
PH YSI CAL REVIEW VOLUM E 100, NUM 8 ER 4 NOVEM B ER 15, 1955

An Approach to Elongated Fine-Particle Magnets
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The coercive force predicted by theory for single-domain particles with shape anisotropy frequently far
exceeds the observed value. From an examination of the results of Paine, Mendelsohn, and Luborsky on
elongated iron particles, several approximate models are suggested which may exist in certain experimental
situations. Detailed calculations are presented for a "chain-of-spheres" model remagnetizing by several
mechanisms. Comparison with experiment on certain single-domain particles of known elongation favors
the chain-of-spheres model as a suitable description of their magnetic behavior. A successful calculation is
made of the coercive force of material prepared by several earlier workers. A comparison of the new models
with the older ones indicates a direction for experimental advance.

INTRODUCTION contributes to the coercive force of some 6ne particles
produced by reduction or electrodeposition of ferro-
magnetic materials ' ""

The realization of the predicted magnetic properties
for elongated. single-domain particles has been hindered
by experimental difhculties. On the theoretical side,
there exists the possibility of finding a mechanism for
magnetization reversal with lower energy than the
Stoner and Wohlfarth mechanism of simultaneous
parallel rotation of all the atomic moments. ""In a
current paper, ' Paine, Mendelsohn, and t.uborsky
demonstrate the predominance of a shape-anisotropy
eGect on the coercive force of elongated single-domain
particles of iron produced during electrodeposition.
Dilute suspensions of this material have coercive forces
as high as 2000 oe. Observations in an electron
microscope reveal the anisotropy of shape of these
particles and an average particle -diameter of 150 A.
Such electron micrographs enable the preparation of
particle elongation distribution curves for each sample.
This information makes possible a comparison of fine-
particle theory with single-domain particles of known
elongation. An ideal situation of this kind has seldom,
if ever, been realized in fine-particle work.

It is instructive to make a rough comparison of the
elongated fine-particle iron described by Paine et al.
with the predictions of the Stoner-Wohlfarth analysis.
Theoretically, two situations are of interest, that of
perfect alignment and that of complete randomness in
the orientation of the elongated particles. Experi-
mentally, this material is capable of a partial alignment
with some resulting directionality in magnetic proper-
ties. For the present we neglect crystal anisotropy and
use the median elongation to characterize the assembly.
For dilute suspensions with a median elongation of 3
to 1 (Samples 8 and C of reference 18), a representative

INCE the suggestion of Frenkel and Dorfman' in
1930, there has been active interest in the magnetic

properties of particles small enough, on energetic
grounds, to contain but one domain when there is no
applied magnetic field. The theory describing such
single-domain particles has been enlarged by Guillaud, '
Noel, ' Kittel, 4 Stoner and Wohlfarth, ' and Kondorskii. '
Thorough expositions of this, 6eld may be found in the
survey by Kittel~ and in the work of Stoner and
Wohlfarth, ' with much experimental work appearing
in the reports of recent conferences on magnetism. '

The coercive force of a single-domain particle is
generally expected to have a high value, since the
magnetization changes occur, as a limiting case, through
the usually high Geld process of rotation of the total
magnetic moment of the particle. This rotation process
is controlled by the effective anisotropy of the particle,
for which a number of sources are usually considered. '
The present paper is concerned with the coercive force
of 6ne particles, resulting from anisotropy of particle
shape. If the particle has the shape of a prolate spheroid
whose major axis coincides with the 6eld direction, its
intrinsic coercive force is given b)r H =(ling 1Vp)I„
where I, is the saturation magnetization, and E~, g&
are the demagnetizing factors of the spheroid along the
major and minor axes, respectively. Stoner and Wohl-
farth have presented a very detailed treatment of this

process, including the averaging for random orientation
of particle axes. This mechanism is probably operative
in certain heterogeneous alloys' ' " and it probably
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coercive force when in the random arrangement is about
1500 oe (measured at —196'C). Alignment may raise
this to 1700 or 1800 oe in the parallel direction by
about 1200 to 1400 oe in the transverse direction. The
Stoner-Wohlfarth calculations predict about 3500 oe
for the random-state coercive force and 7200 oe by 0 oe
for the aligned state. This discrepancy warrants further
attention. In what follows, there will be described a
simple model with several variations which is capable
of accounting for a number of experimental observations
made on this elongated fine-particle iron.

"CHAIN-OF-SPHERES" MODEL

An alternative model of an elongated particle is a
chain of single-domain spheres, rather than the prolate
ellipsoid employed by Stoner and Wohlfarth. In this
idealized model the spheres are sometimes assumed to
have only point contact, or even to be slightly separated
so as to be magnetically isolated. We shall refer to this
model as a "chain of spheres. "

This sort of model has been envisaged in the past, ""
and suggestions have been made for obtaining the chain
experimentally. Beischer and WinkeP' have noted a
self-alignment feature in the model and presented some
experimental evidence for it. Briefly stated, the self-

alignment mechanism is that single-domain spheres
have a tendency to line up with their moments along
the common axis, due to magnetostatic interactions.
To consider the alignment mechanism, we treat each
sphere as a dipole of moment p, and diameter a, and
examine their interactions. If dipoles p; and p;, sepa-
rated. by a distance r;;, make angles 0, and 0; with the
vector joining them, their energy is

W= (iJ,;lI,;/r; p) Leos(0; 0;) 3co—se; co—sg;j (1).
Adding terms of this type, it is easy to show that two

spheres in contact are most stable with their moments

aligned along the line of centers. Similarly, for three
spheres the aligned configuration is more stable than

any other, including those which oGer a sort of Qux

closure. This situation changes when we allow four
spheres to come together. Now, the Aux closure con-

figuration of a square array, moments at 45' to con-

necting lines, is more stable than the aligned configur-

O
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0

FIG. 1. Magnetization reversal of aligned chain or particle.
Chain-of-spheres model: A—symmetric fanning mechanism; 8—
parallel rotation mechanism. Prolate spheroid model: C—parallel
rotation mechanism.

' U. S. Materials Advisory Board, Panel on Permanent Magnet
Materials, Report MMAB —34-M, 1953 (unpublished).

~ D. Beisclmr and A. Winkel, Naturwiss. 25, 420 (1937).

ation. The self-alignment mechanism need not fail at
this point, however, for if a fourth sphere approaches
a straight chain of three, its most stable position is at
the chain end, provided we admit no mechanism for
deforming the chain. With this growth feature, aided
by some unspecified welding of spheres, this scheme
may be added to those previously considered for
making connective chains.

COERCIVE FORCE OF ALIGNED CHAINS

The principal object of this paper is the calculation
of the coercive force of dilute suspensions, using the
chain-of-spheres model. We shall be concerned first
with the coercive force when the chain is aligned with
the Geld. This will be followed by the appropriate
averaging over all orientations of the chain with respect
to the Geld, so as to obtain the coercive force for an
assembly of randomly oriented chains. At that point
we may compare the predictions of the model with
experiment.

For the calculation, we assume that the spheres have
no crystal anisotropy. The shape anisotropy of the
chains will follow from the arrangement of the dipolar
spheres as they interact with each other and. with the
external Geld. There are two reversal mechanisms which
will be considered for the chain of spheres. (See Fig. 1.)
The simpler one is that of simultaneous parallel rotation
of each of the dipole moments in the chain. (This will

be designated as mechanism B.) This mechanism is
identical to that employed by Stoner and Wohlfarth,
with the exception that the specific value for the
coercive force of a chain proves to be lower than that
for an ellipsoid of the same axial ratio. The averaging
procedure is identical, yielding the same numerical
factor (0.479) relating the coercive force of the ran-
domly oriented assembly to that of the perfectly aligned
(noninteracting) assembly. The second mechanism is
that in which the moments fan out in a plane, alter-
nating in the sense of their rotation from one sphere to
the next, proceeding along the chain. We assume here
that there is no exchange-energy interaction where
adjacent spheres are closest. In other words, the "wall"
area is confined to the "point" of contact, or the spheres
are slightly separated. It is easy to show that fanning
in a plane is favored over any other arrangement of
fanning with respect to the chain axis. A special case
of this observation is that the mechanism of fanning in
a plane yields a lower magnetostatic energy during
magnetization reversal than does the simultaneous
parallel-rotation mechanism. It is instructive, however,
to include the calculations for the higher-energy process,
as it may occur if the wall energy contribution becomes
significant. It is important to note that a simplifying
assumption is made in the calculations for the fanning
mechanism, i.e., the magnitude of the angle of fanning
is constant along the length of the chain. This assump-
tion of symmetric fanning is rigorously correct for the
two-sphere chain and for the infinitely long chain whose
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n

E„=Q (n —J)/n j'.
j=l

(3)

Proceeding as described, the coercive force for parallel
rotation, 8, is

ends meet. Separate calculations of the coercive force,
made without the above restriction, for aligned chains
of finite and semi-infinite length show the existence of
an end eGect. This leads to lower coercive forces than
those predicted by symmetric fanning. Exact solutions
are readily obtained for aligned chains of six or less
spheres. For the semi-infinite chain a close approxi-
mation is obtained by starting with a trial solution
suggested by a soluble model involving only nearest
neighbor interactions. When considering the reversal
by fanning of unaligned chains, the symmetric-fanning
model is more tractable. Consequently this mechanism
will be retained for detailed investigation. It will be
shown that the errors originating in its use are small
when the chains are not long. (We shall designate the
symmetric-fanning process as A and the nonsymmetric-
fanning process as A'.)

To calculate the coercive force for a chain aligned
with the field, we consider the total energy of the chain
at some point during the reversal, being the sum of the
interdipole magnetostatic energy and the field energy
with the field directed opposite to the initial direction
of magnetization of the chain. This energy is minimized
with respect to its angle parameter to obtain an expres-
sion for the equilibrium field for a given angle. The
coercive force is obtained from this expression by
inspection. In the case of parallel rotation, 0,=0,=0
for all i, j in the chain of e. The total energy is then

TV = (p'/as)nE~(1 —3 cos'8)+npH cosg, (2)
where

n
Chain length

or
axial ratio

H'c in oersteds
A/ B

1
2
3
4
5
6
7

9
10
11
12

0
900

1420
1690
1870
2020
2090
2160
2220
2270
2310
2340
2700

0
900

1400
1590
1680
1720

~ ~ ~

1750

0
2700
3820
4430
4810
5070
5260
5390
5530
5630
5700
5760
6470

0
5160
7260
8340
8980
9400
9650
9860

10 000
10 100
10 200
10 300
10 800

we may tabulate the coercive forces for chains (or
elongated particles) of various lengths (or axial ratios).
This is done in Table I, and includes the results for the
nonsymmetric fanning mechanism, A', along with the
coercive forces for prolate spheroids, C, calculated as
indicated previously.

Several points are of interest in connection with the
data of Table I. As implied above, the fanning mecha-
nisms (A,A') have lower coercive forces than the other
mechanisms. For experiments with elongated particles,
it is particularly significant that the maximum coercive
forces by fanning are considerably lower than the
corresponding maximum attainable with parallel rota-
tion of the magnetic moments in an ellipsoid (C). The
lower coercive forces of the various chain models
compare attractively with existing experimental results.

TABLE I. Comparison of coercive force of chains or particIes
of iron aligned with magnetic Geld. (A) Chain of n, symmetric
fanning mechanism Eq. (9). (A') Chain of n, nonsymmetric
fanning mechanism. (B) Chain of n, parallel rotation mechanism,
Zq. (4). (C) Prolate spheroid of axial ratio n, parallel rotation
mechanism.

H, , „=(fj,/as)6E„. (4) MAGNETIZATION OF RANDOMLY ORIENTED CHAINS

L„= Ln —(2i—1)3/n(2i —1)', (6)
j=1

~(n —2) & j&~n

(n —2j)/n (2j)',
j=1

L„+M =E„.
Thus we obtain for the coercive force in the fanning
mechanism, A,

H, , „=(p/as) (6E„—4L„). (9)

Noting that p/as= 7rI,/6 which is about 900 oe for iron,

In similar fashion, for the symmetric fanning mecha-
nism where 0=0~= —02=03= —04= ~ ~, we write for
the total energy:

W = (p,'/as)nL„(cos28 3cos'8)—
+ (ps/as)nM„(1 —3 cossg)+nlJH cosg, (5)

where

)(n —1) & j&$(n+1)

We have now to obtain the hysteresis loop for an
assembly of randomly oriented chains of spheres, when
the magnetization reversal mechanism of a chain aligned
with the field is the symmetric-fanning process, A. For
mechanism A', we shall use an approximation based
on A, while 8 is similar to C, previously described.
The composite loop is synthesized from the family of
loops corresponding to different angles between the
field and the chain axis. As this angle approaches 90',
the reversal mechanism will change over to that of
simultaneous parallel rotation. This feature is responsi-
ble for an approximate equivalence of the random and
aligned coercive forces. There is no universal random
loop, adjustable to chain length by a scale factor,
because the ratio K„/L„, Eq. (9), is a slowly varying
function of e. We carry out specific calculations for two
cases, a chain of two spheres and an infinitely long
chain, and interpolate for chains of intermediate length.

The choice of coordinates facilitates the calculation.
Consider that the field, H, is applied along the s-axis,
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in the —z-direction. Let the chain lie in the xz-plane,
its axis making an angle P with the z-axis. The sphere
moments will be described by their polar angle 0, with
respect to the z-axis, and their azimuthal angle @
measured in the xy-plane, with respect to the x-axis.
During the fanning process, the angle P alternates in
sign from one sphere to the next along the chain, but
~p ~

is constant in accordance with our assumption for
this process, A. In terms of this description, the total
energy for a chain of e spheres, comprised of magneto-
static and field energy terms, is given by

Wi(0, &pP,H) = W, (8,&pP)+Wr(0, H)
3mK„—(Ii,'/a') (sing sin8 cosP

+cosP cos8)'+ NL (p'/a') (sin'8 cos2$
+cos'8)+mM „(Ii'/a')+tipH cos8, (10)

~H (ae]'2K2 p, )
I I

30 2.S 2.0

1.0

.6

.2

-.2

-4

and
sin&=0, &=0, s

cosg=A(P) cot8,

(13)

(14)
where

A (P) = (3K„/4L ) sin2$/[1 —(3K„/2L„) sing j. (15)

The first of these indicates parallel rotation of the
moments, leading to the results of Stoner and Wohlfarth.
The correct choice for our model is obtained by in-
voking a necessary condition for a minimum, i.e.,
(O'Wi/BgP)s)0 This con.dition is satisfied as follows:

(a) by &=0, for 0&8&tan 'A(P);
(b) by P=cos '[A(P) cot8j, f'or ~tan8~ &A@);
(c) by P= or, for cot '(—1/A (f)) &0(s-.

The reversal mechanism is some sort of fanning in
range (b), but this range becomes smaller as P increases

where K, L„, and M„are given by Eqs. (3), (6), and

(7).To determine the hysteresis loop for a chain making
a given angle P with the field, we calculate the equi-
librium values of 0 and P at various values of the field

H, i.e., minimize W, at fixed P, H. The loop is then
formed by plotting the resolved relative magnetization
I/I, = cos8 versus H. The equations to be solved
simultaneously are

(BWi/Bg) g
= (BW„,/8&) s =0, (11)

(BWi/88) p (BW,/88—)—e+dWg/d8 =0. (12)

From Eq. (11) we obtain a relation between 8 and g,
which, upon substitution into Eq. (12), yields an
equation in 8 alone, depending on P and H as param-
eters. We complete the solution for 0 graphically, by
fLxing f, plotting (BW,/80)e and —(dW~/d0) for a
given H, and determining their intersection. A simplifi-
cation is introduced by using sin0 as abscissa, in which
case (dWi/d8) is a straight line whose slope is propor-
tional to II.

To describe the features of the reversal, we first
examine the roots of Eq. (11),which are

—-.8

-t.o

FIG. 2. Hysteresis loops for two-sphere chains oriented at various
angles P to Geld. (Fanning mechanism. )

until P)go=sin '(2L„/3K„)l for which there is no

longer a solution to Eq. (14). The angle fs varies from
54.8' for ti=2 to 49.8' for n= ~. For P)fs, the com-

plete reversal is by the parallel-rotation mechanism.
The polar angle 8=tan 'AQ), mark. ing the transition
from parallel-rotation reversal to fanning reversal,
increases with increasing f until /=Ps, at which point

0($0) =s/2. Other features of the reversal appear in

the graphical solution. For /&Pe, as H increases, there
is a gradual change in cos0, followed by a discontinuous

change just at the angle 0 marking the transition from

parallel to fanning reversal. The only stable solutions
occur in ranges (a) and (c), while range (b) is needed

to permit the discontinuous reversals at fields lower

than would occur with the parallel rotation mechanism
alone. These fields mark the coercive forces for the
loops in question. For P)fs, d.iscontinuous changes
occur at H&H„as described by Stoner and Wohlfarth.

The results, in the form of graphs of representative
hysteresis loops, are shown in Figs. 2 and 3 for @=2
and m= ~, respectively. In Fig. 4, showing H, eersls P
for mechanisms A and 8, it is interesting to note the
gradual rise in H, (fanning) from its value at /=0,
until it meets H, (parallel rotation) at /=Ps and then
falls rapidly to zero. This comparison demonstrates the
large difference between mechanisms A and 8 in their
numerical "averaging" factor relating the aligned
coercive force to that for a randomly oriented assembly.

Using data calculated for loops of constant P in 10
intervals, we proceed. to the synthesis of the loops for
an assembly of randomly oriented chains, all having
either m=2 or e= ~. The mean resolved value of the
relative magnetization of the assembly at a particular
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. 5.0 2.5

~H&a'/ 2K &~

I

2,0

I.O

.8

.6

I/ Is

.2

-4

most important results are the values of the random
coercive force, as follows:

Chain length m=2;
H, = (1.13+0.02) (2Esp/as) = 1.13H, Q =0),

Chain length e= ~;
Ho= (1.35+0.03) (2E p/&') = 1.08H. Q =0).

These 6ndings are novel, in that the random coercive
force exceeds the aligned coercive force, but, in practice,
a number of factors may tend to mask this effect.

Figure 7 presents a comparative summary and
evaluation of the results for the field of 6ne-particle
ferromagnetic material having shape anisotropy. Spe-
cifically considered are the hysteresis loops for random
and aligned assemblies reversing by three mechanisms,

-.8 —.8

-lO

FIG. 3. Hysteresis loops for ~-sphere chains oriented at various
angles P to Geld (symmetric fanning mechanism).

—.6

6eld II is given by
vr/2

((I/I, )lr)A„= ((cos8)H)A, = t (cose) rI sinPdP, (16)
0

where the value of 0 may depend on the previous
history. In performing the graphical integration, inte-
grand discontinuities lead to uncertainty in some of the
points, but the resulting curves are sufficiently accurate
for present purposes. The curves for m=2 and n= ~
are shown in Figs. 5 and 6, while Table II presents
data from which these curves may be reproduced. The

.2

~2

;8

3.0
Hc = l.l5-0.02 (2K& p/a&) = l. l5 Hc; (g=0)

FIG. 5. Hysteresis loop of assembly of randomly oriented
two-sphere chains. (Fanning mechanism. )
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FIG. 4. Variation of coercive force with angle P between chain
and field. (A) Symmetric fanning mechanism; n=2, n= ~.
(8) Parallel-rotation mechanism, all n.

fanning (A) and parallel rotation (8) for chains of
spheres, and parallel rotation (C) for prolate spheroids.
Curves 3 describe the magnetic behavior when the
spheres of the chain appear isolated to the extent of
feeling no exchange forces, but are subject to strong
magnetostatic interaction. Curves 8 pertain when
there is sufficient common boundary between the spheres
of the chain to allow a strong exchange interaction
which forces the reversal mechanism to be parallel
rotation. This interaction raises the random coercive
force but slightly, while the aligned coercive force
increases by a factor of three over that in A. Curves C
show a twofold increase in both coercive forces over
those in 8, illustrating the improvement in magnetic
properties to be obtained when the chain is "6lled out"
to become a prolate spheroid. From the theoretical
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side, there are three idealized models for analysis of
actual situations which may be close to one of them,
or lie between two of them.

TABLE II. Variation of relative magnetization with 6eld for
a randomly oriented assembly of e-sphere chains; n=2, n= oo

(symmetric fanning mechanism).

COMPARISON WITH EXPERIMENT

The particle elongation distribution curves presented
by Paine, Mendelsohn, and Luborsky' enable us to
compare the magnetic properties predicted by the
various models with their results. For the chain-of-
spheres model, only integral elongation ratios are
allowed, so unit length is assigned to particles whose
ratios lie between 1 and 1.5, length 2 to particles
between 1.5 and 2.5, and so on. This information is
converted to histograms showing the volume percentage
of particles in each group. The existence of universal
hysteresis loops for mechanisms 8 and C facilitates

—1.0

—.8

Hag/p, 2Kn

0.0
0.2
0.4
0.6
0.8-
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2,4
2.6
2.8
3.0
3.5
4.0
5.0
6.0

Upper branch
(Ill.)

n=2, n= ~

+0.500'
+0.453
+0.402
+0.349
+0.288
+0.220+0.002—0.195+0.005 +0.140~0.002—0.495&0.005 —0.150&0.050—0.675+0.005—0.775a0.005—0.822+0.002—0.840~0.002—0.862—0.884—0.898—0.913—0.938—0.957—0.972—0.981

Lower branch
(I/1.)n=2 ~

n= ro

—0.500'
—0.542—0.582—0.620—0.655—0.687—0.718—0.747—0.774—0.799—0.822—0.841—0.864—0.884—0.898—0.913—0.938—0.957—0.972—0.981

I

QO

4

.2

:2

& The data listed without error limits were interpolated from Stoner and
Wohlfarth (reference 5), Table VI. The graphical solution is accurate to
&0.002 except as noted.

spheres, applying a suitable scaling factor based on
the aligned coercive forces of Table I.

Calculations of the coercive force were made with
the various models for two rather diGerent dilute
samples. The first of these, designated S—C (about
the same as sample C of reference 18), is typical of
those for which the chain-of-spheres model was devel-

Hc, ~ I.35 + 0. 05 ( 2K')p/a )= l.08 H~ (f&0)

:6

".8
G

I

I
I

I

} s
I

I

I.O

—.8

—.6

FIG. 6. Hysteresis loop of assembly of randomly oriented
~-sphere chains (symmetric fanning mechanism).

the application of these data following the procedure
recently described by Wohlfarth. " His integration is
replaced here by a summation. When calculating the
random coercive force for the symmetric fanning
mechanism (A), the variation with rs ot the reduced
hysteresis loops, Figs. 5 and 6, introduces a little more
work. The required interpolation for intermediate
values of e is done in a straightforward manner, and
the results are relatively insensitive to the exact method
employed. For the nonsymmetric fanning mechanism
(A'), only an approximate calculation of coercive force
can be made, in the absence of a detailed hysteresis-
loop for a randomly oriented assembly. One simple
approximation is to use the loop for a chain of two

"E.P. Wohlfarth, Research (London) 7, S1 I'1954).

Has/pe I

7.0
FOR Fe
900oe = 1.0

I

I

6.0~ aO

1

y /I

I s I I
y.o + 2.0

I
$0

I

—.2

I
0 Is

~ 4

—.6

—-.8

—-I.O

FIG. 7. Comparison of hysteresis loops for assemblies of ran-
domly oriented and aligned two-sphere chains; three reversal
mechanisms. A —fanning; 8—parallel rotation of sphere mo-
ments; C—parallel-moment rotation in spheroid of axial ratio 2:1.
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Sample

Observed
Hc„=IIci

S—C

1500 oe

S—A

1100 oe

Model

A

C
A+C
8+C

FIc
Randomb

oe

1590
1750
3280
1610
1750

FIc
Aligned

oe

1690
4430
8340
1700
4430

FIc pc
Random& Aligned

oe oe

420 900
400 2700

1250 5160
970 1420
980 2700

a Reference 18.
b The error in the calculational procedure is estimated as ~20 oe.

oped. Its particles have a mean diameter of about
150 A, and a median elongation ratio of about 3, with
contributions from particles having axial ratios up to
13. The second sample, S—A (about the same as
sample 2 of reference 18), was prepared under different
conditions and is less suited to the chain-of-spheres
model. This sample is similar in its magnetic and
particle-shape properties to material investigated by
Meiklejohn" and by Mayer and Vogt." Its particles
have the same mean diameter of 150 A, but they exhibit
very little elongation, the median being 1.3 to 1 with
the largest about 5 to 1.As this sample has an important
fraction of its volume in the range of elongation between
1.0 and 1.5, the arbitrary criterion above, which
assigned unit length and zero coercive force to this
range, should be modified. A useful approximation is
to treat them as prolate spheroids of axial ratio 1.25.
This is done below for mechanism C in which all
particles are considered as Stoner-Wohlfarth spheroids.
This approximation may also be combined with reversal
mechanisms A and 8 for the chains of spheres. When
the fraction of material in this low elongation group is
small, the use of such a combination is unimportant.

Table III presents the results of such calculations,
along with the experimentally observed coercive forces
at —196'C, in directions parallel and perpendicular to
that of the 6eld during solidification of the matrix.
These samples showed no tendency to directionalize
while many others did. Coercive force estimates for
aligned samples are included, as they will prove useful
in discussing samples which do exhibit directional
effects. In connection with Table III, we shall note
errors and omissions made along the way. The error
of about &20 oe stated for II, (random) represents
only an estimate of the error in the calculational
procedure. The results of the approximate calculations
for these samples using the nonsymmetric-fanning
mechanism, 3', are not listed as they fall within the
error limits. A significant error from this source does
not appear until the median elongation ratio is about
five or greater. An important omission is the eGect of

TAsLz III. Summary of coercive force calculations. Samples
described by Paine et u/. ' Mechanisms of reversal: A—chain of
spheres, symmetric fanning; 8—chain of spheres, parallel rotation;
C—prolate spheroids, parallel rotation. Combinations use C for
elongations &1.5.

magnetocrystalline anisotropy. This could add to the
calculated coercive force an amount varying from
2E/I, to —2E/I, depending on the degree of crystal-
line order along the chain. For iron at —196'C, the
higher estimate amounts to about 600 oe.

On the basis of the evidence up to this point, sample
5—C seems best described by mechanism A, although
we cannot reject mechanism 0. This agreement with
the chain-of-spheres model is not surprising inasmuch
as this sample exhibits a symmetrically wavy profile
along the sides of its elongated particles. (See Figs. 2
and 3 of reference 18.) With regard to sample 5—A,
the agreement with experiment of either of the two
combination models is gratifying. The prolate spheroid
model C, also gives reasonable results for this sample.
These estimates for 5—A have a more quantitative
basis than previous estimates for this type of sample. ' ""

In recent work, Paine and co-workers" have investi-
gated the e8ect, on the coercive forces, of the magnitude
of the aligning field during freezing of the matrix.
Measurements on a sample similar to 5—C, in direc-
tions parallel and perpendicular to the direction of the
freezing 6eld, show a small increase in H„, and a rather
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FIG. 8. Comparison of observed and calculated values of
random coercive force of 6ne particle iron as a function of median
elongation. Chain-of-spheres model: A—symmetric fanning mecha-
nism; A '—nonsymmetric-fanning mechanism; 8—parallel-rota-
tion mechanism. Prolate spheroid model: C—parallel-rotation
mechanism.
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larger decrease in H,~. The magnitude of the decrease
is more than twice that of the increase. This asym-
metrical spread resembles the behavior expected from
mechanism A. For the completely aligned state, each
mechanism predicts H,~=O, but for mechanism A,
H,»=II„as compared to the predictions for mecha-
nisms 8 and C of II„,=2II,.

An additional comparison between theory and. experi-
ment may be made with the relation between random
coercive force and median elongation ratio. Data have
been collected"" for samples ranging in median elon-
gation ratio (by frequency) from 1.3 to 4.6, with particle
diameters lying between 140 A and 180 A. For the
models, we assume that the median elongation ade-
quately characterizes the behavior, and we determine
the random coercive force of a sample of uniformly
elongated particles (neglecting magnetocrystallin. e ani-
sotropy). Figure 8 presents the comparison of experi-
ment with mechanisms A, A', 8, and C. Mechanism C
is ruled out at high elongation, as noted earlier. The
failure of models A, A', and 8 at low elongation is also
as expected. The general trend of predictions A, A',
and 8 is in fair agreement with the experimental
results at higher elongations. In particular, despite the

crudeness of the assumptions, there is apparent support
for the fanning mechanism A' in this correlation.

SUMMARY

%e have re-examined the predictions of magnetic
behavior arising from shape anisotropy in single-domain
particles. Several approximate models have been sug-
gested which may exist in certain experimental situ-
ations. Detailed calculations have been carried out for
a "chain-of-spheres" model. Comparison with recent
results on certain elongated iron particles favors the
chain-of-spheres model as a suitable description of their
magnetic behavior. A successful calculation has been
made of the coercive force of material prepared by
several earlier workers. A comparison of the new models
with the older ones indicates a direction for experi-
mental advance.
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Magnetic and Thermal Properties of MnC1, at Liquid Helium Temperatures.
I. Magnetic Susceptibility*

R. B. MURRAYt AND L. D. ROBERTS

Oak Ridge 37ational Laboratory, Oak Ridge, Tennessee

(Received July 28, 1955)

Measurements of the magnetic susceptibility of polycrystalline and single-crystal samples of anhydrous
Mncl& have been carried out from 1.1' to 4.2'K with an ac mutual-inductance bridge. The susceptibility was
found to be essentially independent of an applied magnetic field up to 2400 oersteds throughout this region,
and displayed anomalous behavior near 2'K indicating a magnetic ordering transition. In view of the ob-
served susceptibility behavior this transition is interpreted as one of an antiferromagnetic nature, although
the susceptibilities of both the single-crystal and polycrystalline samples were found to rise slowly with
decreasing temperature below the transition region. This interpretation is supported by preliminary neutron
diffraction studies below 2'K. A calculation of the magnetic anisotropy is in reasonable agreement with that
observed at 4.2'K.

INTRODUCTION

NHYDROUS MnC12 is a member of the series of
iron-group anhydrous chlorides. The magnetic

and thermal properties of these compounds have been
previously investigated at a number of laboratories
from liquid hydrogen temperatures to room temperature
and above. An extensive study of the magnetic sus-
ceptibilities of the members of this group has been

* Reported at the New York meeting of the American Physical
Society, January, 1955.

t' Graduate Fellow of the Oak Ridge Institute of Nuclear Studies
from the University of Tennessee. This work was included in a
thesis submitted in partial fulfillment of the requirements for the
degree of Doctor of Philosophy at the University of Tennessee.

carried out by Starr, Bitter, and Kaufmann' (SBK);
references to earlier work may be found in their paper.
This series of compounds is of interest because of the
high density of magnetic ions which leads to strong
magnetic interactions, and hence to magnetic ordering
transitions at relatively high texnperatures. Many of
these compounds are crystallographically isomorphous,
having a hexagonal layer structure, so that their mag-
netic properties may be compared directly. Magnetic
susceptibility measurements have shown well defined
maxima in the susceptibilities of several compounds of
this series, characteristic of an antiferromagnetic

' Starr, Bitter, and Kaufmann, Phys. Rev. 58, 9'77 (1940).


