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ON A GENERAL EXPANSION THEOREM FOR THE TRANSIENT
OSCILLATIONS OF A CONNECTED SYSTEM.

BY JQHN R. CARsoN.

N the usual solution of the problem of the transient oscillations of a
connected mechanical or electrical system in response to a suddenly

impressed set of forces, the determination of the characteristic modes of
oscillation (periodicities and dampings) is comparatively easy, since it
involves only the determination of the roots of a polynomial. As regards
the amplitudes of the transient oscillations the case is different. The
usual procedure is to designate the amplitude of each mode of oscillation
of each coordinate of the system by an undetermined constant, sub-
stitute in the equations which describe the system, and then determine
the unknown constants in accordance with the given initial configuration
of the sysem. This method of determination, while perfectly straight-
forward, is extremely laborious, and the difficulty increases rapidly with
the number of degrees of freedom of the system. When the initial con-
figuration is arbitrary no other method than that outlined above is known
to the writer; when, however, a set of forces is impressed on a system at
rest or in equilibrium configuration the amplitudes of the transient oscil-
lations admit of much simpler determination by the expansion theorem
developed in this paper.

So far as the writer is aware no one, with the exception of Heaviside,
has attacked the problem of a general formulation of the transient
osci11ation as regards their amplitudes as we11 as periodicities. Heaviside
in his Expansion Theorem' gave a very valuable formulation of the
transient oscillation of an electrical network. when the oscillations are
excited by the sudden application to the system of an electromotive force
which is not a function of time; that is a steady uniform electromotive
force.

' See Heaviside, Electromagnetic Theory, Vol., II., p. ?27.
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In the present paper the general solution of the problem considered by
Heaviside will be developed and an Expansion Theorem derived which

formulates the resultant (forced and transient oscillations) of a connected
dynamical system in response to an arbitrary driving force applied to
any coordinate of the system. The only limitation imposed on the form

of the driving force is that it shall be capable of expansion in a Fourier's
integral or else expressible as a complex exponential function of time,
a limitation which constitutes no restriction of practical importance.
The Expansion Theorem to be derived is thus of broader application
than Heaviside's Theorem which constitutes a particular case of the
general theorem furthermore its derivation may be of interest since
Heaviside states his theorem without proof. '
The dynamical system to be considered may be either a mechanical or
electrical system characterized by a symmetrical system of linear dif-

ferential equations of the following form

+11+1 + +12+2 + +13+3 + ' ' ' + +ln+n Fls

C21X1 + C22X2 + 623X3 + ' ' ' + 02nXn F2

~n1&1 + +n2&2 + + +nn&n Fny

In equations (t) x&, x2, ~ ~ x„are the displacements from equilibrium
or zero configuration of the n coordinates Xl, X2, ~ ~ ~ X„specifying the
system while F&, F2, ~ F„are impressed forces. The general coefficient
a;~ is of the form

+~'I, = g~'a
d 2 + r~a d + S&I„

where g;~, r;~ and s;y are constants. The g coefficients will be termed
the inertia factor, the r coeScient the resistance factor and the s coef-
ficient the stiffness factor. From a mathematical standpoint no limit
is placed on the order of a;& in (d/Ch); it is only necessary that it be capable
of expression as a polynomial of the eth order in (djdh). However in
cases of practical importance the polynomial G&.g is of the second order
in d/dt as indicated by equation (2) ~

To simplify the following work it will be assumed that only one driving
~ In El. Th. , p. I3I-2, Vol. II., the case of simply periodic forces is treated by the operationa

method.
~ Since the above was written Mr. H. W. Nichols has called my attention to the fact that

Heaviside derives his Expansion Theorem in his Electrical Papers, Vol. II., p, 373. Mr. H.
W. Malcolm in a series of papers entitled "The Theory of the Submarine Telegraph" appear-
ing in the Electrician during 1912 attempts to prove the Heaviside Theorem. The method
of derivation is, however, quite defective.

3 See Webster's Dynamics, 2d edition, pp. I73, I74.
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force F1 is impressed and consequently F2, F3, ~ ~ ~ F„are put equal to
zero, It may be readily shomn that this simplification involves no loss
of generality mhatsoever, since the complete solution may be built up at
once from the formu13 to be derived.

The driving force is assumed of the form'

Pi ——{Qigu + jVign } (3)

(4)= PIE»"'}

3E»(p)
'

D(p)

In formula (g), D(p) is the value of the determinant

where Z and p are constants. In formula (3) the bar denotes the con-
jugate imaginary of the unbarred symbol, while in formula (g) R indicates
that the real part of the expression alone is to be retained. For con-

venience the symbol R will be omitted and it will be understood that the
real part of the final expression is the solution.

The forced oscillations of the system are gotten by the well-known

method' of replacing d/Ch by p in (I). If yi, y2, y denote the
forced components of x1, x2, ~ ~ x„, then:

g 21 g22 g23 ~ ~ g2„

+31 +32 ''' ''' +3m (6)

~n3 ' ' ' ~nn

when the operator d/dh is replaced by P. 3E&q(P) is the minor of the erst
row and Xth column of D(p). The solution for the forced oscillations

is of course mell known.
The complementary solution of equation (I) gives the transient oscil-

lations. If sl, denotes the transient component of xl„ then z~ is ex-
pressible as:

where p is a root of the equation D(p) = o and Aq' ) is an integration
constant to be determined by the connections of the system and the
initial configuration at time t = o. The summation is extended over the
roots of D(p) = o.

i When the driving force is the arbitrary time function f(t) it can of course be expressed as
a Fourier Integral or Series, each of whose components is of the form given by (4) when p is
a pure imaginary. The explicit treatment of this case is reserved for a future paper.

~ I.oc. cit.
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The solution is then:
(p) m=m

Xk = $k+ Sk = +1 6"'+ g+ 'k-' k""'
D(P)

In

2.

general the conditions to be satisfied by the solution are as follows:
The initial displacement of every coordinate shall be zero; that is

o at t = o for all values of k.
The initial velocity of every coordinate shall be zero; that is

8xy
=Kgb =0

df
at t = o for all values of k.

The ratio of s; to s& for the mth mode of oscillation shall be equal

Mlj(pm)/&1k(p ). This last condition may be readily seen to be necessary
by substitution of (7) in (~), and is perfectly general. The first two
conditions follow from the fact that the initial configuration is one of
equilibrium. Certain particular cases when these conditions do not
hold are examined below.

We shall now proceed to a determination of the integration constants
of (7). The initial value (t = o) of yk is by (5):

3E&k(f)
(Vk) t 0+=1

( )
~k

Now fr™equation (2) and formula (6) D(p) is in general a polynomial
of the 2nth order in p while M&k(p) is a polynomial of the (2e —z)
order in p. The right-hand side of (9) may be expanded by means of
the following theorem

If Q&,&
and P&,&

are polynomials in x and if P&,&
is of higher order than

Q&,&, then:

Q(x) T Q(x )
P(x) „=g (x —x„)P'(x„)

where X„, is a root of P~,&
= o, and

(zo)

provided P~,~ does not contain repeated roots. The special case of
repeated roots will be briefly discussed later.

In general M&k(p) and D(p) satisfy the conditions of expansion, whence

~ ~&k(P) ~
"="

Wk(P,.)' D(e) '5 9 —e-)D'9-) '

' See YVilliamson, Integral Calculus, pp, 42, 43.
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where the summation is extended over the roots of D(p), and

f

t dP 3 p=p~

Clearly then, both conditions (i) and (3) are satisfied if we set

M'ii(p„)
'

(p —p)D'(p-)

since then (yi + si) i=o = o and'

Ai' ' M'gi(p )
A;(™ Mi;(p )

'

Hence the complete solution is

~ (p) „,
"=" ~ (p)"'='

D(p) "'-~(p —p)D(p)'"'

22 I

provided this solution satisfies condition (2). That this is in general
the case may be readily shown. Differentiating (I6) we have

and

dxi, . p11Iii(p), ~ p 3Eii,(p„,)
dt ' ' D(p), (p —p„)D'(p )

pW. (p)
"=" p-ill. (p-)

D(p) -=i (p —p )D'(p.)

(i6)

Now p3E»~„~ is in general a polynomial in p of lower order by one than

D(p) whence

pilaf»(p) "p p iaaf»(p-)

D(p) =i (p —p-)D'(p-) '

so that condition (2) is satisfied.
It is now easy to extend formula (i6) to the more general case when

all the forces F~ ~ ~ ~ Ii are 6nite. For let

P) Qygpf o ~ ~ 0 P Q q$

Then the complete solution is

"g ~ ilfi'(p) „, p g"~ p-Ilf'(p-)
' D(p) .=i =i '(p —p )D'(p )

Of course the different forces may be characterized by different expo-
nential factors.

The conditions necessary that the partial fraction expansions given
by (r2) and (i6) shall hold are satisfied in general; that is in the usual

' Equation (x4) is equivalent to condition (3), and formulates the necessary relation
among the constants of integration.
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case when the inertia and stiffness factors g and s are all finite. No
attempt will be here made to rigorously discuss the cases when the general
expansion fails or when it must be specially interpreted. Two physically
interesting cases will however be considered.

i. Assume that the inertia factors (&I) are all zero. It will be clear
then from physical considerations that condition (2) will not necessarily
hold since finite velocities may be instantaneously established owing to
the absence of inertia. The initial configuration of the coordinates must,
however, be zero from physical considerations. We should, therefore,
expect, from purely physical considerations, that the expansion given

by (n) is still valid while the expansion given by (r6) no longer holds.
This is precisely the case since now M»&» is of order (n —i) and D(p)
of order m in p. Hence while the expansion of 3I»&»/D(p) is valid the
expansion of pM«„.&»/D(p) is no longer valid since p1II»&» is of the same
instead of lower order than D(p). Thus while the expansion formula

(t5) for the coordinates and consequently the expansion formula follow-

ing for the velocity are correct, the initial velocities are no longer neces-
sarily zero.

z. Assume that the stiffness factors (s) are all zero. Then physical
considerations show that an equilibrium configuration of the coordinates
is indeterminate but that the initial velocities are necessarily zero. We
should therefore expect a priori that the expansion (i2) is not necessarily
true but that expansion (r7) is still valid. This is precisely the case as
results from the following consideration. If the stiffness factors (s)
are all zero, zero is a repeated root of D(p) of the Nth order and a repeated
root of 3fUr&» of the (n —i)st order. Then

where Q(p) and P(p) contain no zero roots, Then

when the summation is taken for all the roots of D(p) exclusive of zero.
It may then be readily shown that

whence it follows that the expansion for the velocities is valid. The ex-
pansion for the coordinates is meaningless.

The two foregoing particular cases serve to illustrate the fact that
while the expansion is generally valid it will not hold for dynamic systems
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in which the initial conditions are not necessarily satisfied. If, therefore„
the expansions (t2) and (i6) are not valid we may be sure that the initial
conditions a're not complied with by the system under consideration.
Further elaboration of this point is not believed necessary and particular
cases can be readily worked out from the general theory.

As stated above, the partial fraction expansion of equation (io) does
not hold when the denominator P(x) contains repeated roots. Cases,
however, in which the characteristics determinant of the system contains
repeated roots can be readily handled by letting the roots approach
equality as a limit. A brief example will suffice to indicate the appro-
priate treatment. Assume that the characteristic determinant is

&(p) = p'+2np+n'
= (p+n)'

and let
I

D(p)

The roots of D(p) are then equal so that p& = p2 = —n.
To handle this problem consider the general case where

D(p) = (p —pi)(p —p~).
Then

D(p) (p —p )(p —p ) (p —p )(p —p )

Now let p2 = —n + e, p» = —n and let e approach zero as a limit.
The final expression for x is, in the limit

g

(p+ n)' Lp + n (p+ n)'i '

For the sake of generality the foregoing formula have been derived in

terms of a general dynamic system; since, however the most important
application of the expansion theorem is concerned with oscillations of
electrical networks, the formula will therefore be translated into the
terms of such a system In form. ula (t6) replace i& by Iz, where Iq is

the current in the Xth branch or mesh of the network; let g, r and r/s
be inductance, resistance and capacity and let Z~n(p) be the ratio of the
E.M.F.of frequency p impressed on branch or mesh x to the forced current
flowing in branch or mesh X. Clearly Z,~(p) may be termed the im-

pedance of the Eth with respect to the first branch and is given by

D(p)"(» =
p~ (p)
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Also
0'(p) p~»'(p) + ~»(p)

dp'- (p) —
3I,„(p)

— (p)
p (M„(p))

&'(p )Z»'(p-) =
p ~ (p )

since D(p ) = o.
Formula (t6) may then be replaced by

pt m, =n um&

z„(p)
—~, (p p.)z,.(p.)

where p is a root of Z~q(p) since the roots of Z~i, (p) are likewise the
roots of D(p). Formula (t8) is the generalized form of Heaviside's

Theorem, into which it degenerates when p is put equal to zero.
The expansion formula gives explicitly the resultant oscillations when

a driving force is suddenly impressed on the system. It may be also

used to formulate the subsidence to equilibrium of a system having any
initial configuration, provided such configuration is producible without

changing the connections or constraints of the system. This limitation
is equivalent to the statement that the initial configuration may be
formulated by sums of expressions of the form:

when v is to be regarded as a constant. The free oscillations back to
equilibrium are then given by

The expansion theorem formulated by (t8) is derived in terms of system
which is specified by a finite number of coordinates. That it holds for
a system characterized by an infinite number of coordinates is a fair
inference, since it seems permissible to let the number of coordinates
approach infinity as a limit, though doubtless a rigorous proof of this is
necessary. However the Expansion Theorem does hold for a number
of problems involving an infinite number of coordinates which have been
examined by the writer; in particular the Expansion Theorem may be
applied to the oscillations of a transmission line having distributed con-
stants as well as to an artificial line having a finite number of lumped or
localized elements.

To illustrate the application of the Expansion Theorem to the oscilla-
tions of a transmission line, assume an electromotive force expressible as
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R[Ze" ] to be impressed at time 5 = o on a transmission line of induc-

tance I., capacity C, resistance E. and leakage G per unit length. Let the
length of the transmission line be l and let the e.m. f. be impressed through
an impedance Z& at s = o which the line is closed by an impedance Z2

at s = l. The "forced" component current at point s on the line, cor-

responding to the impressed e.m.f. is then expressible as

where

X(Z, + Z,) + (X' + Z,Z, ) tanh (yl)
cosh (ys)[X(Zq + Za) + (X' —ZiZ2) tanh (yl)]

—sinh ys[Z2 + X tanh (y)i]
In the foregoing formula:

v = &l&+ &P] [G+ A],
R+ I.p
G+ Cp

(2 Z)

(22)

Z~ and Z~ are, of course, preassigned explicit functions of p.
In accordance then with equation (t8) the expression for the current

at any point s along the line, valid for positive values of t, is

(23)

where q, (p) is given by (2o); p„ is the mth root and y, (p) is the derivative

of y, (p) with respect to p, and the summation is extended over all the

roots. There are of course an in6nite number of roots of the transcen-

dental function p,,(p) so that in general the solution is practicaily un-

manageable. It is however, a formal compact solution of the problem.

Moreover for particular terminal arrangements, such as Z~ = Z2 = o,
the roots admit of rather easy determination.

The chief utility of the Expansion Theorem will be seen to reside in

the fact that by its use the solution for the transient oscillations of the

system is reduced to formula. which are functionally the same as those

for steady state oscillations, so that the problem is always completely

solvable provided the roots of the characteristic D(p) admit of deter
mination.

November zg, x9z6.


