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KINETIC THEORY OF RIGID MOLECULES.

3Y YOSHIO ISHIDA.

INTRODUCTION.

T was shown by Boltzmann' that the behavior of a monatomic gas
may be studied by means of the partial differential equation

Bf ef Bf ef Bf Bf Bf—+ ( —+~ —+g--+x —+ ~—+ ~—= J
Bt Bx By Bs B$ Bg Bf

when the gas is an ensemble of the same kind of monatomic molecules.
The f is the number of molecules per unit cell; the x, y, s; P, q, l; X, I, Z
are components of three dimensional space, velocity, and acceleration
respectively and the J is the rate of change due to encounters. The
obvious extension to any number of dimensions is

of 8(fx;)—+z — = J
Bt Bx;

where the x's are any coordinates to specify the system of the individual

molecule.
Now the deductions from this equation may be classified into two cate-

gories; namely, those which are independent of the form of J, and those
which depend upon the nature of J. The hydrodynamic equations can
be derived without knowledge of J, provided we admit the existence of
such a function. On the other hand the quantitative determinations
of the pressure, the viscosity, and the thermoconductivity can not be
effected, unless we know something about J.

Since the form of J depends upon what is assumed concerning the
nature and frequency of various types of encounters between the molecules

it is convenient to classify the coordinates into two groups, according as
they are or are not affected by encounters. Let us call the first, the

~ Boltzmann, Gas Theoric, Vol. I., f I6.
3o5
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affected coordinates, and the latter the immune coordinates. During
encounters, if there is a function of the affected coordinates such that the
sum of the function of the coordinates for one molecule and the same
function of the coordinates for the other molecule remains unchanged, we

shall call such a function an invariant of the encounter. Confining at-
tention to binary encounters, if we have k affected coordinates of one

molecule, then the question is to determine 2k variables after encounters
in terms of 2k variables before encounter. If there are r invariants in

this special sense in addition to the one purely numerical invariant, and
s other general relations (without arbitrary parameters), then the equa-
tions of encounter will involve 2k —(r + s) parameters. Let C; be
the invariants of encounters including 4 0 = I, then the equations

de~ fC;Jdo„= o; i = o r; will be valid and will give r + r funda-

mental equations of what may be called generalized hydrodynamics
corresponding to the space of the immune coordinates. The do-~ is an
element of the immune space and the da„ is that of the affected space.

To illustrate the notion, let us consider the case of a monatomic gas. '
The x, y, s are immune coordinates, and (, q, g are affected coordinates.
The number, the three components of translational momentum, and the
energy of the system are invariants of encounters, so that r = 4. For
the parameters of an encounter, we have the longitude and latitude of the
point of contact if we adopt the idea of an elastic sphere; the distance from
the asymptotic line and the orienting angle if we choose the conception
of central forces. Therefore s = o, and consequently there are no ad-
ditional relations entering into the consideration, and also there are no
more invariants. The conservation of the number gives

fJdo„= o (the numerical invariant).

where do.„=dPdgdP, which reduces to the equation of continuity

where p = f nzfdo~, and V(V„V„, V,) = W(t, g, l) —U(U„U„, li,).'
The V is the mass velocity and U is the velocity of agitation.

The conservation of translational momentum gives

fmWJdo„= o,
' Boltzmann, Gas Theoric, Vol. I. Maxwell, Collected Works, Vols. I. and II. Lorentz,

Collected Works, Vol. II. Kirchhoff, Theoretische Physik, Vol. IV. Hilbert, Math. Annalen,
Band 72, I9I2, p. S62.

2 In order to save space, Gibb's vector notation is used in this paper whenever it is con-
venient. The vectors are indicated by clarendon type.
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which, when combined with the equation of continuity, reduces to the

equation of motion in hydrodynamics,

BV
p

—+V gV +g A. —pg=o,
Bt

where A is the dyadic of stress and g is the vector of acceleration. Finally
the conservation of energy gives

W'
m —Jdo = o,

2

which reduces, when combined with two preceding, to

where h is the Aux vector of Fourier conduction of heat and e is the thermaI

energy per unit mass.
The present paper considers some features of the kinetic theory of

gases under the assumption that the molecules are rigid bodies, having
no spherical symmetry. The 6rst part will deal with the general

hydrodynamical relations. It is evident that we have to consider the
orientation and the angular velocity' of each individual molecule besides
its space coordinates and translational velocity. For invariants, we

have three additional equations stating the conservation of moment of
momentum. Then the space coordinates x, y, s and the angles q, P, 8'

are regarded as immune coordinates so that the general idea explained
above leads in the 6rst place to a kind of hydrodynamics of six dimensions.
The three angles of orientation are then integrated out so as to leave the
suitably modi6ed equations of ordinary hydrodynamics, together with
an additional vector equation corresponding to the conservation of
moment of momentum, which suggests the possibility of the propagation
of gyroscopic disturbances besides the sound waves. It will be shown

also in the second part that we can specify such binary encounters

by 6ve parameters. Consequently we have twelve variables, with seven

invariants and 6ve parameters of encounters, thus forming a complete

system in the sense that all the independent invariants have been utilized.
The investigations of the speci6c heat of gases' from the standpoint of

the equipartion of energy indicate that we can not treat gases like oxygen
or hydrogen as monatomic. Thus we have to consider the energy of
rotation, which is caused by asymmetry of shape and loading. The idea

Tisserand, Mec. Celeste, Vol. II. Poisson, Mec. , Vol. II. Appell, Mec. Rationelle,
Vol. III.

2 Kirchhoff, Theoretische Physik, Vol. IV., page x6g. Jeans, Dynamical Theory of Gases,

pages 8x and x7x. Raleigh, Theory of Sound, Vol. II., page x8.
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of considering gas molecules as rigid bodies was initiated by Maxwell, '

who computed the impulse if two such bodies were to collide, Later
various writers' carried out the work for some special cases. The second
part of this paper will deal with a collision axiom for a more general

type of rigid bodies, and some of its consequences. We shall discuss the
distribution of translational and angular velocities, especially the equi-
librium distribution and its relation to the 11-theorem. The distribution
function thus deduced will be utilized to compute the external pressures
of such gas molecules.

I. HVn ROD YNAMICS.

Let x, y, z; (, g, g be the translational space and velocity coordinates.
For orientational coordinates, we can use the Euler angles q, P, 0; and
angular velocities co&, &o2, cot (see Figs. r and 2). The system of moving

7/

.r V(&

.r
;0

E
~X,

Fig. 1. Fig. 2.

axes (x&, y&, s&) and fixed axes (x, y, s) are connected by the following
equations (if the translational motion is temporarily neglected).

X = F1 + 5Z$1 + RG1

L'X1 + m'P1 + 1Z'81

X1+ Sl $1+ S 81,

the nine direction cosines being expressed in terms of the Euler angles,
as indicated in the following schema

cos p cos f —s1n (p sin P cos 0,

m, n —cos q sin P —sin p cos P cos 0, sin 8 sin q

m', n' =~ sin icos/+ cos psinfcos 0,
7/~ Il /1 —sin p sin P + cos y cos P cos 8, —sin 8 cos q

sin P sin 0, cos P sin 0, cos 0
~ Maxwell: Collected Works, Vol. I., page 4O6.
2 Jeans, Dynamical Theory of Gases, p. 93. Burbury, Phil. Trans. , A CLXXXIII., p. 4o7,

I892. Burnside, Trans. R. S. E., XXXIII., part ii., I887. N. Delone, Report of Russian
Imp, University, x892.



Vor..X.
No. 4. KINETIC THEORY OF RIGID MOLECULES. 3o9

Then the three components of the angular velocities may be expressed in

terms of the time derivatives' of the angles,

co; = j sin 8sing+Ocosg,
co2 = p sin 8 cos P —0 sin g,

M3 = pcose +4
The auxiliary formula for the change of direction cosines may be obtained
directly, thus

7/ I / If II /I1B(03 ÃG02, l = 5$ G)3 1Z Goy l = tPS M3 —0 F02,

1S = 'Scop lR3) ri~ = n'cog — l ~3, m" = n 'a)g — l"co3,
'/ I / ' ff /I

n = lor2 —mcus, n' = l'o)2 —m'cog, e" = 3"a)2 —m"cog,

If the moving axes are chosen as the principal axes of the body, the dyadic
of inertia is

r = AA+ Bqj+ Ckk,

where A, B, C are the principal moments of inertia, and i, j, k are unit
vectors along the moving axes.

Then the differential equations of the motion of a molecule are

and

@=$,
(=X,

s=|,

sin P cos P
GO] + . C02)

sin 0 sin 0

~3 —cot 1)(sin Par~ + cos go&2),

g = cos /co& —sin /~2,

A&op ——(8 —C) cu2(u3 + I.,
Scag ——(C —A) cog~3 + 3E,

C(ug ——(A —8)caged + K,

where X, V, Z are the components of the impressed force, and I., M, N
are the components of the impressed couple. The 6rst specify the motion
of the center of gravity, and the second specify the rotation of the body
referred to the principal axes.

If f is the number of molecules per unit cell in the twelve dimensional

region, and J is the rate of the change of this number of molecules due to
encounters the Boltzmann equation may be written

~f ~(f~) ~ ~(fE) ~ ~(f~) + ~(f )'J-at+- 8
+z

a~
+z 8, +z

8
' The molecular time derivative is designated by placing a dot above the character, where-

as the molar time derivative is designated by the ordinary form d/dt, 8/8I.
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Let us put for brevity

d~ = dxdyds, d7.' = dydee,
dg = dgqdg, do = dcoqdu2dco3.

The range of the variables will be

O O Q —0O —0O —00

+ 0O + 0O + OO 2 ~ Q 7P 7P + 00 + 00 + 00

First let us deduce hydrodynamical relations in six dimensions. The
conservation of the number gives

J' Jd.d' = o.

Now define the density by the equation

so that
8p*

tps —dodo' ,
'

Bt 8t

and also introduce the notation W = U + V, where W is the velocity
vector of the center of gravity of the molecule in question, its components
being (, g, g; V is the vector of mass velocity, and U the vector of agi-

tation velocity. It follows that fmUfdod(r' = o. Then we have

fV Jd0'do = —+

Further let us specify the nature of the external forces and torques,
and the distribution function f in the following manner:
(t) Suppose X, Y, Z are independent of the velocities.

(2) Suppose I., M, P are independent of the angular velocities.

(3) Assume f to be such a function with respect to $'s and (0's, that the
surface integrals become zero as the surfaces extend to infinity.

Then the third and the fifth terms reduce to zero. Let us now write the
fourth term as follows

mZ dodo' = 7 (p*N—*)—~(f~)

where

8 0'I

Bp 8$ 80&
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and

p*N* = Zfmf pdo do '

Also N* is expressible as a linear combination of M*, where M* is the
vector of moment of momentum in the 6xed space,

M, * = (1l"A + mm"8 + nn" C)Xr* + nCXa* + cos qrXa*,

M, * = (I'I,"A + m' m8 + n'n" C) N, a + n'CcV2o + sin a fV3*, ',

Ma* ——(f"A + m" 8 + n'"C)iVg*+ n"CJVa*+ o.

The symbol p& may be called angular divergence following the analogy
of ordinary space. So 6nally we have

+ V (p*V) + Va (p*N"') = o,

which is the equation of continuity in six dimensions.

The conservation of translational momentum, namely fmWJdado. '

may now be considered. If we de6ne the dyadic of stress by

f mUUfdoda' = A*,

we shall have

fmWW Vfdada' = V I p*VV + A*I.

Also we have

8
mW —dada. ' = —(p*V),

Bt Bt

where

mg ' Vpfdada = 0

fmWg V fdoda' = —p*g*

8
gp =~ —+'—+k-

a( ' ag a|.

With this notation we have

~(p*V)
mWJdo. do' =

Bt
+ & (P*VV + ~*) —p*g*+ V (p*N*)V = o

Finally

dV
p

8 + V g 0
p

ag 8 + VV (p
4NNjf 8) o

dt

The conservation of energy may be treated in a similar manner.
The energy of translation for the molecule in question is

Z = -'m(P + vP + la)
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and for the rotational energy we have

K = —,'(A ~,' y 8~22 y C oo)

so that the conservation of the total energy gives

f (8 + K)Jdodo' = o.

Let us adopt the notation

o fmU'fdodo'' = p*eg*,

where e&* is the thermal energy per unit mass due to the translational

velocity,

fKfdada' = p*e„*

where e„*is the thermal energy per unit mass due to the angular velocity;

-', J mU'Ufdoda' = h. *,

where h* is thermal current density corresponding to the Fourier con-

duction of heat;

f (-', mU'+ K)Zj fdodo'= S*, .

where 8* is the energy Aux carried by the angular velocity;

J f(cogL, + cooM + cu3X)dado' = q,
where g* is the work done by the impressed torque. We further have the

following reductions:

1f ~W2fdado ~ = ~ poV& + poe(@

-' J mW'Wfdado' = V(-,' p*V' + p*e(*) + V h* + h*.

With these auxiliary formula we obtain the energy equation

( poV2+ pwe8) +V . I( poV2+ poco)V+V . g8 yh8}

+ V ppoV2N + S4I V (phago) g8 0

which reduces to
Be~

p* + pV Ve +V (A* V)+V (V &)+V h*
8$

g8 + V . {lpoV2NW + Sol p

The conservation of angular momentum gives the equations

f Z/Ace&Jdo. da' = 0,
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f Zl A (dg Jdodo='0,

f ZP'AoogJdodo' = 0.

Let us work out ihe 6rst component. We have

8f, B(p*Mg*)
Bt Bt

Z/Ace —d d

f ZlAcoiV (fW)dodo' = V (p*VMi*),

f ZlA QllV p
' (fg)d0d0='O'.

If we write

ffyZ1A(u, dodo'= IIg.*,

where II~* is expressible as a linear combination of three components of
the rotational energy, we have

Z/Ao)gZ —dodo' + ZlA o)gZ — dodo'~(fo) ~(f~i)
Bp BQ)y

II, —f f(lA cog + mB&v2 + n Cora)dodo''

.The integral reduces further on account of the Euler equations and the

equations of the change of the direction cosines, to

—J f(/L + mM+ nN)dodo' = —.Gg*.

By symmetry we obtain the second and third components, so that we

have
8(p*M*)

Bt
+ P (poVM*) + q (II*) —6* = o.

Thus we have deduced a complete set of a kind of hydrodynamic equa-

tions for six dimensions,

We can, however, further integrate out the angles of orientation and

obtain the resulting system of equations in three dimensions. Since the

frame of reference for the Euler angles is arbitrary, the condition that

f is a continuous function of q, P, and 0 implies

sin 0
o.

The space of integration do.„ is now dr'dodo' instead of dodo', and we

have to redehne our notations in the following fashion,

p floyd'=d. d", et:c.

It will be seen that, by carrying out the integrations, we have,
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for the conservation of number,

Bp—+V (pV) =o.
Bt

for the conservation of translational momentum,

~(pV)
Bt

— + & (pVV+ -&) —pg = o'

for the conservation of energy,

8—(-', pV'+ pe) + V t(-', pV'+ pe)V+ V 4+ h} —g = o;

for the conservation of moment of momentum,

B(pM)
Bt

—+ V (pVM) —6 = o.

We notice at once that these equations are exactly the same as the

preceding set provided we assume the angular divergences g& to be zero.
We can further simplify the result if we use the Lagrangian time deri-
vatives' instead of the Eulerian time derivatives. Thus

dp

dt
—+pg V=o,

dV
p +g A. —pg=o,

dt

de
p
—+V h+V (h V)+V (V h) —g=o,
dt

dM
p —6 = o.

dt

The first two equations are the same as for the monatomic gas. But
the third equation coritains the rotational energy as well as the trans-
lational, and there is also a contribution of energy due to the work done

by the impressed couple. The last equation is the new statement, which
suggests that a gas consisting of nonspherical rigid molecules could pro-
pagate a kind of gyroscopic disturbance along with compressional waves
of the familiar type.

II. CoLLrsroN AxIQM AND THE DIsTRIBUTIQN oP VELocITIEs.

In the preceding discussion we de6ned f as the number of molecules
per unit cell. This function f will then depend upon thirteen variables
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including the time, and our problem is to 6nd these relations. This
function f we shall call the distribution function, and assume to be a
continuous function with respect to all these variables. Let us call

p = fmfdr'dodo' the mass density. The molecular density (say v)

may be absorbed in f, so that we can keep the uniformity of notation.
At a given time we can classify all molecules according to twelve proper-
ties; then the number of molecules in one of the twelve dimensional cells
»S

fdrdr dodo'' .

We shall now consider the impact of two molecules which behave like
rigid bodies. Let O» and 02 be the two cen-
ters of gravity, I' the point of impact, and

R~PRq the line of impact (normal to the r Q

common tangent plane at I') (see Fig. 3). T'

Let the position of I' with respect to the
principal axes through 01 be r», and the same
with respect to those through 02 be r2. Let a
unit vector along the line of impact with re-

spect to Ol system be a», and the same with Fig. 3.
respect to 02 system be a2. Take for the
moments of inertia along the principal axes in these two sets A», 8»,
C», A2, 82, C2 using dyadic notation, then

~» = ~»~»»+ &»j»j»+ C»&A»,

~2 ~2~2~2 + +2j2j2 + C2~2~2 ~

Take for the mass of the 6rst body m», and the second m2. Let further

the translational and the angular velocities of the two bodies before and

after impact be

W», W2, 0», O2 and W», W2, ~», ~2,

respectively. If we take E. for the measure of the impulse due to the

impact, we have the following relations;
for the conservation of translational momentum,

m»W» m»W» + ~»+

m2W2 ——m2W2 —a R;

for the conservation of moment of momentum,

Qg + (rg X ag)R,

p & = p. &2 —(r2Xa, )R;
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for the conservation of energy,

ml — m2-—Wl'+ —W '+ -'~i Fl ~l + -'~2
2 2

ml m2= —W + —W;+-a, . F, . n, ~ a, . F, . O, .
2 ' 2 2 2 2 ~

From this last equation we can obtain R in terms of the r's and a' s, sub-
stituting the values of the variables before impact for those after impact.
Thus

a1 W, —a2 W. + (r1 X a1) &, —(r., X a)R= —2
I I—+ —+ [(r X a,) . & (r, X a,)] + [(r, X a,) P2-'(r2 X a2)]

ml m2

If moreover the two molecules are of the same kind, ml = m2 equal to
m say, and Fl = F2 = F, then

a1 ' (Wl + ~1 X r1) —a2 ' (W2 + ~2 X r2)R= —2m
r + 222[(rl X al) & (rl X al) + (r2 X a2) p (r2 X a2)t'

If we call the direction of the impulse the normal direction (normal to
the surfaces), the normal component of the relative velocity of the point
of impact will be given by

Wn = al ' (Wl rl X Ill) a2 ' (W2 r2 X II2) ~

We are now ready to consider the probability of impact of two such
molecules. Let us fix our attention only on these two molecules
which are going to collide. They will have rotation as well as motion
of the center of gravity, and it is necessary for us to observe not
only the motion of the centers of gravity but also the behavior of
the two points which are going to collide. Let the point of impact
of the first body be I' and that of the second body be Z'. Then if
we imagine the first body at rest, I" will describe a curved path
before it impinges on I', with such a relative velocity that its normal

component may be represented by W .
F,=o Z z Such a path may be found from the

differential equations of the motion if we
know X, I, Z and L, M, X.

As a natural extension of the ordinary
supposition in the case of rigid spheres,
we shall assume that the probability isFlg. 4e

proportional to the volume of a cylinder
whose base is the element of surface ds at I' and whose slant height is the
relative velocity of the points of impact.

What we are required to find is, a pair of translational velocities and
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a pair of angular velocities after impact in terms of those before impact
and the parameters which specify the particular type of impact. One
formulation is to take two parameters to specify the point of tangency
on the first body and to take the remaining three to specify the orien-
tation of the second body with respect to the first body (see Fig @).
Let F~(r~) = o and F2(r2) = o be the two surfaces; then the condition of
tangency will give

Bpi & BF2 BF2 Bpg
l2 + ——m2+ n2

By2

Bp~ (BF2 Bp2 Bp2= x I t, '—y ~,' y ——n, '
~,

i BX2 By2 BS2

cia t& BF2 „BF2 „BF2
t,"+—m,"+-—n," (,

& Bx2 By.„Bs2
where

t(OF F
(

F
+ LBx& ~ I By& I Bz& lX=~ i, ~, . ~, ,iI

I BX2 L By2) LBS2 &

If the normal is taken in the sense of pp, the negative sign is taken.
Now the set of the direction cosines E2, m2, n2, etc. , may be given by three
orienti'ng angles say C, 0', 8. Then two parameters on the first body,
say the longitude and the latitude, will determine BF~/Bxr, BF//By~,

BF~/Bs~, and consequently BF,/Bx, BF,/By„BF,/Bs2 and r, may be obtained
as functions of these five parameters. Let us designate the element of
parametric space (with a proper proportionality factor )by dp; then the
probability of impact is ~W„~dpdod0'. Following the usual method' let us
conceive two classes of molecules say A and B which are both distributed
in the element d7dv' of space at random. We may suppose the transla-
tional velocities and moments of momentum to be uniform so that changes
occur only at a collision. Let us classify the encounters into tmo types
cz and P, where u designates such encounters that before the collision one
of the colliding molecules belongs to the class A and the other to the class

8, whereas p designates such encounters that after the collision one of
the colliding molecules belongs to the class A and the other to the class

8, both types having the same line of impact (the common normal) and

the same orientations. The number of collisions of a type in unit time

per unit cell of 7 and v-' space will be

' For instance see Jean's "The Dynamical Theory of Gases, " Chap. II ~
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where doqdoq' refer to the class A and do2doq' to the class 8; and f and
f' are the distribution functions with arguments having subscripts 1 and

2 respectively. Then the total contribution to the class A due to this a
type will be given by integrating the above expression over all possible

0& and 0-2', namely

do~do, 'Jfff lW ldp«~«&

The number of collisions of type P in unit time per unit cell of v and v'

space will be

ff ~W„jdpdogda2dog'da2',

where the dashes above the characters express the corresponding functions
for the type P, and the total contribution for the class A. due to this P

type will be, then,

do&do&'J Jff'~W„jdpdogdo2'

In this theory we assume central symmetry so that dp = dp. Therefore
the number of molecules in the class A is increased by the difference of
the two integral expressions above. The difference may be written in

the form

do&do, 'JJ (ff' —ff') ~W„jdpdo, do, '

This invol~es the fact that the Jacobian' of the transformation is equal
to unity and (W„( = (W„(.'

This is the expression for J from this point of view. Thus we for-
mulate the Boltzmann equation as follows:df, , ~f ~(fz) ~(f5) ~(f~) ~(f~i)—da-idoz' ——do-&d~x' —-+ z — + Z — + ~ — + Z—
dt Bt Bx 8$ Bp BM

= «i«i' f(ff' ff')l~.—ldo2«'dp

Let us define

S = —kjf log f do,do-i',

where S = —kH, II being Boltzmann's probability function. V/e

obtain in the familiar way

dS
('og ff' —log ff')(ff' —ff')I~ l«Ao.«i'«'dp,

dt

showing that dS/dt is always positive or zero, and S is an increasing
function or else constant. For the steady state S is a maximum and
therefore dS/dt = o, so that we have ff' —ff' = o. This functional

' It may be computed easily from the equation of the transformation to be —I, but since
we are concerned only with the numerical value the positive sign is taken.

' See Maxwell, Collected Works, Vol. I., p. 4o7.
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equation is equivalent to

log f + log f' = log f + log f',

which is the form of an invariant of the encounters. Therefore

log f = an invariant,

is a solution, and the complete solution is a linear combination of all

invariants. Thus

log f = nile + n2(mV'+ & ~ 1' &) + b V+ c I'

where a&, u2', b and c are arbitrary constants. Taking the logarithm and

rearranging the expression, we have for the distribution function

and the constants' @,o, , Vo, ~0 are to be determined by the total number,
the temperature and the visible motions of translation and rotation.

EXTERNAL PRESSURE FOR STATE OF EQUILIBRIUM.

We have already found an expression for the impulse, when two rigid
bodies impinge on each other. In case of the external pressure, we can
simplify the expression, for we can take the plane of the wall as the x-y
plane and the axis of s as the direction of the impulse, Thus

a. (W+~ Xr)
E. .= —2'

x + m(r X a) ~ I' (r X a) '

where a has now for its three components /", m", n". It must be noticed
that all the vectors in the above expression are referred to the principal
axes of the body. The distribution of the
orientation being the same as the distribution
of the point of tangency o of the x-y plane,
we may take the probability of impact to be
the product of the normal component of the
velocity of the point of contact and the prob-
ability of distribution of the s-axis with re-
spect to the center of gravity (see Fig. 5).
This latter is given by x/4ir sin 8 d8dp, where

p is the longitude and 8 is the latitude of s
on the unit sphere referred to the principal axes. From the geometry
of figure we can identify this 8 with the previous 8 and Ii with P + ir/=.

~ These constants may involve x, y, z; P, q, 8; t.
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Therefore the probability of impact is

I
iW„~ —sin 8d8dg.

Taking the half of this probability because of the assumed central sym-

metry, we get for the pressure on the x-y plane

I &2r m

fR&W„~&d1rd11' sin 8d8dg.
8T & &r p p

where

W = l ($ + &02Zl %3/1)2 + 2&3 ('g + 323X1 4&121)j

+ 23"(f + 12&yl —32.2:1)k,

and

(5+ 12221 '4&3/1) +2)3 (2)+323331 2&2121) +23 (f+ 32131 2&2+1)

($123 s 1)&2 ) (sly +123 ) (+1m /if )

in coordinate expression. Since

we have

1" = sin/sin 0, m" = cosPsin 0, m" =cos0,

BP—= 'Asingsin 0,
Bxy

BP BP—= ) cos }It sin 0, —= X cos 0,
882

and consequently if we know P, we can solve for x, y, s as functions of P
and 8. We found above the distribution function f, and since the o

and o' spaces are independent of the form of P and the orienting angles,
we can at once effect the do. and do.' integrations.

If we assume the mass motion and the visible rotation zero, the ex-

pression for f tuay be written

~Q (1/a&)[g~+rf~+ @+{1/m){As2y2+Bs)84+ C'cup)]e

where @may be determined by integrating this expression over the whole

space, namely

i)&r —~Qffffff s i&i~'&i33+3's'+ill~) (&~2+3&—~~a+ &~3')}de)df'd32&d~2d323

giving

Q =. r, &ABC
n'm-' m'

In the expression for the pressure, carrying out the integrations with

respect to do.do'

mX
p a2 S111 0 d0@',

o o
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and if n is independent of the angle

Putting

CYP=xm
2

CP—=kT,
2

giving Hoyle-Charles's law for this kind of gas.
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