
PHYSICAL REVIEW VOI UME 100, NUMBER 4 NOVEM B ER 15, 1955

Resonance Transitions Induced by Perturbations at Two or More Different Frequencies
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Resonance transition probabilities for a system in the presence of oscillatory perturbations at two or more
different frequencies are discussed. It is shown that if resonance transitions are induced by a perturbation at
one frequency, then the presence of the other perturbations at nonresonant frequencies alters the resonance
frequency for the Grst perturbation. Theoretical expressions for the alteration of the resonance frequency are
derived. Various applications of the derived formulas are discussed, including resonance experiments with
more than one oscillatory Geld, molecular beam experiments in a nonuniform constant Geld, evaluation of
"collision-narrowing" effects in nuclear paramagnetic resonance, etc. The effects of the extraneous oscillatory
perturbations are shown to be especially important if their frequencies are close to Bohr frequencies for the
perturbation.

I. INTRODUCTION

' 'N many cases, resonance transitions are studied in the
~ - presence of more than one oscillatory field. For ex-
ample, in nuclear resonance experiments the transitions
are often induced by a high harmonic of an oscillator at
a low fundamental frequency. In such a case the other
harmonics are often also present and the question arises
as to the effects that the oscillatory magnetic fields of
the other harmonics may have on the apparent reso-
nance frequency. Likewise, in a molecular beam experi-
ment, the transitions are induced by an applied oscil-
latory field while the molecules pass through a 6xed
6eld. If the fixed field is not completely uniform, the
motion of the molecule through the varying field gives
rise to an apparent oscillatory 6eld at the molecule in
addition to the one specifically applied. ' As a still
different example, if a molecule is subjected to many
collisions, the magnetic field of say one nucleus at the
position of the other Ructuates in time and one Fourier
component of this Quctuating Q.eld will appear as an
oscillating magnetic field; if an externally produced
oscillating field is produced to induce a resonance transi-
tion, the transition then actually occurs in the presence
of perturbations at more than one frequency.

One special case of the simultaneous presence of two
perturbations has been discussed by Bloch and Siegert, '
Stevenson, ' and Winter4: that of a magnetic moment
acted upon by two fields rotating at equal frequencies
but with opposite directions of rotation. The more
general results derived in the present paper will be
shown to agree with those of Bloch and Siegert in the
special case to which their result applies.

In the present paper, it will be shown that if resonance
transitions are induced by a perturbation at one fre-
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quency, then the presence of the other perturbations a't
nonresonant frequencies will alter the resonance fre-
quency for the first perturbation. Since most resonance
experiments involve only single quantum transitions
rather than the multiple quantum transitions that have
occasionally been discussed, ' " the present discussion
will be limited to single quantum transitions, i.e., the
assumption will be made that one of the oscillatory
perturbations is approximately at the resonance fre-
quency of an allowed transition while the other per-
turbations are not at resonance frequencies.

The results reported here were erst obtained in 1950
and have been privately circulated' and quoted in
various publications. '' The present report is the
subsequent paper promised in one of these earlier
publications.

II. MAGNETIC MOMENT IN TWO ROTATING FIELDS

A particularly easy case to discuss is that of a mag-
netic moment yhI acted upon by a 6xed field Hs about
which as an axis two fields II1 and H~, perpendicular to
Hp, rotate with angular velocities —co and —co2.

In the absence of H2, the magnetic resonance fre-
quency for co would be equal to the Larmor frequency,

G)p= QHp.

It now remains to see how the presence of H2 rotating at
frequency —~2 affects the position of the resonance fre-
quency for co. This problem can easily be analyzed by
the use of a rotating coordinate system. "

Consider the problem from the point of view of a
coordinate system rotating with angular velocity —co2.

Then, as discussed by Rabi, Ramsey, and Schwinger, "
5 N. F. Ramsey (private communications and public lectures.
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on this rotating coordinate system the eR'ective magnetic
field H, „ from Hp, H~, and the rotation will have the
magnitude

II,„=[(IIp &u p/y—)p+IIpp]l. (2)

However, on this rotating coordinate system the ap-
parent rotational frequency of II~ will be —(co—cop).

Hence, if the magnitude of IIp cup/y
—is much greater

than either H& or H&, the resonance frequency will be at

Ol fol' cop —co))+H2

Consequently it is apparent that the presence of the
perturbation of amplitude yH2 shifts the resonance
away from the Larmor frequency Mp.

The special case considered by Sloch and Siegert' and
by Stevenson' was that for which co2

———cop and H2 ——H~,
in which case the above reduces to

rv =orp+ (yK)'/4+p, (5)

III. GENERAL CASE FOR TWO EIGENSTATES

The discussion in the preceeding section was limited
to a magnetic moment in a magnetic Geld. In the
present section the result will be generalized to transi-
tions involving any two eigenstates p and q. However,
the discussion in this section will be limited to the case
of only two levels being involved. In the next section,
the effects of the presence of more than two eigenstates
will be considered.

The calculation can be performed in several different
ways. One is to consider directly a case for which the
result is relevant, namely the case of the separated
oscillatory field method of molecular beam resonance
described in a previous paper. " The calculation is
thereby simplified since the two oscillatory fields can be
considered to be applied at separate times, yet the
results for the shift in resonance frequency is applicable
equally to the case when the two perturbing frequencies
are applied simultaneously since for levels of Axed
separation the resonance frequency in the separated
oscillatory field method is the same'2 as in the method
with a single oscillatory field. Consideration of the
separated oscillatory field problem in this section has the
further advantage that the results show the consistency
of the conclusions of the present section with those of

which is just the result of Bloch and Siegert. It is also
apparent from Eq. (4) that the selection of ~s ———~p is
one for which the extra oscillatory 6eld is particularly
ineGective, in agreement with the conclusion of Sloch
and Siegert that their term was ordinarily small. On the
other hand, if ~&=~p the shift of the resonance frequency
can become significant in some cases.

the preceding section for which the perturbations are
simultaneously applied.

The problem then is that of an atom or molecule with
energy eigenvalues 8'„and 8', which is erst perturbed
for a time r by a perturbation of the form

V~, =hbe' ', Vp„=hbe '"', V„~=V„=O, (6)

where the notation here and subsequently is that of
reference 12. Then the atom enters a region where
(unlike the usual case") it is subjected to a perturbation

V,=hbpe""'+» V,„=hbpe ""'+» V = V =0 (7)

for the time T. Finally the atom is again perturbed as in
Eq. (6) for a time r. Without loss of generality in the
calculation of the shift of resonance frequency, r (but
not br) can be taken as very small and 2b~))~~p —&o.

For simplicity, it will be assumed that ~p —co&~))2b&
though some generality is lost by this assumption. At
time t=o the system will be assumed to be in the state
C,=O, C„=i.

For these assumptions, sin0~=1, cos0~=0, sinO~p ——0,
cosOp ——1, and a=2b, so the equations analogous to
Eqs. (8a—f) of reference 12 become the following:

C„(r)= cosbr,

C, (r) = i sin—br,

C~(r+ T)= [i sin —',a,T+cossapT]C~(7)
)&exp{iPpps (W„—+W,)/2h]T}

=Cy(r) exp{i[pa2+ p pp2

—(W„+Wp)/2h]T},
Cp(r+ T) =[ 'L slIlp apT+ cos-,'apT]C, (r)

&(exp{i[—-', ppp
—(W,+W,)/2h]T }

=C, (r) exp{i[ ,'a, ——
—(W„+W,)/2h]T},

C„(2r+T) =cosbrC„(r+ T)
i sinbr—exp(ippT)C, (r+ T),

C,(2r+ T)= i sinbr —exp( —i~T)C~(r+ T)

+cosbrC, (r+ T).

The nonappearence of p in the above equations can be
seen from the equivalence of g to cot~ in reference 12 and
from the fact that ppt~ terms do not appear in Eq. (4) of
reference i2 with the above assumption of sin02=0.
Therefore,

C,(2r+T) = i sinbr c—osbr exp{i[pap+s&os
pp (W„+W—,)/—2h]T} i sinbr c—osbr

&&exp{i[—-', ap ——,'~s —(W~+ W,)/2h]T}
= —2Z Slnbr COSbr COS&A2T

&&exp{—[co+ (W„+Wp)/h]T/2}, (9)

where
"N. F. Ramsey, Phys. Rev. 78, 695 (1950). Xs= as+ ppp

—cu. (10)
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IV. MORE THAN TWO EIGENSTATES
I

Now consider the case of four levels p, q, r, and s with
the primary resonance observed at frequency co being
that for transitions from p to q while there are also
present nonresonant perturbations with the matrix
elements

V„„=Ah„e'~""+&'

V„=ab, e'&""+&')
(13)

between the levels p and r and. between the levels s and

q. co, and co, could of course be equal and for a two-
frequency problem they would have to be, with the two
frequencies being ~ and co&——or„=co,.

With the same approximations as in the preceding
section, this problem can be solved as in that section; in
fact the same Eqs. (8) apply except that the middle two
equations are replaced by

C„(r+T)=C„(r)exp{iPa„+loco„
—(W~+ W„)/2A)T),

C,(r+ T)=C, (r) exp{i[—-', a,—-,'a&,

—(W,+Wo)/2A)T) .

Therefore, the transition probability is

P„,=4 sin'br cos'br cos'(-,'XoT)
= sin'(2br) cos'PXoT). (11)

It is apparent from Eq. (11) that the transition
probability of Eq. (11) will be a maximum for Xo ——0. A
discussion of the eAect of a molecular beam velocity
distribution on a function of this form is given in
reference 12, Eq. (14), ff. The resonance frequency' for
maximum transition probability, from Eq. (10) above
and from Eq. (5) of reference 12, then is

~= ao+~o= t. (~o—~o)'+ (2bo)'3*+~o
Mo+ (ooo c02) {[1+(2bo) /(Mo M2)'j~ —1)

=~o+ (2bo)'/2 (~o ot o)— (12)

In the special case of magnetic moments, "2b2= yH2 and
the above reduces to Eq. (4), which was derived for
magnetic moments only but with the two perturbations
applied simultaneously instead of successively as in the
separated oscillatory Geld method.

If icuoi))iMoi, Eq. (12) can also be written as

~ =~o+ (2bo)o/2uo+ (2bo) o&o/2ooo + (2bo) ~o /2(oo ~ (12a)

On the other hand, if i~oi&&ioooi,

a) =(oo—(2bo)'/2a)o+ (2bo)'coo/2a)oo. (12b)

From these equations it is apparent, when oscillatory
instead of rotating Gelds are used and when co~ is far
from coo, that the first terms dependent on A&2 are mutu-
ally cancelled by the positive and negative rotating
components into which the oscillatory Geld can be
resolved. ' Nearer the resonance frequency, however,
this partial cancellation is much less complete.

The transition probability P„,~ is then given by

P„,,= sin'(2br) cos'(ioX„,T).

Just as in the previous section then, the resonance
frequency is

~= ol a,+~,—(W.+W.)/&]+hi:a.+~.—(Wo+W )/@)
= (W, W~)/A+ ', {—(W, W„)-/A ~,—)

X{L1+ (2b.)'/((W. —W )/@— )'j' —1)
+-,'{(W,—W,)/5 —cv.)

X{L1+ (2b.)'/((W. —W )/&-
=&Do+ (2b„)'/4I (W„—W„)/a —Gl„j

+ (2b,)'/4L(W, —W, )/A —co,1. (18)

It is of interest to note that Eq. (18) equals Eq. (12) in
the case that O'„=8'„W,=8"„,and co2=~„=co,.

Equations (12) and (18) may be combined to provide
the net resonance frequency in the general case of the
presence of several nonresonant perturbations to di6'er-

ent eigenstates. Let co be the resonance transition fre-
quency between the two levels p and q. Let the level p be
perturbed by a matrix element to the state r at fre-
quency or; such as

.V g .b ei(,~;t+;y~„)

while q is perturbed by

;V„,=a;b„,e'i""+'& &.

Then, from Eqs. (12) and (18),

(19)

(20)

&—&o=P (2 'bqo) /2(&o &~)

+2' Z."(2 *b")'/4L(W. W~)/@-
++;P„"(2;b„,) /4L(W, —W,)/A —oo;), (21)

where the symbol P," indicates that the summation
does not include r= p or q. Expansions similar to Eqs.
(12a) and (12b) can also be made for Kq. (21) when
desired.

V. APPLICATIONS

The relations derived above are applicable to a
number of diferent present and contemplated experi-
ments. In molecular-beam magnetic-resonance experi-
ments, the oscillatory magnetic 6elds are often produced
as high harIDO&&(;8 of a much lower frequency funda-

Consequently, Eq. (9) is replaced by

Co(2r+ T)= —i sinbr cosbr exp{it oa„+igloo,—~
—(W„+W,)/2@i T) i—sinbr cosbr

Xexp{if——,'a, —-,'(u, —(W,+W,)/2hjT)
=2i sinb7 cosh~ cos-,'X„,T

Xexp{—iso+', (a,—a„)+i (oo,—oo„)

+(W„+W,+W,+W,)/2h]T/2), (15)
where

,'(a,+—a,)+,'(oo„-+(o,) oo—
—(W„—W,+W„—W,)/2A. (16)
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mental. In such experiments undesired harmonics are
often present along with the fundamental. Equation
(21) can then be used to estimate the distortion caused

by the unwanted oscillations. As shown by the above
formulas, these effects can be serious if the unwanted
frequency is at all close to a Bohr frequency of the
system. It should be noted in the application of Eqs.
(12) and (21) that for perturbation frequencies far from
resonance, the positive and negative rotating com-
ponents partially cancel each other as discussed in
conjunction with Eqs. (12a) and (12b); however, this is
not true for the components closer to the resonance
condition.

The above formulas can also be applied to the case of
a molecular beam resonance experiment for which the
constant magnetic Geld is not exactly uniform and
unidirectional. By field measurements, the fluctuating
magnetic field components perpendicular to Ho can be
estimated as well as the characteristic cyclic distances d2

for the variation of the direction of these components. If
m is the velocity of the molecule, then the characteristic
frequencies for the fluctuating components are s/ds.
Equations (4), (12), or (21) can then be used to
evaluate the displacement of the resonance frequency.
For the molecular beam case, in the averaging of such
relations as Eq. (11) over the molecular beam velocity
to obtain the experimental line shape, it should be noted
that A&2 and hence A2 are velocity-dependent. In the
frequently occurring case that expansions such as Eq.
(12a) are applicable, the cos'PXsT) of Eq. (11)becomes
for a particular velocity v and for T=L/s,

cos'(-,'XsT) = cos'f-', L&pp
—cp+ (2bs)'/2o~p+ (2bs)'v/2&ogds

+ (2bs)'v'/2oipsdss+ }
= cos'(-,' Lpp p+ (2bs)'/2&up —oi]L/s

+ (2bs)'L/2(pp'ds

+ (2b,)'Ls/2oip'dss+ }. (22)

From this, it is apparent that the first term in Eq. (12a)
that is dependent on the frequency co& becomes a veloc-
ity-independent phase shift (2bs)'L/2~ppsds in Eq. (22).
The effects of such velocity-independent phase shifts on
the average resonance line shape have been discussed by
Ramsey and Silsbee."

The above formulas may also be applied to a discus-
sion of "collision narrowing" in nuclear paramagnetic
resonance. " In a free molecule, the nuclear magnetic.
resonance frequency depends on the orientation state of
the molecule, due to the various magnetic interactions
within the molecule. Furthermore, because of the even-

"N. F. Ramsey and H. 3. Silsbee, Phys. Rev. 84, 506 (1951).
"Bloembergen, Purceli, and Pound, Phys. Rev. 73& 699 (1948).

order perturbations of these interactions, the average
frequency of the resonance lines in the vicinity of the
nuclear I armor frequency is not equal to the I.armor
frequency in the average magnetic field at the nucleus
(the external magnetic field corrected for the magnetic
shielding of the molecule). The average nuclear reso-
nance frequency for the free molecule is in fact closer to
the Larmor frequency in the average magnitude of the
field at the nucleus rather than in the magnitude of the
average field (these differ since the internal fields are not
always parallel to the external field). If the molecule on
the other hand is subjected to many collisions which
change the molecular orientation, the separate resonance
lines are averaged to a single one by the process" of
"collision narrowing. " However, it is not immediately
obvious that the collision-narrowed line is at the Larmor
frequency of the nucleus in the magnitude of the average
field at the nucleus rather than in the average magnitude
of the Geld; indeed, the latter corresponds more nearly
to the average of the resonance frequencies for the free
molecule.

The discussion of the previous sections can be applied
to show that it is the magnitude of the average Geld
rather than the average of the magnitudes that is
relevant when the molecule is subject to frequent
collisions. Although the collisions cause a randomly
Quctuating field, the field can be Fourier-analyzed into
components at angular frequency or;, where or; is of the
order of the collision frequency or of the inverse of the
correlation time" v, . Then the nondiagonal matrix
elements can be taken to be of the form of Eqs. (19) and
(20), and Eq. (21) applies. However, in most cases of
collision narrowing,

where H, is a typical instantaneous component of the
molecular magnetic field perpendicular to the direction
of the external field Bo. Consequently, in this limit,
or=coo. On the other hand, in the absence of collisions a
typical frequency co; would be the I.armor precession
frequency of the molecular rotational magnetic moment;
this is not necessarily larger than (W„—W„)/A so the
terms on the right side of Eq. (21) become important
and My Mp.

Finally, it should be added that there are resonance
experiments in which several different oscillatory fre-
quencies are deliberately, instead of accidentally, intro-
duced. In such cases, the formulas of the preceding
sections may be directly applied to estimate the shifts
of the resonance frequencies. In some precision experi-
ments, these shifts can be important.

"N. F. Ramsey, Phys. Rev. 58, 226 (1940).


