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Stark Fields from Ions in a Plasma*
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A method is described here for determining the probability of obtaining a given electric field on an ion
in a plasma. This quantity is essential for computing the broadening of spectral lines from neighboring
ions and therefore for their contributions to the opacity. The Pines-Bohm method of separation into long-
range Coulomb interactions has been employed. It is argued that the formulas give the line width for iron
at one kilovolt and normal density to &3 jo.

I. INTRODUCTION
' 'T is often essential to know the breadths and shapes
~ - of spectral lines to compute the absorption coef-
6cients and Rosseland mean opacities' of substances
at high temperatures. An understanding of the causes
of line broadening also aids the interpretation of the
spectra of the sun and stars. ' Several experiments' have
been performed for the purpose of observing line shapes
under conditions that are controlled enough to check
theoretical calculations.

Some of the causes of line broadening' are (1) the
natural width due to the coupling of the atom with the
electromagnetic 6eld, (2) Doppler broadening, (3) elec-
tron collisions with the atom, and (4) the Stark effect
shift of the atomic levels by 6elds from neighboring ions.

To compute the line broadening by Stark fields from
neighboring ions, it is essential to know the probability
P(e)de of finding a given electric field of magnitude e

at a radiating ion due to the displacement of neighboring
ions. This paper is concerned with the calculation of this
probability.

In the past, the Holtsmark distribution' has often
been used for P(s). It is obtained by neglecting the
Boltzman factor and thus ignores the fact that one ion
is hindered from approaching another by the electro-
static repulsion. This is a good approximation when the
potential energy of two ions, exerting fields of the
largest interesting magnitude on each other, is much
less than the thermal energy kT. This potential energy
must be at least as great as that for two ions separated
by their average spacing. Thus, the Holtsmark approxi-
mation is good when the number of ions per cubic
centimeter N«10"T'/Z' with T in degrees or when
rt«10" (kT)'/Z' with kT in electron volts, where Z is
the number of electron charges on the ion. In some cases
the upper limit on e may be lowered by as much as a
factor 10 ', since the wings of the spectral lines are
generated by large Stark displacements of the levels of
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the ions, and, therefore, by close collisions between ions.
These conditions are well satisfied in the reversal layers
of normal stars and in laboratory experiments that are
known by the author to have been performed to observe
line broadening. They are not satisfied, however, in
stellar interiors. Here the radiation transport may be
computed with the aid of the Rosseland mean opacity
which will, in some cases, depend strongly on the
widths of the lines. For these cases, then, the Boltzmann
factor must be taken into account.

The problem may be considerably simpli6ed by
employing the following model. The electrons are
assumed to be either attached to an ion or free to move
through the plasma. Since the free electrons move so
much more rapidly than the ions, they may be treated
as a smeared negative charge. For simplicity this
smeared charge will be assumed uniform in density and
to be undistorted by displacements of the ions. The
ions will all be taken to have the same charge.

With this model, a certain set of units appears to be
natural. For the unit of length, it is convenient to take
the "ion sphere radius. "This is the radius of a sphere
that, on the average, contains exactly one ion. The
unit of field strength then will be taken to be the mag-
nitude of the 6eld exerted on one ion by another ion a
unit distance away, and the unit of energy will be the
difference in potential energy of two ions when sepa-
rated by unit distance and when separated by in6nite
distance. This is equivalent to using the charge on the
ions as the unit charge.

Mayer' has made two approximations to P(e) that
take account of the Boltzmann factor. The 6rst is
useful when 0 is much less than one, where 8 is the
temperature measured in the above energy units. In
this case, the ions tend to remain at their equilibrium

positions at the center of their respective ion spheres
and to feel a restoring force proportional to their dis-
placements. Thus, they move like three-dimensional
simple harmonic oscillators (SHO). For very large
fields and large 0's, the approximation must break down
since an ion will get out of its own ion sphere.

Mayer's second approximation is for large 6elds and
takes account of the fact that the Boltzmann factor
and the available volume in con6guration space make
it more probable to obtain large 6elds by the close
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approach of a single nearest neighbor than by the
cooperative action of several nearby ions. Thus, the
contributions to the field at the radiating ion by other
than the nearest neighbor are neglected. It is not clear,
however, how to normalize this approximation since
P(e) is not represented well in the neighborhood of its
maximum.

To determine P(e) over the entire range of e and to
check the normalization used by H. Mayer in his
nearest neighbor approximation, it is necessary to
consider other methods of treating a plasma than those
mentioned above. Another simple approximation may
be obtained by visualizing the high-energy ions as being
free particles in a box. This gas is made up of ions having
sufIicient energy to make an approach to another ion
close enough to exert the required field on it,. The
Holtsmark distribution can then be applied to this
reduced number of ions. to obtain P(e). The level of the
bottom of the box, however, still remains as an unde-
termined constant and the approximation is only good
for large fields.

The work of Pines and Bohm4 has suggested a very
effective way of treating the ions in a plasma. They show
how to separate the Coulomb forces into long and short
range components and to convert the system of ions in
an electron sea into a system of particles interacting
with short range forces and a set of waves whose am-
plitudes become independent coordinates. The wave
part of the system is quite easy to treat. The particle
part is much more dificult and so formulas have been
obtained that give upper and lower limits to P(s).

All the approximations have been compared for the
case of iron at normal density (7.83 g/cm') and one
kilovolt temperature (8=0.186) and all but one have
been compared at infinite temperature where the
Holtsmark distribution gives the correct values of P(s).
An ionic charge of 23 electron charges has been assumed.
To compute the Rosseland mean opacity, it is essential
to know how far the tail is from the line center when
its absorption is equal to the continuous background.
For the important lines in iron at one kilovolt, this
occurs when P(s) has values of the order of 10 '. Values
of P(e) smaller than this are of little interest.

The accurate determination of the probability,
Q(e)de, of finding an electric field s at the radiating ion
would require an evaluation of the expression,

( Vq rr r q

J~'''J expl 15I '+ 2 —l«i d»
E!Z 0) &; r,s)

—,(1)

"-pl —ld" d-|))
where 0 is the temperature in energy units, V the
potential energy of the system, E the number of ions,
and r; the position vector of the ith ion. The numerator

4 D. Pines and D. Bohm, Phys. Rev. 85, 338 (1952).

of Q is merely the sum over all configurations having
fields in the range da around a as selected by the Dirac
delta function. If S is very large, the limit of this
integral may be taken when X and the volume of the
system increase without limit in such a way that the
number of particles per unit volume remains constant.
The radiating ion is placed at the origin of coordinates
since a shift in position of this ion will merely give the
same configurations of the other ions with the same
probabilities (except for surface effects).

It is convenient to expand the delta function in terms
of plane waves so that

T(1)=

f
Q(a)=

~
T(1) exp(is 1)dl,

(2sr)s &

( V r,
exp l

——+i1.Q I
d ri dry (2)

J J & 0 ' rs)

t'

J E g)
Since T(1) is a function of the magnitude of 1 alone,

the probability density of finding a field of a given
magnitude ~ is

2t
P(e) =4sre'Q(e) =— J sin(k) T(1)dl. (3)

e=r —r.

The first term in e comes from the interaction between
the ions and the second from the shielding of the elec-

' Hirshfelder, Curtis, and Bird, Mole|,star Theory of Guses and
Liquids (John Wiley and Sons, inc. , New York, 1954), pp. 84, 321.
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II. SHO AND NEAREST NEIGHBOR APPROXIMATIONS

For Mayer's' SHO approximation, the radiating ion
will be attracted toward the center of its ion sphere by
the negative smeared electron charge. If r is its dis-
placement from this center, its potential energy is —,'r',
and the electric field on it has magnitude r. For this
case, then

P(e) = (2/s-)'(e'/0-:) exp( —e'/20). (4)

For large fields, Mayer makes the assumption that
only the nearest neighbor to the ion at the origin makes
a contribution to the field there. Thus he is able to
relate P(e) to the probability density, ' 4sr'ssg(r), that
an ion will lie a certain distance from the origin. The
function' g(r) is the "radial distribution function. "
Instead of this probability, the probability of the
meares] neighbor lying at distance r should be used
but the difference is small for large fields. When the
nearest neighbor is near the origin, de= —L(2/rs)+ 1)dr.
Thus, we find that
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trons. For a system of particles interacting in pairs with
short range forces, g may be approximated' by
exp{—e(r)/8} where e is the potential energy between
a pair of particles and must go to zero more rapidly
than r ' for large r. Because of the shielding eGect of
the plasma, such a short range interaction appears to
be a possibility and the separation of the Coulomb
interactions into short and long range components
demonstrates that this is essentially the case. For close
approach of the two ions I may be approximated by
r '+-,'r'+constant. Since I is not known over its entire
range, it is not clear what the constant should be. Since
it enters an exponent, P(o) is quite sensitive to its
value. Mayer chose the value —~3 and obtained the
formula:

P(o) = f3r'/(2r '+1)]expL —(r '+-,'r' —2)/ej,'
(6)

The constant ——,'corresponds to including in I the
interaction of the nearest neighbor with the central
ion and with the electrons in a sphere of unit radius
around the origin and with nothing else.

The values of P(o) given by Eq. (6) are shown in
Fig. 1 for iron at normal density and temperatures of
one kilovolt and infinity.

III. MODIFIED HOLTSMARK DISTRIBUTION

It is possible to get another simple approximation to
P(o) at large o by modifying the Holtsmark distribution
to take account of the Boltzmann factor. Most of the
ions moving around in a plasma may well be quite
confined by the action of other charges on them.
However, there must be a few ions with very high
energies that move around quite freely and that only
notice the presence of other charges when they approach
quite close to another ion. It is also true that only these
ions have sufhcient energy to approach a second ion
closely enough to exert a large field on it. Thus P(o)
may' be calculated for large fields from an equivalent
system of a reduced number of ions in a box whose
bottom has some average potential energy V. We may
again place the radiating ion at the origin and then the
potential energy of an ion on close approach will be
r '+oir' —V. Thus only those ions with energy greater
than

&=ro '+oro' —V,

IV. SEPARATION INTO SHORT AND LONG RANGE
INTERACTIONS

Pines and Bohm4 have suggested a way of splitting
the electrostatic forces into long and short range terms
and have found a way of treating the long range inter-
actions quite accurately. A similar procedure will be
adopted here.

Suppose we have a plasma of essentially infinite
extent, and suppose we consider that portion which lies
within a large cube containing E ions. We shall limit
this system to one having an electrostatically equi-
potential boundary. This means that the average field
on a test charge as it moves across the cube from one
side to the other is zero. The potential for such a
system that is electrically neutral is

c=4~+'p
k j

tv
ik ~ (r—rg')

k2

and the charge density is

p Prp~ikr p P~—ikr;
k

where unit volume is taken for the Fourier expansion.
These quantities give a potential energy to the system of

PkPk*
V=2v. Q'—

k'
(12)

The primes indicate the omission of k=o from the
sums.

The separation into short and long range parts is
accomplished by splitting V into two sums, one over
k's larger than k„the other over k's less than k, . The
sum over large k's may then be evaluated to give the
short-range potential energy,

the ion sphere radius and must be increased by the
factor 5 & when the number of ions is reduced. Thus
the Geld strength unit is proportional to Sl, and P(o)
is proportional to S &. If H(o) is the Holtsmark dis-
tribution, the modified distribution is

P(o) =H(o/S&)/SII.

As in the case of Mayer's nearest-neighbor approxi-
mation, it is not clear what value should be assigned to
V. The points on Fig. 1 correspond to. V= —,'.

where o=ro 2—ro, will contribute to P(o).
The number of ions per unit volume in the Holtsmark

distribution must be reduced by the fraction S(E/8)
given by the Maxwell Boltzmann law:

4 oo

S(E/8) =
~~ exp( —x')x'dh. '

&(El~)

where

V, , =g v(R, ,),

R;;=k,(r,—r,),

k. 2
v(E) =—1——Si(E),

R

(13)

The density of particles has been taken into account
by the unit of length mentioned in Sec. I. This unit is

Si(g) being the sine integral.
The electric field at the origin is the negative gradient
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of the potential energy with respect to the coordinates
of the particle at the origin. Then

r, k R;dv=—4vri P —pk —k, P—
' r ikey&A:ck' ~=1 R; dR,

R,=k,r, .

(14)

The essential quantities for Q(e) (Eq. (2)) have now

been expressed in terms of the two sets of coordinates
made up of the p1, 's and r s. An approximation to the
Jacobian of the transformation from one set of coor-
dinates to the other may be obtained in the following
manner. From Eq. (11), it is clear that p& may be
thought of as a sum of two dimensional unit vectors at
various orientations. While the r, s are ranging through
the volume of the system for the integrations in Q(e),
the P1,'s should be points in the complex plane whose
density is essentially that given by the solution of a
two dimensional random walk. problem. Thus, if k,
is chosen so that the number of k's less than k, is equal
to the number of r s, we may write approximately that'
(to within a constant factor)

dri. dr„~g exp( —pqpi, */2e)dxqdyq, (15)
[I [&k,

where p~ xi,+iy~ and ri——is the number of ions per unit
volume.

Unfortunately, the expressions for P, (r;/r;3) and V
[Eqs. (12), (13), and (14)] contain both r s and p&'s

so that we need both sets of coordinates. Thus the
number of coordinates is too large. Actually, however,
the number of r s required is small since they appear
only in short-range terms and only those particles near
to the origin can contribute to the field there. To circum-
vent this difhculty, we shall alter the system in an unes-
sential way by placing around the origin an impene-
trable barrier in the form of a sphere containing a
large number X of ions but a very small number com-
pared to the total number of ions in the system. The
number of ions inside the impenetrable sphere will be
determined so that the average number per unit volume
is equal to that for the whole system. This device will
serve to keep the number of coordinates from becoming
excessive.

The electrostatic Geld and potential energy are now
separated into short and long range terms. The long
range terms depend only on the pk's and the short
range terms on the r, 's. With these approximations, the
transform T(1) [Eq. (2)] is factorable into a T„for
particles and a T„for waves. For T„there still remains
a restriction on the p1, s arising from the fact that p is
a real quantity. Thus

P—1 =P1

For this reason we shall take only those P1,'s to be
independent that belong to k's having a positive Z
component and indicate a sum or product over these
k's by a plus sign superscript. This transform can now
be reduced to

+
I &I &kc

4v-1 1 1k
exp (sk +yz )+Soli yg ifÃgdyg

0 k2

4m 1 1
=exp( —yP), (17)

where

exp (~~'+y") ~*Ay~
e k2

k,
y= —[1—(3/k 20)& tail '(k, '8/3)'].

In, the units mentioned in Sec. I, the number of ions per unit volume e is equal to (4v/3) ' and k,'=9v/2.
This k, was determined so that the number of wave degrees of freedom equals the number of particles in

the whole system. For the particles, we obtain

r R; 1 dv

exp —P[v(R;,)/0] —ik, P dRi .dR
i& j' R. dR.

exp( —P v(R, ))/8}dRi dRg

The approximations up to this point do not appear
to'. be particularly drastic. The formulas above might
be expected to give a reasonably good approximation to

6 This is the same transformation obtained by Pines and Bohm
in their Appendix l.

P(e). In Eq. (18), however, we run into the age-old

difhculty of noncentral interactions. These interactions
have been reduced by the above approximations but
are not eliminated. Monte Carlo techniques would
probably do a good job of evaluating these integrals.
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To reduce them by analytic methods, it is necessary
to replace the potential energy by a function involving
only central interactions. Since the particle nature
seems so important at this stage, approximations similar
to that used by Hartree to treat the atom do not
appear promising. One thing that can be done is
simply to neglect interactions that do not involve the
central particle. Another possibility is to neglect short-
range contributions to the potential energy and electric
6eld at the origin due to all ions except the ion at the
origin and its nearest neighbor.

V. SHORT-RANGE CENTRAL-INTERACTIONS
APPROXIMATION

T„=lim

R. I dv-
vol — t 1—exp ———ik,

J 8 R dR

8
vol —Jt 1—exp —— dR

8

dR

4=exp — I($,8)

I(i,e) = ( dv y ( dv q
1—sin~ Lk, ( ik,

dR) ( dR) j

Xexp( —v/8)RPdR.

N

(20)

If we neglect interactions that do not involve the
central ion, the multiple integrals in Tv [Eq. (18)] then
reduce to a product of integrals:

Combining Eqs. (20), (17), and (3) gives

2e 3
P(p) =—~ 1 sin(lp) exp yP l—(E,e) —dl—(21.)

u, '
r v(R) R 1dv

exp —-- —ik,
8 R dR

r v(R)
iexp — dR

e I

dR

(19)

These formulas have been evaluated to obtain P(p)
for the case of iron at a temperature of one kilovolt and
normal density (see Fig. 1).

VI. SHORT-RANGE NEAREST NEIGHBOR
APPROXIMATION

The limit of T„,as Ã and the volume go to in6nity so
that their ratio is e, is

If we neglect all terms in the exponent in the inte-
grand of Tv [Eq. (18)]that involve particles other than
the one at the origin and its nearest neighbor we obtain

~ ~ ~

~ lR&l &0 IR21 & lRyl lRN l & lR1I

R, d.
1exp v(Rq) /—8 ik, l —
, d—Rg .dRq

Rj dRgjl
(22)

r

lail &o lupi&la1I IGNI &la&l
exp{—v(Rg)/8}dR~ dRg

Taking the limit of T„,as S and the volume go to
infinity, and substituting this into Eq. (17) and Eq.
(3) leaves

P(p) = pJ/[2k, (my)&E],

makes k,v'+ p =0. Also v' may be replaced by
vq'+vq" (R—R~) in the exponent. These approximations
together with the steepest descents approximation for
E give

F00

J= (R'/v') exp{—(R/k. )'—(v/8) }
Jp

X{expl —(k.v' —.)'/47] (23)

P(p) =[(—pRP/(k, 'Rp'vg'vg")] (gp"/2~) &

Xexp{—L(R,'—Rp')/k, ']—[(»—v,)/8]}, (24)

gp" ——(6Rp/k, ')+ (vp"/8)+ (2/Rp'),

—exp[ —(k,v'+ p)'/4y]}dR,

E= " R' exp[—(R/k, )' (v/8)]dR. —

Both J and E may be approximated by the method of
steepest descents.

For evaluating J [Eq. (23)]at large values of p, only
the variation in e' in the exponent of the second term
of the integrand is signi6cant. The first term is neg-
ligible and the other quantities may be replaced by
their values at R=R~ where R~ is that value of R that

where Rp is the location of the saddle point in the
integrand of E and the subscripts i and 0 indicate
arguments of R~ and Rp.

For small values of e, the rapidly changing part of
the integrand of J is the same as the integra, nd of E.
If Rp is the location of the saddle point of the integrand
of E, then

P (p) = [p/(2k, vp'ivy) ]{exp[—(k,v p' p)'/4y5-
—exp[—(k,vp'+ p)'/4y]}: (25)

Comparisons between these approximations and the
accurate formulas of Eq. (23) are made in Table I.
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TABLE I. Comparison of approximations to the short-range nearest neighbor (SRNN) formula with accurate evaluation.

0.3 0.5 1.5 10

Accurate SRNN
Eq. (23)
Large e approximation
Eq. (24)
Small e approximation
Eq. (25)

0.63 1.13 0.66 0.147 0.043 0.0056 0.00082 0.000155 0.0000375 0.0000036

0.064 0.024 0.0037 0.00067 0,000144 0.0000342 0.0000032

0.78 1.36 0.61 0.034

Accurate SRNN
Eq. (23)
Large e approximation
Eq. (24)
Small e approximation
Eq. (25)

0.066 0.20 0.33 0.36 0.225 0.087 0.032

0.030 0.019

0.084 0.27 0.42 0.45 0.227 0.050

0.018

0.013

0.0086

0.0068

0.0046

0.0040

I0-2

lP'

tp-4

i

\

~
g =

I kev

H —
Ho Its mor k—-- SRNN —short ronge neorest neighbor——SRCl- short range central interoction——NN —neorest neighbor (Q)

MH- modified Hol tsma r k (X}

lo'

x

tp-6
p lp l4

FIG. 1.The probability of obtaining 6eld strengths of magnitude
e for 8= ~ and 8= 1 kev for iron at normal density for large values
of e. Only approximations good in this region are shown. The
correct curve at 8= 1 kev is believed to lie between the SRNN and
SRCI curves.

VII. COMPARISON WITH HOLTSMARK

The Holtsmark distribution is the accurate deter-
mination of P(e) corresponding to the exact evaluation
of Eq. (1) for Q(e) for infinite temperature. For this
reason, it is particularly interesting to compare the
approximations mentioned above at infinite tempera-
ture with the Holtsmark distribution.

Even at infinite temperatures, the "short-range central
interaction" approximation [Sec. V, Eq. (21)j requires
considerable numerical work. However, it can be shown
that it reduces to the Holtsmark distribution in the
limit of large fields. In this limit, close approaches of
the ions are important and v may be approximated by
1/r Setting. (t equal to infinity and neglecting y, we

obtain
I(l, 00) = I'*k.'2 (2m) &/15,

(26)
P(e) =— x sin@ exp{—(2 (2m) &/5) (x/e) ') dx.

me "0

This is the formula for the Holtsmark distribution as
given by Chanrdasekar and von Neumann' except for
the small difference between 2 (2ir)*'/5 and unity arising
from a slight difference in units for ~. This is actually
a convenient derivation of the Holtsmark distribution.

Curves are shown in Figs. 1 and 2 for the "short-range
nearest neighbor" (SRNN) approximation [Sec. VI,
Eq. (23)) at infinite temperature and for the "nearest
neighbor" (NN) approximation [Sec. II, Eq. (6)].The
latter approximation does not have long-range and
short-range separation for forces and potential energy.

The "modified Holtsmark" approximation goes over
into the Holtsmark distribution at infinite temperature.

VIII. DISCUSSION AND CONCLUSIONS

The two approximations involving separation of the
Coulomb interaction into short- and long-range com-
ponents must bracket the correct evaluation of P(e).
The short-range central-interaction approximation
(SRCI) in Sec. V gives P(e) correctly for a system of
particles that has no short range interactions between
particles other than those involving the ion at the
origin. Thus, the Boltzmann factor is too large when
two or more particles are near the origin, and the prob-
ability of large fields is higher for this system than for
the true plasma.

The short-range nearest neighbor approximation
(SRNN) (Sec. VI) replaces the plasma by a system
where the short-range forces act only between the
nearest neighbor and the central ion. Since the short-
range contributions to the field at the origin due to
other than the nearest neighbor are neglected, the
probabilities of large fields should be smaller than that
for the true plasma. This is confirmed for the case of
infinite temperatures since the SRNN curve in Fig. 1
lies below the Holtsmark for large e.

The nearest neighbor approximation made by Mayer'
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(Sec. II) is a remarkably good one in view of the
uncertainty in the constant appearing in the potential
energy. The large field approximation [Eq. (24)i to
the SRNN formulas is very close to the NN formula
(Eq. (6)j when v is set equal to k,/R. Mayer's formula
is given further justification from the fact that the
short-range potential tt(R) [Eq. (13)j can be expanded
for small E to give

tt= (1/r) —1.54. . .+-'r'+. (27)

The constant 1.54 is very close to the —', used in Eq. (6)
for the NN approximation.

The modified Holtsmark (MH) approximation
provides a simple means of computing P(e) for large
fields that is probably good to roughly a factor of two
in the parameter ranges considered here. However, it
does not seem to be as accurate as the NN approxi-
mation $Eq. (6)j and is somewhat more diliicult to
compute. Nevertheless, since the approximations used
in it are different from those used in the (NN) approxi-
mation, it can serve as a check on those formulas.

The widths of the spectral lines from the broadening
due to electric fields of other ions is bracketed by the
SRNN t Eq. (24)j and SRCI I Eq. (21)j approxima-
tions so that the widths are determined to &3%%u~ for iron
at one kilovolt and normal density. Under these
assumptions, the NN approximation t Eq. (6)j provides
a simple formula for determining the widths to better
than 6% while the MH approximation $Eq. (9)j may
serve as a simple check.

The uncertainties stated above do not include any
errors arising from the neglect of the supplementary
conditions that should be imposed because of the extra
coordinates present when the potential is separated into
long and short range components. This error is believed
to be small because of the arguments presented in Sec.
IV below Eq. (15).

The value of P(c) around its maximum is not well

determined but might be expected to lie near the

l.2

/'(

Ij,
'

----- SRNN-short range nearest netghbor——SRCt-short ronge centrol tnteraction—-—SH0 —simpie hormonic osctliator

1.0
II

!,
'

0.8---- I' ——-- '-- f-

/
0.e- | /

/

8 = I kev
/

0.2—

FIG. 2. The probability of obtaining 6eld strengths of magnitude
e for 8= ~ and 8=1 kev for iron at normal density for small
values of e. Only approximations good'in this region are shown.
The correct curve for 8=1 is believed to lie between the SRNN
and SRCI curves but nearer to the SRNN curve.

SRNN curve because of the close agreement between
it and the SHO curve in this region and its good agree-
ment with the Holtsmark curve at infinite temperature.
Accurate evaluation of T~ (Eq. (18)] is required to
determine P(e) more accurately. Monte Carlo methods
might accomplish this.
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