
PH YSI CAL REVIEW VOLUM E 100, NUM B ER 4 NOVEM B ER 15, 1955

Quantum Theory of Fluctuations*
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An operator is constructed for the spectral density of a Ructuating dynamical variable. The formulation
is based on an analysis of method of measurement. An essential feature of the operator is the replacement of
classical dynamical variables by time-dependent Heisenberg oyerators. The expectation value of the spectral
density includes fluctuations of statistical origin, as well as fluctuations of quantum mechanical origin. It
can be computed for any physical system when the initial state has been specihed. Two applications are
given: Nyquist s law is rigorously deduced for a physical system that is similar to the one discussed by
Callen and Welton, and the shot eBect is calculated for free uncorrelated electrons. A quantum correction is
obtained whose origin lies in the wavelike character of the electron.

construct them by consistent application of the ac-
cepted postulates of the theory of measurement in
quantum mechanics, as will be shown presently. Thus
it is not necessary, at least for the present purpose, to
"recast the conceptual scheme of quantum mechanics. '"

I. INTRODUCTION

II. DEFINITION OF THE SPECTRAL DENSITY
OPERATOR

We shall give a definition of the operator in question
for two definite measurements which are only slightly
idealized versions of actual observations (Fig. 1).

We assume that the fluctuating variable A(t) pro-
duces by some means an electric voltage proportional to
it which we will also designate by A (t). The voltage is
fed into a band-pass filter which transmits only the
frequency components between vp —Av/2 and vp+Dv/2,
so that only the part 5A (t) is transmitted. This signal
heats a thermocouple whose temperature variations are
determined by the time integral of [8A (t)]'. We now
distinguish two cases:

(1) The thermocouple is connected to a ballistic
galvanometer which indicates the magnitude

[u (t) i'dl.

This arrangement is meaningful only if A (t) is constant
outside a finite time interval, or, more generally, if the
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FIG. 1. Experimental arrangement for measurement
of spectral density.
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~'LUCTUATION phenomena are common and im-

portant features of all branches of the physical
sciences. Since the origin of most Quctuations is of a
statistical nature, it is perhaps not surprising that
classical methods dominate the literature on the subject.
Callen and Welton' (C-W) have given a quantum
mechanical theory of thermal (Nyquist) noise. More
recently, Weber has made some additional applications
of their method. ' The C-W method did not give a well-

defined procedure for calculating what is usually
measured, namely the spectral density. Instead, the
total fluctuation was obtained in the form of an in-

tegral. The integrand was conjectured to be the spectral
density.

According to the usual theory of measurement in

quantum mechanics, the procedure for predicting the
results of a measurement is to formulate an operator
corresponding to the quantity measured and then to
calculate the expectation value of the operator with

respect to the state of the system.
The measurements usually considered in quantum

mechanics involve observations at a definite time, given
a complete or partial knowledge of the state of the
system at a previous time. It was pointed out recently

by Schrodinger' that the vast majority of measure-
ments actually performed in the laboratory have an
entirely diferent character. Measurements of the spec-
tral power density of fluctuations, for example, do not
fall into the usual pattern because the observation
takes place over a very long time. While operators
corresponding to such measurements have not been
previously used, to our knowledge, ' it is possible to

* Supported, in part, by the Bureau of Ordnance, Department
of the Navy. A brief summary of this work has previously been
reported at the 1954 Chicago Meeting of the American Physical
Society. LH. Ekstein and N. Rostoker, Phys. Rev. 98, 222(A)
(1955).j' H. S. Callen and T. A. Welton, Phys. Rev. 83, 34 (1951).

2 J. Weber, Phys. Rev. 96, 556 (1954); 94, 214 (1954); 90, 977
(1953).

3 E. Schrodinger, Nuovo cimento 1, 5 (1955).
4We disregard the discussion of measurements in relativistic

Geld theory where the time interval of the measurements is as-
sumed to be very small, and is ultimately shrunk to zero. See,
for example, W. Heitler, The Quantum Theory of Radiation
{Clarendon Press, Oxford, 1954).
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integrand decreases rapidly enough so that the integral
exists. In other words, the Quctuation begins and
terminates.

If the Fourier transform of A (t) is

A (v) = A (t) exp( —22rivt)dh,
J

then the part of the signal transmitted through the
6lter is

We have now given a classical definition of the ob-
served quantities in the two cases. The accepted pro-
cedure for the construction of the corresponding
quantum mechanical operators' consists in replacing the
classical variable A by the corresponding operator and
to "Hermitize" the resultant expression. The only
peculiarity of the present case consists in the fact that
these operators must obviously be Heisenberg opera-
tors. The resultant operators for the spectral density in
the two cases are

vp+6 v/2

bA(t) = " 2 Re[A(v) exp(22rivt)]dv,
22e vp—hv/2

and the ballistic galvanometer reading is

00 vp+6 v/2

" [BA(t)]2dt= " G (v)dr

where

G, (v) =2(A(v) ~2

~
+00 +00

(2) G, (v) =
J

t [A (h)A (t')+A (h')A (t)]

Xexp[—22riv(t —t')]dtdt' (6)
for case 1, and

(3)
G(v) = lim —' [A (t)A (t')+A (t')A (t)]T=TJ ~

—T/2

Xexp[—22riv(t —t')]dhdt' (7)

for case 2.
The expectation value

+00 p+00

=2)" A (t)A (t') exp[ 22riv(t —t')]dtdt—' (4).

(2) The fluctuation does not decrease for t ~~ po.

In this case, the measurement consists in observing the
time-average of the thermal emf produced by the
thermocouple, if the physical system is connected to the
measuring device between the times —T/2 and +T/2.

One may assume a sequence of measurements with
increasing T, in which the observed value tends to a
limit. In this case, the voltage Qowing through the
filter is given by

~
vp+5v/2

BA (t) = 2 Re[AT(v) exp(22rivt)]dv, (2a)
vp—n v/2

with
T/2

can be computed if the initial state Pp is specified. If,
however, the initial state is not precisely known, then
all information concerning it can be expressed by the
density matrix p, and the expectation value of G(v)
or G, (v) is'

(G())=T (G() )
We can now express precisely what the term "Quctu-

ating variable" means. A variable A is Quctuating with
respect to an initial state fp, if the expectation value of
G(v) or of G, (v) exists.

It is sometimes more convenient to consider the
correlation function, which has the classical expression

AT(v) = A (t) exp( —22rivt)dt,T/2—
and the deQection of the meter is determined by the
average value of PA (t)]':

)T/2

F(r) = lirn — A (t)A (t+r)dk.
T~r/0 T'J T/2

The same procedure leads to the operator

(10)

where

f+oo

~
v 0+6 v/2

PA (t)]'dt = GT (v) dv,
TJ „ ~ vp—b v/2

fT/2

F(r) = lim —
~

[A (t)A (t+r)+A (t+r)A (t)]dt. (11)
o0 2T T/2

T/2
2 f

G (v) =— A (t)A (t') exp[ —22riv(t —t')]dtdt'.
T0

—TJ2

If the sequence of measurements has a limit, as
sumed, then the observed quantity is

T/2
2

G(v) = lim,' — A (t)A (t') exp[—22riv(t —t')]dtdt'..'TJ J—T/2

Since only time or frequency integrations are involved,

(4a) the Wiener-Khintchine theorem applies to G(v) and
F(r). That is, the operators G(v) and F(r) are Fourier
transforms, as are (G(v)) and (F(r)).

While we have defined an operator for the correlation
function F(r), it must be admitted that it is not directly

2 E.g., H. A. Kramers, Grppr//ttageN /ter Qga2rtentheorte (Aka-
demische Verlagsgesellschaft, Leipzig, 1938).

p J. von Neumann, 3futhematische Grlnd4gee der QNunten-
2/geehalph (Dover Publications, New York, 1943).
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derived from an analysis of a precise experiment.
According to the experimental procedure chosen, other
operators may be appropriate.

III. NYQUIST NOISE

As an application, we shall calculate the spectral
density of current fluctuations for the physical system
considered by Callen and Welton. ' The system is
characterized by boundary conditions (such as re-
flecting walls) that lead to zero current for every
eigenstate. A detailed specification of the Hamiltonian
is not required. The initial state is not completely
known. Instead it is known that, at t=0, the system is
in thermodynamic equilibrium at temperature T. This
fact is expressed by the density matrix which in energy
representation has the form

p, „,= exp( —E„/kT)/[P„, exp( —E„/kT)], (12)

while all nondiagonal elements vanish. The eigenvalues
E„may be degenerate, as provided for in the notation
which includes a degeneracy parameter s. From Eq. (9)
the expectation value of the spectral density operator is

(G(v)) Enspns;nsGns;ns

the jump frequency of a spontaneous transition. In
the case of quasi-continuous eigenvalues, the summation
over n' in Eq. (15) can be replaced by an integration,
so that the matrix elements G„,.„,are nonsingular.

A more explicit expression for (G(v)) requires de-
tailed knowledge of the eigenstates. Instead of con-
tinuing in this direction, we consider other measure-
ments for which the expectation value involves the same
matrix elements. For example, the rate at which the
system absorbs energy when subjected to a uniform
sinusoidal electric field involves the matrix elements of

Q, since the perturbation term is V(t)Q, where V(t)
= Vo singlet is the voltage applied across the length of
the system in the x-direction. We assume the system to
be initially in an eigenstate @„,and calculate the state
at time t,

ZEn
P= Q C„...(t)y„, exp — t .

n's'

According to first-order time-dependent perturbation
theory,

The Schrodinger operator for the x component of the
electric current, averaged over the system's volume, is

Q= (i/It) (HQ —QH), (14)

where Q=g„e„x /L, e„ is the charge of the nth par-
ticle, xn is its x-coordinate, and L is the length of the
system in the x direction. The Heisenberg operator for
the current is Q(t)=exp(iHt/A)Q exp( —iHt/t't). The
matrix element G„, , of the operator G(v) [Eq. (7)
with A =Qj in the energy representation is

where A~„„=E„E„,a&=2irv, and—Q, , „, is the
matrix element of the operator Q in Eq. (14). After
carrying out the time integrations and recognizing that

2 sin'[((u. +a))T/2]
lim — =6((o„„a(u),

((u..+(v)'T

we obtain

G....,=2m P (u„„'IQ„,, „,I'
n's'

X[6(o)„„+(o)+b((u„„—(v) j. (15)

Substituting Eq. (15) into Eq. (13), one obtains a final
expression for (G(v)). When the eigenvalues E„are
discrete, (G(v)) is singular if the frequency v is equal to

T(2

Gns;ns= lim {2 ~nn'
I Qn's';nsI

r~~ I'J ~ nt"
—TI2

&& cos[~„„(t t') ) exp[—i—cu (t—t')]}dtdt',

sin'[(~„„+a&)t/2$ sin'[(co„„—&u) t/2)
X +

G)nnI CO GOnn& GO

1 1+cos2(ot—cos(conni+&o)t cos((anni ——co)t

2 CO„„I—CO COnn~ CO

(17)

The transition probability w(t) = (1/t)Q„, IC„., (t) I'
has a useful form in the limit of large t. That is,

~V02
w= limw(t)= P IQ2' n's'

The limit t —+ ~ would appear to have dubious validity
in a calculation involving first-order perturbation
theory. Some comfort may be derived from the thought
that the perturbation term may be made vanishingly
small, and from the fact that the procedure leads to
physically significant results.

If the system is initially in the state p„„ the power
absorbed is7

X VO2—~ Z IQ. ";-I'[~(~-+~)—~(~..—~)l.
2k

The power absorbed if the system is initially in a state
of thermodynamic equilibrium, at temperature T, is
obtained by averaging over the eigenstates weighted

7 In the transition for which co„„=co, the system loses energy
Ace, for co„„=—co the system gains energy ~.
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The power absorbed can be expressed in terms of the
experimentally determined complex impedance Z=E.
+iX. That is,

according to the Boltzmann factor. That is,

~VO2
J = pi P pns;sssjg s,

' s', n sj
na; n'a'

p=-'@pe/I z
I
p. (2o)

It is now clear that the expressions for E/Izj' and
&L~(pp»'+pi) &(pp~~' ~)] (19) (G(v)) are related. We consider the ratio:

2 Lexp( —E-/kT)]~-'Ig-";-I'I ~(~-+~)+~(~- —~)]
(G(v)) 2k ns;s, 's'

~llZI' ~ E Lexp( —E-/kT)]IQ-, ;., I'I:&(~..+~)—&(~..—~)]
na n'8'

The only terms which contribute to the sums are those
for which co„=&co, or E =E„~Aco. For example,
consider Ei and Ep such that Ei=Ep+App. The contribu-
tion to the numerator is

Lexp( —Ei/kT)]pp12 I Q21I &(pi12 ~)
+I exp( —Ep/kT)]~»'Ig»I'~(»~+~)
= Lexp( —Ei/kT)]p~'I Qpij'&(p~» —

p~)

XL1+ exp( —ha~/kT)].

Similarly the contribution to the denominator is

expj —Ei/kT] I Q» I
'8(pii& —~) I

1—exp( —Api/kT)].

Except for diGerent factors, the sums in the numerator
and denominator are identical. Thus

(G(v)) =2kpiL1+ exp (—k~/k T)]/L1 —exp (—kp~/k T)],
Z/IZIP

The computed values of (G(v)) and I' will certainly
be altered by degeneracy, but in the same way so that
the Nyquist theorem is unaltered.

Dr'. SHOT EFFECT

When a series of charged particles arrives at a de-
tector, current fluctuations are observed due to the
discreteness of the charges. The current consists of a
series of pulses at uncorrelated times if the electrons
are independent, as is usually supposed. Any one pulse
has a white spectral density and the effect of many
electrons can be obtained by simple addition if the
electrons are independent. Quantum corrections should
be expected, due to the Pauli principle which introduces
correlation of electrons, and due to the wave-like
character of the electron. We shall treat only the latter
correction in the present paper. For simplicity, we con-
sider only one electron. In the usual calculation of shot
effect, one determines the spectral density, such that

4E. hv hv
(G())= —+-

IZI' 2 exp(kv/kT) —1
(21)

00 T/2

I G(v)dv= lim —~ J,'(t)dt,
0 r I'J

Equation (21) is Nyquist's law in the form obtained
with quantum statistics. '

The calculation establishes a rigorous relationship
between the exact result for (G(v) ) and the approximate
(first-order perturbation theory) result for E/IZI'.
Since Nyquist's law is established experimentally, we

may consider that the present calculations plus the
experimental data establish the validity of the tech-
nique for calculating 8/ I

Z I', although the latter
calculation has not been actually carried out.

Equation (21) was derived by Callen and Welton.
The present method differs from their derivation in
several respects. The spectral density is computed
directly, whereas in the C-% paper the total Quctuation
was calculated and the deduction of the spectral density
was not rigorous. Secondly, the C-W calculation was
limited to cases where the energy levels of the physical
system are quasi-continuous. This restriction has been
removed, providing it is understood that the quantity
E/jzj' is evaluated for a vanishingly small perturba-
tion. We have considered a degenerate physical system
instead of a nondegenerate one as in the C-W paper.

I. Classical Calculation

We consider fluctuations in the current arriving at a
detector located in the region —sp/2&$&xp/2. An
electron is observed only if it is in the detector region
so that the current from a single electron may be
defined as

f(x,xp),
PE$0

(22)

where p, is the x-component of the momentum of the
electron, —e, ez are, respectively, charge and mass of
the electron, and f(x,xp) is a function which has the

where J, is the current. For only one electron, G(v)
would vanish. In order to obtain 6nite results, we use
the definition of G, (v) for case 1, LEqs. (4) and (6)].
The classical expression for G(v) for many electrons is
G(v) =2eJs s For one electron, we obtain the finite re-
sult G, (v) =2e'. For E independent electrons, G, (v)
=2e'N, and G(v)=limp „IG,(v)/T]=2eJ, since J,
=limp „(eS/T)
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1 r
"sin(pxp/2)

f(x,xp) =
J'r cc P

exp (ipx) dp. (23)

The de6nition of J can be idealized for a detector of
in6nitesimal extension in the x-direction by taking the
limit as xp -+ 0. In this case Eq. (22) takes the simpler
form

where
J,= ( e/m—)p,b(x),

1
8(x) =— exp(ipx)dp.

2m~

(24)

We assume that no force acts on the electron, so that
p,=const and x(t) =x(0)+ (p,t/m). Substituting

property that

j(x,xp) = 1 for —xp/2 (x (xp/2
=0 if x is outside this interval.

An explicit form for f(x,xp) can be given in terms of
the Dirichlet integral. That is

The wave function fp at t=0 is assumed to be a wave
packet of the form

Pp = c(k) exp(ik. r)d'k.
(2sr)&~ „ (29)

Z

exp —t'E(k) —E(k')+&cput dt
k

=2srtM/E(k) —E(k')+5(pf.

The resultant expression for (G, (t )) is

(G,(t))= (2srk)', d'kd'k'd'k"c*(k')c(k)(J )~, x-

The, integrations are carried out in the order t, t', v.
Making use of the relations

H exp(ik r)=E(k) exp(ik r),
E(k) = (A'/2m) (k,'+k„'+k,'),

we obtain for a typical t integration:

exp ip x(0)+—t dp
m

J.(t) =
2wRz ~ X (J.) ", &L&(k)—&(k')]{&L&(k)—&(k")—ktpj

+SLY(k)—E(k")+htp)}. (30)into Eq. (4), the classical expression for G,(t), and
carrying out the indicated integrations, one obtains

2. Quantum-Mechanical Calculation

The form of this expression is similar to the usual result
G, (t) =2e'. (25) from perturbation theory for an electron that makes

elastic transitions from k to k' through an intermediate

form

The Heisenberg operator corresponding to G, (t) is,
by Eq. (6), where

(J.)~, j, =) A*JAxdr,

G, (t) = LJ.(t)J*(t)+J.(t )J.(t)l

Xexp L
—i~(t —t') jdtdt', (26)

@t,= (2sr)-& exp(ik. r),

J.= ( e/2m) [pg(x)—+S(x)p.j
is the Schrodinger current operator. After carrying
out the indicated integrations, (J,) t, , a. takes the form

where now J,(t) is the Heisenberg time-dependent
operator which is constructed from the classical ex-
pression for the dynamical variable given by Eq. (24).
That is, '

J,(t) = —(e/2m) exp(iHt/Itt)

XLP,b (x)+8 (x)P,j exp (—iHt/A), (27)

where p, is the Schrodinger operator for the x com-
ponent of momentum. We consider a single free elec-
tron, for which H= (1/2m)(p. '+p„'+p,s). The ex-
pectation value of the spectral density is

(2g)

(J&)y, gi = (—eA/4rm) (k~+k~')
X h (k„—k„')5(k,—k,'). (3l)

Further reduction of Eq. (30) is accomplished by carry-
ing out 6rst the integrations with respect to k„,k„',k„k,'
and 6nally the integrations with respect to k„k,',
making use of relations such as

(k,'—k,'")&hap

2m

where
a~= {k,'"a (2mpp/k) }&.

P P. A. M. Dirac, Qgantlm Itf' ecitalics (CIarendon Pres's, Oxford,
1935).
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The final expression for the expectation value of the
spectral density is

3. Shot EBfect for R Finite Detector

The current operator for this case is

e'
t t

" krak,
(G, (v)) = — ~dk„dk, '

2& l& (k,'—n') l
where

J*=(—/2 )LP.f(, o)+f(*, )p*7, (34)

1 p" sin(pro/2)
f(x,xo) = ' exp(ipse)dp,

7ISO g) P

&& [le(k.)l'+le(-k*)l'7I 2-—,I
k, )

—[c*(—k,)c(k,)+c*(k,)c(—k,)7—k'

krak,
+ ' . . . [Ie(k.)l'+le( —k.)l'7l 2+—,IJ, (k. + )-: ( k, )

and xp is the width of the detector region.
The calculation follows the same pattern as the

previous case. If we de6ne

6) GO

v'—=1+—, p'= 1—
COp Mp

then the result for an electron with de6nite momentum
1S

e2 (1+p$ ' sin'[(1 —r)~or7
(32) (G.(~ =—))

4y 41—yi ((for)'

+I
(1—pq sin [(1+p)~,r7
(1+y) (~or)'

y[e+(—k,).(k.)+e*(k.)e(—k.)7—
0*2

e' (1+p) ' sin'[(1 —p)(vor7
+—

I

4P i1—P) a)pr 2( )

(1—p) ' sin'[(1y p)~, r7

E

leap)

(35)

fo1 coCorp, and

e' (1+py ' sin'[(1 —p) a&0~7

(G ())=—
I

4y E1—p) ((upr)'

(1—pq
' sin'[(1+y)(uor7 )

k 1+y) (a)or)'" 2-(-/-o) 2+(-/-o)
I(G.(~))= — + (for (u ((so)

2 [1-(-/-.)7& [1+(-/-.7)-:I

~e have written n' for 2nuu/k and omitted the designa-
tion of the functional dependence of c on k„and k, in
this expression.

The specific form of the spectral density depends on
the form of the wave packet as prescribed by c(k,k„,k,).
The expression given by Eq. (32) for (G, (v)) is not par-
ticularly simple, and in order to appreciate its implica-
tions, it is necessary to consider a speci6c case. %e
shall consider the limiting case of an electron with a
de6nite momentum and therefore assume that

I c(k) I'
=8(k—ko). Introducing the circular frequency coo that
corresponds to the electron's energy of motion in the x
direction, the result of carrying out the integrations
indicated in Eq. (32) may be expressed as follows:

e' 2+ ((a/(so)
(for co )cop).

2 [1+(~/~o)7'
(33)

cvo=E(k, ')/5, where Z(k, ') =h'(k, ')'/2'. In the classi-
cal limit when A —+ 0, coo ~ ~ and (G, (v))=2e' which
is the same as the result in Eq. (25) obtained by classical
mechanics. For finite ~p, a singularity appears at
co=cop, which is similar to what one might expect for
the spectral density of the electromagnetic field of a
photon. The result expressed by Eq. (33) can, therefore,
be interpreted in the following way. The electron ex-
hibits a compromise between "wave-like" and "particle-
like" behavior. At low frequencies, co((Mp, the behavior
is "particle-like" and the classical result obtains. At
frequencies of the order of cop the behavior is "wave-
like, "exhibiting a resonance such as would be expected
for a photon of circular frequency ~p.

I- V)
Z l—~z

'D Oow
tL

OO
UJ

I-
Z

z~ R
O 0Z

% «f

O~
UJ g
CL ~
V) ~

I.O

0

' —(2)

~(&)
I.O 2.0

FREQUENCY IN REDUCED UNITS
(do

FIG. 2. Quantum corrections for the shot effect. {1)Classical:
zero-width detector. (2) Quantum theory: zero-width detector.
{3) Classical: finite detector, coor=4. (4) Quantum theory: finite
detector, coor =4.
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fol' rp) cop. In Eq. (35), cpp has the same meaning as
before and r=xpk, P/2&up is the transit time. We now
consider a number of limiting cases in order to appreci-
ate the significance of Eq. (35). When xp~0, and,
therefore, v~0, Eq. (35) reduces to the previous
result of Eq. (33). In the classical limit ili —+0 and
cop ~ po in which case, Eq. (35) has the limit

(G, (i) )= 2e' sins(-,'cpr)/(-,'air)s. (36)

Equation (36) is the familiar classical result for this
case.

In the case of xp ——0, the previous result of Eq. (33)
for the spectral density was singular at or=oro. The
present result for 6nite xo also has this property. Also,
for xp ——0, lim„„(G,(i))= ~. In the case of finite

xp, lim„„(G,(v))=0. In Fig. 2, some numerical calcula-
tions of the spectral density for various cases are shown.
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Transmission of Positrons and Electrons*t

H. H. SELIGER
EaHonal Bureau of Standards, Washington, D. C.

(Received June 22, 1955)

The transmissions of monoenergetic beams of positrons and electrons with energies up to 960 kev have
been measured in aluminum, brass, silver, tin, lead, and gold. The absorber forms the window of a 2m counter
whose counting eflrciency is better than 99% down to a few hundred electron volts. Particles from a radio-
active source, focused into a beam by a 90-degree magnetic analyzer impinge perpendicularly on the absorber
window of the 27r counter. The total transmission is therefore measured independently of forward angle of
emergence or of partial energy loss. Positrons are found to be transmitted to a greater extent than electrons
except at low energies in aluminum. These results are correlated with previous backscattering experiments
and are in qualitative agreement with theoretical calculations of Rohrlich and Carlson. The shapes of the
transmission curves are compared semiquantitatively with predictions of the Spencer theory of electron
penetration.

I. INTRODUCTION

'HE author has previously reported an excess of
electron backscattering over positron backscat-

tering. ' ' The question naturally arises as to whether,
in view of their excess backscattering, electrons are
transmitted to a lesser degree than positrons. As will be
shown in this paper, a lower transmission of electrons
is usually, but not always, observed.

The problem of the penetration of positrons and
electrons in thick foils has not been calculated at the
present time. Bothe4 has made estimates of the back-
scattering of electrons using nonrelativistic single-

scattering cross sections. Miller' used Bothe's results,
substituting the relativistic cross sections obtained by
Bartlett and Watson' and Massey' for electrons and

positrons, respectively, to show that an excess of elec-

tron backscattering over positron backscattering is to
~ This work was reported at the Washington, D. C., meeting of

the American Physical Society in May, 1954 PH. H. Seliger, Phys.
Rev. 95, 610(A) (1954)g.

t This paper is a portion of a thesis submitted in partial fu1611-

ment of the requirements for the degree of Doctor of Philosophy
at the University of Maryland.

i H. H. Seliger, Phys. Rev. 78, 491 (1950).
' H. H. Seliger, Phys. Rev. 85, 724 (1952).
' H. H. Seliger, Phys. Rev. 88, 408 (1952); National Bureau of

Standards Circular 527, March, 1954 (unpublished).
4 W. Bothe, Ann. Physik 6, 44 (1948).
& W. Miller, Phys. Rev. 82, 452 (1951).
s J. H. Bartlett and T. A. Watson, Phys. Rev. 56, 612 (1939);

Proc. Am. Acad. Arts Sci. 74, 53 (1940).
' H. S. W. Massey, Proc. Roy. Soc. (London) A181, 14 (1942).

be expected. Rohrlich and Carlson' have published the
results of theoretical calculations of range and stopping
power of positrons and electrons, providing a qualita-
tive interpretation of the experimental results to be
reported here.

Recently, a theory of electron penetration in infinite
media has been developed by Spencer. ' This theory
does not quite apply to the present experiments because
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FIG. 1. Scale drawing of transmission geometry.
The Lucite lining is not shown.

s F. Rohrlich and B. C. Carlson, Phys. Rev. 93, 38 (1954).
P L. V. Spencer, Phys. Rev. 98& 1597 (1955).


