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Dislocation Energies in NaClt
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The energies for both screw and edge dislocations in rock salt have been investigated. The effect of
elastic anisotropy has been incorporated into the contribution from the region outside the core. Detailed
calculations have been carried out for the energies of the cores themselves as a function of radius, and joined
smoothly to the curves of the elastic theory. The core calculations are based on the Born-Mayer model
and employ the formulas of Madelung for the potentials of rows of uniformly spaced charges.

For dislocations in the observed plane of slip (110), the constant term associated with the core energy
is 1.0X10' ev/cm more for the edge than for the screw. Approximate calculations show this term to be
appreciably larger for the edge dislocation in the (100) plane. Also, there appears to be large lattice potential
barrier for dislocation motion in this plane arising from anion closed shell repulsion. This result may explain
why these planes, though close packed, are generally not active in glide for alkali halides. The stability of
dislocations with Burger vector longer than the minimum lattice translation is investigated. The possibility
of hollow dislocations is also considered.

I. INTRODUCTION

HOUGH the treatment of dislocations within the
framework of isotropic elastic theory has proved

very fruitful in the past, there has been an increasing
need recently to develop specific models for particular
materials, which would be detailed enough to take into
account the nonelastic distortions in the dislocation
core region and the intrinsic anisotropy of the crystal
elasticity. The alkali halides present obvious advantages
for such a study. From the standpoint of theory a
simple and reasonably satisfactory model exists in terms
of point charges and short-range, ion-core repulsions
which can account quite well for cohesion and for some
of the elastic properties. From the standpoint of experi-
ment the slip pattern is well known, namely in the
$110$ direction on the (110) planes, but one wonders
why slip is not encountered along the close-packed
(100) planes, as for the thallium salts and occasionally
for AgCl, which shows pencil glide. Also, one is hopeful
that a detailed study might throw light on the greater
brittleness of alkali halides as compared to the silver
salts.

We have calculated the core energies of certain dis-
locations on the basis of the simple force model.
Initially the ion rows are arranged in accord with the
isotropic elastic solution, and displacements are allowed
to relax to minimize the stored energy. Such a procedure
was applied by one of us' to the edge dislocation for slip
in the (110) plane several years ago. More recently, an
analogous calculation for the screw dislocation has been
made by another of the authors. ' The energies of
various dislocations in the elastic region outside the
cores have been calculated by the third author (R.T.),

t This work was supported in part by the United States Air
Force.' H. B.Huntington, Phys. Rev. 59, 942 (1941).' J. E. Dickey, M.S. thesis, Rensselaer Polytechnic Institute
(unpublished).

taking into account the anisotropy of the crystal. From
this last it has been possible to draw some conclusions
about the stability of dislocations with Burgers vector
longer than the shortest translation vector of the
lattice. The possibility of "hollow" dislocations is also
brieRy considered.

II. ELASTIC STRAIN ENERGY OF DISLOCATIONS
IN NaC1

In this section, we shall calculate the elastic energy
of formation of various types of dislocations in NaCl.
We shall assume that the crystal is a continuum, and
that the strains are small, say less than ten percent.
The core represents just that region near the center of
the dislocation where neither of- these assumptions is
justi6ed, and is dealt with separately. The total energy
is, of course, the sum of the two contributions.

Anisotropic elasticity has traditionally been con-
sidered to be intractable because of the large mathe-
matical difficulties to be faced. Since the problem has
received added attention, general methods have been
devised for the treatment of straight dislocations in

arbitrary media. ' 4 The elastic calculations in this paper
are based on the techniques of Eshelby, Read, and
Shockley. '

A. (110) Slip Planes

The experimental evidence available shows that the
(110) planes in NaCl have a special place with regard
to slip. Apparently under certain conditions other planes
may be active also, but recent work' confirms that at
room temperature the (110) planes are the principal
active slip planes, and so proves that dislocations are
initially present on these planes. (Dommerich' has

3 Kshelby, Read, and Shockley, Acta Met. l, 251 (1953).
4 A. Seeger and G. Schook, Acta Met. 1, 519 (1933).' P. L. Pratt, Acta Met. 1, 103 (1953).' S. Dommerich, Z. Physik 90, 189 (1934).
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FIG. 1. (110) slip plane in NaC1.

reported that wetted crystals can glide on (100) planes
with a critical shear stress which is approximately
three times that observed for (110) planes. ) We shall
thus begin with a discussion of the elastic strain energy
of dislocations on (110) slip planes.

Figure 1 shows the situation in the (110) slip plane.
The unprimed axes represent the cubic coordinate
system in NaCl; the primed axes are used for the dis-
cussion of a dislocation in the (110)plane. The (straight)
dislocation line is assumed to lie along the s' direction;
hence both strain and stress are functions of x' and y'
exclusively. The direction of slip in NaC1 is also a $110]
direction and is indicated in the figure by the Burgers
vector b—the shortest distance between like atoms. As
the s axis is rotated from the s direction to the b direc-
tion (always in the (110) plane), the dislocation line
gradually changes its character from pure edge to pure
screw type.

One of the features of anisotropic elasticity theory
might be re-emphasized here. When the Burgers vector
is parallel to the dislocation line and points in the s'
direction in a crystal of low symmetry, the displacement
is not necessarily in the s direction also, i.e., the dis-
location is not a simple screw. A similar result follows
when the Burgers vector is perpendicular to the line of
the dislocation; the displacement of material is not
necessarily normal to the s' direction. In the case of
NaC1, however, when s' is either in the s direction or
the b direction, the symmetry in the z'y' plane is
great enough to ensure the usual pure edge in the first
case and pure screw in the second. In the intermediate
case, where 0 AO, ~/2, the situation is more complicated
than if the material were isotropic, and one does not
obtain a simple decomposition into pure edge and pure
screw components corresponding to normal and parallel
components of the Burgers vector. In order to apply
the methods of Eshelby et al. , one needs to transform
the elastic constants from those given with respect to
the xys system of coordinates to the values suitable to
the coordinate system x'y's'. The elastic constants are
the components of a fourth-order tensor, and their
components in the new coordinate system are given by

repeated application of formulas given in the standard
references on elasticity. '

Calculations have been made with two sets of elastic
constants. One set was taken at 80'K by Rose, ' and
the other set was taken at 1000'K by Hunter and
Siegel. ' It is assumed that 1000'K is a typical tempera-
ture of annealing, and probably represents the situation
during the time that the dislocations have a chance to
find their most favorable configuration. The low-tem-
perature values are reasonably valid for a large-tem-
perature interval, from probably zero to several hundred
degrees. The results of Hunter and Siegel show an
appreciable variation from the low-temperature values
beginning at approximately 300—400'K. The elastic
constants used are as follows:

80'K: C» ——5.76)& 10" dynes/cm' C»= 1.17X10"
dynes/cm' C« ——1.33&(10"dynes/cm.

1000'K:C» ——2.429X10» dynes/cm' C» ——1.070&& 10"
dynes/cm' C« ——1.000&(10"dynes/cm.

If 7.;, is the elastic stress tensor and bi is the Burgers
vector, it can be shown that the elastic strain energy is

where the integral is a surface integral to be taken over
any regular surface bounded by the dislocation "loop."
In our case, we consider a single dislocation line im-
bedded in a large crystal, so that the boundary of the
surface in question is made by the dislocation line and
the surface of the crystal. No attempt has been made
to take account of the boundaries of the crystal in a
detailed way. Indeed, if there were only one dislocation
in a finite crystal, the stress would have to be relaxed
on all boundaries, and small correction terms would
thereby be added to the stress configuration near the
boundaries themselves. It should be noted that stress
relaxation actually destroys one of the basic assump-
tions —that all the stress and strain components are
functions independent of s—because the addition of
small stresses near the ends of the crystal where the
dislocation breaks the surface destroys the property of
plane strain which is always assumed. In this work we
assume that the density of dislocations is sufficiently
low and random that we can simply use the stress dis-

TABLE I. Elastic strain energy of dislocations on
(110) slip planes.

0' 10' 20' 30' 40' 50' 60' 70' 80' 90'

&80
0.508 0.500 0.490 0.465 0.441 0.424 0.410 0.399 0.388 0.385

1n(8/r0)

W. Voigt, Lehrbuch der Eristallphysik (B.G. Teubner, Leipzig,
1910);W. G. Cady, Pieeoetectricity (McGraw-Hill Book Company,
Inc. , New York, 1946).

F. C. Rose, Phys. Rev. 49, 50 (1936).' L. Hunter and S. Siegel, Phys. Rev. 61, 84 (1942).
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illustrated in Fig. 2. The Burgers vector remains the
same as before, but the slip plane is (001). The calcu-
lations reported above, when repeated for this case
with the same temperatures as before, give for the
energy of the edge dislocation,

Esp=0456 ln(R/ro), Etooo=0 267 ln(R/rp) .(4)

Fio. 2. (001) slip plane, L1107 Burgers vector.

tribution of an infinite body and arbitrarily cut off
integrals at some distance roughly corresponding to the
mean distance between dislocations in the real crystal.
In an actual well-annealed crystal, the dislocations are
probably far from randomly distributed, and, because
of the long-range nature of the stress distribution, a
particular model may give somewhat different energy
values than the ones we have derived.

The calculations were essentially numerical in form,
and, with low-temperature elastic constants, were per-
formed for each ten-degree increment in 8 from 0' to
90'. The results show a monotonic transition in the
value of the energy between the edge (8=0) and the
screw (8=or/2). The results are shown in Table I. Esp
is given in electron volts per atomic distance along the
dislocation line. For XaCl, "atomic distance" is 2.81
&(10 ' cm. The quantity E. is the outer cut-off radius
discussed above; ro is the inner cut-oG radius, and cor-
responds to the limit of elasticity theory; in other
words, ro is the size of the core of the dislocation.

The results can be approximately represented with a
simple cosine variation,

Esp= (0.454+0.061 cos28) ln(R/ro), (2)

with a maximum error of about two percent, which is
not much greater than the error of the calculation itself.

We have only made calculations of elastic energy for
two values of 8, 8=0 and s-/2, for the temperature
1000'K. We assume that in this case also the variation
between the screw and the edge is simple, and using the
cosine law above, we find

Etppp= (0.214+0.032 cos28) ln(R/rp). (3)

In a later section, the contribution of the cores of edge
and screw dislocations will be added to these values to
yield the Anal strain energy.

Note that the corresponding screw dislocation in this
case is precisely the same as for the (110) slip planes
discussed earlier.

Referring either to Fig. 1 or Fig. 2, one sees that the
(110) and (001) planes are only two out of an infinite
family of planes which contain the same Burgers
vector b. For the sake of completeness, one would like
to know the energy of dislocations in these planes
where slip is not observed. We have made calculations
of the elastic energy of pure edge dislocations in planes
inclined at various angles to the observed slip plane.
In Fig. 1, if one lets the Burgers vector point in the x'
direction, then as 8 varies from 0 to s/2, the slip plane
varies from (110) to (001). The elastic energy of pure
edge dislocations as a function of slip plane is given in
the following Table II for the temperature 80'K. Note
that the variation in the elastic energy is again rnono-
tonic, and is quite small. We will show later that the
core energy probably overbalances the difference in
elastic energy shown here between the (110) and (001)
slip planes. Since core calculations have been made only
for the extreme (110) and (001) types, one cannot
predict the actual variation between the two extremes,
except to say that the variation in energy of the core
is the dominant factor.

The screw dislocation corresponding to each edge
dislocation in the above table is in all cases the same,
namely the one discussed in Sec. A.

There remains the question of how the dislocation
energy varies as one goes from pure edge to pure screw
in one of these planes. Only one such calculation has
been made, a half-edge, half-screw dislocation whose
slip plane is (010). This particular dislocation is dis-
cussed later, and its elastic energy is given in Eq. (7).

It is interesting to consider the possibility of other
types of Burgers vectors than the [1107 in NaC1, even
though there seems to be no experimental evidence for
them. Calculations of a screw and an edge dislocation
with Burgers vectors of type L0027 were made with

elastic constants appropriate for 80'K and 1000'K. The
two types of dislocation considered are shown in Fig.
3.

TABLE II. Elastic energy of pure edge dislocations as
a function of slip plane.

B. Elastic Calculations on Other Planes

In order to provide a comparison with other slip
planes, we have made calculations for the situation

Ego

ln (R/r0)

0' 10' 20' 30' 40' 50' 60' 70' 80' 90'

0.508 0.505 0.499 0.490 0.480 0.471 0.463 0.458 0.457 0.456
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Fro. 3. Large dislocations. The figure shows one edge dislocation
and one screw dislocation with the Burgers vectors [002) and
[200), respectively. The edge dislocation has a slip plane {010).
The dislocation line, in each case, is in the s direction.

will take place spontaneously; otherwise the large dis-
location, once formed, will be stable.

The details of the breakup process are shown in Figs.
4 and 5. In order to test the stability with respect to
breakup, we need to know the energy of the decomposi-
tion product which has the Burgers vector $101) and
runs in the s' direction. %e have here a half-edge, half-
screw, dislocation whose slip plane is (010).The elastic
strain energy of this dislocation is given in the same
units as before by

Eso =0.401 ln(R/ro), Erooo= 0.233 ln(R/ro). (7)

(Note that in both cases these energies are intermediate
in value between the pure edge and screw types. )
The stability of the two types of dislocations is best
demonstrated in Table III. The first column gives the
type of large dislocation, either screw or (010) edge.
The third column of Table III gives the elastic strain

The energies, in the same units as before, were:

Edge: Eso ——1.013 ln(R/ro), Etooo=0.492 ln(R/ro).
(5)

Screw: Eso=0 586 ln(R/ro), Erooo=0 442 ln(R/ro).

Note that in this case the dislocation Burgers vector
reaction

[002) [011)y['011)
[002) $101)+[101)

(6) Y

may take place, in which the "large" dislocation breaks
up into two component dislocations with the Burgers
vectors [011)and (011).If the energy of the two com-
ponent dislocations taken together is smaller than the
energy of the "large" dislocation, then the breakup

FiG. 5. Breakup of a "large" screw dislocation. The Burgers
vector of the large screw dislocation is [002). Two possible de-
compositions are possible:

[002]~ [011)+[011),
[002) -+ [101)+[T01).

FIG. 4. Breakup of a "large" edge dislocation in a (010) slip
plane. The Burgers vector of the large dislocation is [200), and
the line of the dislocation is in the s' direction. Two reactions are
possible:

[200]~ [101]+[101),
[200] -+ [110]+[1TO].

energy divided by the logarithm term. The large dis-
location is stable with respect to breakup if the number
in column 4 is larger than the number in column 3.
The log factor for the large dislocation is approximately
the same as the log factor for the small component. For
the large dislocation, ro is about two times the ro of the
small dislocation, because the cutoG has to be taken in
each case where the strain is small. However, when the
large dislocation breaks up into two, the free area for
each dislocation has been effectively cut in half, and
hence R for the large dislocation is also about two times
the E. for the small one. Note that at both the low and
high temperatures, the edge is apparently unstable with
respect to breakup into either type of component. The
screw at first sight seems to be stable. However, since
the two energies are so close together, the core energy
will be the decisive quantity. One wouM expect the core
energy of the large core to be slightly larger than the
combined core energy of the components. Since screw
elastic energies per unit length are less than those of



DISLOCATION ENERGI ES I N NaCl ii2i

edge dislocations, it is unlikely that any other large
dislocations will be more stable than [002j screws.

III. DISLOCATION CORE ENERGIES IN NaC1

To study the dispositions of the atoms in the core
region and the associated stress energy, it was advisable
to choose a substance where the forces between the
atomic constituents were well known and of short range
type. The alkali halides are well suited to the problem
since one has to deal with the electrostatic forces and,
at close range, the repulsive forces of the closed shells.
The electrostatic forces are short range also except
where logarithmic potentials from rows of ions of the
same sign are involved.
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TABLE III. Stability of large and small dislocations.

Parent
type

Screw
Screw
Edge
Edge
Edge
Edge

Temper
ature

1000'K
80'K

1000'K
1000'K

80'K
80'K

+large
ln (R/r0)

0.442
0.586
0.492
0.492
1.016
1.016

2 (Earns 1 1)

0.466
0.802
0.492
0.466
1.016
0.802

Component
type

Mixed (100)
Mixed (100)
(110) edge
Mixed (100)
(110) edge
Mixed (100)

Stability

?
Stable
Unstable
Unstable
Unstable
Unstable

these axes are given by

b (X+@)sy
N =—tan —'(y/x)+ (

2x (X+2@ir'

b Ii f X+Ii ) y'
v= —— logr+

~

2ir X+2Ii EX+2Ii i r'

where b is the slip distance and X and p, are the familiar
elastic Lame constants for an isotropic substance. This
sets up a dislocation where the material is compressed
for y&0 and extended for y(0.

In developing the elastic displacements for the
various ion rows, it was found expedient to arrange
them symmetrically about the ys-plane perpendicular
to the direction of slip. Two such arrangements were
considered: Configuration I with the symmetry plane
passing through two adjacent ion rows on opposite sides
of the dislocation center (Fig. 6), and Configuration II
with the plane of symmetry half way between the four
ion rows nearest the dislocation center (Fig. 7). For
slip on the (110) plane the edge dislocations lie parallel
to [001jand perpendicular to the slip direction. In the

t 001j direction, the signs of the ions alternate.

A. Edge Dislocation: (110) Slip Plane

The first step in the procedure was to use the dis-
placements predicted by the isotropic elastic solution,
even in the core region where they were no longer valid.
If the x axis is taken along the slip direction and the

y axis along the normal to the slip plane, then N and v

the respective components of the displacements along

Fio. 6. Edge dislocation for slip in (110) plane —Configuration I.

Here e is the magnitude of the charge per ion. Distance
from the row is measured by r and distance in the direc-
tion of the row by s. For application to NaCl a is 2.81 A.
The Bo is the Hankel function of zero order.

For the energy arising from the repulsion of closed
shells a single expression was chosen to represent the
interaction between next neighbor ions of opposite sign.
The repulsion between like (negative) ions was neglected
to keep the calculation as simple and, at the same time,
as general as possible, in that the results would not
appear as specific for a particular salt. By virtue of the
equilibrium condition, the single force law couM be
written

~ 2

W(x) =—rr —e
6 u'

(10)

where e is the Madelung number for the NaC1
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FIG. 7. Edge dislocation for slip in (110) plane —Conaguration II,
"E.Madelung, Physik. $. 19, 524 (1918).

The electrostatic potential of a row of alternately
charged particles, spaced a distance a apart is given by"

2e ~ f srrlt''l f 2rrls)—P i~a.
~ ) cos]

g i=i ( a ) L u )
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TABLE IV. Final positions of ions in core of edge
dislocation in (110) plane.

o+ o-
x/b o o
y/b 0.37 —0.29
D(s) o o

Configuration I
2+ 2—
0.859 1.195
0.29 —0.28—0.141 0.195

4+ 4 — 6+
1.788 2.226 2.762
0.20 —0.32 0.17—0.212 0.226 —0.238

S

g/b 0.431
y/b 0.34
D (s) —0.069

1—
0.633—0.28
0.133

Configuration II
3+ 3—
1.315 1.710
0.25 —0.30—0.185 0.210

5+ 5—
2.268 2.732
0.19 —0.33—0,232 +0.232

"F.R. N. Nabarro, Proc. Phys. Soc. (London) 59, 257 (1947).
~2 A. H. Cottell, Progress im Meta/ Physics (Butterworth Pub-

lications, London, 1949), Vol. I, p. 91.

structure and p is an empirical constant which appears
in the Born-Mayer formula for the repulsion energy
between closed shells and is here set at 0.325 A.

The positions of the ion rows for each of the two
configurations were next adjusted to a closer approxi-
mation by requiring that the interaction of each row
with its nearest neighbors and next nearest neighbors
be minimized. The procedure was to begin with those
rows nearest the center of the dislocation, where the
elastic displacements would be most inaccurate, and
proceed outward. Except for those rows directly ad-
joining the dislocation center the displacement cor-
rections were small, of the order of 3 or 4 percent of the
interatomic distance, u. The final disposition of the ion
rows for both configurations is shown in Fig. 6 and
Fig. 7, respectively.

In Table IV are given the final x and y coordinates
of the ions directly above and below the slip plane in
units of the Burgers vector, b=&2a, for both configura-
tions. The ions are indexed by the s number, where
sb/2 measures the distance to the right or left of the
dislocation center at which the ion would be located if
no strains were present. The plus or minus sign following
the s number indicates whether the ion lies in the
upper (compressed) or lower (expanded) half-plane.
After the manner of Nabarro" we define a displacement
function,

D(s) =x/b s/2, —

where D(& ~) = %4r for the upper half-plane and &r~

for the lower half-plane. The form of D gives the shape
of the dislocation. It is usual to ascribe a "width" to
the dislocation equal to the distance between the points
at which D takes on one half its values at & ~. Aver-
aging between Configurations I and II, it appears that
~D~ takes on the value —,

' just short of @=0.75b, which
gives a dislocation width of "1.56. This value is close to
that found by Nabarro, "b/(1 —o), where o. is Poisson's
ratio and indicates a very compact dislocation. The
work of Peierls and Xabarro has shown that the energy
hill opposing the motion of a dislocation lying along a
crystallographic direction decreases exponentially with
increasing dislocation width. Consequently, Cottrell has
expressed the viewpoint" that actual dislocations are

probably broader than b/(1 —o) if one is to account for
the low observed yield stress in well annealed single
crystals. The actual forms for such dislocations have
been examined by Foreman, Jaswon, and Wood. " It
is somewhat disturbing to find this dislocation so com-
pressed. The displacements arising from energy mini-
mization have nevertheless broadened the dislocation
appreciably.

The stored energy of the dislocation inside any
cylinder coaxial with its center can be determined next
from the results of minimizing the energy. (Minimiza-
tion in general reduced the stored energy by about a
factor of s.) One takes all the interaction energies
between rows inside the cylinder and adds to it a half
of the interaction energies between rows inside and
outside the cylinder. In this way one obtains the stored
energy content of cylinders containing a symmetric
grouping of rows. In Configuration I, these groupings
contained 2, 10, 20, and 24 rows respectively; for Con-
figuration II, 6 and 18. In Fig. 8, the energy content of
the cylinders is plotted in units of ev/plane vs the
cylinder radius R. The radius of the equivalent cylinder
is established by

ÃR =sG

where n is the number of rows inside the cylinder. From
this curve one could obtain the energy of the dislocation
core ideally by 6tting the curve with the formula

E(R)=A ln(E/a)+8. (12)

Actually, one uses instead the value for 3, 0.508 ev

I.O
OJa

C0
v .8
0
Ll
a

O .6
Q
'gJl

LLi

.4

~2
C

4l

Co~e Radius ( A)

Fro. 8. Edge dislocation for slip in (110) plane —energy vs R.
Plus signs refer to Con6guration I, open circles to Con6guration
II; nearby numbers show how many ion rows inside cylinder of
radius R. Smooth curve is plot of Kq. {12).

'3 Foreman, Jaswon, and Wood, Proc. Phys. Soc. (London) 64,
156 (1951);further modi6cation in the Peierls-Nabarro dislocation
will shortly be presented by one of us (H.S.H.).
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per plane obtained from elastic considerations in Sec. A

and fits at the point for greatest E, giving 8=0.392 ev
per plane. The solid line in Fig. 8 is the plot of Eq. (12).
It 6ts the points very well, fortuitously so, because the
simplified force model used here, with repulsion only
between ions of opposite sign, does not accurately
reproduce the elastic constants.

B. Screw Dislocation

' 0

2
0

'-' 0+
0

0

0+ f 2 fh
0

U
III

A

0 -t+ Oi

The treatment of the screw dislocation likewise
involves consideration of two distinct configurations,
which we show as Configurations III and IV in Figs. 9
and i0 respectively. They correspond to a screw dis-
location along the slip direction [110), so that the ion
rows are all composed of ions of the same sign. In Con-
figuration III, the dislocation lies symmetrically at the
center of a rectangular prism formed by alternative
positive and negative ion rows at the corners. In Con-
figuration IV the dislocation has moved a distance
b/2&2 along the [001$ direction, as would occur for
slipping in the (110) plane. It can be seen that the ion
rows are arranged in an alternating rectangular array.
Those rows marked by full circles have ions in the plane
of the paper, those marked in broken circles have ions
in planes above and below the plane of the paper. Indi-
vidual ion rows will be designated by the numbers along
the center lines with abscissa index coming first (e.g. ,

1, —3 denotes negative row at bottom of Fig. 9 with

ions above and below the plane of the figure). The

llO 'ViFtac=wtoN ~

CONFIGURATION Z

FIG. 10. Screw dislocation —Configuration IV. Same notation
as Fig. 9. Outward displacement of ion rows denoted by simple
arrow.

distance between rows in the [110)direction is b/2, in
the [001) direction b/K2.

For the interaction energies between the rows the
same ion-core repulsion expression, Eq. (10), is used as
for the edge dislocation of the preceding section. This
interaction is mainly important between rows separated
by b/2 in the [110jdirection. Here every ion in one row
is in contact with two ions in the adjoining row, one
from the plane above and the other from the plane
below. For the electrostatic interaction one uses again
a formula due to Madelung"

V(z,r) =4e/b[P Es(2wlr/b) cos(2s.ls/b) ——,
' in2b/r) (13)

l=1

0+

l IODi Fta, C V tON ~

0+'

for the potential at a point a distance r from a line of
charges e spaced a distance b apart. The variable s is
measured parallel to the line of like charges, with one
of the charges at the origin.

The displacements caused by an elastic screw dis-
location are simply

e„=b8/2w,
0

CONFlouaatiON IE

F1G. 9. Screw dislocation —Configuration III. Solid circles
denote rows which initially had ion in plane of paper, dashed
circles for rows with iona initially b/2 above and below the
plane. Arrows with superimposed Z indicate direction of c„the
relaxation displacement perpendicular to the paper.

where we have taken 8 to be measured counterclockwise
from the [110$direction and s is measured + up from
the paper. Since the dislocation at this stage introduces
only changes in s, the lnr terms in the electrostatic
potential expression are unaGected and the calculation
of the stored energy depends only on short-range inter-
actions as before.

For Configuration III, it turns out that the relaxa-
tions are principally s-ward motions. These have been
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indicated in Fig. 9 by arrows pointing up for motion up
out of the plane of the paper and down for downward
motion. The superinscribed Z's on the arrows indicate
that they are not to be interpreted as motions in the
plane. One complication is introduced by the radial
symmetry about the dislocation which is higher than
that for the previously treated case of the edge. Any
upward s-motion for row 1,1 implies from symmetry a
similar motion for —1,—1 and the reverse motion for
1,—1 and —1,1. The principal interactions here are
those parallel to the [ 110jdirection, —1,1 with 1,1 and
—1,—1 with 1,—1. If e, is taken to be the upward
motion of say 1,1, then its value is to be determined by
minimizing the energy of the central four rows,

',Oe-
4-
O

+
0

5.I6-

a.zs-

Equilibriu+

.2b
I

&6 .2b

Change in ln potential due to moving
one ion row with all other rows fixed

Equili

2U(s ~, ~
—s~, ~

—2eg, b/2) —2U(sg, g
—s2, g+eg, b/2), .2b

I
.2b

TABLE V. Z-displacement for outer ion rows in a screw dislocation.

Ion row index
Z-displacement, ~,

Ion row index
Z-displacement, e,

Connguration III
2,1 1,2

0.06b 0.015b

Con6guration IV
11 21

0.03b 0.02b

31
0.03b

12
0.01b

22
0.02b

where U(s; r) is written for the complete interaction
function composed of V(s,r) and the ion-core repulsions.
Actually the optimum value for e, for just the central
four rows proved to store too much energy in the rows
farther out, and this complication made the precise
determination of t., dificult. Therefore, three values for
~, were chosen, 0.05b, 0.06b and 0.07b, and for each
the optimum values were found for the s-displacements
of the other rows. (The results appear later in Fig. 12.)
The possibility of outward relaxation in the [110j
direction was also investigated after the manner de-
scribed in the next paragraph, but it was found that
there was no appreciable outward relaxation after a
s-relaxation of 0.05b. It is possible that simultaneous
variation of e, and e„might have given a slightly lower
energy minimum at appreciably diferent coordinates
but the labor involved in such a program would have
been very considerable. In Table V are given the
values of the s displacements for the other ion rows of
Configuration III, largely independent of e, for the
central rows.

For Configuration IV, the outward radial displace-
ment of 1,0 and —1,0 is particularly important since
z-displacements of these rows are ruled out by sym-
metry. Therefore the technique of investigating this
relaxation, which requires some comment, will be dis-
cussed here. The variations with r of the first term in

Eq. (13) for particular values of s was made available
for reference in graphical form. The part of V(s,r)
involving lnr is m, ore dificult to treat, since it is a long
range interaction. One needs to know the change in
potential energy of a rectangular array of line charges

4-
O

(b)

Change in ln potential due to moving two adjacent
rows symmetrically while all ofher rows are fixed.

Fro. 11.Variation of ln potentials with e„.

with alternating sign when one of the array is displaced
from its equilibrium position in the direction of one of
its neighbors. An expression for this quantity, valid for
small displacements, is developed in Appendix I and
displayed in Fig. 11(a). For application to the coupled
motion of 1,0 and —1,0 one needs also to take into
account the mutual interaction of the two moving rows.
The analytic expression for this interaction is equivalent
to the formula for the interaction of two dipole line
charges and is given as the second term in the expression
below for the complete change in the logarithmic
potentials

6Vt„=(—2e/b) {4.756(e,/b)'
+in/(1+2'„/b)'/(1+4e, /b)g). (14)

&V~„is plotted in Fig. 11(b).
Here it is difficult to establish with precision the

optimum value for e„for the whole dislocation by
examining only the energy of 1,0 and —1,0. For three
values of e„0.056, 0.055b, and 0.06b, the corresponding
optimum radial displacements for rows 2,0 and —2,0
were 0.010b, 0.0116, and 0.0126 respectively. The s-dis-
placements of the other rows could be determined
directly by minimization and are given in Table V.

For discussing the shape of the screw dislocation
there appears to be no single parameter, such as the
"width" which applies to the edge dislocation. However,
the 2-relaxations for Configuration III have altered it
markedly from the symmetric dislocation of elastic
theory. It is now anisotropic and the shear strain in the
(110) plane has been increased at the expense of the
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strains in the (001) plane. This distortion tends to
lower 'the barrier for dislocation motion in the (001)
plane and conversely raise it for motion in the (110)
plane. Again the radial motions of central rows of the
Con6guration IV tend to reduce the shear strain in the
(001) plane and to spread out the dislocation along
the L110]direction.

The energy results for the screw dislocations are sum-
marized in Fig. 12, where the presentation is closely
analogous to Fig. 8 for the edge dislocation. For Con-
figuration III, cylindrical groupings of 4, 12, and 24
rows give 3 values for E for which energy points are
plotted for various e, . Here E= (n/mV2)*'a. Likewise,
Configuration IV gives 3 points for groupings of 2, 8,
and 18 rows. The energy curves before relaxation are
also shown and it can be seen that the total energy for
the twenty innermost rows was decreased by relaxation
in the case of Configuration IV by about 65%, in the
case of Configuration III by about 35%. Fitting to an
equation of the form of Eq. (12) one uses for the coef-
ficient of the elastic term the value of 1.37X10' ev/cm
found in Sec. A and finds for the constant term
0.38X107 ev/cm. These numbers in Eq. (12) give the
smooth curve shown in Fig. i2.

C. Edge Dislocation for Slip in the (100) Plane

The elastic results of Sec. II raise a question as to
how dislocation theory can account for the observed

l.6

relax at'ion

l.2'-

Conflg

,8--eP.

+' Elastic th0
ecjge dis

0 e &+ o 0+ o

(~)8 g 0 0 0+

O+ O 0+ 0+

FIG. 13. Edge dislocation for slip in (100) plane. Positions are
those given by the isotropic elastic theory.

preference for slip in the (110) planes exhibited by
alkali-halide single crystals, since the elastic energy for
an edge dislocation for slip in these planes is some 20%
higher than for the edge dislocation for slip in the (100)
planes. It is uncertain whether the active slip system
is determined by the requirement of lowest barrier for
dislocation motion or smallest energy per unit length
for the appropriate edge dislocation. Believing that
the second criterion might be important, we have
attempted to estimate the core energy for the edge dis-
location for (100) slip. This dislocation is shown in
Fig. 13 with ion rows distributed according to the
isotropic elastic solution, Eq. (8). One must be content
with much more approximate methods here because of
the disordered array of positive and negative rows.
There is then no easy way to take into account exactly
the eGect of the long-range log terms. Instead, we have
evaluated only a finite number of these, including arbi-
trarily only nine rows on each side of the slip plane.
In estimating the energy of the dislocation four terms
were taken into account (i) electrostatic interactions
across the slip plane, (ii) ion-core interactions across
the slip plane, (iii) short range interactions on the
same side of slip plane, and (iv) logarithmic inter-
actions on the same side of the slip plane.

(i) As a first step x-displacements only, corresponding
to the elastic dislocation, Eq. (8) were considered.
(Effect of y-displacements is small. ) Because of com-
plexities no attempt was made to apply variational
re6nements later. The electrostatic interactions across
the slip plane were estimated by considering each atom
in the plane directly above the slip to be in the 6eld of
a plane of alternating charges arranged in a square
array at a distance a below. This potential is given by'

~2
LO a R„=b

I

2.0 a
V(x,y, s) = (e/a) exp( —n-s/a)

Xcos(2vrx/a) cos(2iry/a), (15)
FIG. 12. Screw dislocation —energy vs R. Dotted line gives

analogous curve for edge dislocation in (110) plane. Upper lines
indicate approximate energies before relaxations.

where x and y are coordinates in the plane and s is
perpendicular to the plane with the origin at the site
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of a positive charge. On this basis, the electrostatic
energy of the nine atoms just above the slip plane was
found to be 0.24 e'/a, or 1.20 ev. For the nine atoms
just below the slip plane the corresponding number was
0.88 ev. These two procedures for calculating the elec-
trostatic energy of cross-plane interactions do not
agree because Eq. (15) is only an approximation to the
potential of the distorted planes. The arithmetic
average, 1.04 ev was assumed.

(ii) In calculating the ion-core' cross-plane inter-
actions it was important for the first time to consider
repulsions between ions of the same sign. Instead of
using Eq. (10) we have reverted to the original Born-
Mayer expression for the repulsive potential between
ions 1 and 2,

W'(x)=10 "ergexpL —(x r, r2)/—p j— (16)

where the r; are the radii of the ion cores. Huggins and
Mayer's values" were used; for sodium 0.875 A and
for chlorine 1.475A. The dislocation displacements
increased the repulsions of the Cl —Cl bonds by 0.49 ev
and lowered the repulsions of the Na —Cl bonds by
0.39 ev, giving a net increase of 0.10 ev for the cross-
plane repulsions.

The Cl—Cl interaction depended slightly on con-
figuration, i.e. , on whether the dislocation center lay
between two Cl ion rows or two Xa ion rows. For the
case of no relaxation allowed the difference was evalu-
ated as 0.02 ev, i.e., the amount by which the chlorine-
centered configuration lies above the sodium-centered
configuration. It is rather unusual to be able to dis-
tinguish so clearly by numerical rather than analytic
methods, the change in energy of a dislocation in
moving half a lattice translation along the slip plane.
The minimum resolved shear stress for a slowly moving
dislocation to surmount such a sinusoidal barrier would
would be 2.2)&10' dynes/cm', or over a thousand times
the observed critical shear stress for annealed single
crystals. While this value might be greatly reduced in
the process of relaxation, it seems doubtful whether
the edge dislocations in the (100) slip plane will be
mobile for the range of critical shear stress that is
experimentally observed.

(iii) The short-range interactions between adjacent
rows on the same side of the slip plane is made up of
the nonlog term in Eq. (13) and the ion-core repulsions

LEq. (16)$, using s=b/2. Since the interactions were
both repulsive, the energy in the upper half rose by
1.16 ev. Correspondingly, the energy of the ion rows
below the slip plane fell by 0.64 ev, leaving a net 0.52 ev.

(iv) The logarithmic terms were calculated separately
for both groups of ions. Labor was decreased and
accuracy improved by taking analogous pairs above and
below together and obtaining the logarithm of the ratio
of the distances. The resultant of these terms is —0.31
ev.

' M. L. Huggins and J. E. Mayer, J. Chem. Phys. I, 643 (1933).

Combining the results from all four parts, one obtains
1.73 ev/plane for th'is edge dislocation. This result may
be in error by as much as 50 percent, not only because
of the approximate methods used, but also because no
variation of the position parameters has been employed
to minimize the energy. Also, the selection of ion rows
included has not been as systematic as before where the
use of the concentric cylindrical surfaces made possible
fitting to the elastic solutions at large R. If one takes
1.9 ev as the energy of 16 rows with 8=1.9a, then the
constant term for this dislocation (energy for R= u) is
1.5 ev, where the coefficient of In(ri/ro) is taken to be
0.644 ev per plane (Tables II or VI).

It has been suggested" that since the dislocations in
NaCl have a Burgers vector which is slightly larger than
the shortest distance between neighbors in the crystal,
the cores of some types may be hollow. "We may make
an estimate of the size of the hollow by considering the
crystal as a continuum, and assuming that the deleted
material creates a surface tension. The radius of the
hollow, if we use the elastic energies calculated earlier,
turns out to lie between —,

' and 1 atomic distances for
each of the three main types of dislocations possessing
Burgers vector L110$. Hence the question essentially
becomes one of determining the core configuration by
means of r-wise relaxation. The work reported earlier
shows that the "full" dislocation is at least a local
minimum for displacements. However, calculations
have not been done where a single line of atoms has
been removed at the center of the core for comparison
with the "full" core. One would expect on electrostatic
grounds that hollows at the centers of dislocation lines
with (110) slip planes will be easier to form than at the
centers of the other two types. It is conceivable that
removing the ion row directly above the center of the
dislocation for Configuration I (Fig. 6) might lower the
energy but it is difficult to see how this could be done
for Configuration II (Fig. 7) without altering the sym-
metry. For this reason, it appears that such hollow
dislocations, if they exist, would have low mobility.

IV. CONCLUSIONS

A summary of the results reported is given in Table
VI.

Though the elastic calculations and those dealing
with dislocation cores appear quite reliable and self-
consistent within the framework of the mathematical
model, the information they give does not afford a
ready explanation of the physical facts of the plastic
behavior of XaC1. A somewhat similar situation prevails
here as for the f.c.c. metals, where the calculations of
Foreman and Lomer" have shown that the elastic
energy per unit length of the edge dislocation in the
observed slip planes. (111) is higher than for those in
the (110) planes. While in the case of the f.c.c. metals

' J. S. Koehler (private communication).
' F. C. Frank, Acta Cryst. 4, 497 (1951).' A. J. E. Foreman and W. M. Lomer, Phil. Mag. 46, 73 (1955).
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80'K
Edge
Edge
Screw
Edge
Screw

Slip
plane

Burgers 107 107
vector ev/plane ev/cm ev/plane ev/cm

{110)
(100)

(010)

110]
110]
110]
002]
002]

0.508
0.644
0.544
1.016
0.586

1.81
1.62
1.37
3.62
2.09

0.39
1.5
0.15

1.37
3.8
0.39

TABLE VI. Dislocation energies —values for A and 8
Lsee Eq. (12)].

the (100) plane ceases to be close-packed. This concept
provides an intuitive basis for understanding why the
anion repulsion prejudices so strongly the motion of
edge dislocations in the (100) plane. Though the cal-
culated value for barrier height reported here is not
particularly reliable, the result appears to rule out the
mobility of these dislocations at the lower applied
stress levels. For materials with larger cations, such as
the thallous salts, the situation might well become suf-
ficiently changed to favor slip on other planes.

1000'K
Edge
Edge
Screw
Edge
Screw

(110)
(100)

(010)

L110]
L110]
L110]
1002]
L002]

0.246
0.377
0.257
0.492
0.442

0.875
0.950
0.648
1.75
1.57
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the existence of extended dislocations in the (111)
planes is the probable explanation of the preference for
slip on these planes, there is little likelihood that
extended dislocations are important for alkali halides.

Though a higher value for the dislocation core energy
for the (100) slip plane seems clearly indicated from
the preceding section, the difference might be con-
siderably reduced by minimization. If one accepts the
result calculated for the (100) cores at its face value
and cuts off the logarithm term in the elastic energy at
a value E corresponding to the distance between dis-

locations, then one finds that the difference in energy
per unit length between the (100) and the (110) dis-

locations is

&»,—E~~e ——[2.4+0.19 lna(m A ) ')X10' ev/cm, (17)

where Ã is the dislocation density. The energy dif-
ference goes to zero for 1V equal to 4X10'/cm', a low

value for dislocation density. For higher densities the
energy diGerence would be positive but varies only
slowly with E. In view of the uncertainty in the value
for the core energy of the (100) dislocation, the small

size of the energy difference found here is of doubtful
significance in establishing any preference on the part
of the edge dislocations for the (110) slip planes.

If dynamic considerations are dominant in deter-
mining the slip plane, one would naturally look to the
form of the screw dislocation (Configuration III) for a
hint as to the direction it will move most readily. Here
the evidence from our model is disquieting since the
distortion of the screw's shape from cylindrical sym-

metry is such as to favor motion in the close-packed
plane. Moreover, the edge dislocation core investigated
here appears quite concentrated. This tends to raise
the barrier for dislocation motion and hence the critical
shear stress higher than one would like.

On the other hand the calculations do indicate a high
barrier for the motion of edge dislocations in the (100)
slip plane, arising from the large repulsive interactions
of the closed shells of the anions. In the limit in which
one neglects the presence of the alkali atom altogether

APPENDIX I. SUMMATION OF Ln POTENTIALS

We wish to develop an expression for the electrostatic
potential of a rectangular array of parallel line charges,
the lines being alternately positive and negative. The
pattern of points formed in a plane perpendicular to the
line charges will be an interlocking, face-centered lattice.
In particular we are concerned with the curvature of
the potentia1. along the principal rectangular axes as
experienced by one line charge moving in the 6eld of
all the others. Let the equi1ibrium position of this line
be the origin, and, if the translation distances are 2f
and 2g, then the radial distance to any other particular
line charge is given by

when the integers n and ns are the coordinates of the
second line charge in the lattice. At a point ~ from the
origin along the f axis the potential is

V(e) = —2q P P (—1)"+ in/(eg)'+ (mf e)'j*'—

where q is the charge per unit length, if e«f
hV= V(e) —V(0)

(A-2)

( 1)n+m
—2mfe+e 2ts f e

(A-3)

The linear term in e will drop out because its coeKcient
is odd in m. It can be shown" that

and

(—1)" 1—=—csch(k~)—
~=i e'+k' 2k 2k'

nP ( 1) n. sinh (dn.)—(ds.) c—osh (d~)

m=~ (m'+d')' 4d sinh'(d~)
(A-4)

' For an ingenious method of handling such summations see
M. R. Spiegel, J. Appl. Phys. 23, 906 (1952).
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consequently that
2e (eq ' ir' (—1)"( V2se—+2s.v2 P l

csch
b tb) 2 e & 2

csch(mfa/g) 2ir'2Ã
AV——qe' —Q (—1)"l. g-=

!
(%2ire) cosh (v2irn) —sinh (v2ire) )

sinh'(v2ire)
4ms 2w (—1)"

12fs fg ~=&

sinh'(eg7r/ f) e(e)'
AV(e)= —4.76-l —

l
. (A-6)

For present application, q=e/b, f= b/2 and g= b/V2 so

The series in the square bracket converges very rapidly
(sinh(zgs. /f) —(zg&/f) cosh(ng7r/f) ) so that the third term is 0.3%%u~ of the erst. The final

xl (A-5) result is
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Longitudinal Photomagnetoelectric Effect in Gerxrxanium

JAcK ARoN AND GERHART GRQETzINGER
Lewis Flight Propulsion Laboratory, National Advisory Committee for Aeronautics, Cleveland, 01zio

(Received June 27, 1955)

The emf developed parallel to the gradient of light absorption (Dember emf) in a germanium crystal is
reduced by the application of a transverse magnetic Geld, the diminution being about 10% for a Geld of
5000 gauss. The size of the effect is approximately quadratic in the Geld up to about 2000 gauss, is then linear
to 4000 gauss, and subsequently saturates.

'T was found earlier by one of us' that the photo-emf
- . developed along the direction parallel to the gradient
of light absorption in an illuminated cuprous oxide
crystaP is reduced by the application of a (transverse)
magnetic field. In view of the fact that germanium is
one of the few elements which are intrinsic semicon-
ductors it seemed of interest to determine whether
such an eBect exists in this material.

A piece of high-purity polycrystalline m-type ger-
manium (resistivity: 50 ohm cm at room temperature)'
of dimensions 8)&8X5 mm was etched in a CP4 solu-
tion. 4 It was then placed between the poles of an
electromagnet in such a way that the Geld was parallel
to an 8-mm edge and that one of the 8)&8 mm faces
could be illuminated by a Bausch and Lomb Microscope
Illuminator equipped with a 6-v, 18-amp bulb. A point
contact of Inconel was held against each 8&8 mm face
by spring pressure, the arrangement being such that
the position of the point of each contact on the face
could be altered. The emf between the two contacts
was measured with a potentiometer. A difficulty in
looking for the eGect described above arises because
application of a magnetic field transverse to the light

' G. Groetzinger, Physik. Z. 36, 169 (1935);36, 216 (1935).' H. Dember, Physik. Z. 33, 20'I (1932).' We are indebted to Dr. M. Selker of the Clevite-Brush
Development Company who kindly provided us with the ger-
manium.

R. D. Heidenreich, U. S. patent No. 2619414 (1952).
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FIG. 1. Longitudinal photomagnetoelectric effect in germanium
as a function of the magnetic Geld strength.

~ P. Aigrain and H. Bulliard, Compt. rend. 236, 595 and 672
(1953).

6 H. Bulliard, Phys. Rev. 94, 1564 (1954).
~ Since the effect sought can be expected to produce a change in

the emf proportional to IP for small values of II while the inter-
fering emf goes linearly with H, it follows that at su%ciently low
values of H only the latter effect will be appreciable.

gradient in germanium'' produces an emf along a
direction normal to both the Geld and the gradient.
To reduce the contribution of this origin to the emf
measured here with the field applied, the crystal was
illuminated and the position of the contacts adjusted in
such a fashion that the application of a low (250-gauss)
magnetic field' in either direction produced essentially
no change in the emf between them.

With the contacts thus aligned, it was found that the
application of a sufficiently high magnetic field in either
direction caused a decrease in the emf, e, between the

.IO-


