one obtains the important result:

Mp(n) =Ms(p),

i.e., the area under a reduced coincidence curve is
independent of the source strength and independent of
time delays at the source. Furthermore, since the
coincidence circuit cannot distinguish time delays at
the source from those introduced by the detectors or
the coincidence device, the above statement can be
extended to read; the area under a reduced coincidence
curve is independent of all time delays, regardless of
origin. For a given coincidence circuit, this area de-
pends only on the pulse-shape distributions.

Application of Eq. (2) to a simple parent-daughter
decay is straightforward. "If one detector responds only
to one of the particles, which case will be called "asym-
metric" (as, for example, in a P—y experiment), then
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1 f -t-oo

P(T)dT= p(T)dT, —
2CJ „ 2

(9)

which is also valid if P(T) is replaced by X(T), the
coincidence curve for any source of related events,
prompt or otherwise.

On the other hand, we see that the width of the
coincidence curve is no longer given by the resolving
time, ~. Nevertheless, the width of the prompt coin-
cidence curve determines the statistical accuracy of the
measurement of time delays. Therefore, it is desirable
to introduce a second characteristic time, ~, that is a
measure of this width. Theoretically, the best choice
would be the square root of the normalized second
moment about the mean of the prompt curve, 0
= (ps —mrs} &, which appears in the calculations of
statistical accuracy. However, in practice, one prefers
to choose a quantity which is easier and quicker to
calculate from the data. Therefore we choose the
definition

p+00 1
p(T)d T=

2pmsx —s& 2I', ~ „P(T)dT, (10)

which has the virtues that 7' reduces to v in the ab-
sence of time lags, and that v' is usually very close to

recorded. Without loss in generality the possibility that
this interval consists of several separate subintervals
can be disregarded here. The resolving time, v, is
customarily defined as half of the magnitude of this
interval, and could be measured experimentally in two
ways. One could either measure the coincidence curve
for a prompt source, obtaining a rectangular curve of
width 2r, or one could observe the chance coincidence
counting rate, S„for unrelated sequences of pulses in
the two channels, obtaining

&c=&zÃa 27,

where S~ and E~ are the respective "singles" counting
rates.

Now, let us introduce random time lags between the
actual events and the pulses which come from them.
The value of 7 will be unchanged, and can be deter-
mined as before from Eq. (8), since the chance coin-
cidence counting rate will not be influenced by the
random lags. However, the prompt coincidence curve
will be broadened and will no longer be of rectangular
shape. The maximum of the prompt curve will even be
lowered if my of the random time lags exceed r. Despite
the distortion of the coincidence curve, there is a con-
venient functional of it that will yield v. Noting that
in the absence of random time lags, the height of the
rectangular coincidence curve will be C, the area of the
curve divided by C will be 2r. Now, invoking the prin-
ciple expressed by Eq. (5), that the area of a reduced
coincidence curve is independent of time delays, we
can write

the half-width at half-maximum of the coincidence
curve, being the half-width of the rectangle that has
the same height and area as the curve.

If one writes

'T =GO )

the constant o. is of the order of magnitude unity for
the types of delay curves usually obtained. This can
be seen from the examination of a few analytical func-
tions. For example, for a simple exponential n=1, for
an isoceles triangle n=as, for a Gaussian n=s./2, and
for the extreme case of a rectangle a=3. Therefore, in
the estimation of statistical error one is often justified
in using v' instead of 0.

The final step is to extend the definitions to the
general case in which each channel receives a distribu-
tion of pulse shapes. Then a resolving time can be
defined in the original manner for every possible kind of
coincidence-countable pulse pairs, and v should be the
average of these resolving times over the pulse shape
distributions. We again consider first the case of no
random time lags, and describe all possible coincidence-
countable pulse pairs by a running index "k." Letting
C& be the number of "type k" pulse pairs appearing in
unit time, the prompt coincidence curve will be given by

+(T)=ZsCsA(T), (12)

where P„ is the coincidence curve for a single "type 0"
pulse pair, i.e., a rectangle of unit height and of the
width 2~1,. Without loss in generality, we can assume
here that all Ps(T) have the same centroid, as failure to
meet this condition can be compensated for by intro-
duction of appropriate time lags. Then, since PCs ——C,
the maximum of 4'(T) will be C, and the average re-

solving time, ~, will be given by

as before.

1 f+
+(T)dT, (13)

2C~ „

The internal noise of the coincidence circuit causes Quctuations

in r I,. These will be taken into consideration in Sec. III. Replacing
r& in Eq. (13) by its average for "type k" pulse pairs, Eq. (13)
and the above derivation remain valid for the general case.

The argument already given for the case of uniform

pulses again serves to extend Eq. (9) to apply to co-

incidence curves influenced by random time lags. Thus,
2v. is always given by the area of the red.uced coincid. ence

curve p(T) or N(T).
The chance coincidence counting rate will still be

given by Eq. (8), provided. the quantity X&1V+ only

includes coincidence-countable pulse pairs.
The definition of 7' is based on the shape alone of the

observed prompt coincid. ence curve and will also be

given in the general case by Eq. (10). In the literature
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both r Ldefined by Eq. (8)j and r' have occasionally
been called "resolving time. " We suggest calling r the
"resolving time" and v either the "practical resolving
time" or, better, just the "half-width of the prompt
curve. " Since p,„&C,one always has r'))r.

III. EFFECT OF TIME LAGS ON COINCIDENCE CURVES

We will investigate the eGect of time lags originating
(1) in the detectors and (2) in the rest of the equipment.
First we consider prompt events.

(1) The pulses of a "type k" pulse pair both appear
with some time delay after the events; the difference
of these time delays will be denoted by 3&'. It must be
noted that the definition of tf,

' is arbitrary since no
unique definition for the timing of pulses of diferent
shape can be given. (For example, one can define the
time of appearance of a pulse as the center of gravity
of a voltage curve or as the time at which the output
voltage, or current, rises to a given level, etc.). How-

ever, when changing from one definition to another,
only the origin of the )I,

' axis will change and the vari-
ance o(tk ), which is the quantity of greater interest in
the investigation of time lags, remains unaltered.

(2) The "type k" pulse pairs for which tk' Opro-——
duce a prompt curve which will be denoted by Pkp(T).
If there were no statistical fluctuations in the coinci-
dence circuits, PI,D would be a rectangle of height Cl„
width 2rk, with its center at (say) Tk. One could then
regard Tk tk" (where——T=0 corresponds to equal
inserted time delays in the two channels of the co-
incidence circuit) as the time lag originating in the
coincidence equipment (excluding the detectors). One
should note that while t~" depends on the definition used
for tk', the sum tk'+tk" (for prompt events) is inde-

pendent of that definition.
Now, if pk'(tk') is the probability density for tk' and.

if tk tk'+tk", the——probability density for tk will be

pk(tk) =pk'(tk') since tk" is a constant. Therefore, when

ignoring the fluctuations (noise) of the coincidence
circuit,

Pk(T) =Ck pk(T —tk)pk(tk)dtk,

and using the notation o'= p2 —p, »', one has

p Ck2rk{o(tk')+Etk —tll(P)$'}
o'(P) —o2 (@)=

p Ck2rk

where

Q Ck2rk(Ltk —tll(P)3')A

Z Ck2rk

+(T)=ZkCq4(T).

(17)

and
Pko(&) =plCkapkl(& —4l"), (19)

fQ +00

Pk(2) =Z Ckl
J

4'ktL2 (tk'+4l —')]pk'(4')d4'. (20)
L

The centroid is given by

Q«kl2rkl{tll(pk')+tkl"} QlCkl2rkltkl
tll(Pk) = (21)

p lCkl2rl, l~LCI l27kl
and

o'(Pk) —o'(+k)

where

Q lCkl2rkl{o(tk')+[tkl —pl(Pk)]'
(22)

plCkl2rkl

+k(&)=PlCklgkl.

The right-hand sides of Eqs. (16) and (17) represent
the weighted mean and weighted mean square devia-
tion of the time lags, with the weighting factors 2~A,

fol' fy.

Now, to take into account also the eBect of sta-
tistical fluctuations originating in the coincidence
circuit, we consider again the "type k" pulse pairs for
which t~'=0. Identical pulse pairs now produce dif-
ferent coincidence curves, depending on the state of
internal noise of the coincidence circuit. If one dis-
tinguishes by a running index l the diGerent states of
noise of the circuit, each determined by a set of values
of all the noise parameters, then for each such "state l"
there will be a fkl(T) rectangular curve of height unity
and width 2v-A, ~ around T=O, a Cp~ total coincidence
rate, and a tkl" time lag. The prompt curve Pka(T) will
therefore be

where

leak(T)

is a rectangle of height unity, width 2rk,
with its center at T=O.

The prompt curve for all types of pulse pairs is

+00

P(&)=pkCk pk(2' —4)pk(4)d4,

The prompt curve P(T) in the general case for all
types of pulse pairs is

P(2') =E Pk(T)

=p p Ckl ~ pkl[T (tk'+tkl") jpk'(tk')d—tk', (23)

its centroid is

Q Ck2rktll(pk) Q Ck2rktk
t l(P)=

p Ck2rk p Cl,2rk
(16)

the centroid is

Eked lCkl2rkltkl zkCk2rktk
t l(P)=

ZkZlCkl2rkl ZkCk2rk
(24)
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and

o'(P) —o'(+)

ZsZl( kl2rki(s(isi)+Pfkl pl(P) j )
(25)

Ps&(C„2r,(
where

+(&)=ps+~(&) =ZsQCaif~~.

Equations (24) and (25) show that, also in the general
ease, when time delays of all origins are taken into
account, the coincidence equipment "sees" the weighted
average and weighted mean square deviation of the
time lags, with the weighting factors equal to the
individual resolving times. In addition, one can see
that the eGect of internal noise in the coincidence
circuits is (1) to change the form of 4(T) and (2) to
introduce additional time lags appearing as Quctuations
of tI,".

The occurrence of these weighted statistics in the operation of
the coincidence equipment can readily be understood in the fol-
lowing way: In a multichannel arrangement consisting of a large
number of identical coincidence circuits with an inserted time
delay hT between them, every "type k" input pulse pair would
give a coincidence output simultaneously in 2rs/nT channels.
Therefore in the calculation of the area and of higher moments of
the P(T) curve a "type k" pulse pair occurs with the relative
frequency Cs2rs/ZCs2rs instead of Cs/ZCs. What is true for a
multichannel equipment is also true for the one-channel equip-
ment since it gives a similar P(T) coincidence curve in the suc-
cessive measurements.

In Eq. (25), o'(4') represents the smallest possible
width of the prompt curve compatible with the given
pulse shape distribution and resolving times vj, ~ of the
equipment (i.e., a prompt curve without time lags,
which could be called "prompt-prompt" curve) and the
right side of the equation describes the broadening of the
prompt curve by time lags. Introducing now the symbol
t' for the right sides of Eqs. (17) and (25), one can write

o'(P) =o'(4')+ i'. (26)

It should be noted that %(T) can be determined in
principle (e.g. , by pulse-shape selection, approximated
by pulse-height selection) but in most cases it is suK-
cient simply to write

(27)
and consequently

where rr is the same as in Eq. (11),and can be estimated
fairly well with some knowledge of the amplitude
distribution.

Generalization to the case of the F(T) curve can be
obtained simply by adding the first and second moments
of the to(t) curve. Therefore,

0 (X)= (1/(x) T'+ t'+ o'(w) (29)

The problem of the variation of o'(P) with varying
conditions in the coincidence circuit is important for

Sec. VI. There are methods for varying r; n(ts') cannot
be reduced below some theoretical limits for scintillation
counters and little is known about the time lags t~
= tl, '+ ts" for different pulse shapes (or amplitudes).

The variation of t for different values of v was in-
vestigated in a differential coincidence circuit. Using
y —y coincidences from Niss (established as "prompt"
within 10 " second" ) and stilbene scintillators, 7 alone
was varied and the reduced coincidence curves taken.
For 7- varying from 7.9&10 ' second to 1.65)&10 '
second, f, calculated from Eq. (26) with n=tr/2 (i.e.,
taking 0 to be Gaussian, since no pulse height selection
was used), varied by less than 2 percent around its
mean value 10.5&&10 "second. Thus for the differential
coincidence circuit the functional dependence of o'(P)
on r as given in Eq. (28) with constant n and constant
t ean be used.

Equations (17) or (25) can be used to obtain an esti-
mate of time Quctuations of scintillation counters. This
is important since, to our knowledge, no other methods
are at present available to determine these time
Quctuations.

For symmetric excitations of the two detectors, as in
the above experiment, one can regard t/V2 as the
weighted rms of the time lags related to one channel.
This gives 7.5)&10 " second for stilbene, 6.5)&10 "
second for diphenyl acetylene and 3.5&(10 "second for
diphenyl acetylene when a pulse-clipping method is
used (anode pulses shorted by dynode pulses"). Since
these values are near to the theoretical expectations for
the scintillators"" plus time lags in photomultipliers,
one can conclude that the spread of time lags attribu-
table to the varying pulse shapes is small ( 10 "
second or less), at least in the differential coincidence
circuit. Using Cerenkov counters s' t/v2 2&&10 "sec-
ond was obtained, this can be attributed to the photo-
multipliers. Time lags due to the Quctuations of tI,

"
have been investigated by the use of pulses branched
from one detector (where 4' ——0) and were found to be
of the order of a few times 10 "second for a differential
coincidence circuit, i.e., about one order of magnitude
smaller than the time lags gv(ts') for scintillation
counters.

To obtain results more specialized than the above
weighted averages, e.g., for scintillation counters, and in
particular to obtain the dependency of v(tz') on the
total number of photoelectrons utilized, one has to
apply Eqs. (17) or (25) with pulse-height selection in
the experiment.

IV. EXPERIMENTAL DETERMINATION OF C

Figure 1 illustrates a possible scheme for obtaining
the coincidence curve X(T) and the value of C appro-

~ Bay, Henri, and McLernon, Phys. Rev. 97, 561 (1955).
s' Bay, Henri, and McLernon, Phys. Rev. 90, 371 (1953).
ss R. F. Post& Nucleonics 10, No. 5, 46 (1952).
ss R. F. Post and L. I. SchiH, Phys. Rev. 80, 1113 (1950).
"Bay, Cleland, and McLernon, Phys. Rev. 87, 901 (1952).
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easier and faster to record changes of C than changes of
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the experiment.
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Fio. 1. Block diagram of the equipment for the
determination of C.

priate to that curve. In the figure, C~ represents the
fast circuit, with a resolving time 7&, that yields the
coincidence curve; C2 represents a similar circuit having
a resolving time ~~ at least an order of magnitude
greater than both 0 and t. The type of coincidence cir-
cuits used for C~ and C2 in this measurement is im-
material. In Fig. 1, ~~ 2)&10 "second and ~2 3&10—'
second are shown as used in an actual experiment. The
level of the discriminator following C2 is set sufficiently
high and that of C& suKciently low (even tolerating
noise pulses in C&), that any pulse pair yielding an
output from C~ great enough to trigger C2's discrimina-
tor is certain to produce an output from C~'s dis-
criminator if the delay time, T, is correctly chosen. E
represents a far slower coincidence circuit, the purpose
of which is to determine whether a pair of outputs from
C~ and C2 stem from the same source events. The out-
put counting rate of R as a function of T will be the
coincidence curve 1V(T), and the counting rate of the
discriminator following C2 will be C. In actual experi-
ments, ""we used for C~ a differential coincident
circuit in which one can vary r independently of the
pulse length.

Having determined C, one can use the reduced
coincidence curve which is normalized to one pair of
events, and present the following advantages:

(1) No correction is needed for the decrease in
strength of a radioactive source while making a
measurement.

(2) The change of solid. angle and thereby counting
efficiency introduced by displacing the source, as is
done in some time-of-Qight measurements, does not
affect the reduced coincidence curve.

(3) If instead. of utilizing the moments of the coin-
cidence curves for the time measurements one uses a
portion of the steep part of the curves (slope method),
then if one measures C it is not necessary to normalize
the prompt and delayed curves to the same area and
therefore one does not need to measure the entire
coincidence curves.

(4) If an initially unknown number of prompt co-
incidences is mixed with the desired pulses whose
lifetime is to be measured, then one attempts to find
out the ratio of mixing by introducing some changes

"Bay, Henri, and McLernon, Phys. Rev. 97, 1710 (1955).

+c P 686& 27. (3o)

It should be noted that E, as used in this section con-
tains only chance coincidences originating from the
source events. Other types of chance coincidences may
be present in a given experiment and Ã, should be
corrected for them.

In practice, not all pulse pairs are coincidence-
countable, and Eq. (30) must be modified to

+c= & gEg&c'27
p (31)

where e, is a proportionality factor for the pulse pairs
that are coincidence-countable. Although it is common
practice to regard a quantity such as e, as the efficiency
of the coincidence circuit proper, ~, has no fixed value
for a given circuit since it depends on the values of ~~
and ~~, which in turn are determined by arbitrary dis-
crimination levels. (In fact, it is possible to choose e~
and en in such a manner that e, is greater than unity. )
However, the product 6=6g6g6 is well defined, being
the fraction of source events yielding coincidence-
countable pulse pairs.

For the experimental determination of e, we use the
relation

C= p~. (32)

By Eqs. (9), (31), and (32), e can be expressed in
terms of experimentally observable quantities as

e=C t N(T)dT N,

N(T)d T 2rlV. . (33)

Equation (33) shows that e is independent of time
magnitudes such as t, 0, and 7-, and that it is also inde-
pendent of the source strength v and can be deter-
mined experimentally without knowledge of the source
strength. Furthermore, e (being independent of 8) is
the same for the prompt and decaying sources. Since e

is the ratio of the number of coincidence-countable
pulse pairs to the number of source events [Eq. (32)],
we call it the coincidence yield of the experiment.

V. COINCIDENCE EFFICIENCY

The chance coincidence counting rate was given in
Eq. (8) as 1V&N& 2r, valid only if all pulse pairs are
coincidence-countable. Equation (8) can be written in
terms of the disintegration rate, v, of the source by
introduction of ~~ and e~, the eSciencies for the count-
ing of singles:
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The ordinates of the reduced coincidence curves
22(T) and p(T) give the fraction of coincidence-count-
able pairs which are in the proper time-delay interval
(given by 2r) around T and which therefore will be
counted. It is usual to call p, =P,„/C the "coinci-
dence efficiency" (as in reference 9). In general, one can
call p(T) and 22(T) the "coincidence-counting effi-
ciencies" at T, which are related to the number of
coincidence-countable pulse pairs. One also can directly
relate the counting eKciencies to the number of source
events by multiplying P(T) and 22(T) by the coinci-
dence yield e.

~(x;)= [t]C22;; (33)

VI. STATISTICAL ACCURACY OF MEAN-LIFE
DETERMINATIONS

In the measurement of an individual point at T; of a
curve E(T), 22, =e(T;) is the probability of obtaining
a coincidence count per countable pulse pair. I.et the
duration of observation for one point be [t) and let the
number of countable pulse pairs occurring during [t)
be 6 and the number of observed counts be X;. Then,
K; may be regarded as the number of successes in 6
trials, with an a priori probability of success n, . For a
given 6, K; follows a Bernoulli distribution, its mean

being 622; and its variance n(K, )= 822, (1—22~).

In the following, we have to distinguish between two
diferent cases.

(1) C is 22ot measured The nu.—mber of trials 6
during [t) fluctuates from point to point and

rt(X;) = (8) „22;(1—B;)+n,'v(6). (34)

With a Poisson distribution for 6 around its mean value

(&)"=[t)c,
the variance is found to be

e(8)= ( '[t (&))+~'[t (P)]}
160'

(41)

for the symmetric case.
Simple formulas, particularly useful for order-of-

magnitude estimates when planning experiments, re-
sult from the use of an approximation. This consists
of 6tting a Gaussian to the prompt-coincidence curve
P(T) and expressing all pertinent moments of P(T)
and X(T) in terms of r'/8 "If o.ne also takes X to be
the same for the two curves, then

(42)

for the asymmetric case, and

2(8) 1 5 1 pr'y' 1 (r'~'
m. 4 ~&8) ~2&8)

(43)

for the symmetric case.
Valuable information is obtainable from Eq. (39)

concerning the optimal use of coincidence equipments
among given circumstances. We restrict our discussion
to the statistical error of p, &, in the asymmetric case.

We determine 6rst how to choose the best value of
the resolving time for measuring a given lifetime and
for a given time of observation. We assume that t is
unaffected by the variation of v- as was shown to be the
case for a differential coincidence circuit (Sec. III).

Using the notations of Eqs. (11), (26), and (28), one
can write

The variance of 8 in terms of those of the moments
used is

(8)= 'L (&))+ 'L (P)] (4o)

for the asymmetric case, and

or, if one regards sampling values as experimental
estimates for population values, and uses the same
notation for sampling and population values, . one gets

tis(%)+t' a 'r'+t'
o'[t i(P)]=

For X we substitute

(44)

(36)2 (X,)=X;,
ri(X;)=X;/[t),

2 (n;)=n;/[t)c.

x= [t]cp n, = [t]C2r/aT, (45)
(37)

where AT is the distance between two adjacent points.
The measured points m are distributed along the length
T —T~ which is proportional to the width of the co-
incidence curve. Thus, writing

(38)

If the coincidence curve is obtained. from a set of X s
taken at equidistant T; values, p,„can be approximated
by gT,"E,/+1V;. Taking the same [t) for each point
and employing the usual method of treatment of the
propagation of errors,

T~ Ti= 2K{+2(P) PP(P)}*—
&

we have

(46)

s (~
—1T2+t2)i

o'[t i(P)]= (47)
Z(T'"—u')'&' t 2.—t '

o'(t .)= (39)
(P Ã,)2[t] x where [T)=2rt[t) is the total time of observation for

the entire coincidence curve. The value of ~ will be
where K= +K; is the total number of counts observed
along the entire coincidence curve. ss Kanner, Bay, and Henri, Phys. Rev. 90, 371 (t953).
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~= [t i(N) —
t i(P)3

1 N„—(T„T,—)/A2 1~(20 2

and

discussed later. Equation (47) yields the optimal p, and pi(P) for the measured. sections, one obtains:
denoted by Tp, fol' wlllcll 0 [»(P)) is a minimum. We
have

(s6)

3 z3 K

'[t i(P)3= ——
m 2[T]

where A represents the area of N(T) or P(T) within
the measured section. With N (T Ti)—/A small com-
pared to unity, the variance of 0 will be

0'(T~—Ti)'
for the P(T) curve and A' BY,i+A

When %(T) is a Gaussian, n=n. /2. When it is a rec-
tangle, n=3. Since %(T) is most probably between
these two extreme cases, it is safe to write Eq. (48) as +P

02~ $2 (5o)
(s7)

p pp~t~+ep (sl)

2K

for the N(T) curve. Thus the best choice for p is the
weighted rms of the time delays present in the measure-
ment. This choice of r corresponds to a p,„being 60
to 70 percent of C [depending somewhat on the shape
of the%'(T) curve j.

Since both P(T) and. N(T) are involved in the
measurement of a lifetime, the resulting optimal choice
for v will be determined by t, 8, and the intensities of
the prompt and decaying sources.

With 7 p, and o, 2, one can write

By proper choice of T& and T the small additional
error due to the third term in Eq. (57) can be over-
compensated by the gain in K& and xP.

Instead of measuring the first moments of the
measured sections, one can utilize Eqs. (54) and (55)
directly to calculate 0."Dividing the measured sections
into two intervals Tp —Ty and T —Tp, where Tp is the
abscissa of the intersection of 1V(T) and P(T), one
obtains

Ap —Ai —(up —ui)it

2Np (1Vi+1V )—

and

'[& (P)l

2K
o'[tii(N)]- (t'+e').

[T]C

(52)
where Ai and Ap are the areas under the N(T) curve
for the two intervals, c~ and a2 are the corresponding
areas under the P(T) curve, and q= (A i+A p)/(ai+a, )
is the normalizing factor. Disregarding the statistical
error of it, one obtains, for 1V (&Np,

The factor K is the range of the measured interval rela-
tive to the width of the curve. It is of practical interest
to have K as small as possible, i.e., to avoid long measure-
ments with small counting efficiencies. Utilizing some

geometrical properties present in individual cases, one
finds means to shorten T —T~. In practice one seldom
needs «)3 (or T„Tithree times the—half-width of the
curve between half-maxima).

Larger reduction in K can be achieved in the case of
a pure parent-daughter exponential decay (if one is
also sure that no mixture of other, e.g., prompt, coin-
cidences is present). Using the differential equation

N(T) P(T) = 6(dN/dT)—,
—(54)

derived by Newton, "and its integrated. form

fS TtQ
P

ital

N(T)dT
I

P(T)dT=0[1Vi N 7 (55)
T1 T1

(Ai+Ap)' (Ai+Ap)'
p(0) = +

4S02% 4S02K„

pNq ' 1 0'
+e'(

) +—.(s9)
&No& &i+M &o

The first three terms are of the same order as in Eq.
(57) since (Ai+A, )/21Vp represents the width of the
N(T) curve and A (T —Ti)Np/2. Except for 8(&r'
the additional term is not small (Kp&(X), and therefore
the total error is greater than that obtained with the
moment method.

We next examine the following question: Is it pos-
sible to improve the accuracy by utilizing the total
time of observation [T) in a better way, using unequal
counting times at the various delays T;?

Rewriting Eq. (39) in the following form:

& (T'—»)'N'/[«j
p-'[t'ai (1V)j=

(2 N')'

where 1Vi——N(Ti) and N =N(T ), and choosing T,, (6o)and T such that S~=E, one finds that the areas of
the two curves within the section T —Tj are equal, i.e.,
the two curves can be normalized without measuring where [t;] is now the time of observation for the
the outer parts. Calculating the first moments t'ai(N) point T;, and minimizing the expression on the right in
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Eq. (60) with the condition

P Lt;]=LT]=constant,

results in the time schedule

(61)

being counted, the variance of p, i(P) would be

~'Lt i(P)j= t'/(I T]C)
and the variance of t'ai(N) would be

(67)

and

Lt'] =LT]
2 I

T'—» I
v'N'

1 ppIT,—»IQN, qs
~'Lt i(N) j=

LT]( PN; )

(62)

(63)

v(n, )=e;(1—e;)/8. (64)

In the successive measurements of individual points of
a coincidence curve the observations are made either
for a constant 8 ("preset count") or for a constant Ltj
("preset time"). Since n; is always calculated from
correlated values of K; and 8, Eq. (64) is valid for all
separate points and in the calculation of errors 6 can
be replaced by its average value (3jc.Thus

e(e;)—e, (1—e,)/(I tjc). (65)

A comparison of Eqs. (65) and (38) shows that the
statistical error is smaller when C is measured.

The expression for O'Ltii(e) j is:

P (T,—pi)'e, (1—e,)
~'L»(&) j=

Ltjc P e,

The first term in the bracket is the same as in Eq. (39)
and the term to be subtracted from it is always positive.
Calculation for a Gaussian curve and for actual co-
incidence curves showed that the second term is 30
percent of the first term when 7.= ~0.

Other advantages of the measurement of C have been
pointed out in Sec. IV.

It is interesting to compare the errors given in Eqs.
(52), (63), and (66) with the least possible error ob-
tainable during I Tj in the presence of time lags char-
acterized by t and in the presence of the time delay
function m(t). The least possible error would be ob-
tained with a multichannel coincidence system con-
sisting of channels having a negligibly small 7., and of a
suKciently large number to cover, without overlap,
the entire range of the coincidence curve. In such a
system none of the [Tjc coincidences would be missed

A comparison of Eqs. (63) and (52) for a Gaussian
and for an experimental coincidence curve gives in
both cases, when utilizing the time schedule of Eq.
(62), a rather small improvement ( 10 percent).

(2) C is measured. —The ordinate of the reduced
coincidence curve is calculated as e;=X;/8 and its
variance is Slope Method

One can utilize the slope of a coincidence curve to
measure time delays when:

(a) w(t) is a simple exponential function. In this
case 8 can be determined.

I Eq. (54)j as":

N(T) P(T)—
8=

dN/dT
(69)

(b) ~0(t) is of a general form but its entire range is
not longer than the linear part of the prompt curve.
It has been shown" in this case, that

N(T) P(T)—
t'ai(w)—

dP/dT
(70)

As was pointed out in Sec. IV, the slope method is
simple only if one avoids the normalization procedure,
i.e., if one measures C (denoted by C„and. C„ for the
two curves). We will therefore relate the slope s to the
reduced coincidence curves. We approximate s by

s = (ei—es)/(Ti —Ts),

where T~ and T2 are two separate points chosen around
T, and obtain for the variance of 8

1 In(1 —e) p(1—p)
Ie(8)=—

s'I
I t„jc [t,]c„ I

8' ei(1—ei) ns(1 —ns)

s'(Ti —Ts)' Lti]C„Ltsjc„
(72)

The second term in Eq. (72) shows that the method is
feasible only for very small 8's. Namely, T&—T2 must
be small compared to t to avoid a large systematic
error in the determination of s. On the other hand, large
8'/(Ti Ts)' introduces lar—ge statistical errors. For

» Bay, Meijer, and Papp, Phys. Rev. 82, 754 (1951).

.'I.,(N) j= (t'+8')/(L-Tjc). (6s)

With a=3, the factor appearing in front of t'/(LT]c)
in Eq. (52) is 6, i.e., the one-channel method yields,
in about six times larger a time of observation, the same
accuracy as the (infinite) many-channel system. By
the use of unequal times LEq. (63)j this factor is re-
duced to 5.5, and by the measurement of C to 4
LEq. (66)j. It can be further reduced by methods
diminishing ~. Therefore, related to the same time of
observation, the standard error obtained with the
one-channel equipment is approximately twice (2~)& the
least theoretical standard error.
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T

&(T)-P(T)- ~ p(t)« (73)

Writing

p = 1/(2o' t) (74)

we obtain for each of the coincidence curves

v (I/s) -o.t'/(L T]C)

where the measured ordinates of n, or p are taken as -'„

corresponding to the nodal point of the p(t) curve.
A comparison of Eq. (75) with Eq. (67) shows the

important fact that the ultimate determining factor for
the accuracy of very short time measurements is also t
when using the slope method.

In practice (dP/dT), is Rnite, s, &1/(2n't), and
the actual statistical error may be similar to that ob-
tained by the moment method, Eq. (52) corrected as
in Eq. (66).

The convenience of the slope method makes it very
useful for the detector of very short time delays. "

Tail Method

For large T's where N(T)»E(T), the tail of the
coincidence curve approaches an exponential for both
the asymmetric and the symmetric parent-daughter
cases. 8 can be determined by fitting a straight line by
least squares through a semilog plot of the experi-
mental points. This leads to the slope":

(76)

8((t the second term in Eq. (72) can be neglected and.
we calculate the first term for the highest slope s, of
the e(T) curve.

Since e(T) is a threefold convolution integral of
f(T), p(t) (we take here the time lag function to be
uniform for all pulse pairs), and w(t), it follows that
s,„cannot exceed (dg/dT), „,p, , or ro, .

For the ideal case where (dP/dT), = ~ (rectangular
P(T), with uniform r for all pulse pairs], when r is
large enough to cover the entire range of p(t) and when
0«t, we have s, —p, and

or, when measuring at equidistant T s,

02 02

v(e) =-
K P2—Py

(79)

Effect of Chance Coincidences

The chance coincidence counting rate is measured
at T= ~ and its mean value subtracted from all the
measured counting rates along the coincidence curves.
Again we consider two cases:

(1) C ss Not measured N; is o.b—tained by measuring
K =K;+X, for the time Lt) and calculating

K;+K,
(8o)

where K, is the number of chance coincidences occurring
during Lt] and 1V, is the chance-coincidence background,
determined separately at T= ee, during the time [t,).
The variance of g; is

where p2 and p, ~ are the normalized moments of the
measured section. For T Tr»—0, v(8) approaches
0'/K, which is just the variance of the center of gravity
of the measured section. Thus the moment method with
the use of Eqs. (56) and (57) having here I'(T)=0,
choosing a coordinate system such that T~——0, and
omitting X& in Eq. (57), leads to similar statistical
accuracy.

The determination of 0 from the tail has the advantage
of involving only one coincidence curve. There is there-
fore no need to be concerned here with pulse shape
distributions [Sec. I, condition (b)]. Of course in this
case K, being dependent on 7-, 7.', 0, and T —T~, is
generally a rather small fraction of C[T).This restricts
the practical use of the method to 8))v'.

Summarizing the results of statistical error calcula-
tions for the diGerent methods, one can conclude that
the moment methods can be used generally. Other
methods, applicable only with some restrictions, can
lead to similar statistical accuracy as the moment
method.

where T=gN;T;/PN;, y;=logN;, g= gNy;/PN;,
and the points of the plot are weighted by E; to satisfy
the condition

S, X, E,
v(1V;) = + +

Lt] Lt) Lt,] (81)

N;v(y~) = 1/[t] =constant,

if Lt) is the same for all points.
The variance of 8 is

and since the last term of Eq. (81) is common for all
points of the coincidence curve, the variance of p„ is

(78)

"For exampIe see R. H. Bacon, Am. J. Phys. 21, 428 (1933).



STATI ST I CAL THEORY OF DELAYED —COINCIDENCE EX PER I MENTS 1207

For i|41, Eq. (82) gives

cV./C=v 2r, (85)

which can be used as an estimate when designing
experiments.

(2) C is rneas24red. Here n; is cal—culated as follows:

(1/[t)) (X;+X,') —Ã, '
(86)'

(I/[~))(~+~. +~.-)-A.'

where X,' is the number of chance coincidences appear-
ing in the circuit with the resolving time ~~, within the
time [t], and K,'+K,"=K, is the number of chance
coincidences appearing with t' in the other circuit (re-
solving time r2)

The corresponding chance coincidence counting rates
are measured at T= ~ during the respective times of
observation [t,') and [t,). The K,' counts appear in
both circuits and X,'/E, = rl/r2. A simple calculation
gives

n, (i—n,) 1V, 71( 1 1
lt (n;) = +—(1—n,)'—

i +
[t]C C' r, &[t] [t,'])

( rl) (I 1
+n'f 1—II +„)E[t] [t,]i (87)

~'( 1)=—(~2—~1')
x

1V, 1 (T Tl—) ' (T +Tl
+ -I

I +I
(Ã;)4, 3( 2 i ( 2 )

]T+Tl q2 X, 1
+I

2 ) (A;)„2[t,]
A similar expression is valid for the P(T) curve. The
first term of the right-hand side of Eq. (83) shows that
the additional error caused by the statistical fluctuation
of the number of chance coincidences during the meas-
urement of the individual points, is proportional to
1V,/(1V;)&„. The second term depends on the time [t,)
spent in the determination of X,. It is interesting to
note that the second term can be suppressed by taking
the measured interval T —T& symmetrically around
p, ~. In this case even a statistically poor determination
of E, is sufhcient, and one can write

P,2
—Pl') ~' 1V, q

~'(ui) =
(

1+— I, (84)
X ( 3 (Ã,)„)

where z is de6ned in Eq. (46).
Since (X;)~, 2$~. = ', Cr-/r' and-r/r'=1/VB for

r= rp, and 14= 3, one can estimate that, for E,/C= 1%,
the variance of pl increases by 5% or the standard
error by 2.5%.

If only chance coincidences originating from source
events are present, then E,/C can be calculated and
one obtains

VII. APPENDIX A

To illustrate the application of Eqs. (1) and (4) to
more complicated cases, we will now treat the case of
parent-daughter-granddaughter decay and will then
make the obvious generalization to larger radioactive
families.

Let us denote the mean life of the daughter by 0& and
that of the granddaughter by 02. Without loss in
generality, we can restrict the problem to the case in
which only the radiation of the parent and grand-
daughter decays can excite the detectors.

The w(t) function for the time interval between the
parent and granddaughter decays will be the super-
position of the two exponential decay functions with the
respective mean lives 81, and 82. The w(t) function and
hence its moments will be symmetric in 0&, and 02. The
moments, p„, will be given by

141 81+82 Sll

P2 2[81 +8182+82 ) 2[S1 S2))

op= 6[81'+8182+8182+82 ] 6[S1 2S1S2]y

144 24[81 +81 82+81 82 +8182 +82 ]
=24[S1'—3S12S2+S2'),

etc. ;

(A1)

where Sl——81+82, S2——8182 are the elementary sym-
metric functions of the 0's. Now, for an asymmetric
experiment, the first moment of w(t) will yield Sl, the
second moment and the known value of S~ will yield
52, and 0~ and 02 will be the roots of the second-degree
equation:

8'—S18+S2=0. (A2)

The generalization to the analysis of an asymmetric
experiment performed on a family of S' members is
straightforward. We denote the S elementary sym-
metric functions of the 8's by S&N (k=1 S). Since
44„(w) is a symmetric function of the nth degree in the
0's, p,„can always be expressed as a function of the S»
such that

(w) @ (S1N ''' S N) (A3)

where C „does not contain any S» for k&n. Thus the
first E moments of m utilized in ascending order will

yield the S» s by simple substitution, since the right
hand side of Eqs. (A3) will be a triangular array in the
S»'s. By a well-known theorem of algebra, 0&, 02,

Comparing Eq. (87) with Eq. (81) rewritten in the
form:

(lV;y n; A', '( 1 1
+ I +, i, (88)«& [~)C C'~[~) [~.']~

one can see that for all practical cases where E,&C and
[t,) [t,') the variance shown in Eq. (87) is less than
that given by Eq. (88).



1208 BAY, HENRI, AND KANNER

~ ~ ~, 8~ will be the roots of the Xth-degree equation

( 1)s$„gx—s—0 (A4)

The w(t) function obtained in a symmetric experi-
ment divers in that all the odd moments are zero. The
even moments, however, will be the same as those
obtained in an asymmetric experiment. Thus, for the

parent-daughter-granddaughter case, S1 and $2 can be
determined by inserting tts and tu4 in Eqs. (A1). While
the previous triangular array is no longer available,
Eq. (A2) is still valid and yields gi, and ()s.

For the case of a symmetric experiment performed
on a family of N members, we use the 6rst X even
moments p2, p4, , @2~ from which we determine SI,~,
k=1, , S. Then Eq. (A4) can be solved for ei, es,

Og as before.
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Inadmissible Auxiliary Conditions in Quantized Linear Systems
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Methods of applying supplementary linear conditions to quantized linear systems are reviewed; it is
seen that such a procedure is self-consistent for Fermi-Dirac systems in general, and for Einstein-Bose
systems possessing positive de6nite constants of the motion. Possible modifications are discussed for those
cases in which the operator conditions to be added appear intrinsically inconsistent with the commutation
relations. Alterations of the commutation relations which maintain the invariance properties of the system
are found to be generally inapplicable. Increasing the number of side conditions achieves the desired ob-
jective, but at the expense of reducing drastically the class of constants of motion. Finally the introduction
of a restricted set of Geld variables is explored. It is shown that the new variables, in terms of which all
pertinent field quantities may be expressed, permit a consistent formulation to be realized; the case of a
massless spin s boson Geld is treated in this manner.

INTRODUCTION

' 'T is often necessary to augment the equations of
~ - motion of a physical system by relations of a more
peripheral nature. The eGect, and frequently the
intent, is to reduce some symmetry of the problem and
so negate the attendant decoupling of properties which
appear correlated in nature, such as internal and ex-
ternal angular momentum for the vector meson without
Lorentz condition. Whereas in the classical situation
the additional equations may simply be tacked on as
dynamical conditions, this option is not available, in
an operator sense, when the original system is pre-
sented together with appropriate commutation rela-
tions; instead one may judiciously modify the com-
mutation relations, construct a new Lagrangian which
implies all relations, or perhaps use more specialized
methods' in the case of linear systems. However,
perverse situations arise in which none of these ap-
proaches can be reconciled with the maintaining of
important invariance properties and the associated
constants of the motion; the usual cure is to apply the
truculent side condition only to the quantum states of
the system. Another possible approach, with admittedly
limited applicability, is to formulate the theory in
terms of variables of presumably more direct physical
significance, such as field strengths in electromagnetic

' J. K. Percus, Phys Rev.. 97, 140. 6 (1955).

theory, and thereby, in some mysterious way, banish
the associated difhculties. We shall examine, in detail,
considerations leading to the latter method, applying
it to linear systems, in which its inherent imperfections
are well camouflaged.

A quantization formalism for linear systems pre-
viously employed' ' by the writer will be of considerable
aid. BrieRy, the recipe runs as follows. A real linear
system is determined by

P, 3I„,lk, (~) =0,

or 3IQ= 0, where 3II= (3II„) is a real matric diGerential
operator and x refers to the full set of space-time coor-
dinates. Then if the basic commutator (or anticom-
mutator) lt. (x) pp(x') =—p. (x)pp(x')+Imp(x')p. (x), with
J=&1, is a c-number, the full set of pertinent commu-
tation relations may be written succinctly as

9 (to |t) Fit=Fee (2)

s J. K. Percus, Phys. Rev. 96, 1147 (1954).
J. K. Percus, Columbia University dissertation, 1954 (un-

published) .

here co is any c-number solution of 3fco=o, Ii is any
linear operator, 9"(co,f) is bilinear in co and P and coor-
dinate independent. Further, if U, real, is an invariant
transformation in the sense that M(Uf) =0, whenever
3IIQ =0, and if U satisfies 9"(co, Uf)+9"(Ucu, lt )= 0 as well,


