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) I. HISTORICAL.

According to the Ampere-Weber theory of magnetism, the molecules

of a ferromagnetic substance are all small magnets, the axes of which

in an unmagnetized state, are turned uniformly in all directions, so that
as a whole no magnetic polarity is observed. These magnetic molecules

are believed to exert directive force upon one another. If an external
force acts on the substance, the molecules tend to turn their axes in the
direction of the field in opposition to the mutual directive force. With
the increase of the field, the axes of the magnetic molecules are turned
more and more in the direction of the field; if all the molecules are turned
in this direction, magnetic saturation is reached.

The theory was afterward improved by Sir J. A. Ewing in a most

satisfactory manner by taking into account'the magnetic force due to
the neighboring molecules. ' He assumed that molecular magnets in

every microscopic crystal are arranged in a cubic space-lattice, corre-

sponding to the crystalline system of iron, which is the regular system.
In each minute crystal, all magnets naturally assume one of three
orientations of stable equilibrium, which are parallel to the sides of the
space-lattice; but as the directions of the axes of these crystals are dis-

tributed uniformly in all directions, their external action is as a whole

zero. If an external field acts on the substance, all the elementary
magnets in each crystal will tend, as a whole, to turn with their axes in

the direction of the field, but they are partially prevented from doing so

' Phil. Mag. (5), 3o (z8yz), zog. See also Magnetic Induction in Iron and Other Metals.
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by action of the mutual force, tending to draw these magnets back to
their original stable orientation. With the increase of field, the molecules

will more and more turn in the direction of the field and consequently
the intensity of magnetization becomes greater, tending to an asymptotic
value. Though the theory is very simple in its content, it explains

many observed facts quite satisfactorily, at least qualitatively.
R. Gans' tried to treat Ewing's model of molecular magnets mathe-

matically; but his theory differs essentially from that of Ewing in

assuming the distribution of the molecular magnets in the substance to
be quite arbitrary and in considering the magnetic action of its neighbors
on each molecule to be constant. In Ewing's model, the mutual action
is not a constant, but a function of the angle of the rotation of molecules.
In fact the conclusions from his theory are only a rough approximation
to the observed facts.

On the base of Langevin's theory of magnetism for paramagnetic gas,
Prof. P. Weiss developed a theory of ferromagnetism, ' by introducing an
assumption that every molecule of the ferromagnetic substance, though
it is not acted on by any external field, undergoes the action of a uniform
molecular field of an enormous strength amounting to several ten millions

of gauss. It is however very dif6cult to conceive the origin of such a
molecular field and also to explain the fundamental phenomenon regard-
ing the induced magnetism by means of his theory. As is well known,
ferromagnetic elements can easily be magnetized with a field of Ioo
gauss to a value of seventy or eighty per cent. of its saturation value.
If a molecular field of such an enormous strength really acts on each
molecule, how is such an easy magnetization of the substance in any
direction possible? Hence it seems now to the present writers very
probable that the existence of the molecular field as conceived by Weiss
does not correspond with the facts.

In what follows, we shall treat mathematically Ewing's theory of
magnetism exactly in the same form as put forward by himself and show
how the conclusions arrived at agree with the facts actually observed.

(.2. CALCULATIONS OF INTERNAL FORCE DUE TO A GROUP OF

ELEMENTARY MAGNETS.

According to Ewing's model, it is assumed that in every minute
crystal, or "elementary complex" as we shall call it, composing a mass
of iron, elementary magnets are all arranged in a space-lattice consisting

~ Gott. Nachr. (xgxo), xg7; (xgxx), xx8. R. Gans a. P. Hertz, Zeitsch. fiir Math. u.
Phys. , 6x (xgx3), x3.

~ Arch. des Sci., No. 6, 3x (xgxx), 4ox.
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of squares, but that the axes of these elementary crystals are distributed
quite arbitrarily in all directions. If no external force acts on the sub-
stance, the axes of the elementary magnets in each complex take positions
of stable equilibrium, that is, towards either side of the space-lattice.
If an external force acts on the substance, the elementary magnets in
each complex are assumed to turn, as a whole, in the direction of the
field against the mutual force. The magnetization of the mass of iron
is then the sum of the magnetizations of all these complexes in the
direction of the magnetizing field. In order therefore to find the intensity
of magnetization, it is first of all necessary to deduce the law of magne-
tization for each complex.

Suppose we have a group of elementary magnets arranged in the space-
lattice and with their magnetic axes all parallel to one of the orientations
of stable equilibrium and an external field acts in the
plane of the lattice, as shown in the annexed figure. g"
The action on each of these magnets by its neighbors is ~

then the sum of their magnetic actions but we may with
a fair approximation suppose that the actions of eight ','&&

only of the surrounding magnets are effective and those of
the rest negligible. On this supposition it is easy to cal- Flg
culate the magnetic force acting on one of these magnets.

Let 2a be the sides of the space lattice, 2r and m be the length and the
pole strength of the elementary magnets respectively. We take one
side of the space-lattice as the axis of y and the other side as that of x,
the initial direction of the elementary magnets being supposed to coincide
with the direction of the y axis.

A pole of each magnet is acted on by x6 poles of the neighboring

magnets, and, the action of four pairs of poles neutralizing each other

by symmetry, there remain only the following eight forces:
Forces between E and P, I and P, F and P, 0 and P, Q and P, X

and I', D and I', I and I'.
Now

EP' = 4(a' + r' —2ar cos 8),
JP' = 4(a' + r' —sar sin 8),
FP' = 4{2a'+ r' —2ar(cos 8+ sin fl) },
OP' = 4(a' + r' + 2ar cos 8),
QP' = 4 {2a' + r' + mar(cos 0 —sin 0) },
XP' = g{2a' + r'+ 2ar(cos 8 + sin 8) },
IP' = g(a' + r' + 2ar sin 8),

DP' = 4{2a' + r' —2ar(cos e —sin 8) }.
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Among the eight forces, those tending to increase 0 are:
m' m2

JP' 4(a' + r' —2ar sin 8)
'

m' m2

OP' 4.(a' + r' + 2ar cos 0)
'

m' m2

QP' 4{2a'+ r'+ 2ar(cos 8 —sin 0)} '

PP' 4{2a,' + r' —2ar(cos 8 + sin 8) }
'

those tending to decrease 0 are:

ZP' 4(a' + r' —2ar cos 8)
'

IP' 4(a' + r' + oar sin 0)
'

m'

4{2a' + r' —sar(cos 8 —sin 8) }
'

~~8,
:

/z

Fig. 2.

NP' 4{2a' + r + 2ar(cos 8 + sin 0) }

Denoting by X and 7 the sum of the components of
these forces in the directions of x and y respectively, we
have for equilibrium

re sin (n —8) = —Y sin 8 + X cos 8.

If we calculate X and Y from the eight forces above
given and put in the last equation, we get

II sin (n —0) =

m k sin 0

( ~)p ( 2 ~ )s {(I Pcos 0)~ —(I +P cos 0)~}

k cos 0+,),(, , ), {(I+ P sin 0): —(z —P sin 8)~}

k cos 0 —sin 0

(& + 2k')~ {I — '(cos 0 + sin 0)'}'

k cos 0 + sin 0—[I —g(cos 8 + sin 8)]'} +
( +

{[z + g(cos 8 —sin 8)]'* —[r —g(cos 0 —sin 8)]'}
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where k = a/r, p = 2k/(I + k') and g = 2k/(I + 2k'). Since a ) r,
.'. o & p & I and o & g & 2. Expanding the right-hand member of
the above equation in powers of p and q, we get

H (sin (n —0)

mk3 5 7—'sin 4 0r222 2

P' ~' I 9P' 9 II&'
4(I + k')' 't3! 2 5!

g i I 9 g

(I + 2k2)211~3/ 2 5

9 II g
~ ~ + ~ ~ ~

2 2 71

II
2 2

pv fZ

4(I + k2)~ I 7~

I I3P' 1 g~

2 2 9l J (I + 2k )I

1

f I I I3 g~+ t + )
sin'20 + ~

i7! 2 2 9J

The right-hand side of the above equation is a function of 8 only,
provided r, m, a are given. Let us denote it by F(0). If we put
F(0) = (m/r')f(0), f(0) contains k only as a parameter. F(0) or f(0) is

evidently a periodic function of 0, having m/2 as its period.
The fact, that the internal restoring force F(0) has a period of s./2

follows at once from the following physical considerations: If all the
magnets in a complex, starting from a given orientation, turn through a
right angle, the mutual action between the molecules must remain

unchanged on account of the property of the square space-lattice, and
hence F(0) must be a periodic function of ~/2. In an orientation of
stable equilibrium of these magnets, there is no deHecting force acting
on any magnet due to the surrounding ones, that is, F(0) = o for 0 = o.
As the magnets deflect from this position, F(0) increases. It is evident
that for 0 = s./4. , F(0) must again vanish through the symmetrical
orientation of molecules. Hence as 0 increases from o to s/4, F(0) must
pass through a maximum. From 0 + ~/4 upward, the axes of the mag-
nets tend to place themselves in the next orientation of stable equilibrium,
that is, in the orientation for 0 = ~/2. Hence F(0) changes its sign in

passing through ~/4. As 0 increases from ~/g to n./2, F(0), which is now

negative, at 6rst decreases, attains a minimum and then increases,
vanishing at 0 = 7r/2. The same change of F(0) is repeated in the other
quadrants.

It is also to be remarked that if r be very small in comparison with a,
that is, powers of p and g higher than the third are negligibly small,

F(0) vanish for all values of 0, that is, no resisting couple acts, if the
axes of the magnets be deHected from their orientations of stable equilib-
rium.
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In the above calculation, we have only taken account of the mutual
force due to eight surrounding magnets. If we take the next l6, 24,
32, . . . magnets in the outer squares into consideration step by step,
the expression for F(0) rapidy converges to a definite value; because
for each outer square, the number of magnets increases by 8, while the
force exerted by each pole in different squares, decreases by the inverse

square of the distance. For example, if 2g magnets in the 6rst two
squares be taken, the amplitude in F(0), assuming k = 2, increases only

by 3.6 per cent. as compared with the case above discussed. Moreover,

by taking all the magnets in the complex into consideration, the period-
icity of F(e) cannot evidently vary for the reason as explained above.
The only change consists in the variation of the coefficients of sin 49
and sin 20. More generally, if we consider the distribution of magnets
in a cubical space-lattice and the effect of the magnets situated in two
adjacent planes on the magnet under consideration, it is easily found

by calculation that the correction due to this eGect amounts only to
4.8 per cent. as compared with the case before mentioned. Hence we
can conclude that in the most general case, F(0) is a periodic function
of 0, having ir/2 as its period and k as a parameter.

The expression for F(0) may generally be written as

F(0) = A sin 48,
where

357m&
3

—
a I

-
q (k) —p'(k) sin' 29 +2 f &3 5 7 i

and y, y' are the functions of k only, k being always greater than I.
For k = i, the amplitude of F(0) is infinitely large; as k increases from

I, the amplitude rapidly decreases, the value of q' becomes very small

in comparison with that of y, and the form of the curve approaches to
~(0) the sine as given by the first term of the above series.

Fig. 3 shows this manner of approaching the sine
curve; here curves I, 2, 3 are those corresponding to
k = z.3, x.6, 2.o and curve 4 represented by a broken
line is a sine curve. Their amplitudes

A1 '. A2 '. A3 = 4.43I: 0.976: 0.2/6
0' 10 o0' 30' 40' g are all reduced to the same magnitude as that of the

Flg. 3.
sine for the sake of comparison. Thus we see that for

a value of k greater than 2, the form of the curve F(0) is very nearly
equal to sin 40. In the case of iron, nickel and cobalt, which are easily
magnetizable, this restriction seems to be quite reasonable. Hence,
under this limitation, we may use, for the first approximation, A sin
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48 with a constant amplitude instead of F(8), and proceed to develop
the theory of magnetization. Relation (I) takes then the following form

H sin (n —8) = 2 sin 48
and

where y is a function of k only. As shown in Fig.
4, p rapidly decreases with increasing k.

If a special investigation be necessary for the case
of a closer molecular distance, we must use the
exact relation (I). But, as we shall see presently,
we have always used a graphical solution for rela-
tion (2) and consequently the substitution of rela-
tion (I) for the last one does not cause much com-
plication in our calculations.

0,2--

0.1-.

3 4 5 6 Z

Fig. 4.

MAGNETIzATIGN oF A SINGLE CoMPLEx.

Suppose in a complex an external field H acts in a plane parallel
to the face of the elementary cube and in a direction making an angle n
with one of the directions of stable equilibrium of the molecular magnets
arranged in the space-lattice; the magnets will then be in equilibrium
after turning through a common angle 0 from their initial direction.
It is required to find the component of magnetization I in the direction
of the applied field. VUe have obviously

I = zmrri cos (n —8) = Io cos (n —8),

where n is the number of elementary magnets and Io the saturation value
of the intensity of magnetization. Denoting I/Ia = i, we have from
the above relation

i = cos (iz —8),

in which o., 0, H are related by an equation

II sin (n —8) = A sin 48;

if we denote H/A=/i, we get.
/i sin (a —8) = sin 48.

A contains m, r, a and depends on the properties of particular substance;
so also Io. But if we use the reduced i and h instead of the actual
intensity of magnetization and field, relations (3) and (4) apply for all

ferromagnetic substances belonging to the regular system. If h and n
be given, equation (4) gives the value of 8 and therefore equation (3)
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the value of f, H. ence equations (3) and (4) may be considered as the
laws of magnetization.

Since equation (4) does not change, if we put for n and 8 the values
n + s/2 and 8 + ~/2, it follows that the force required acting in the
direction n to deflect the system of magnets through an angle 0 is equal
to that acting in a direction n + s-/2 and dellecting these magnets by
8 + s-/2. Hence the curve of magnetization by a force acting in a direc-
tion u partly coincides with the curve corresponding to a system of
magnets, whose initial direction makes with the field an angle o. + 7I;.2.

If h and n be given, 8 can be found from equation'(4), which is of
the eighth degree in sin 0 or cos 0; hence we can not solve it analytically.
However, as 0 is given as the intersections of the two curves

y = sin 48 and y = h sin (n —8),

we can easily find it by a graphical method. In Fig. 5, curve I represents

y = sin 48, and curves a, b, c, d, those of y = h sin (n —8) for n = 3o',

0

@=170'

Fig. 5. Fig. 6.

7o', z2o' and z6o' respectively, h being taken as o.6. By giving different
values to k, the curve of magnetization can be obtained.

In Fig. 6, four curves representing the relation between i and h are
given, in which for the angle n were taken angles of 3o', 7o', r. 2o' and

I70 respectively. They give the intensity of magnetization in the direc-
tion of the respective field, when the magnitude of the latter is so varied
that it is always in equilibrium with the internal resisting force sin 40.
In the curve for n = 3o', the initial point a corresponds to the value of
cos go', as k increases, 0 becomes greater, but always less than o., and
therefore f = cos (3o' —8) steadily increases, tending asymptotically
to the value of i = I with h = ~ . In the curve for n = 7o', the point
b corresponds to the value of cos 7o'; as k increases from o, 0 and there-
fore sin 40 also increases. Since however the latter quantity reaches a
maximum at 8 = s./8, h must be diminished from a certain value of 8

upward, if the magnetization is to be effected statically or reversibly.
With 8 = s-/4, the resisting force sin 48 vanishes and therefore k must be
diminished to zero; with a further increase of 0, sin 40 changes sign and
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therefore h must be applied in an opposite direction, if the magnetization
is to be made reversibly. If 0 approaches to 70', h becomes —oo in

the limit and the magnetization tends asymptotically to unity. The
curve for a = x2o, which begins at the point c on the negative side of i
passes through a maximum and a minimum of h, and coincides with the
curve for a = 3o', as the value of i increases. The curve for u = &70',

beginning at a point d on the negativ'e side of i, passes through two
maxima and one minimum of h with the increase of i and approaches
asymptotically to the linei = z.

In the ordinary case of magnetization, the 6eld is continuously in-

creased, and therefore the magnetization is only partly reversible. But
it is easy to see in what manner the magnetization in the direction of
the field increases by applying a continuously increasing field.

Case i, o ( n & (ir/4). The component magnetization i in the direc-

tion of the field increases with h and becomes x for A, = ~. If the 6eld.

is gradually reduced, i takes its original value, and there is no hysteresis.
Case 2, (ir/4) & n & (ir/z). i increases with h continuously up to the

maximum resisting force; here it undergoes an abrupt change and takes

Fig. 7.

l
rrr

Fig. 8.

l r- ~q

I
I
I
I
I
I
I
.I

Fig 9 Fig. 10.

I
I
I
I

II

a value corresponding to the rotation of m/2 of the initial orientation of
molecular magnets. With a further increase of the 6eld, i continuously
increases in a manner, as if the initial orientation were n —(ir/2). If
the field is reduced, i takes a value quite different from its initial, as
shown in Fig. 7; that is, there gives rise a hysteresis phenomenon.

Case 3, (ir/2) & n (3/4)ir. i increases with fi, at first continuously, and

then abruptly, when the resisting force reaches a maximum. After
this, the curve of magnetization follows the course corresponding to the
case with the initial orientation of n —(ir/2) (Fig. 8). With the reduc-
tion of the field, hysteresis phenomenon is also observed.

Case 4, (3/g) ir & n ( ir. The curve of initial magnetization is the same
as in the above cases. If the first maximum of the resisting force is
less than the second maximum, its next magnetization is the same as
in the case with the initial orientation of a —(ir/2) (Fig. 9); if the
6rst maximum is greater than the second, the magnetization is the
same as that for the initial orientation of a —ir (Fig. ro). The subse-
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quent magnetization takes place continuously. By reducing the field,

the corresponding hysteresis is observed.
The relation between the initial orientation and the maximum resisting

force h can be found in the following way:

From
sin 40

sin (n —8)
'

we have
dh 5 sin (n + 38) + g sin (n —58)
do 2 sin' (n —8)

4.0

3.0--

2.0--

'J.O. -

20' 40 60' 80 100' 120' 140 160 180

Fig. 11.

If the value of 0 corresponding to the maximum force be denoted by 00

we have
5 sin (n + 380) = 3 sin (g8 —n)

and
sin 400

sin (n —8,)
'

The existence of such values of ef) can be understood from Fig. 6. The
calculated values of h for different values of n are given in. the following

table and in Fig. j:x.

45'
50'
60'

4.000
2.625
1.750

100'
120'
140'

1.025
1.008
1.137

70' 1.40580, 1.205
9O'

~

I OSS

160'
170'
Iso'

1.541
2.018
4.000

Curve a in Fig. ir refers to the first maximum; in the interval between

135 and I8o', the second maximum is also possible. However, as
corresponding to n for the first maximum is equal to that corresponding

to n + (~/2) for the second maximum, curve b for the second maximum

has the same form as curve a being only displaced through s./2.

Il 4. DEDUCTION OF THE CURVE OF MAGNETIZATION.

Hitherto we have exclusively considered the magnetization of a single

complex; but we are now able to study the magnetization of a mass of
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ferromagnetic substance, such as iron, which consists of a great number
of such elementary complexes with their magnetic axes uniformly dis-

tributed in all directions. Now, the faces of the elementary cubes or
the complexes are in actual cases directed uniformly in all directions;
but for the sake of the simplicity of calculation, it is here assumed that
the complexes have one of their faces all parallel to a common plane,
other faces being distributed quite arbitrarily, and the magnetic 6eld
acts parallel to this plane. The problem is then reduced to the two-

dimensional. The magnetization of this simple case does not obviously
differ from that of the actual case in its character.

Let N be the number of elementary complexes; if there is no magnetic
force acting on these complexes, the number of complexes, whose mag-
netic axes make, with a certain direction, an angle lying between n and
0. + dn, is equal to

N
dN = —do. .2'

If JI be the magnetic moment of a complex, whose magnetic axis makes
initially an angle m with the direction of the field, then the component
of magnetization in the direction of the field is 3Ecos (n —8). Con-

sidering 3f to be the same for all complexes, the total magnetization
due to these complexes is

+ 3IIN m'

I = cos (n —8)dd = — cos (n —8)dn,
21l 7l 0

where Io = NM is the saturation value of the magnetization. Hence
we have for ~

cos (n —8)dn.
7l Q

(6)

The relation connecting o, and 0 must however be different from that
for a single complex. Here besides F(8), we must also consider the
magnetic force due to surrounding complexes. If no field acts on the
substance, the resultant effect of the surrounding complexes is obviously

zero; but in its magnetized state, this is not the case. To calculate
this force exactly is almost impossible; but it is not difficult to calculate
approximately its mean effect. Since the total action of a complex
on a magnet within it is the same as the sum of the effects of neighboring

magnets, those of the distant ones being very small, we may consider

the form of the complex under consideration to be a sphere, without

causing sensible error in the value of F(8). The magnetic effect of
other complexes on the magnet under consideration may approximately
be replaced by that due to a uniform distribution of magnetization with
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a mean intensity. in the space in which other complexes are found. As

the boundary of the said complex is assumed to be a sphere, this force is

(4/3) irI acting in the direction of the external field and does not generally

coincide in direction with that of the axis of the magnet under con-

sideration; and hence it exerts a couple tending to turn the magnet in

the direction of the field. Hence instead of relation (z), we must use

the following formula:

( II + —
) irI sin (n —8) = A sin 48.

But for a given value of H, I is a constant, so that for a while we may
regard II + (4/g)irI as an external field and proceed to calculate I for
different assigned values of II + (4/3) irI. After finding I, the actual field

may be found by simply subtracting (4m./3)I from the assigned field.

Hence the same relation as (2) may also be used in the present case,
that is,

sin 40
h =

sin (n —8)
' 7

'I

If /i be given, equation (7) gives 8 in terms of a, and if this value of
8 be substituted in equation (6), this gives the intensity of magnetization

i in terms of h, and thus the problem is formally solved. But in actual
calculation, some complications are involved, and we must separately
consider cases corresponding to several graded values of h.

First let us consider the case when h is very small; then 0 is also small,

and therefore sin 48 = 48. From (7), we get

k (sin n —8 cos n) = 4.8;

Equation (6) gives

hsing
0 = 4+ kcos n

~ I ~ I h sin'0.
(cos n + 8 sin cx)dn = — cos n +

7I p p 4 + h cos o.

I h & h
cos ndn + — sin' n ( i + —cos n (

dn
7l p 4' p

The erst integral vanishes; and if the second term be expanded and

intergrated, we have
h &I h' x h4' =-

i
-+—,+- -+

8.4' I6 44

O.I25k + 0.00I95k + 0.0000/& + ~ ~ ~
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As it ought to be, i is an odd function of h. If h be sufficiently small,

the terms of any higher order of h than the third can be neglected, and

i and h are linearly related to each other. This fact was verified by
experiments of Bauer, ' Lord Rayleigh' and others. In this case, the
magnetization is perfectly reversible, that is, there is no hysteresis, a
fact which agrees with the result of the experiments.

Secondly, we consider the case, where h is large. To change the

integration variable from n to 8, we differentiate equation (7),
~du

h cos (n —8) i
——t (

= g cos 4.8ide

do, 4 cos $8 + I.
d8 h cos (n —8)

And also
I

cos (n —8) = & —&h' —sin'g8
h

I 4. cos48 I~ —&h2 —sin'ge de.
h h

According to the magnitude of h, all the complexes, during magnetiza-

tion; do not necessarily change their angle of defiection continuously;

in fact, some of these complexes made an abrupt rotation of m/2 or x.
Hence in evaluating the above integral, it is necessary to divide the

limits of integration into several parts. If h be given, we can find

from Fig. I I the value of a having h as h; the values of 0 for these values

of n may then be found from equation (y). We have generally three

values of a and 0, let us call them by n&, n2, n3 and 0&, 02, 03. Then we

have

+ + +

In the first and fourth integrals, the elementary magnets in the com-

plexes belonging to these integrals remain stable, since the field is less

in their cases than the critical value. The magnets in the complexes

belonging to the second integral all lie beyond the position of stable

equilibrium, and therefore the magnetization is the same, as if the initial

orientation of the complexes were n —(~/2). Hence the limit of the

second integral must be changed from nq and n2 to nz —(m/2) and

n2 —(7r/2). In the third integral, the magnets in the complexes lie

beyond the first and second positions of stable equilibrium, and therefore

the magnetization is the same, as if the initial orientation were 2 —~.
' Bauer, Inaug. Diss. Zurich (r87g). Wied. Ann. , II. (x88o), 39g.
2 Phil. Mag. , March (x887). See also Exing's "Magnetic Induction, " t24.
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Hence the limits of the third integral are to be changed from a2 and a3
to o,2 —m and a3 —~. If the integration variable be then changed
from a to 8, we have

+ + +

Now from equation (9), we have

r . „r '
{ z

i = —
j
sin 40 ~e + —

i z ——sin' 48 d0
7rh h'

I ~ f ~ I= —(sin 40' —sin 40q) ~—
m.h 7r

gr

+ I —k' sin' 40 dg

&I —k' sin' 40de
0

where k' = r/k'. Hence if Z be an elliptic integral of the second kind,
we have

(sin 4.0' —sin 48) ~ —{Z(k, 40') —Z(k, 40) I.
~h

By expanding Z in a power series of k, we have

~ I ~ ~ I fIi = —(sin 40' —sin 4.8) & — 40 —
{
—48 + —sin 80 {

k'
7rh 4'

I '3 I I'3 I f 3 I
40 + —

{
—+ —sin' 40 (

sin 80 k42'4' 3 2 42 &2.4

(io)

I '3 '5 I I'3'5 f 5.3 5 . I , & I. — 48+ ( + sin'40+ —sin'40
~

—sin 88 k' (lr)

gt
~ ~ 0

g

The double sign of the second term must be so chosen that upper and
lower signs correspond to n —0 ) (ir/2) and n —8 ( (ir/2) respectively,
with the condition that if an abrupt turning of the molecules through ir/2

takes place, a and 0 are measured from the new position of equilibrium.
In the following tables and in Fig. I2, the result of our calculation

according to the above relations is given. Up to h = o.5, i was calculated

by relation (8), while for higher fields, it was obtained by means of
relation (i i). Thus, we found at first three values of n corresponding to
different values of h:

h.
i

cq, .I

15 62' o'
2.o 54' 38'

157' o'
145' 0'

159' 3O'

169' 0'
2.5 50' 30'
3.0 47' 0'

140' 0'
138' 30'

174' o'
178' o'
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From equation (7) and these values of n, we found the following values
of 0 for the limits of integrations:

Oi- 8g. e2'. lb. 0 I 84. g4/

1.5 0' 21'
2.0 0' 26'
2.5 0 34'
3 0 0 37'

—8' 21'
—13' 26'
—17' 20'
—21 30' 37'

80
—13
—17' 20'
—21 30'

—6'
40

—2' 30'
—1' 30'

16'
14'
12' 30'

80

00
00
00
0o

We have then for each of the integrals the following numbers:

ye4' Sum.

1.0
1.5
2.0
2.5
3.0

0.301
0.286
0.289
0.241

0.436
0.448
0.475
0.483

0.036
0.127
0.172
0.196

—0.096
—0.045
—0.031
—0.011

0.183
0.677
0.816
0.875
0.909

1 3 3 4 5 6

Thus the form of the curve of magnetization agrees precisely with that
experimentally found. This curve starts from the origin at a definite

angle, and increases at first linearly with the field. With a further
increase of field, the magnetization increases more and more rapidly;
in a certain field, its rate attains a maximum
and then gradually decreases. The curve

1.0"
of magnetization passes therefore through

0,8"
an inflexion point, and gradually approaches
to an asymptotic value I, as the field is
increased. The curve is the normal curve
of magnetization with the reduced intensity
of magnetization and field; it is common
for all the ferromagnetic substances belong- Fig. 12.
ing to .the regular system. The curve
of magnetization for a particular substance can be obtained by multi-

plying I0 and A, characteristic constants for the substance, to io and h

respectively.
If the curve of magnetization be plotted against the actual field as

explained at the beginning of the present paragraph, the characteristic
form of the curve will not materially change.

REsIDUAL MAGNETIsM AND HYsTEREsIs PHENoMENON.

If a mass of iron is once magnetized to saturation, and then the field
reduced to zero, there remains a residual magnetism. The amount of
this residual magnetism can easily be found in the following way: The
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complexes, whose magnetic directions lie initially between o and ~/4
will return to their original position with k = o; the complexes, whose
magnetic directions were initially ~/4 ) n ) m./2, or ~/2 ) a. ) (3/4)~,
take a new position of equilibrium differing from the initial by ~/2
with h = o. Lastly the complexes, whose magnetic directions were
initially (3/4)s. ) n ) ~, will come to a new position differing by m from
the initial with h = o. Hence, if the field be reduced to zero, the mag-
netic directions of all the complexes are distributed uniformly within
an angle making s/4 on both sides of the field. The residual magnetism
may therefore be found thus:

vr/4

R = 2 iV cos Od&. dN = —d0
0 7r

4Ip " 4I,
cos 0do =

7l 0

Hence the reduced residual magnetism r is

R
r = —= o.8927.

Ip
(t2)

This is the same value as obtained by Ewing. ' Thus there remains a
residual magnetism of about 9o per cent. The experiments with very
long iron wires confirm the correctness of this conclusion.

According to the above consideration, the process of reducing the
field from co to o is reversible, that is, the magnetization during the
reduction of the field from oo to o exactly coincides with the magnetiza-
tion from h = o to oc, the initial magnetization being r. This curve of
magnetization can easily be found: because the initial orientation of the
complexes is known to be uniformly distributed within an angle sub-
tended by the lines inclined at m/4 to the field. If h be small,

m/4

cos(n —8)do.
7l 0

sin 40
aild h

sin (n —0)
'

I
'7r

vr /4 h
(h + 4 cos n) (r + —cos n) 'dn

= o.8927 + o.o4ph —o.o8gh' +
For a large value of h, we find from equation (7) the value of 0 corre-
sponding to the limit of integration. By means of equation (tt), the
value of i will be found on simple substitutions.

Starting from the residual magnetism, the magnetization by a
gradually increasing negative field can be calculated in a similar way.

' Magnetic Induction (Igoo), 3z5.
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T'his case is equivalent to the magnetization by a positive field of a
group of complexes, whose initial magnetic directions are uniform and

given by & (g/4)s. ) n ) s.. For small values of fi, we have

~ 4 I h
cos (n —0)dn = —— (fi + 4 cos n) (i + —cos n) 'dn

3/4 ~ 3/4n.

= + o.8927 —0.047k —o.o83k'—

For large values of h, we find i from equations (7) and (ii), as in the
former case. The results of calculation are included in the following

table:

+ OO

3.5
3.0
2.5

1.000
0.973
0.962
0.956

—1.0
—1.5
—2.0
—2.5

0.815
0.015

—0.584
—0.786

2.0
1.5
1.0
0.0

0.944 —3.0
0.932 —5.0
0.922
0.893

—0.847
—0.981
—1.000

In this way, we can obtain a well-known hysteresis loop, when the 6eld
is varied between + ~ and —, as shown in Fig. I3. It possesses all

the characteristics shown by iron, nickel and cobalt, and is far nearer
the experimental curve than the rectangular hysteresis loop obtained

by Gans.
The hysteresis loop accompanying a cyclic change of magnetic 6eld

between + h and —h can be calculated in a simi-

lar manner. For this purpose, the residual magne- .+I

tism obtained by reducing the 6eld from h to o
will be at first calculated. Then, the curve of A

magnetization having this residual magnetism as
the initial will be calculated, it must coincide with

the curve of demagnetization obtained by reduc-

ing the 6eld from h to o. Next, the curve of D

magnetization from o to —h, having the state of re- Flg. 13.
sidual magnetism as the initial, will be calculated,
and so on. In this way, we have obtained a complete cycle of magnet-
ization.

The residual magnetism, when the 6eld h is reduced to zero, is easily
known; because for a given value of h, we can find from Fig. xr the
values of a. having h as the maximum resisting force, and therefore it
can be completely known how many complexes, which had initially a
uniform distribution of their axes, will return to their original position

by reducing the 6eld to zero and how many of them will rotate through
one or two right angles from their initial positions. Hence the residuaI
magnetism can be calculated by the following expression:
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aI ~IX'

cos ndn + cos ] a ——
[ dn

0 2 JI

g.3 7r

+ cos (a —s)da + cos ndn
Cp ~ a3

Since the orientation of the magnetic axes of these complexes in the
residual state of magnetization is thus completely known, a further
magnetization with positive and negative fields can be calculated in

the same way as the case above discussed. In this way, we calculated
three curves of hysteresis for different values of h, which are shown

graphically in Fig. t4. The curves are found to agree with the results
of experiments.

In our theory, the hysteresis phenomenon takes place only when the
molecular magnets in the complexes turn abruptly; otherwise the process
of magnetization should be reversible. Thus, as we have seen, the initial

magnetization up to about h = j: and also the demagnetization and the
second magnetization between o and h, ought to be reversible. In
actual cases, however, we also find a small but distinct hysteresis in

weak fields. This discrepancy between theory and experiment may
probably be due to two causes, which are not considered in the above
theory.

In the important paper' on the modulus of rigidity of rocks, Prof. S.
Twist

pie

Fig. 14. Fig. 15.

Kuskabi has shown that by cyclically changing the twist between

+ z and —~, all rocks investigated by him show a distinct hysteresis,
though Hooke's law is fairly well satis6ed. The form of his hysteresis

loop is quite similar to that observed in iron in weak fields. As an
example, we reproduce here his hysteresis curve of twist for marble

(Fig. r5). He explained the phenomenon quite satisfactorily by his

theory based on the experimental fact that by applying couple, the twist
of the specimen, after its instantaneous increase of a de6nite amount,
gradually increases with time, asymptotically tending to its 6nal value,
that is, the twist shows a time-effect.

I Journ. Coll. Sci., Ig, Art. 6 (I9O3).
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Now the magnetization has also a time-effect called the magnetic
viscosity, though it is not so conspicuous as it is in the case of rcoks.
Namely, the magnetization does not instantaneously increase to its final

value by applying a magnetic field, but it requires some time for arriving
at its maximum value. This effect is specially conspicuous in weak

fields, and may therefore be considered as the first, but less important
cause of the hysteresis observable in weak fields.

The second, but principal cause of the hysteresis in weak fields is

probably the irregular distribution of the axes of the elementary magnets
situated on the bounding surfaces of different complexes. In our theory,
we have assumed that if there acts no external fields, all the elementary

magnets in each complex assume the same direction of stable equilibrium.
But in actual cases, the elementary magnets on the bounding surfaces
of the complexes may place themselves in quite different directions, as
do those in the interior through the action of the magnets in the neighbor-

ing complexes; and thus there results an irregular distribution of ele-

mentary magnets on the bounding surfaces. Hence some of the elemen-

tary magnets may initially be found in positions, which are not far from

those of unstable equilibrium. If a weak magnetizing force acts on

such magnets, it may cause the abrupt rotation of the magnets and

therefore a hysteresis phenomenon results even in a weak field.

$ 6. CALCULATION OF THE HYSTERESIS-LOSS BY MAGNETIZATION.

According to our theory, the hysteresis-loss takes place only when the
rotation of the molecular magnets caused by the external field becomes
discontinuous. That is, if the reduced field h be less than 1, there is no

t

sudden rotation of molecules, and hence no hysteresis-loss by magnetiza-

tion; if however h be greater than r, some of the molecules make abrupt
rotations and give rise to the hysteresis phenomenon. The number of
such molecu'les will increase with the strength of the field and attain to
an asymptotic value at h = 4. A further increase of magnetizing field

does not cause any more abrupt rotation of molecules.

In the curve of magnetization, 0 AB in Fig. x3, the hysteresis-loss

takes place only in a portion (fI = I to 4) of the magnetization curve.

During the demagnetization from h = ~ to o, no abrupt rotation of
molecules occurs, and therefore we have no hysteresis. But the magne-

tization in the opposite direction from h = o to —4 involves a loss of

energy. Similarly, in portion DB of the magnetization curve, there is no

loss of energy, but in portion EB,we have a loss of energy equal in amount

to that in portion CD.
According to the general theory of magnetism, which assumes no
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hypothesis as to the molecular magnets, the total loss of energy during
a complete cycle is equal to the area of the hysteresis-loop. By our
theory, the hysteresis-loss is the kinetic energy obtained by the molecules
during their abrupt rotations, and hence it is very interesting to investi-

gate, whether in a cyclic process of magnetization, the kinetic energy
thus obtained is equivalent to the area enclosed by the hysteresis-loop.
As the following calculation will show, the result completely agrees with
the above theory; moreover, in the process of magnetization, we can
distinguish the energy dissipated during the magnetization from the
total energy.

We shall at 6rst consider the energy loss of a single complex during
magnetization. If h increases from o to h, which is the critical Geld

for the abrupt turning, the molecular magnets in the complex will turn
reversibly towards the 6eld; at h = h, an abrupt turning of the mole-
cules occurs, and their axes take new orientations corresponding to the
initial position differing by s/2 or s from the original. During the abrupt
turning, the molecules will acquire a kinetic energy, which is nothing but
the heat energy produced; the quantity of this energy must be equal to
the sum of the work done on the molecules.

The couple X acting on a molecular magnet, whose magnetic moment
is 3II, is

N = 3II{H sin (u —8) —A sin 4g},
where

3f =. 2mr.

If 00 and 0~ be the angles of deflection of a molecule from its initial
position, which correspond to the positions just before and after the
abrupt turning, we have

ex

W = Z Ndg = Z3I {FI sin (n —8) —A sin 48}dg,
~p 8p

where the summation is to be extended to all the molecules n in the com-
plex. Since 2II, cz, 0 are the same for all the molecules, the above equation
may be written as

or

W = nM {H sin (n —8) —A sin 48}dg,
ep

w, = —= {h sin (a —8) —sin 48}dg,n3EIA

where m, is the reduced hysteresis-loss by magnetization. The latter
does not involve any quantity depending on the nature of a substance;
it is therefore applicable for all substances belonging to the cubic system.
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Now the reduced intensity of magnetization for a single complex is

i, = cos (n —8);
f

for a small variation in the magnitude of h, we have

di, = sin (n —8)d8.
Hence

1y 8p

js di — sin 40d0 = h di+ sin 40d0 — sin 40d0.
Hp Ip Q 0

But the last two terms are the integrals along the reversible courses of
magnetization, in which case we have the relation

h sin (n —8) = sin 48,

h sin (a —8)d8 = h di, = sin 48d8.

Moreover, the molecular magnets at 0», have the same potential energy
with regard to the axis 0 = o, or that perpendicular to it. Hence

(n /2) —8y 1y

sin 40d0 = sin 40d0» —— ddi,
Q m/2

and therefore we get finally

Ip Ig

~s = hmtSZs + hd&s hdqrs.
lp' +pl Ij~

Referring to the annexed figure (Fig. t6), in which ABB C is the curve
of magnetization and B'A' the course taken by the

i
magnetization curve, when the field is reduced to zero„
we see that the first integral represents the area DBB'D'
and the second the area ABD and the third the area
A'B'D', so that m, is equal to the area ABB'A'. &.ip &~0~p

Next, consider the case of the mass of a ferromagnetic
substance consisting of an immense number of minute 0 t„
complexes, whose magnetic axes are uniformly distributed F&g y6

in all directions. From the above result, we see that if

I» and I2 be the intensities of magnetization of a complex corresponding
to the magnetizing and demagnetizing stages for the same strength of
field, we have

w, = (I2 —I,)dh = (I~ —Ii)dh,
Q Q

where h may take any value whatever, as m, vanishes for larger values
of h than h . Hence, for the hysteresis-loss m of a mass of the ferro-
magnetic substance, we must summarize the above expression for all

the complexes constituting the substance.
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w = Zw. = Z(I, —I,)dh;
0

D
(2),. '

J'

Ic'

Fig. 17.

but ZI& and ZI2 are respectively the reduced intensities of magnetization

corresponding to the ascending and descending branches of the magnet-
ization curve. Hence putting

ZIg = i, and ZI2 ——~2,

h

w = (i2 —i&)dk. (3)
0

Referring to Fig. z7, m represents the area OABC enclosed by the
magnetizing and demagnetizing branches (r) and (2) of
the magnetization curve. The area OABD is known to
be the total energy of magnetization, and therefore the

B
A area CBD, which is the difference between the areas OBD

and OBC, corresponds to the net energy of magnetiza-

y(&) tion.
=a In the same way, it can be shown that in a cyclic pro-

cess of magnetization, as shown in Fig. I3, the hystere-
sis-loss during the magnetization CD is given by the area

CDZ and the loss during the magnetization BB by the area BCE, and
that the total loss during the cyclic magnetization is equal to the area
enclosed by the hysteresis-loop,

In our theory, we have assumed that if no external field acts on them,
all the elementary magnets in each complex assume the same direction
of stable equilibrium. But in actual cases, the elementary magnets
on the bounding surfaces of the complexes, may place themselves in

quite different directions as do those in the interior through the action
of the magnets in the neighboring complexes, and thus there results an
irregular distribution of elementary magnets on the bounding surfaces
of the complexes. Hence, some of the elementary magnets may initially
be found in portions corresponding to h = h . If a weak magnetizing
force acts on such magnets, it may cause the abrupt rotation of the
magnets, and therefore the hysteresis phenomena result even in weak
fields. The small hysteresis usually observable in portions OA, CB and
DE in Fig. I3 are explained in this way.

z. Ke shall next calculate the value of the reduced hysteresis-loss for
different magnetizing fields. Now

I
W Ih sin (n —0) —sin 4gjdeda

7l 0 ga

I f

cos n ——n —eq I
—cos 480

F 0 2
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I+ —Icos 48' —cos 4.8p} dpp,

where n = I or 2 and h, a, Op, 0& are related by the equations of condi-
tions:

h sin (a —
Hp) = sin 48p,

r

Ip sin } n ——n —8, = sin 48~,2 i

5 sin (38p + n) = 3 sin (58p —pp).

If we eliminate from these four equations A, Op, ey the required relation
between m and h will be obtained; it is, however, very difficult to 6nd
actually an analytical expression for m; but the problem can be solved

graphically without any difhculty. Since m is the reduced hysteresis-loss

applicable for all substances crystallizing in a cubic system, it is sufficient

to 6nd its value once for all in some convenient way; from this value,
the actual hysteresis-loss for a given substance can be obtained simply

by multiplying it by the product IQ, depending on the properties of
the substance.

The curve representing the relation between h and n is given in Fig.
I I; hence if h be given, the corresponding value of u can be known.

If from the 6rst and third equation of condition, a be eliminated, the
relation

&h„' —I
cos 40p

I5

is obtained, which gives 0p in terms of h . The double sign can be deter-
mined without ambiguity. Knowing h, n, n, 0& can be obtained from
the second equation of condition (5). Thus, from the given value of h,
all quantities under the integral sign in expression (4) can be evaluated.

Now, from the first and third equations of conditions, we get

dn I
dh h

= ——tan (n —Hp).,

hence for m, we obtain the expression

I I do.'
rpdn = — y dhts

71 p dh

where
I

p = h cos } n —n ——
8& }

—cos (n —
Hp) + —Icos 48& —cos 48p};

y can be graphically evaluated, provided h is given. Then draw the
curve and evaluate the area bounded by the curve and the abscissa;
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we thus obtain m in terms of A' . The following table contains our
result of calculation:

da
dk '

dR
dk

'

1.1
1.5

3.143
1.743

2.0
2.5

1.081
0.735

3.0
3.5

0.512
0.310

4.0 0.000

y(d~/dh ), h curve is given in Fig. t8; and the result of its mechanical
integration is given in the following table and in Fig. I9.

gagdh~
I
I

4.0--
1.0. -

2.0--

1 0-- I
I
I
I
I
I

=Am1.0 2.0 8.0 4,0

Fig. 18.

1.0 2.0 8.0 4.0 ™
Fig. 19.

1.0
1.1

0.000
0.075

1,5
2.0

0.472
0.721

2.5
3.0

0.886
0.975

3.5
4.0

0.997
1.024

Similarly the hysteresis-loss by magnetization in the opposite direction,
of a substance which has previously been magnetized in one direction,
can be calculated. The results for y(dn/dh ) and m are given in the
following table and in Figs. 2o and 2I.

8.0-

6.0--

t0
8.0"

2.0"

2.0-- 1.0"

1.0 2,0 3.0 4,'0

Fig. 20.

1.0 2.0 8.0 4.0

Fig. 21.

1.0
1.3

0.000
0.665

1.5
2.0

0.998
1.945

km.

2.5
3.0

2.445
2.820

3.5
4.0

2.865
2.995
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Here the initial increase of y(dn/dh ) and w is comparatively less
abrupt than in the former case. The double value 2m is equal to the
loss during a cyclic process of magnetization. The dotted curves in

Figs. I9 and 2z are the supposed ones, in which an irregular distribution
of the molecular magnets on the bounding surfaces of different complexes
already referred to is taken into consideration. The dotted curve in

Fig. 2x resembles in its character with the curve given by the Steinmetz
formula, that is,

m = q8"
where g is a constant depending on the nature of a substance and 8
the magnetic induction.

f 7. EFFECT OF TEMPERATURE ON MAGNETIZATION.

In the above theory, we have taken no account of the thermal motion
of the molecules, and therefore the results so far obtained hold good
only in the absolute zero, where no thermal agitations exist. In this

paragraph, we shall consider the effect of temperature on magnetization,
the established facts of which may be summarized in the following words:
In a very weak field, the magnetization increases with the rise of tem-

perature, at first slowly and then very rapidly, and after reaching a
sharp maxim'um, it falls very rapidly at the critical temperature. With
the increase of magnetizing field, this effect of increasing magnetization
becomes continuously less. In a field of several gausses, the magnetiza-
tion remains constant up to the critical range, and then falls very rapidly.
With further increase of field, the magnetization begins gradually to
decrease from a temperature which is lower as the field is stronger.
Above a field of some hundreds of gausses, the magnetization begins

gradually to decrease from room temperature.
It is commonly admitted that the diminution of magnetization at

high temperatures is due to the rotational vibration of molecules, the
amount of diminution increasing with the amplitude of vibration, and
that when the rotational vibration is changed into a continuous revolu-

tion, magnetization completely disappears. Such an explanation as-
sumes no change either in the molecules or in their mutual configuration;
what is assumed is simply the change of the amplitude of the rotational
vibration during the heating. It is however questionable whether this
is sufficient to explain the so-called magnetic or A2 transformation.
We shall at first show that simple revolution of molecules about their
own centers are not sufficient to account for the disappearance of magnet-
ism at the critical point.

~ K. Honda, Sci. Rep. , 4 (rgzs), x69.
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Consider the case when the external field is very strong and the
mutual action between the molecular magnets can be neglected. All

the molecular magnets are then directed nearly in the direction of the
field. Owing to their thermal energy, they make translational and
rotational vibrations about their mean positions. If 2p be the complete
amplitude of the rotational vibration of a molecule, its equation of
rotational motion will be

d'p
K—= —2rH sin Pdt'

or
d'p 2Hr
dt'
—= —n'sin p n' =

1

where E is the moment of inertia of the molecule about the center of
mass, H the external field and 2r the pole distance of the molecule.

Suppose at first p & m and integrate the above equation; we get

dp i. i
dt 4 2
—= & 2n sin' —

po —sin' —p,

where po is the maximum amplitude of the vibration.
Putting

sin /2p = sin /2po sin q&,

and changing the variable from p to y, we get
gati d (p

nt = — = F(p, k),
0 &g —k2 sm' p

where k = sin/ispo and F(y, k) is the elliptic integral of the first kind.
Hence, if T be the period of oscillation,

T
n —=Fi —,kl =K(k)(2

or
4X(k)

Now
cos i/sP = dn nt;

cos P = 2 cos' /2P —i = 2dn'nt —i. ,

Hence if I and I be the intensity of magnetization as affected by
the thermal motion and that at absolute zero respectively, we have

T

I = — I cos pdt
Tg p
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41 1'/ I E(k)/e

cos pdt =T, E(k) . ,
I= ——f28(am%, k) —X(k) I,X(k)

(2dn'nt —t)dt

where 8 is the elliptic integral of the second kind.
Hence

I zZ(amK, k) aE(k)
I X(k) E(k

The calculation of the ratio presents no difficulty. In the following

table and Fig. 22, the values of I /I for different values of p, are given:

00
20'
40'
60'
80'

0.000
0.174
0.342
0.500
0.643

1.000
0.970
0 882
0.742
0 562

Po.

100'
120
140'
160
180'

0.766
0.866 .

0.940
0.985
1.000

0.352
0.126

—0.108
—0.340
—1.000

Next, suppose p ) m", then the vibration changes into the revolution,
but its angular velocity is not uniform. As before, we have

ol

d2p

dt2
—= —n2 Sin P t, ~m

1.0-

I &dp& 2
—

(
—

)
= C + n' cos p.

2 &dt&

If for p = o,

O.ar-

1 I

30 60' 90' 120" l ' 0'

then

I &dp& 2
= 2n'v' where v' )

2

&dt's

I 'dp12—
(
—

(
= 2n'(v' —sin' r p);2 ddt i

Fig. 22.
-1.0

putting p = zq and i/v' = k, we have

&dy& ' n2= —(i —k' sin' y)
&dt &

k'
or

n= —dt
k

e ~ dq

o +I —k2 Sin2 y
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For t = o and T, let q = o and x respectively, we have

or

'8 '

—T =
0 &x —k2 sin' q

n/2 dp = 2X(k);
0 4 l —k Sin

Now

2k
T = —K(k).

n

COS p = 2 COS gp —I = 2Cn2 —
&

(2k/n)Jt(k)I = — Icos p dt = —
( 2Cn

k
t —r i

dt
0

If we put x = (n/k)t, dx = (n/k)dh
If t = o, then x = o; if t = (2k/n)X(k), then x = 2X(k)

I 2X(k)

2Ejk)

(2''x —z)dx

I 2
/2

2X(k) k'
—[Z(am 2E'(k) k) —k' 2X(k)] —2X(k)

Z(am 2K(k) k& / k"
k'Z(k) «-k + '/

where k' is the modulus complementary to k; but

nm 2E'(k) = x

I 2Z(k) i k"
I k' X(k) &

k'

Since k = r/v' and v may take any value from r to ~, k' can vary from
I to o. It is evident that so long as the angular velocity of the molecules
at P = o is not infinitely large, this velocity is not uniform, so that I
does not theoretically vanish unless v2 = ~. This result is also evident
from the above relation.

In the following table, the values of I /I corresponding to the different
values of k are given:
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1.000
0.985
0.940
0.866
0.776

1.000
1.030
1.130
1.1335
1.690

—1.000
—0.385
—0.252
—0.168
—0.122

0.643
0.500
0.342
0.174
0 000

2.410
4.000
8.550

33.450

—0.090
—0.030
—0.027
—0.020
—0.000.

Fig. 23

' P. Langevin, Ann. de chem. et phys. (8), 5, (xgos), 7o.
2 K. Honda, Sci. Rep. , 3 (xgx4), x7x.

The relation between I /I and v' is also shown in the following figure.
As P or v' increases from o, the magnetization diminishes at first slowly
and then somewhat rapidly; in passing through p0 =.

' ?3'', it vanishes
and changes its sign. With a further increase of p0 or v, the magnetiza-
tion increases negatively and at Po

——~, I /I becomes —t. Afterwards,
the magnetization rapidly decreases in absolute value, tending asymp-
totically to the value zero, as v' approaches to ~.

Now we find experimentally no evidence that the magnetization be-
comes negative at high temperatures, though the field is very strong.
What is then the cause of the discrep-
ancy between the theory and the experi- 10
ments? The cause is obviously to be

0.5-.
sought for the fact that in the above

0.5 1.0 1.5 2.0 2.5 3.0
theory, we have assumed no transfor- - y1

mation either in the molecules or in their
mutual configuration. It is certainly
true that the above effect plays a part
in changing the magnetization at high

temperatures. Probably in a value of the amplitude Po, which is far
less han 13'', a gradual A2 transformation will begin to proceed in the
substance, and consequently the substance is changed into the para-
magnetic state as conceived by P. Langevin. '

A few years ago, one of the present writers published a theory of
magnetism, ' which is based on the Langevin theory of paramagnetic

gases; the theory connects the fenomagnetic and paramagnetic sub-

stances and coincides with the Ewing theory for the former substance.
It may be summarized in the following words: The form of the molecules

of a ferromagnetic sybstance is nearly spherical and consequently the
effect of thermal impacts in rotating the molecules is very small in

comparison with the mutual action; while in the case of paramagnetic
substance, the molecules have an elongated or flattened form, so that
here the effect of mutual action is very small compared with the rotating
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effect of thermal impact. The transformation of a ferromagnetic sub-
stance to a paramagnetic at high temperatures is by this theory explained
as a consequence of the gradual deformation of the spherical molecules

with the rise of temperature. The heat, evolved or absorbed during this
transformation is considered to be the energy of transformation and that
imparted to the molecules to cause their rotational vibrations.

The above theory accords with the result of the present investigation.
On the other hand, the simple theory of the revolution of molecules is
not solely sufficient to account for the disappearance of magnetism at
high temperatures.

Next we shall consider the effect of temperature on magnetization in

the light of our theory of molecular magnetism. In weak fields, the
temperature affects the magnetization in two opposite ways; that is,
the first effect, which exists in all fields, is to diminish the magnetization
on account of the rotational vibrations of the molecules, and the second,
which is noticeable only in weak fields, is to increase the magnetization

by virtue of the abrupt turning of the molecules towards the field due to
heat motion. The observed change of magnetization at high tempera-
tures is the sum of these two effects. We shall 6rstly consider the 6rst
effect from the standpoint of our theory of magnetism.

If the thermal agitation be zero, molecular magnets in each complex
will take a common direction determined by the external and internal
fields. Suppose this direction to make an angle 00 with the 6eld. In
virtue of the thermal energy, they will in an actual case execute transla-
tional and rotational vibrations about their mean positions. The ampli-
tude of their rotational vibrations will actually differ from one magnet to
another; but as the 6rst approximation, we may consider their mean
value to be P0. Since, in each complex, the molecules exert their mutual
action on each other, the rotational vibration of molecules with the same
phase takes place more easily than in the case of those with arbitrary
phases. Hence in a stationary state, we may, as the 6rst approximation,
suppose that all the magnets in each elementary complex oscillate with a
common phase, but that the phase of the oscillation differs from one
complex to another.

Consider at 6rst the case, where the external field is very small as
compared with the internal; neglecting the couple due to the former
field, the equation of motion becomes

d'p
X—,= —2Ar sin 4(00 + P). (6)

As 00 is very small in weak fields, we may neglect it in comparison with
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p. Hence, putting n' = (2Ar/K), we get

J2p—= —n' sin 4p.dt'

Now, let sin 2p = sin 2pq sin y = k sin y, and change the variable from

p to y, we get, after integration,

nt = = F(q, k).
~ 0 &I —k' sin' y

Letfort=o, p=o .'. p=o; fort=I/4, p=po
Hence

p = n/2.

ol
4K(k)

Now
siny=sn nt,

sin 2p = sin 2p0 sin p = k dn nt;

cos 2p = dn nt.

Hence the mean effect of a molecule making initially an angle n with the
6eld in the direction of the latter will be given by

I
M = — M cos (u —p)dh

0

3IIn T T

cos n cos Pdh + sin n sin Pdt
4K k 0 0

where 3f and 3f are the magnetic moment of a molecule as affected by
the thermal motion and that at absolute zero respectively. But,

+ cos zp ~t + dn nt
cosp =g

I& —cos 2p )t —dn nt
sinp =+

Since dn nt is an even function and its period 2X, we have, putting
x=nt

M cos a
3SI &I + dna dx

&2K(x) o

01
IrI &~ K(G(k/(t + k')))

3II cosa Ht ~ k' K(k)



736 KDTARO IIONDA AND JUNZ6 OXUBO. t
SECOND
SERIES.

3f cos a is the magnetic moment in the direction of the field. Thus the
ratio 3II /3II cos n for each molecule is a constant depending on Pp.

Hence if I and I represent the intensities of magnetization with and
without the thermal motions respectively, we have

I &x + O' X(k/(x + k'))
I v'2 E(k)

The ratio gradually
it becomes i/&2 =

ImJs—
1.0.

0.5-

0' 10' 20' 30' 40' 60

Fig. 24.

decreases with the increase of Po or of k; for Po = s./4,
0.707 I . If p, increases beyond s'/4, the vibration

changes into a revolution and the mean effect of
magnetization vanishes; because in the present
case, the external field is neglected and the mo-

tion governed by the internal resisting force A.

sin 4H with a period of s-/4.

In the following table and in Fig. 24, the values
of the ratio for different values of Po are given to

0

show how the magnetization diminishes with in-

creasing P0.

Po.

00
50

10'

1.000
0.992
0.985

Po.

15'
20'
25'

0.966
0.955
0.938

Po

30'
35'
40'

0.920
0.895
0.861

Po.

45' 0.707

Thus the ratio gradually diminishes with increasing Po up to Po = s/4,
where it suddenly vanishes. As we have already remarked, the diminu-

tion of magnetization with the increase of P would also be accelerated by
the A2 transformation, so that the fall of the curve with increasing P
must actually take place at a smaller value of P than s./4.

We shall next consider the second effect of temperature, which in-

creases the magnetization in weak fields. If the thermal motion be
absent, that is, at the absolute zero, the orientation of the equilibrium
of a complex, whose magnetic axis making initially an angle n with the
direction of the field, is given by

k sin (n —Hp) = sin 4HoI

hence if h be given, the relation between o. and 00 can easily be found by
the graphical method. If for a complex (n), Ha+ Po ) s/4, then the
complex will oscillate about its mean orientation 00., on the other hand,
if Ho + Po ) s./4, the complex will undergo an abrupt turning and take a
position, as if the initial orientation were n —(s/2), causing thereby an
increase of magnetization. Hence, even in weak fields, where at absolute
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zero, there is no complex which abruptly turns in the direction of the
field, the complexes will more and more begin to make an abrupt turning
with the rise of temperature.

If there is no thermal motion, the reduced intensity of magnetization
is given by

8

cos (a —9,)dn,
7l 0

where a and Oo are connected with each other by the foregoing relation.
This relation for h = o.5 is shown

graphically in Fig. 25. If p0 be given,
we can find from the above figure

the limits or the range of a, for which
.=C

the complexes make an abrupt turn-

ing toward the direction of field. Fig. 25.

Let n& and u2 be such limits, then i is given by

I +I ag—(n /'p) rr

z = cos A —0 do!+ cos A —0 dA+ cos c1 —0 d~
0 +1—(~/2) &2

It may also occur that some complexes, whose direction of magnetic
axis lies between n~ and a2, make the abrupt rotations twice or thrice;
in such cases, we must take for the limits nr —s and n2 —s or u~ —(3(2)m
e

and n2 —(3s.j2), etc. In this way, under a given 6eld, the value of i
corresponding to different values of p0 can be calculated. If we multiply

these values of i by the ratio

1„&2 X(k((i + k'))
&(k)

0 10' 80' 80 40

F 25. ig.

which represents the mean effect of rotatory vibrations, the resultant

intensity of magnetization will be those as affected by temperature.

Fig. z6 shows the result of our calculation for
ii

0.8-. h=o.g; the ordinate represents the magnetization
0.0- in question and the abscissa the angle po. The
0.4- temperature is obviously some function of p0 in-

0.2. - creasing with it. If we consider p = ~/4 to cor-

respond to the critical point, the course of the
curve is quite similar to that obtained by J. Hop-
kinson for a very weak'field.

If h gets greater, the increased number of complexes turns abruptly
towards the field, even if there is no thermal motion; and consequently

the increase of magnetization due to the thermal vibration becomes

always less. In a sufficiently strong field, where all the complexes
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have finished their possible abrupt turning, the effect of temperature
in increasing magnetization must vanish, and there exists only the effect
of diminishing magnetization due to rotational vibrations. Thus the
effect of temperature on magnetization is explained by our theory, at
least qualitatively.

In the above calculation, the A2 transformation was not taken into
account. This transformation obviously af'fects in reducing the magne-
tization at high temperatures.

The theory so far explained strongly confirms the general view that
the magnetic phenomena are really due to the rotation of the molecuies

about their own centers. This fact has an important bearing to the molec-
ular structure of ferromagnetic crystals, the discussion of which will be
given in a next paper to be published shortly.

f 8. MOLECULAR FIELD INTRODUCED BY PROF. P. WEISS.

Lastly the molecular field introduced by Prof. P. Weiss' will be con-
sidered in the light of the present investigations. According to him,
it is a uniform field acting on each molecule of a ferromagnetic substance,
its magnitude being assumed to be proportional to the intensity of
magnetization and having an enormous value amounting to several ten
millions of gauss. This molecular field was introduced by Weiss to
extend Langevin's theory of paramagnetism to the ferromagnetic sub-
stances; one of the present writers' has however shown that the same
extension can be made quite naturally by considering the molecules of
the ferromagnetic substances to be nearly spherical in form. The intro-
duction of the molecular field into the theory of magnetism meets with
great difficulties; namely his theory cannot explain very fundamental
and important facts in the theory of magnetism, such as the curve of
magnetization and hysteresis phenomenon.

The evidence, which Weiss sets forth as proof of his theory, is:
(i) The explanation of the magnetic properties of magnetite and

pyrrhotine by means of the demagnetizing field.

(ii) The existence of the corresponding magnetic states in ferromag-
netic substances.

(iii) The applicability of the relation

x(T —0) = const,

where x is the specific susceptibility at a temperature T higher than the
critical temperature 0.

Conferrence a la Soc. francai. de Phys. , April 4 (I9o7). Arch. des Sci., No. S, 3I (I9II),
40I ~

' K. Honda, Sci. Rep. , 3 (I9I4), I7I.
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(iv) The change of specific heat in the critical range of iron, nickel

and magnetite.
In explaining the magnetic properties of crystals, P. Weiss was led to

assume a uniform demagnetizing field of considerable magnitude. In
addition, with some improbable assumptions, he explained the com-

plicated magnetic properties of crystals; but we have shown in a paper, '
that these properties can be very simply explained without assuming

any demagnetizing field. ' Hence (i) can not be considered to support
his theory.

Secondly he obtained from his theory the relations:

3 I I
and —= coth a ——,

0 a Ip Ip 0

where T and 0 have the same meaning as before and a is a quantity
depending on the nature of the substance. If we eliminate u from these

equations, we obtain a relation giving a dependence of I/Io on I/O; this
relation is independent of the nature of the substance and therefore

called the relations for the correspondkng states This co.nsequence affords

a means of verifying his theory. Weiss showed that this relation holds

good in high temperatures for magnetite and ferronickel, but in low

temperature the deviation between the theory and the result of the ex-

periment is considerably great. He also remarked that for iron and

nickel the agreement is only qualitative.
We have also examined the above relation for iron, nickel and nickel

steels of differerit compositions. For this purpose, it is necessary to
find the saturation value of magnetization at the absolute zero from the

observed values at low temperatures. We have here two methods:

Firstly, if we assume the above relations to hold good at least from the

observed lowest temperature to the absolute zero, we can find the value

of Ip from the known values of I, T and 0. Secondly, we may also find

Ip by extrapolation from I, T curve actually observed. These two

methods do not give the same result. We found therefore two values

of I, and calculated two sets of values of I/I, and T/0 for each specimen.

In our calculation, we availed ourselves of the results of experiments

made by Mr. S. Shimizu and one of the present writers' for Swedish

iron, nickel and nickel steels of 3o, g6, 48, 5o and 6o per cent. of nickeI.

The experiment was made at different temperatures ranging from liquid

air temperature to those above their critical points, and under constant

fields up to goo gauss. For these specimens, the magnetization at liquid

' Sci. Rep. , S (x9z6), xS3.
2 Jour. Coll. Sci., ao, Art. 6 (I904).
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air temperature nearly attained its saturation value in the highest 6eld
just referred to. The results are graphically shown in Figs. 27, 28, 29, 30.
The broken curve in each 6gure represents the theoretical one, while

other curves are the observed results. From these figures, we conclude
that the relation for the corresponding state is here only qualitatively
satisfied. Hence we can not regard the above relation as a con6rmation
of Weiss's theory.

Thirdly, Weiss obtained from his theory a relation

xc'T —0) = const.

One' of the present writers made however a thorough investigation of
this subject, and showed that ihe relation is approximately true for iron,

L
Ip

I
Ip

Fig. 27. Fig. 28.

nickel and cobalt and fails to be applicable in the case of magnetite.
He also showed that this relation can be obtained as a special case from
his theory, which does not take any account of the molecular field.

I
Ip

I
Ip

Fig. 29. Fig. 30.

Hence as evidence for the existence of the molecular 6eld, the above
relation has a little importance.

Lastly the change of speci6c heat at critical range of ferromagnetic
substances will be considered. It was shown by P. Weiss and P. N.

1 K. Honda, Sci. Rep. , 3, 1. c.; Sci. Rep. , 4 (zgzs), 248.
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Beck' that the specific heat of iron, nickel and magnetite considerably
increases in the critical range. As however these metals evolve heat
by cooling through the critical range, what they measured is not properly
termed the change of specific heat by temperature, but the quantity of
heat evolved during the transformation' as measured calorimetrically.
This heat evolution was early measured by Pionchon, 3 Standfield, 4 and
recently by Meuten. ' gneiss explained the heat evolved or absorbed
during the transformation as due to magnetic energy. Thus he calcu-
lated on one hand the change of magnetic energy per degree at different
high temperatures, using Curie's result on the magnetic measurement
at high temperatures, and on the other hand, in cooperation with P. N.
Beck, he measured calorimetrically the heat evolution at high tempera-
tures up to the critical point. In this way, the change of magnetic
energy Bc per degree and that of the specific heat bc were compared
with each other for iron, nickel and magnetite; the results of his calcula-
tion are given in the following table:

Substance. aC.

Fe. . . . . . . . . . . . . . . 753' C.
Ni. . . . . . . . . . . . . . . 376'
Fe304. . . . . . . . . . . . 588'

3,840
12,700
33,200

1,700
500
430

0.112
0.027
0.050

0.136
0.025
0.048

The agreement between bc and bc is apparently as good as we can
desire. But it should be remarked that the thermomagnetic properties
of the ferromagnetic substances, and therefore the values of N, vary for
different specimens of the same metal, as the following table shows:

Fe. . . .
Ni. . . .
Feg04 . .

Substance. ZV {Curie).

3,840
12,700
33,200

ZV {Honda, Takagi).

5,910'
10,730'
37,200—10,600

For magnetite, the quantity x(T —0) is far from being constant, ' so
that N varies considerably with temperature. If we use the values of

.' Jour. de Physique, 7 (xgo8), 249.
2 K. Honda, Sci. Rep. , 4 (xgxS), x69.
~ Ann. Chim. Phys. , 6th series, II. (I887), 33.
'Ferrum, x (I9I2), I.
5 Jour. Iron and Steel Inst. , No. 2 (x8gg), I6g.

coefficient of molecular field. The change of magnetic energy per degree =
I d dI——(NI2) = NI —.
2 dt dt

~ Sci. Rep. , 4 (xgxS), 26I.
8 Sci. Rep. , I (IgI2), 229.
9 Curie, Oeuvres (xgo8), 322; H. Takagi, .Sci. Rep. , 2 (r9I3), II7; P. Weiss and G, Foex,

Arch. des Sci., 3r (xgxx), 89.
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X given in the above table for the calculation of 8c, the deviation
between the theory and the experiment becomes considerable. In the
calculation of Weiss, the data for magnetic and calorimetric measure-

ments belong to different specimens, and therefore the coincidence in his

case may be accidental. It is, however, a remarkable fact that the two
quantities bc and bc, which are obtained 'from the quantities of quite a
different nature, coincide with each other at least in the order of magni-

tude, and therefore this instance may be regarded as the most favorable
case put forward by Weiss. But the heat evolution or absorption in
the critical range can also be explained by another theory, as was actually
done by one of the present writers, and again, as shown in the present
theory, the principal features of magnetic phenomena, that is, the
magnetization curve, the hysteresis phenomena, and the temperature
effect on magnetization are satisfactorily explained without assuming
gneiss's molecular field; hence the necessity for assuming the molecular
field will not only disappear, but the difficulties involved in assuming it
remain undiminished as before. Hence, it seems to us that the existence
of the molecular field put forward by Weiss is not consistent with the
observed facts.

SENDAI, JAPAN,

IgI7.


