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Independent-Particle Model of the Nucleus. II. Weak Surface Coupling*
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The role of weak surface coupling is discussed for multiparticle nuclear con6gurations. Matrix elements
are given for the standard form of the coupling of nucleons to nuclear surface vibrations. Energy spacings,
con6guration interaction, magnetic moments, quadrupole moments, and E2 transition rates are discussed,
with emphasis on features independent of special details of particle configurations. Magnetic moments, in
particular, become orderly when account is taken of variations of surface coupling strength together with
a directly induced configuration mixing. Experimental evidence favors the idea that a true weak coupling
situation exists for many nuclei near closed shells. In these nuclei, collective quadrupole eRects may be
appreciable while all other collective eRects are negligible.

I. INTRODUCTION

HE possibly important role in low-energy nuclear
phenomena of coupling of nucleons to the nuclear

surface has 6rst been pointed out by Foldy and Mil-
ford' in connection with magnetic moments, and by
Rainwater' in connection with quadrupole moments.
The existence of such surface coupling is inescapable
if the nucleons within the nucleus behave in any way
like independent particles: the nucleus is certainly
deformable, and the (linear) variation of independent
particle energy with nuclear deformation leads to sur-
face coupling. In this sense surface coupling and the
collective model of the nucleus are automatic conse-
quences of the shell model. In view of the strong evi-
dence for the independent particle behavior of nucleons
in the nucleus, the relative importance rather than the
existence of surface coupling is in question. Elementary
calculation indicates that surface coupling energies
may be appreciable relative to direct particle coupling
energies for deformations of only a few percent, and one
is led to expect surface coupling to play a dominant
role in heavy nuclei with more than a few nucleons out-
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side closed shells. Very eloquent and complete dis-
cussions of the properties of strongly deformed nuclei
have been given by Hill and %heeler' and by Bohr and
Mottelson, 4 the latter authors working from the very
fruitful strong coupling approximation of Bohr. ' Cer-
tain predictions of the strong coupling model, those
regarding the nuclear rotational states, ' ~ have been
startlingly well con6rmed in two regions of the periodic
table, comprising roughly neutron numbers 90 to 115
and 135 or more. The agreement with experiment has
come in energy level ratios, 4' in transition rates, 4'
and in correlations among energies, quadrupole mo-
ments, transition rates, " and atomic isotope shifts. "
Some important quantitative discrepancies remain, ""
but it seems to be well established that nuclei in these
regions are very substantially deformed from the
spherical shape, which is most easily explained in terms
of strong coupling of nucleons to the nuclear surface.
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In contrast, there is little experimental evidence for
the existence in. any nuclei of a weak (but appreciable)
coupling of nucleons to nuclear surface. Some rather
successful applications of the shell model have been
made" "near double closed shells without reference to
surface coupling. One motivation in undertaking the
present work was the desire to learn whether the exist-
ence of weak surface coupling near closed shells or in

light nuclei could be detected. It is theoretically ex-
pected' that the nuclear surface tension, and therefore
the strength of particle-to-surface coupling, should
show a marked dependence on the shell structure, the
coupling being a minimum near closed shells. An
analysis of quadrupole moments in terms of single
particle eRect plus collective deformation" indicates
that this is the case. More detailed studies" near the
double closed shell nucleus Pb"' and, in a succeeding

paper, ' Ca", indicate that the eRective surface ten-
sions for these doubly-magic cores are at least several
times the "hydrodynamic" values, 4 while deviations
from pure rotational spectra indicate that the hydro-
dynamic values are approximately correct in the region
of strong coupling. '8 Evidence so far, both theoretical
and experimental, then leads to the interesting con-
clusion that the strength of surface coupling is self-

reinforcing, being very strong when strong and almost
negligible when weak.

Because of the variation of nuclear surface tension
with shell structure, it seems reasonable to expect that
there will exist nuclei for which a treatment of weak
surface coupling with only one or two phonons of sur-

face excitation included will be adequate. Previous work
on weak surface coupling'"" is extended to several
extra shell nucleons in this paper, a numerical example
is given of the role of weak surface coupling for con-
figurations (7/2)' and (7/2)', and nuclear moments and
transition rates are discussed.

II. MATRIX ELEMENTS OF SURFACE INTERACTION

We follow the theory and notation of Bohr and
Mottelson and Choudhury, " replacing the interaction
constant times the radial integral of the surface inter-
action by an energy, k, whose order of magnitude is
twice the kinetic energy of nucleons within the nucleus,
and whose value should depend weakly on the angular

rs J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
A229, 536 (1955}.' D. E. Alburger and M. H. L. Pryce, Phys. Rev. 95, 1482
(1954).

'5 M. G. Mayer, Report of International Conference of Theo-
retical Physics, Kyoto and Tolryo, 1953 (Science Council of
Japan, Tokyo, 1954). M. G. Mayer and J. H. D. Jensen, E/e-
mentary Theory of Nuclear Shell Structure (John Wiley and Sons,
Inc. , New York, 1955}.

"W. True (to be published}."C. Levinson and K. W. Ford, following paper )Phys. Rev.
100, 13 (1955)j."E.I.. Church and M. Goldhaber, Phys. Rev. 95, 626 (1954).

' A. K. Kerman, Phys. Rev'. 92, 1176 (1953}.
"D.C. Choudhury, Kgl. Danske Videnskab. Selskab, Mat. -fys.
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whence

g,„=(~/5)-'* Y,„,

y= (5hto/2~C) l= (5h/2mBto) l,

(2)

(3)

The zero order nuclear states are taken to be shell
model states of con6guration e and angular momentum

J, vector-coupled to surface excitation states of S
phonons and angular momentum R, to yield total
angular momentum I, which states we indicate by

I
I;1VR;I1lI).

Matrix elements of the interaction between such states
can be evaluated according to the methods of Racah, ""
since both b„and 'JJs„are tensor operators of rank 2

according to the definitions of Racah. The result is:

(nI; NR; IM
I
II;„t,

I

u' J'; 1PR'; IM)
= (—1)'~'+~+r+~+'(ky) W(RR'II'; 2I) (1VRllblllPR')

X( Illa', g, (0,~,)li.'I'), (6)

where the double bar reduced matrix elements are defined
as in references 21 and 22. Selection rules are: AX=1,
AR &2, EJ&2, configurations o. and o.' differ at most
in the quantum numbers of one particle, and for that
particle, El=0 or 2, hj&2. Values of (1VRllblllPR')
are given in reference 20 up to 1P=3 (Choudhury's
reduced matrix elements should be multiplied by
(2R'+1)i to give ours). Values of the one-particle
matrix elements (lsj II'tlsIIl'sj') have been given by
Kerman" and Choudhury, " but their expressions can
be very substantially simplified; namely,

(~all'JJs!I ~'sj') = s (2j+~)*'(j2 —s0
I
j2j' —s),

At=0, a2, (7)

where (j&jsm &rtts
I j&jsjrtt) is a Clebsch-Gordan co-

"G. Racah II, Phys. Rev. 62, 438 (1942); III, Phys. Rev. 63,
367 (1943); IV, Phys. Rev. 76, 1352 (1949).

Simon, Van der Sluis, and Biedenharn, Oak Ridge National
Laboratory ORNL —1679, 1954 (unpublished).

quantum numbers of the extra nucleons. With this
simplification, and the restriction to ellipsoidal surface
vibrations, the particle-to-surface interaction becomes:

II'-~= —&I:@~/2C1'*E~E.(bo+(—&)"b-.*)
X J's. (0'v '), (&)

where Ate=A(C/8) l is the phonon excitation energy, 8
is the mass constant in the surface kinetic energy, C is
the surface tension constant in the surface potential
energy, b„and 6„*are destruction and creation opera-
tors for the phonons with spin two and Z-component
of angular momentum p, , I'~„ is a normalized spherical
harmonic, and the index i labels the particles. As is
well known, the average of H;„& over a closed shell is
zero, and in practice the sum extends only over those
nucleons in unfilled shells. To simplify notation, we

define,
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efficient. " This result is found as follows: the expres-
sions of Choudhury and Kerman are proportional to
the product of a Racah and a Clebsch-Gordan coeK-
cient. By Eq. (2), p. x, in reference 22, this product
may be set equal to a sum over three Clebsch-Gordan
coefhcients. But the sum has only two terms and two
of the three coeKcients can be written down explicitly
since they involve spin -,'. The reduction to (7) then
follows easily.

For two-particle configurations, Eq. (44) of Racah
II2' may be used to give the reduced particle matrix
elements. Several cases are to be distinguished:

(a) off diagonal:

(jijsJIIE;'tip(t) II ji'j2J )
= (—1) tp-ti'-'I (2J+1)(2J'+1)]i

x W(jiJji'J'; jp2) (jill'tlpll ji ) (g)

where j is used as shorthand for all particle quantum
number, e.g. , mlj;

(b) diagonal, inequivalent particles:

(jijpJIIZ'gs(s)lljijsJ )
=(—1)" " 'L(2J+1)(2J'+1)3'
XCUrll'tlpllji)WUiJjiJ' js2)

+Usll'JJplljp) WUpJjsJ ji2)j (9)

(c) diagonal, equivalent particles:

(j'JIIZ'&s(t')ll j'J') =2(—1)'L(2J+1)(2J'+1)]'*
X(jllMsllj)W(jJjJ' j2) (10)

For configurations of more than two particles, ex-
pansions of the particle wave functions in terms of
fractional parentage coefficients become necessary. We
state the result for the reduced particle matrix elements
only for the special case of the configuration (j)" of
equivalent particles. Then

(j"JIIE''g (s)llj"J')=re( —1) ' 'I:(2J+1)(2J'+1)]'

x (~lip. llj)p( —1)'
J1

X(JIIJ )W(i JP'; J 2)(J V), (11)

where (JijIJ) is shorthand for the fractional parentage
coefFicient, i.e.,

(JiV)=(j" 'Jii

JINNI"J)

(12)

Fractional parentage expansions of configurations of
inequivalent particles have been discussed by Redlich"
and by Meshkov" and are used in the succeeding
paper. "

Fractional parentage methods may also be used to
find the reduced surface matrix elements (XRIIbllX'R').

ee E. U. Condon and G. H. Shortley, The Theory of Atomic
SPectra (Cambridge University Press, London, 1951).

'4 M. Redlich, Ph.D. thesis, Princeton University, 1954 (un-
published).

P' S, 5@sbkov, Phys. Rev. 91, 871 (1953),

TABLE I. Two-phonon to three-phonon fractional
parentage coefficients.

RRR. 0

(7/15)&
(4/21)i

(12/35)&
(5/7)'—(2/7)'

(11/21)&
(10/21)i

Between 0 and 1 phonon,

(oollbll») =5'
Between 1 an'd 2 phonons,

(13)

(2RIIbll3R')
=3'*[(2R+1)(2R'+1)]'(oollbll »)

XW (OR2R' R2) (Rp'(R) RpR')RpsR')
=L3(2R'+1)]l(Rp'(R)RpR')Rp'R'), (15)

where Ro ——2, the angular momentum of each phonon.
The phonon fractional parentage coeKcients may be
found, following Racah III,"by means of the relations
(required to make the total wave function symmetric):

Qn(2R+1)'*W(22R'2; RR") (2'(R)2R'II2'R') =0, (16)

where R is summed over the allowed 2-phonon values
0, 2, 4; R' is the 3-phonon angular momentum; and
R" is 1 or 3, the unallowed 2-phonon angular momenta.
Table I gives the two-phonon to three-phonon parentage
coefficients.

III. DISCUSSION OF WEAK SURFACE COUPLING

A. Effective Scalar Interaction

The contribution of surface coupling to the nuclear
energy takes a very simple form in the limit of strong
coupling, giving the characteristic rotational states
whose energies are independent of details of the particle
structure. This is the limit of nuclear deformation
large compared to amplitude of surface vibration, or of
surface coupling energies large compared to inter-
particle interaction energies, or of surface rotation
frequency slow compared to particle motion, so that
the particle structure adjusts adiabatically to the sur-
face shape. The opposite limit of weak coupling is also
of special interest and simplicity, although of course it
has no such marked consequences as the strong coupling
limit. The weak coupling limit may be defined by mean
deformation small compared to amplitude of surface
vibration, by phonon energy large compared to spacing
of particle levels, or by frequency of surface vibration
large compared to particle frequencies, i.e., the adia-
bg, tic adjustment of the surface shape to the particle

(12llbll2R')
= 2lL5(2R'+1)]-:(oollbll12) w(022R. '; 22)
=

I 2(2R'+1)$'. (14)

Between 2 and 3 phonons,
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Ao&+E &'& (o.
'J') —E&'& (nJ)

(16)

where Ace is the phonon energy. In the weak coupling
limit,

l
Ei & (n'J') —E& &(nJ) l((ho&, for many configura-

tions. In the crudest approximation, the numerator in
(16) is supposed to cut off before the denominator
divers appreciably from Ace. Then

»( J)
=—Y~)-'Zl(nJ;00;IMIH'-~l~'J';1, 2 IM)I'

= —(ho&)
—'(aI i 00; IM

l
(H;„t)'l crI; 00 I IM). (17)

As has been previously pointed out, '" the surface
interaction then reduces in this approximation to an
eBective scalar two body interaction —where the surface
phonon plays a role analogous to the meson in the
ordinary nucleon-nucleon force. Integration over sur-
face coordinates in (17) gives the effective scalar po-
tential, due to surface interaction,

where it is to be noted that self-energy terms (i=j)
are included.

There are several Raws in these arguments leading to
(18) coming from the assumed localization of the sur-
face interaction at the nuclear surface, i.e., 8;„&

P;5(r;—E) in a square well model. This means that
the matrix elements in (16) depend so weakly on the
radial quantum numbers of the nucleons that the con-
vergence of the sum (16) is questionable. If the surface
interaction is spread out over a reasonable edge thick-
ness, then the principal quantum number dependence
of the terms in (16) will produce the desired cutoff,
but only at very high excited states. Thus the energy
E&'&(rr'J') —Eis&(nJ) in the denominator of (16) may
not be ignored relative to A~. This difhculty may be
avoided as follows. We note that for a given principal
quantum number e, there are a 6nite number of con-
figurations n' which can mix with 0., limited by the
selection rules stated after Eq. (6). These form a
complete set for the angular dependence of H;„~, and

"See, however, a recent paper by G. Scharff-Goldhaber and
J. Weneser /Phys. Rev. 98, 212 (1955)j, who suppose that direct
particle coupling enerpes may be larger than phonon energies.

structure. By the nature of the surface interaction (its
relation to the kinetic energy of the nucleons), a weak
coupling situation with particle energy spacings larger
than phonon energies is not reasonable, and therefore
con6guration interaction is an essential part of weak
coupling. "

In a one-phonon approximation, the energy shift of
the configuration nJ(I=J) is, by second-order per-
turbation theory,

»(n J)
where the primes on H;„& and on the sum indicate that
the radial dependence and radial quantum numbers
respectively are not involved. Then for each e, the
closure approximation may be applied to the angular
sum in (19) with a suitable average energy denominator,
Ao&+A(e), to give

»(nJ)= —{QLho&+h(e)) 'f(N) }

X (nJ; 00; IM
l (H;„t,')' l

nJ;00; IM). (20)

This expression differs from (17) in having (Ao&) re-
placed by the curly bracket, and in having the radial
dependence of H;„& removed. The latter change is im-

portant, since in the delta function approximation of
the radial dependence of II;„t,, Eq. (17) leads to inhnite
self-energy terms in (18), while Eq. (20) leads properly
to the relative magnitudes of mutual and self-energy
given in (18).

Neither of the possible uncertainties in the scalar
interaction (18) is signilcant for energy levels. The
over-all strength of interaction is uncertain, but should
be regarded as an adjustable parameter of the theory in
any case. The relative size of the mutual- and self-

energy terms has no eGect on level spacings of a given
configuration, since the self-energy terms aGect all
levels of a given con6guration equally. Thus for spac-
ings within a given configuration, the self-energy terms
may be ignored altogether. Then this limiting form of
the surface interaction may be treated exactly as an
ordinary two-body force, except that only diagonal
elements are to be taken, since the surface induced

configuration mixing is already included.
For configuration (j)" of equivalent particles, the

interaction (18) leads to simple expressions for the
surface contribution to nuclear energy levels. We
rewrite (18) as,

V.=e,lg v;;+P~,), (21)

where

(23)

and 60 is the energy unit of the interaction, given
roughly, as in (18) by +2(ky)'j~,

in the weak coupling limit, this set will occur within an
energy region less than Ace. If the weak dependence of
the radial part of B; & on angular quantum numbers is
ignored, (16) may be approximated as

»(~J)= —2 f(~)
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The mutual interaction term v;, has the form of the
scalar product of two tensors of rank two, and can be
treated by the standard Racah methods. " For the
configuration (j)',

&a'I
I

~
I
j'I)=

I (jllm IIj) I'll/(jjjj; 2I), (24)

a result already given by Kerman. "We note from (7)
OJ

Q/2P (5/2f' (5/2) $7/2) (7/2) (7/2) (8/2)

4,e

1 (2j—1)(2j+1)(2j+3) '
Ull~. llj) =-

jU+1)
(25)

The Racah coefficient in (24) is not in general a
monotonic function of I (for I even), but it is mono-
tonic if j is not too large. Two-particle configurations
and level orders from (24) are: (3/2)', 0, 2; (5/2)', 0,
2, 4; (7/2)', 0, 2, 4 and 6 degenerate; (9/2)', 0, 2, 4, 8, 6.

The reduced one-particle matrix element of (23) is

(jll~tll j)= l(2j+1)'. (26)

Therefore the matrix elements of the self-energy term,
P;e;, are, for the configuration (j)",

(j"I
I 2'~'I j"I)= —I/8, (27)

independent of J.
For more than two equivalent particles, the mutual

interaction energy is,"in units of 60,

FIG. 1. Surface-induced energy spacings for simple configura-
tions in weak coupling limit, in units of eo /see Eqs. (18), (21),
(24), and (28)]. For conffguration (7/2)', primes on spina 2 and
4 indicate seniority 4 states.

Among the configurations shown in Fig. 1, only
(7/2)' has more than one level of a given angular
momentum. These levels are most conveniently classi-
fied according to seniority, ""and, in fact, the inter-
seniority matrix elements vanish for (7/2)'. These
matrix elements may be expanded in terms of the two
particle matrix elements as,

(j4»II 2 t', I
j'»I) =6 Z{Z(»III:Is)

i+j J2 J8

X(IsIIssI) I (I2IIIs) I') (j'Isl»sl j'Is), (3o)

=L/l/(e —2)] P (uIIIQ"I')(n'"I'IIQ'I)
~//~/// J/

(28)

where an abbreviated notation is used for the fractional
parentage coefficients:

(~"I')~I)= (j " '(~"J')j~I'IIj"~I) (29)

Surface contributions to nuclear energy in the weak
coupling limit are given in Fig. 1 for all configurations
(j)" of equivalent particles through j=7/2 and for
(9/2)'. Configurations (j) "are equivalent to (j)".The
required parentage coefficients were taken from Ed-
monds and Flowers. " For the configuration (5/2)s,
I=j=5/2 lies lowest, in contrast to the strong-coupling
limit where I=j 11ies lowest for all —j. For (7/2)',
I=j—1 also lies lowest in the weak coupling limit, "
although by a relatively small amount. Thus the
occurrence in Ca", with configuration (fr/s)', of a
ground state spin 7/2 must be attributed to inter-
actions other than surface coupling (this nucleus is
discussed in detail in a succeeding paper). 'r

'r A. R. Edmonds and B.H. Flowers, Proc. Roy. Soc. (London)
A214, 515 (1952). Among the coefficients of fractional parentage
needed in our work, we noted several typographical errors in this
paper. In ffrst line of Table III, change 5/(14)& to (5/14)& and
3/14 to 3/(14)&. In last line of Table V, change (5/22)& to—(5/22)&.

~ A remark on p. 35 of reference 4 appears to be in error on
this point.

where v is the seniority quantum number, and the
parentage coefIicients are abbreviated in an obvious
way: J2 is two-particle angular momentum, J3 is three-
Particle angular momentum. For j=7/2, and wiWws

(I=2 and 4), it has been verified" that the quantity in
curly brackets vanishes. Therefore, for this configura-
tion, seniority is a good quantum number for all scalar
two-body operators. A more general result has not been
found.

B. Configuration Interaction

The appropriate surface-induced potential (18),
which springs from the assumption that many particle
levels lie within an energy A~, might appear inadequate
in a particular nucleus, and one would be led to examine
the perturbation expression (16) to see in greater detail
the effect of specific configuration mixing induced by
weak surface coupling. The interesting result is that for
groups of equivalent particles, configuration mixing,
like the self-energy contribution in (18), affects all
levels of a given configuration equally, therefore the
energy spacing' calculated from (18) are exactly the
same as those calculated from only the diagonal ele-
ments in (16).That is, in the sum (16), all off diagonal
(in angular quantum numbers) matrix elements give
contributions independent of I. Moreover, this inde-
pendence of I holds for the efI'ect of each admixed

N B.H. Flowers, Proc. Roy. Soc. (London) A212, 248 (1952).
Is C. Schwartz and A. de-Shalit, Phys. Rev. 94, 1257 (1954).
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configuration separately. This irrelevance of configura-
tion mixing applies, of course, only to energies, not to
magnetic moments or other nuclear properties.

Consider the mixing of a configuration, n= j", with
configuration n'= j" 'j' (the only possibility in view of
the selection rules). Then that part of the perturbation
sum (16) due to this mixing will be,

aE..(+PI)=
Aa)+ DE ts& (n,cr')

x 2 l(j "0&;oo;I~[II ~lj" '(0"I")j'I',12;IM)l'
p// J// J/

(31)

where P represents other quantum numbers possibly
required to specify the states, e.g. , seniority. Note that
no other quantum number P' is required with J'. From
the general formula (6) for the matrix elements of
II;„~, one has

l(~I oo mls~-~l~'I' » m)l'
=5(»+1) '(&q)'I (~III&'ques(s) II~'J') I' (32)

Now one expands the antisymmetrized states,

&i "PI = 2 (i "P Ill" '(J3I bW)
PI~I

x(j"-'(p & )j.p&l, (33)
and

'(&"I")i'I-')= :I~" '(~"&—"b-'-I')

+ & &/- /- lj" 'i'&"'I"')i-I'), (34)
p/// J///

combinations of (e—1) particles vector-coupled to the
mth particle, and the subscripts e indicate the depend-
ence only on the coordinates of the eth particle. Equa-
tion (34) is a straightforward generalization of a three-
particle result of Redlich. '4 In this case the coefficients
a(P"'I"') do not concern us. The reduced matrix ele-
ment in (32) becomes

(~IIIX "Qs(&)ll~'~') =&+'(j"&IItj" '(&"I")7&I)
x (j" '(0"J")j-@IIIques(~) II

j" '(0"I")j'J') (»)
The right side of (35) may be reduced by means of
Eq. (44) in Racah II."The shift due to configuration
in.teraction, Eq. (31), then becomes

IV. NUMERICAL EXAMPLE: fr/s SHELL

As an example of the inhuence of weak surface
coupling on the energies of multiparticle configuration,
the surface interaction energy matrices have been
numerically diagonalized for the configurations (f7/9)'
and (f,/s)' Lor equivalently, (g&/s)' and (g7/s)'j including
1 or 2 phonons. Direct interparticle forces have been
ignored, and configuration mixing has been ignored, in
the example. As shown above, other configurations do
not contribute to level splitting in the weak coupling
limit, although they may become important when two
phonons are important.

The calculation may conveniently be carried out in
dimensionless form. The energy unit is ky LEqs. (3)
and (4)j, the natural unit for expressing the inter-
action energy, and we define a dimensionless measure
of the phonon energy, $ '= (Ace/ky); $ plays the role
of coupling constant, and is related to the coupling
constant x used in references 4 and 20 by

~=(8j)- (38)

The eigenvalues obtained by diagonalizing the energy
matrices through one or two phonons are )t=E/ky.
These dimensionless results, )t vs $ are given, for
configurations (7/2)' and (7/2)' in Figs. 2 and 3 and
Tables II and III. The translation to energy units de-

obtain finally,

AE- (~P) = 5«—(2j+1) '1(jllqjsll j') I' (37)

independent of J. It is to be noted that this result is
not peculiar to the form of II;„&,but holds for all scalar
operators of the one-particle form, P~f; T.he result
depends essentially on the inequivalence of j and j'.
If J' could not take on all values consistent with vector
coupling of I" and j', then the sum over J' in (36)
would retain a dependence on J. Thus for more corn-
plicated initial configurations, n, the result that the
configuration interaction energy shift is independent of
J need not remain true.

AE. ( PI)=—
(»)'

I(jllqJ Ilj')I'»
h(v+ AE &'& (rr,o.')

x p l(~" '(p"I")~P)~-pI)l'
p// J//

Xg(2J'+1)W'(jj'IJ'; 2j) (36)

The sum over I' in (36) is just (2j+1) ', by the or-
thogonality condition, while the normalization of the
fractional parentage coefficients makes the sum over
P" and J" equal to unity. Writing simply e for the
energy contained in the square brackets in (36), we

Fin. 2. Surface-induced energy shifts of levels of (7/2)' con-
6guration. Dashed lines: one phonon included. Solid lines: two
phonons included. Vertical scale, energy in units kv Lsee above
Eq. (38)). Horizontal scale, coupling strength g /see above
Eq (3g)).
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pends somewhat on one's assumptions about the pa-
rameters of the collective theory. For example, one may
assume that the interaction constant, k, and the mass
parameter, 8, are known, and that all of the variation
of phonon energy comes from the variation of effective
surface tension, C. Thus, if we choose k=40 Mev, and
B= (3/8m. )MR' with 8=1.40X10 "A'* cm, or fs'/8
=1792 '~' Mev, and if C is eliminated in favor of Ace,

we obtain the energy unit

0.6

0.4

ky=478A '"(As) Mev) '*,

and the coupling constant,

(39)

00

$=478A sls(Puu Mev) &. (40)

-0.4 '

-0.6

FIG. 3. Surface-induced energy shifts of levels of (7/2)' con-
6guration. Dashed lines: one phonon included. Solid lines: two
phonons included. Scales as in Fig. 2.

Table II gives the energies in the weak coupling
limit, good in the linear regions of Figs. 2 and 3, roughly
for )&0.7. The results of exact matrix diagonalization
are given in Table III, for one, two, and, for the special
case I=O, three phonons, and are plotted in Figs. 2
and 3. Because of the difhculties of exact matrix
diagonalization, the results are incomplete. The lowest
levels of spin 0, 2, 4, and 6 for (7/2)' are shown for one
and two phonons included in Fig. 2. In order better to
illustrate the range of validity, we show in Fig. 4 the
energy shifts of the spin-zero state only, for one, two,
and three phonons. It is evident from the 6gure that
the one-phonon result is accurate for )&0.8, and the
two-phonon result for )&2. The weak coupling two
particle result diBers from the strong coupling result
principally in having a small spacing of the 4+ and
6+ states. Both weak- and strong-coupling results
diGer qualitatively from the results for short-range
particle forces in having a smaller 0—2:2—4 ratio of
spacings. The four-particle configuration, (7/2)' gives
rise, in the weak-coupling limit, to the same surface-
induced energy spacings as (7/2)'.

The energy level order of the (7/2)' configuration
due to weak surface coupling is 5/2, 7/2, 11/2, 3/2,
9/2, 15/2, while the lowest two states in strong coupling
also are 5/2, 7/2. In Fig. 3, only the states of lowest
spin, 3/2, 5/2, 7/2, have been calculated with two
phonons. The surface-induced level spacings, for any

Flo. 4. Surface-induced energy of spin-zero state of (7/2)s
configuration resulting from exact matrix diagonalization, in-
cluding one, two, and three phonons, (Rote: From top to bottom,
the curves should read N=3, N=2, and N=1, respectively. )

TABLE II. Energies in weak coupling limit.

Configuration {7j2}~
I a

Configuration {7/2}8

0 —15/63
2 —11/63
4 —5/63
6 —5/63

5/2
7/2

11/2
3/2
9/2

15/2

—59/252—55/252
5/36—71/588—157/1764
5/84

a & is the energy shift due to the surface-induced interaction in the weak
coupling limit, in units f(ky} = (ky}2jfieo.

strength of coupling, diGer from the direct particle
force induced spacing in having the I=5/2 state lower
than the I= 7/2.

Energy matrices involving both surface coupling
and direct particle coupling have been diagonalized for
the same two and three particle configurations, but
since special assumptions about the particle matrix
elements were made, the results are primarily of quali-
tative significance. The approximate method of adding
together the separate particle and surface induced
shifts di6'ers from the result of simultaneous diagonaliza-
tion principally in overestimating the shifts of the spin 0
(for two particles) or spin 7/2 (for three) states. These
results have been used in an attempt to set an upper
limit on the strength of surface coupling in the calcium
isotopes. "

V. MOMENTS AND TRANSITION RATES

A. Magnetic Moments

The existence of surface coupling contributes to
nuclear magnetic moments by (1) mixing particle con-
figurations, and (2) contributing directly due to the
sharing of the particle angular momentum with the
core.4 For weak coupling, the first effect is likely to be
of greater significance, but neither effect is important
compared to the con6guration mixing induced by direct
particle forces. This is because weak coupling aGects
magnetic moments only in second order. Let the wave
function be a superposition of the states given in Eq.
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TABLE III. Energies resulting from matrix diagonalization for pure particle configurations, (7/2)' and (7/2)z, through one or two
phonons (or three phonons for special case I=0). i, defined above Eq. (38) and approximated by (40), measures the strength of coupling.
The lowest eigenvalues for each angular momentum, X, are given in units of k&, which is detined by Eq. (3) and approximated by Eq.
(39). The number of phonons included is indicated in parentheses at the right of each row.

0.1667

—0.0396

—0.0291

-0.0132

—0.0132

0.25

—0.0590

—0.0432

—0.0198

—0.0198

0.75

—0.1594

—0.1201

—0.0570

—0.0570

A. (7/2)~ configuration

1.00

—0.2233—0.2249

—0.1679

—0.0812

-0.0789

2.50

—0.3274

—0.2632

—0.1455

—0.1455

2.86

—0.4643—0.5001

—0.3792

-0.2320

—0.1888

5.0
—0.3981—0.5737—0.6517
-0.3297—0.4896
—0.1989—0.3414
—0.1989—0.2622

(1)
2)
3)

(1)
(2)
(1)
(2)
(1)
(2)

B. (7/2)3 configuration

3/2
'7/2

11/2

3/2

15/2

0.1667

—0.0390

—0.0364

—0.0232

—0.0201

—0.0148

—0.0099

0.25

—0.0580

—0.0538

—0.0344

—0.0300

—0.0220

—0.0148

0.75

-0.1570

—0.1473

—0.0970

—0.0850

—0.0636

—0.0432

—0.1232

2.50

—0.3235

—0.3081

—0.2230

—0.2009

—0.1692

—O.i154

2.86

—0.4604

—0.3253

5.0
—0.3941—0.5739
—0.3777—0.5215
—0.2859

—0.2615—0.4448
—0.2146

—0.1636

(1)
(2)
(1)
(2)
(1)

(1)
(2)
(1)

(5). Then for weak surface coupling but no direct
coupling, there will be only one component with ampli-
tude of order unity, which will have E=O. Amplitudes
of g=1 states vill be of erst order in the coupling
strength, while %=2 states and other X=O states will

be of second order. The magnetic moment operator,

pz QigiJiz+gE~zy

TABLE IV. Magnetic and quadrupole moments of (friz)iz,
J=7/2, for various strengths of surface coupling. The coupling
parameter, e, is deRned in Eq. (38) and approximated in Eq. (40).
Surface-induced mixing is ignored.

0
0.75
2.5
5

No. of phonons
included

0
1

2
strong coupling

limit

strong coupling
limit

0
+0.03
+0.10
+0.17
+2.21

+0.90

-1.91—1.88—1.81—1.74
+0.30'

—1.01'

Q (barns)

0
0.0280
0.0695

(1/13)Qz'

(3/14)Qz'

a The first value given in the strong coupling limit is for 0=%=5/2
I =7/2, but this is not the lowest state. The second value is for 0 =X=I
=5/2, the lowest state. I =7/2 is also not lowest in weak coupling unless

direct particle coupling is included.

is diagonal with respect to X, the number of phonons.
Therefore the o6 diagonal contributions and the 31=1
contributions, both diagonal and oG-diagonal, are of
second order. With direct particle coupling, however,
other E=O states and correspondingly the oG-diagonal

contributions to p, are introduced in Grst order in the
strength of direct coupling.

We conclude that for weak surface coupling, devia-
tions of nuclear magnetic moments from the pure state
values (in some cases the Schmidt lines) are due princi-
pally to con6guration mixing induced by direct particle
forces. In strong coupling, surface induced deviations
from the (t+Ls) Schmidt line may be of the same order
as the shifts due to configuration mixing, but even in
strong coupling, shifts away from the (l—~~) Schmidt
lines are expected to be due primarily to con6guration
mixing. The smallness of the collective corrections to
magnetic moments has been confirmed by calculations
in weak coupling with various assumptions about the
strength of coupling and the degree of mixing. s' Pre-
dicted deviations from this source amount generally to
less than a tenth of a nuclear magneton. Table IV, for
example, shows magnetic moments predicted for Ca"
on the basis of weak and intermediate strengths of
surface coupling. (In this case, surface induced mixing
was neglected, so that predicted deviations are only
correct as to order of magnitude. )

There is experimental evidence for the general ideas
expressed above. On the basis of other evidence (quad-
rupole moments, E2 transition rates, rotational energies,
etc.), one can estimate the strength of surface coupling.
In particular, one can distinguish two groups of nuclei
for each of which the magnetic moment is insensitive to

"K.W. Ford, Phys. Rev. 92, 1094 (1933).
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4 I-52

FIG. 5. Magnetic mo-
ments of odd-proton nuclei
with A )16. Each point
labeled by Z—E of the
nucleus. Open circles denote
"spherical" nuclei, triangles
denote "highly deformed"
nuclei, and solid circles are
nuclei which do not fit
either extreme (see text for
de6nitions). Outer solid
lines are the Schmidt lines,
giving the magnetic mo-
ments for pure con6gura-
tions of equivalent protons.
Inner solid lines are the
"Blin-Stoyle Perks lines, "
drawn arbitrarily through
the moments of spherical
nuclei. Dashed lines are the
"Bohr lines" giving the pre-
dicted position of the mo-
ments of highly deformed
nuclei if the extra-particle
g-factors are the same as for
the spherical nuclei. Mo-
ments are taken from H. E.
Walchli $0ak Ridge ¹

tional Laboratory Report
ORNL-1469, April 1, 1953
(unpublished) j and from
the subsequent card 6le of
the nuclear data group of
the National Bureau of
Standards.

85-(28

I/2 5/2' 7/2 9/2

the exact strength of surface coupling: I, the "highly
deformed" nuclei, for which the collective contribution
is given by the strong coupling limiting formula, "

where gz and gz are, respectively, the collective and
particle g-factors; and II, the "spherical" nuclei, for

as A. Bohr, Phys. Rev. 81, 134 (1951).

which the surface coupling is suf6ciently weak that

~Pcollective~~P.

The moments of the latter group should be determined
almost entirely by the particle structure and the di-
rectly induced configuration mixing. The first group
should show in addition the shift given by (42). If the
shift (42) is larger than the fluctuations in the Blin-
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I/2 3/2 j
p8-9
I

5/2
I

7/2 9/2

FIG. 6. Magnetic moments of odd-neutron nuclei with A)16.
Notation, significance of lines, and sources of data same as in
Fig. 5.

sa R. J. lilin-Stoyle and M. A. Perks, Proc. Phys. Soc. (London)
A67, 885 (1954).

Stoyle Perks" effect (shift due to I+st, l——,'particle
mixing), then nuclei in groups I and II should fall into
separate bands in the Schmidt diagram. Figures 5 and
6 show the odd proton and odd neutron Schmidt dia-

grams with nuclei in these groups especially marked.
The groups have been defined as follows: I, highly

deformed, nuclei with neutron numbers 90&%(113,
plus»U"s (the only nucleus beyond Bi"' with known
magnetic moment) and the isotopes of 4sIn, because of
their large measured quadrupole moments; II, spherical,
nuclei with closed shell in protons or in neutrons, or
closed shell plus or minus one in neutrons. The last
group are included because of the generally more
marked effect of closing a neutron shell than a proton
shell. In addition, we include in the spherical group the
isotopes of »Tl because they are in the near vicinity of a
double closed shell, and the nucleus 4~Nb", because of
its very small measured quadrupole moment.

One sees in Fig. 5 that the 1+stmoments lying closest
to the Schmidt line at each spin value belong to "spheri-
cal" nuclei, and moreover that these moments lie
rather closely along a single straight line (exception,
9F", whose moment, however, has been explained in

terms of directly induced configuration mixing"). H

one defines the net particle moment, JgJ, by this

wholly empirical line, and supposes that it does not
vary much among different nuclei with the same spin
and parity (there is no very strong argument for this

assumption), then one may calculate by means of Eq.
(42) the extra shift to be expected for strongly deformed

nuclei. This leads to a revised "Bohr line, "shown by the

dashed line in Fig. 5. Four of the five known strongly
deformed nuclei of the odd proton, I+istype, lie very
close to this line. The fifth, ssEu'ss, I=5/2, is displaced

to the neighborhood of the opposite Schmidt line. All

but two of the remaining moments lie between the weak-
coupling and strong-coupling lines. For the l—~~ mo-
ments in Fig. 5, a similar procedure is carried out. An
empirical weak-coupling line is drawn through the
moments of the spherical nuclei (solid line), and a
strong-coupling line is then constructed (dashed line)
using the weak-coupling line to define g~. The "d~"
moments are then more widely scattered than one would
expect on this picture. At spin 7/2, however, one ob-
tains agreement with experiment in that the spherical
nuclei have the largest moments, and the highly de-
formed nucleus, 7sTa'si, has the smallest moment (i.e.,
is displaced outward), while other nuclei lie between.

Similar data and analysis are shown for the odd-
neutron nuclei in Fig. 6. Again the moments of spherical
nuclei are closest to the (i+-,') Schmidt line at every
spin value and are used to define a weak coupling line
(solid line). A strong-coupling line is defined as in
Fig. 5 (dashed line) and the two lines enclose most of
the moments. At spin 5/2, the highly deformed nucleus
7pYb'" lies close to the strong-coupling line. The
moment of 92U"' is not close but is not' known with
any accuracy. The moment of 80" lies very near the
Schmidt line; this has been explained by the fact that
for this particular nucleus, the kind of configuration
mixing which gives a first order contribution to the
moment is absent. "Note that the same should be true
of 2pca", whose moment has not yet been measured.
A corresponding analysis of the l——,'moments in Fig. 6
is not possible. One notes, however, that at I=-,', the
spherical moment is high, while the highly deformed
moment is low. This agrees with the fact that Eq. (42)
predicts a small inward shift due to strong coupling.

As emphasized by Bohr and Mottelson, 4 one should
expect the moment of the extra-particle structure and
the effect of configuration mixing to vary considerably
among nuclei of the same spin and parity, and especially
so for the low spin values and j=l+is. Therefore one
more in the many efforts to give an over-all qualitative
explanation of nuclear magnetic moments perhaps
needs further justification. Our main points are these:
(1) There is good evidence against an appreciable
quenching of the nuclear magnetic moment in nuclear
matter. (2) Collective eRects alone cannot account for
nuclear magnetic moments, but can account for most
of the variations of moments at each spin and parity.
(3) In the absence of surface coupling, nuclei still
show a considerable inward deviation from the Schmidt
line, as pointed out by Blin-Stoyle and Perks" (except
for special cases such as sO" which are understood). We
feel that this description brings new order into the
over-all picture of magnetic moments. It should be
emphasized, however, that we have only brought to-
gether the ideas of Bohr and of Blin-Stoyle and Perks,
together with the observation that weak surface
coupling has only a second order effect on magnetic
moments.
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B. Quadrupole Moments

For weak surface coupling, quadrupole eRects may
still be relatively great, since the surface coupling inter-
action energy is itself of quadrupole form. The collective
quadrupole operator,

Q, = (3/5) (5/v) fZeR'np

= (3/5) yZeR'(bp+ bp*),

contributes in first order, giving in the weak. coupling
limit, a quadrupole moment,

Q = (6/5) ZeR'y

XLI(2I—1)/(I+1) (2I+3)j*'A zooA z, (45)

where y is defined by (3), and A zzzz is the amplitude
of the state with particle configuration nJ coupled to
E phonons of spin R to give the total spin I. Thus in
lowest order, admixed particle states do not contribute. 4

Typical collective quadrupole moments predicted for
Ca4' by this formula are shown in Table IV. The
amplitudes in (45) are given in the weak coupling
limit by A 100= 1, and

z12 (k'y/hcp)5'(uI ~~+,'JJs(i) ~)nI). (46)

Some of the reduced particle matrix elements required
in (46) are given in Sec. II. The qualitative picture is
that collective quadrupole moments may be com-
parable to or greater than the direct particle moments
of extra-shell protons for a strength of coupling so weak

l.5
'

that energies and magnetic moments are only very
slightly affected.

Various authors'4 have noted a correlation between
the magnitude of magnetic moment shifts and the
magnitudes of quadrupole moments. For weak surface
coupling, Alz, should vary as Q', while for strong coup-
ling, Dfz, should be independent of Q, where hfz, is the
magnetic moment shift due to collective nuclear motion.
For the odd proton moments of l+-,' type, we define
Ap, as the difference between the observed moment and
the moment of a "spherical" nucleus at the same spin
value (see Fig. 5), and Azi~; as the predicted value of
Ap, , in the strong. coupling limit. For the nuclei in this
group, we plot in Fig. 7: Ap, /Alz~; vs the nuclear
deformation P. calculated from the observed quadrupole
moment as if strorzg couplitzg were valid irz every case
If it were true that the g factor of the extra shell par-
ticle structure were a constant for given spin and parity,
then the points in Fig. 7 should be along a curve which
starts parabolically away from the origin at small p
and approaches unity at large P. Indeed the best fit to
the points is of this form, although an appreciable
scatterer enters due to experimental errors in the
quadrupole moments and to fluctuations in the particle
g factors. In particular, two points fall far oR the
curve —those of »As" and 53I"'. In both cases, the
anomalously great magnetic moment deviation can be
understood in terms of an unusually great mixing of
nearly degenerate particle states —fsz&

—pszs at Z=33
and d fj/2 g7/2 at Z= 53. A third anomaly is»Eu'", whose
magnetic moment deviation appears to be far larger
than that of any other nucleus, and is unexplained.

C. E2 Transition Rates

l.0.

~ 33-42 53-V4

~ 49
~49

llo

For weak surface coupling, the collective E2 transi-
tion rate may compete favorably with the direct par-
ticle rate for extra-shell protons, and may be entirely
dominant for extra-shell neutrons. The rate is governed
by the reduced probability,

&.(2) =(2I'+1) ' & 1(flQs-li) I', (47)

where I' and I are spins of initial and final states. The
collective quadrupole operator is,

0.5

3l-

~29
35 46

e29-58
6 3-96

where

and

2m= gO'm)

q= (3/4~)ZeR',

-= (~/2C) 'Lb-+ (—1)"b--*1. (48c)

4l-5
Oe

0 o~ P 0.2 0.3

This leads, in lowest order to

8,(2) = (z/5) y'q'

X[ApzzA tzz + (2I+1/2I'+1)fA&z zA pz z j, (49)
FIG. 7. Deviations of magnetic moments of odd-proton nuclei

of f+q type from the "Blin-Stoyle Perks line" (see Fig. 5) in
units of predicted deviation for strong surface coupling es the
nuclear deformation P as deduced from the observed quadrupole
moment (using the strong-coupling projection factor).

where A~Jg is the amplitude of the state with E
84H. Kopfermann, Naturwiss. 58, 29 (1951); H. Miyazawa,

Progr. Theoret. Phys. Uapan) 6, 801 (1951).
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FIG. 8. Lowest states of Ca4'
(reference 35).

"T. Lindqvist and A. C. G. Mitchell, Phys. Rev. 95, 444
(1954) and Phys. Rev. 95, 1535 (1954).

phonons coupled to particle con6guration J to give
total spin I.

As an example we consider the lowest levels of Ca",
7/2 —,5/2 —,3/2 —,as shown in Fig. 8. According to
the work of Lindqvist and MitchelP' the 3/2 —state
decays predominantly by crossover rather than cascade.
(a) Assume the particle states are fr/2 fs/2 P3/Q (all neu-
trons). Then in the absence of collective effects, the
cascade should be more probable than the crossover
by about 10'. Even for protons instead of neutrons, the
cascade should be favored by at least 10'. The observed
favoring of the crossover would require a strong surface
coupling of unreasonably large magnitude. (b) Assume
that the particle states are all (fr/s)'J Then fo.r pure
states, the M1 cascade is forbidden, and the E2 cross-
over is greatly inhibited (going only by recoil of the
core). The M1 cascade will be greatly speeded up by
small configuration mixing (although still small com-
pared to the one-particle cascade of (a) above), and the
E2 crossover will be greatly speeded up by weak sur-
face coupling. We calculate crudely that the M1 rate,
including particle mixing, is,

Tsri(3/2 ~ 5/2)~3&&10' sec ' (50)

while the E2 rate is,

Tss(3/2 —+ 7/2)=0.9)&10"(ky'/ku)' sec ' (51)

If we choose the "standard" values for the interaction
constant k and the mass constant 8 of the collective
model in order to reduce the number of parameters to
one, the phonon energy (or the effective surface ten-
sion), we obtain

Tss(crossover)/Tsri(cascade) ~ (17 Mev/Aa~)', (52)

i.e., the crossover will dominate for phonon energy less
than about 17 Mev. This value corresponds to a very
weak surface coupling. These arguments are crude, but
provide the following information: (1) The observed

dominance of the crossover transition is evidence for
(f7/s) configurations rather than one-particle con-
figurations; (2) only a very weak surface coupling is
sufhcient to account for the dominance of the cross-
over; (3) the transition rates are perhaps slow enough
to be measured —in particular, the 5/2 state might have
a measurable lifetime. "

VI. CONCLUSION

In claiming success for any nuclear model, one must
be wary of those results which are model-independent,
or at least given by more than one model. For example,
almost any alteration of the pure jj coupling shell
model improves the calculated ft values of unfavored
beta transitions, since the pure jj coupling f/ values
are nearly minimal, and almost any change of coupling
scheme will increase the predicted ft value. Similarly,
in assessing the evidence for collective phenomena in
low-energy nuclear properties, it is important to note
that many of the eGects of surface coupling can be
duplicated by direct interactions among extra shell
nucleons moving in the field of a rigid core. For
example, energy level orders as shown in Fig. 1 are
qualitatively close to those predicted for direct short
range attractive forces; and deviations of nuclear mag-
netic moments from the pure state value are in the
same direction, due to surface coupling or due to
direct interaction. Large quadrupole moments and the
striking regularities of the properties of the strongly
deformed nuclei receive at least much simpler and more
direct explanation from the collective model —but the
important large anomaly in the nuclear moments of
inertia leaves uncertain the explanation of even this
class of phenomena.

For the nearly spherical nuclei, quadrupole sects
afford the best empirical test of the strength of surface
coupling. This evidence favors a coupling strength near
closed shells considerably less than the "hydrodynamic"
value, but still large enough to give important quadru-
pole eGects, as discussed, for example, for the E2—M1
competition in Ca~.
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