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Studies on quantum algorithms for ground-state energy estimation often assume perfect ground-state
preparation; however, in reality the initial state will have imperfect overlap with the true ground state.
Here, we address that problem in two ways: by faster preparation of matrix-product-state (MPS) approxi-
mations and by more efficient filtering of the prepared state to find the ground-state energy. We show how
to achieve unitary synthesis with a Toffoli complexity about 7 x lower than that in prior work and use that
to derive a more efficient MPS-preparation method. For filtering, we present two different approaches:
sampling and binary search. For both, we use the theory of window functions to avoid large phase errors
and minimize the complexity. We find that the binary-search approach provides better scaling with the
overlap at the cost of a larger constant factor, such that it will be preferred for overlaps less than about
0.003. Finally, we estimate the total resources to perform ground-state energy estimation of Fe-S clus-
ter systems, including the FeMo cofactor by estimating the overlap of different MPS initial states with
potential ground states of the FeMo cofactor using an extrapolation procedure. With a modest MPS bond
dimension of 4000, our procedure produces an estimate of approximately 0.9 overlap squared with a can-
didate ground state of the FeMo cofactor, producing a total resource estimate of 7.3 x 10'° Toffoli gates;
neglecting the search over candidates and assuming the accuracy of the extrapolation, this validates prior
estimates that have used perfect ground-state overlap. This presents an example of a practical path to

prepare states of high overlap in a challenging-to-compute chemical system.

DOI: 10.1103/PRXQuantum.6.020327

I. INTRODUCTION

The complexity of estimating ground-state energies
of chemical and material systems using quantum phase
estimation (QPE) is frequently analyzed in the ideal case
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in which the ground state has already been prepared accu-
rately. In this restrictive setting, the main error in QPE
originates from the eigenphase differing from the approx-
imate output from QPE—a phenomenon known as “spec-
tral leakage” [1] or “bit discretization error” [2]. In the case
in which the ground state (or, more generally, an eigen-
state) is not prepared exactly, the QPE protocol outputs an
estimate of the ground-state energy with a probability pro-
portional to the square of the overlap of the ground state
and the input initial state. In order to estimate the total
amount of quantum resources (logical qubits and gates)
for the most important simulation problems and determine
total run-times for high-confidence eigenenergies, both

Published by the American Physical Society
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sources of error in QPE must be quantified and accounted
for, along with the cost of performing phase estimation.

The problem of preparing an initial state with high
overlap with the ground state has been of recent inter-
est. This is in part because a generic state in the Hilbert
space has exponentially small overlap with the ground
state and a nontrivial state preparation might need to be
performed for a reasonable success probability in QPE,
which could add substantially to the total QPE cost. This
has spurred a substantial body of work examining the cost
of preparing various approximate wave functions and the
associated success probability of QPE; e.g., analysis of
product-state wave functions in the fermionic setting [3]
along with informed orbital optimized improvements [4],
state preparations analyzed in the context of embedding
theories [5], truncated configuration interaction [6], and
the use of matrix product states (MPSs) as input QPE
states [7]. In terms of circuit compilations, direct synthe-
sis costs for wave functions are known [8], along with
a variety of MPS preparation techniques, including lay-
ers of two-qubit operations [9], low-depth circuits [10],
and sequences of operations with an ancilla register [11].
Reference [11] in particular has been analyzed in detail
for minimizing the Toffoli count [6]. A related consider-
ation in the context of evaluating quantum advantage is
that classical heuristic algorithms can also be viewed as
having a state-preparation step, from which a classical esti-
mate of the ground-state energy is then estimated and, in
some cases, efficiently refined [12,13]. Hence it is relevant
to ask, for specific systems, about the quantitative cost of
preparing a good initial state for QPE.

Given that an appropriate initial state has been prepared,
there remains the problem of how to measure the ground-
state energy in a way that properly distinguishes it from
excited states. If the overlap is not too small, then it may
be expected that a simple sampling approach will suf-
fice, and it will be necessary to sample enough times that
there will be a high probability of sampling the ground-
state energy at least once. The sample that corresponds
to the ground-state energy can be identified by taking the
minimum among all samples. There are two difficulties
with this approach. First, the large number of samples
may mean that there is exceptionally large underestimation
error in at least one of the samples, resulting in an erro-
neously small estimate of the ground-state energy. Second,
the number of samples will scale with the inverse of the
squared overlap.

Amplitude amplification would suggest that the com-
plexity should scale with the inverse overlap instead of
the inverse overlap squared. Naively, in order to obtain
the quadratic improvement, the range of energies for
the ground state must be known. Binary search can be
employed to go beyond this requirement and search for
an unknown ground state. The binary-search approach has
been used previously in Refs. [14—18] but these works,

together with Refs. [19-21], typically aim to optimize for
the circuit depth, while this work focuses on the number of
non-Clifford gates needed for the whole algorithm, a more
relevant metric for fault-tolerant quantum computers.

In this work, we provide improved results for both
MPS preparation and filtering to determine the ground-
state energy. For MPS preparation, we start by developing
a method for synthesizing unitaries with low Toffoli count
by decomposing the unitary into a sequence of diagonal-
phasing operations together with low-cost operations. We
then use that to construct a method for synthesizing only
a fraction of the columns of the unitary, which we then
apply to the method of Ref. [11] to provide a factor-
of-7 improvement in Toffoli gates over prior work. For
filtering the resulting state, we apply the theory of win-
dow functions in order to minimize the probability of
estimates with large error. We describe the optimal perfor-
mance provided by the Slepian prolate spheroidal window
[22—24] and compare the costs to the Kaiser window pre-
viously reported in Ref. [25]. In the case of sampling,
this suppresses the probability of exceptionally low energy
estimates that would make the overall estimate low, over-
coming the first problem. Moreover, we provide a tighter
bound on the contribution to the error from excited states,
by analyzing the interplay between the contribution to
errors where the estimated energy is too low versus too
high. We find that Kaiser windows can provide substan-
tially improved performance.

We also provide improved scaling with the overlap by
using a binary search together with amplitude estimation,
similar to Ref. [26]. We successively reduce the possible
range for the ground state by performing amplitude esti-
mation at each step in order to eliminate a fraction of the
range. In this way, we are able to achieve the speedup
promised by amplitude amplification without any initial
estimate of the ground-state energy. On the other hand, the
overhead induced by this procedure means that it is prefer-
able for small overlaps p < 0.003, and for large overlaps
the sampling method is preferable. We apply the optimal
windows for phase estimation to the amplitude-estimation
procedure and thereby significantly reduce the resources
compared to Ref. [26].

Armed with a detailed costing of the number of times
QPE must be repeated, we estimate the full quantum
resources necessary to refine the ground-state energy of
several Fe-S clusters: [2Fe-2S], [4Fe-4S], and FeMo cofac-
tor (FeMoco). In order to obtain overlaps of low-bond-
dimension MPSs with the true ground state, we introduce
an extrapolation protocol that uses two MPS wave func-
tions to derive an empirical estimate of the overlap of
a fixed-bond-dimension wave function and the infinite-
(exact-) bond-dimension MPS. In FeMoco, at a finite bond
dimension we can obtain low-bond-dimension MPSs that
are candidates for different low-energy states of the clus-
ter, although these initial MPSs do not give a reliable
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energy ordering. For each candidate MPS, we can estimate
the overlap with the eventual eigenstate, which allows us
to cost out energy estimation for FeMoco in the high-
confidence regime (95% and 99% confidence level) to
chemical accuracy. We also reanalyze the block-encoding
costs for FeMoco and other Fe-S clusters using symmetry
shifting, resulting in a reduction of the linear combina-
tion of unitaries (LCU) 1-norm by a factor of up to 2.
We find that very few iterations of QPE are required
(two or three iterations) due to the high overlap of low-
bond-dimension MPSs. These additional iterations over
single-shot QPE resource estimates provided for FeMoco
in Ref. [27] along with symmetry shifting reductions in
the LCU 1-norm result in 7.3 x 10'° Toffoli gates required
for a full resource cost to refine an energy estimate for
FeMoco. For a single candidate ground state, this amount
of resources is only 2.3 times that in Ref. [27] (which
uses the Hamiltonian defined in Ref. [28]) and can likely
be reduced further through improved symmetry shifting.
Once the accurate energies of different candidates are
obtained, they can be ordered to determine the ground-state
energy. Ultimately, the high extrapolated overlap achieved
in this problem suggests that the combination of generat-
ing one (or more) candidate MPS initial states followed
by QPE is a practical approach to refine the ground-state
energy in a realistic challenging chemical system.

In the following we begin in Sec. | A by summarizing
the results that will be presented. We then give the back-
ground for both MPS preparation and phase estimation in
Sec. II. Section III describes our new method for unitary
synthesis and preparing MPSs. Then Sec. IV summarizes
the procedure to perform phase estimation optimally for
confidence intervals. This is a procedure that is used for
both approaches to searching for the ground-state energy.
In Sec. V, we describe the sampling approach and in
Sec. VI we describe the binary-search approach. These
results are used to estimate resource requirements for real
systems in Sec. VIII and we conclude in Sec. IX.

A. Results overview

Overall, quantum state preparation proceeds in three
steps:

(1) classical calculation of an approximation of the
quantum state (Sec. VIII)

(2) preparation of that classically approximated state on
the quantum computer (Sec. III)

(3) filtering of that approximate state to give the ground
state accurately (Secs. V—VII)

We analyze the energy estimate, as that is the result
desired, but the filtering also produces the ground state
accurately. Section III shows how the complexity depends
on the MPS bond dimension, whereas the analysis of filter-
ing in Secs. V—VII shows how the complexity scales with

overlap with the ground state. There is a trade-off where
an increased bond dimension makes the initial MPS prepa-
ration more costly but improves the overlap, making the
filtering less costly. We analyze that trade-off in Sec. VIII,
thereby providing the resource analysis for the complete
procedure.

For MPS preparation, we first derive a new result for the
synthesis of general unitary operations with reduced Tof-
foli count. This method reduces the synthesis to layers of
phase shifts alternating with increment or decrement oper-
ations and Hadamard gates. The layers of phase shifts can
be applied with reduced Toffoli count using the quantum
read-only memory (QROM) [8,29,30]. As a result, there
are at most Ny, + 1 layers of QROM and each QROM
has complexity O(4/Nyn), where Ny, is the dimension of
the unitary to be synthesized. The subscript “un” is used
to distinguish this quantity from N used in phase estima-
tion. For a summary of the notation used in this work, see
Appendix A.

We then use this result to derive a procedure to synthe-
size columns of a unitary operation; i.e., a unitary operation
where the input state is restricted to lie within a subspace. If
only half the columns of the unitary need be synthesized,
we reduce the problem to synthesis of an initial unitary
of dimension N,,/2, a controlled qubit rotation, and then
controlled synthesis of a unitary of dimension N,,/2. That
controlled unitary has half the complexity of synthesizing
a unitary operation of dimension N,,, because only half
the layers are required. Then, in order to synthesize Ny, /d
columns of a unitary, we can iterate this procedure another
d — 2 times.

The MPS preparation can then be achieved by a
sequence of steps in which Ny,/d columns of a unitary
need to be synthesized. Moreover, the initial unitary in
the above procedure can be merged with other opera-
tions, further reducing the complexity. As a result, the
overall Toffoli complexity is significantly reduced over
that obtained for methods in prior work, now making it a
small complexity as compared to the complexity of phase
estimation.

For energy estimation, there are two approaches that we
consider: direct sampling and a binary search with ampli-
tude estimation. The parameters of the problem are as
follows:

(1) the initial squared overlap of the prepared state with
the ground state, p
(i1) the block-encoding normalization factor, A
(iii) the allowable error in the energy estimate, €, and
(iv) the confidence level, 1 — ¢

For the direct-sampling approach, we provide expres-
sions to determine exact costings in terms of special
functions. We then derive asymptotic expressions to pro-
vide the expected scaling of the complexity in the above
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parameters. The total number of queries to the qubitized
walk operator encoding the Hamiltonian is approximately

Aln(2/q) In [ln(2/61)]
2pe rq |’

(D

corresponding to the leading term in Eq. (79). For the
binary-search approach, under the same conditions, the
query complexity is

7.77A In (i) In <logﬁ(k/e)> ’ )
N/Z AN/ q

as in Eq. (118). This has improved scaling as 1/,/p, which
is a square-root improvement, albeit with a constant fac-
tor about 16 times larger. This constant factor indicates
that for best performance, the sampling approach should
be used for p = 0.003 and the binary-search approach only
for smaller p.

These asymptotic results can be inaccurate for realistic
values of parameters, so we provide improved approxima-
tions for phase measurements with window functions in
Sec. V. We provide series expansions for the error and cost,
both for the Kaiser window and for the prolate spheroidal
window. In the process, we correct an error in the work of
Slepian from 1965 [22], which gave incorrect terms. We
show that the error is asymptotically lower for the prolate
spheroidal window but the cost (the number of oracle calls
to achieve a given error) is asymptotically the same for the
two windows.

We show how to properly account for the excited states
in sampling to obtain the ground state. These states con-
tribute to two types of error:

Type I: The excited states contribute to the probability
of a sample with large error, more than € below the ground-
state energy.

Type II: Samples corresponding to excited states con-
tribute to estimates that are too high, because it is an accu-
rate (or high) estimate of that energy, but the excited-state
energy is higher than the ground-state energy.

When excited-state energies are close to the ground state,
then they increase the probability of a type I error, but
that also reduces the probability of a type II error. We
provide a careful accounting of the contribution of these
two errors to provide a more accurate estimate of the cost
of the sampling approach. Surprisingly, we find that the
Kaiser window can provide better results than the pro-
late spheroidal window when accounting for excited states.
Taking all these considerations into account yields results
close to those for the approximate asymptotic expression
given above.

We provide numerical results for query complexities
accounting both for the exact error with window functions

and the effect of the excited states. The results for queries to
block encoding of the Hamiltonian are provided in Fig. 15
and for the number of calls to the initial-state preparation
in Fig. 23. This shows that it would take small values of
the squared overlap p (below approximately 0.003 for the
case of 95% confidence intervals) for the binary-search
approach to be optimal, agreeing with the analytic result.
For more typical values of p above 0.003, such as those we
encounter in this study, the sampling approach is optimal.

For FeMoco resource estimates, we develop an extrap-
olation scheme that allows us to estimate the overlap
of a fixed-bond-dimension MPS with an infinite-bond-
dimension MPS—e.g., the true eigenstate. The extrapola-
tion protocol is constructed from two empirically observed
linear relationships,

log (1= (@)@ (00))[*) versus (logM))?, (3)

tog (@10 M) ~ [(@ M) (0))])

versus (log(M ”))2 , where M < M”, 4)

and verified on Fe;S, and FesSs systems where accu-
rate estimates of the ground states can be computed and
where the above extrapolation can be verified. We analyze
three different MPS wave functions for FeMoco initialized
through a procedure similar to Ref. [28,31] that is believed
to generate candidates for competing low-energy eigen-
states (corresponding to different spin couplings) of the
S = 3/2 ground state. The high overlaps estimated with
some eigenstate in the low-energy manifold, as produced
by our protocol, suggest that the combination of initializing
different candidate MPSs, followed by QPE, is a promising
computational procedure to map out the lowest eigenener-
gies and subsequently refine the ground-state energy in this
practically challenging chemical simulation problem.

II. BACKGROUND

A. Matrix-product-state preparation

MPSs provide a systematically improvable approxima-
tion of entangled states, thus providing a class of initial
states with tunable overlap. The Toffoli complexity of MPS
preparation has previously been analyzed in Ref. [6] using
the approach from Ref. [11] together with the unitary-
synthesis scheme of Low, Kliuchnikov, and Schaeffer
(LKS) [8]. In this work, we provide a significantly more
efficient unitary-synthesis scheme than that of Ref. [§],
thereby enabling more efficient MPS preparation.

MPSs for A subsystems of dimension d are of the form

SOTe A AYY A ) (S)
{n}
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The matrices A" are of dimension y, called the bond
dimension, and the indices n; range over d values. The
principle of the approach from Ref. [11] is to use an
ancilla of dimension y, together with a sequence of uni-
tary operations on this ancilla together with each of the N\
subsystems of dimension d. Using the fact that one is free
to represent the MPS of Eq. (5) in left-canonical form, the
matrices of the MPS can be cast as unitaries such that

. ()
Gl oy 10 = (47 Dy 1,05 (6)

That is, the unitaries G[j | are of dimension dy but only x
columns are specified due to the input on the physical leg

being zero. The notation (A;nj ))“j—l’ﬂfj indicates the matrix

element o; 1, o; of matrix AJ(-""’ ) There is a requirement for
this technique that the specified columns are orthonormal,
so they may correspond to columns of a unitary.

The sequence of unitary operations used to prepare the
MPS is shown in Fig. 1. There are three distinct cases in
which these unitary operations are performed:

(1) The initial unitary G[1] is on dimension dx but
is guaranteed to have input states that are zeroed.
Therefore, it corresponds to simply preparing a state
of dimension d , which is simpler than synthesizing
a general unitary operation on this dimension.

(2) There are N — 2 unitaries G[2] to G[N — 1] on
dimension dx where one of the input registers is ini-
tialized to |0) but the other is the ancilla, which may
be in a general state entangled with other registers.
Therefore, only x columns of the unitary need be
synthesized.

(3) The final unitary G[N] is required to reset the
ancilla to |0).

G[]

GIV — 1]

. l—

L GIV]

=
=
—

— 10)

FIG. 1. The sequence of operations used to prepare an MPS.
The input state |0) second from the top is of dimension y, as is
the final output state at the bottom |0).

For this last operation to be possible, it must be the case
that the ancilla prior to the operation has support on dimen-
sion d. That is, the Schmidt decomposition describing the
entanglement between the ancilla of dimension x and the
remaining system can have rank no more than d. The oper-
ation G[N] is unitary and so cannot affect the Schmidt
rank; it can only transform one Schmidt basis to another
Schmidt basis. Since this operation is transforming no
more than d orthonormal states to another d orthonormal
states, it may be described just as a unitary operation with-
out introducing or discarding ancillas. In the cases in which
we are interested, d < x, so G[/] may be described as just
a unitary operation on dimension x. Because G[N — 1]
already includes a unitary operation on this subsystem,
the unitary operation transforming the Schmidt basis may
be combined with GIN — 1] to give a single unitary and
G[N] does not contribute to the cost. This change just
changes the entries in the x columns of GIN — 1] to be
synthesized and does not affect its cost of synthesis.

B. Phase estimation

In phase estimation for ground-state energy estimation,
a standard approach [32,33] is to construct a walk operator
W from a block encoding of the Hamiltonian, which yields
eigenvalues e™¥ | with

¢; = arccos(A; /A). 7

Here, X is the constant in the block encoding of H; i.e.,
the block encoding gives H/A. Note that there are two
conventions in the definition of W depending on what
factor of i is included (corresponding to the work in
Refs. [32] and [33]). The other convention yields eigen-
values e @esinG; /%) byt use of either convention yields
equivalent results.

From measuring £¢;, we can recover A; via A; =
A cos(¢; ). This method has a number of useful features:

(1) The cosine function is even and so eliminates the +
sign ambiguity.

(2) The function A cos(¢;) is monotonically decreasing
in ¢;, from A for ¢; = 0 to —A for ¢; = 7. (We use
the convention that arccos gives values in the range
[0, ].) Therefore X, which is the smallest among
all A;, corresponds to the largest among ¢; .

(3) Because |cos(x) —cos(y)| < |x —y| for all x,y €
R, if we want to estimate A to within additive error
€, it suffices to estimate ¢ to within € /.

Each time we run the quantum phase-estimation circuit,
we will obtain a phase estimate q@ that corresponds to ¢;
for some j, up to a phase error that we will define later.
Each phase estimate then gives us an estimate for the
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corresponding eigenvalue A; through
A = A cos(e). (8)

One of the problems that we will deal with is that we will
not know with certainty which eigenvalue or eigenstate an
estimate A really corresponds to. For example, an estimate
A may correspond to an excited state but the phase error
can make it smaller than the ground-state energy Ao.

1. The quantum phase-estimation circuit

A main building block of the quantum phase-estimation
algorithm that we are going to use is the controlled walk
operator,

10) (0] @ W'+ [1) (1] @ W. ®

Compared to the controlled-#, this operator needs the
same number of gates to implement but doubles the result-
ing phase difference [29]. Using this version of the con-
trolled walk operator, the controlled part in quantum phase
estimation becomes

=

-1
k) (k| @ WV, (10)
0

=~
Il

By using one more controlled-# (rather than controlling
between W and W') and relabeling, the controlled unitary
becomes

2N—-1

> in) nf @ W, (11)

n=0

Now suppose that the control register is initialized in the
state |I") = Ziia ! ¥, |n) and the system register is initial-
ized in a superposition of eigenstates |®) = Zf (IJ].- [V ).
Then, the state after applying the controlled unitary is

2N—-1
> vl @)
n=0

2N—1

= Z P, Z vV Iy @ Y. (12)
J n=0

After applying the QFT on the control register, the quan-
tum state becomes

2N—1

D@ Y (=D @A <¢,- - %) @ 1v;),
j 1=0
(13)

where I' (x) is a kernel function defined to be

2N—-1

1 .
Fx)=—= ) " (14)
v

The phase factor does not affect the probabilities and so
can be ignored in the following discussion.

2. The phase error
From Eq. (13), the probability of obtaining a phase

estimate //N is
(s ml
7N

Pr|:¢ = %l:| => 1@
J
Here, q§ is the random variable corresponding to the phase
estimate. Note that the above probability resembles a con-
volution between two probability measures. From this
observation, we can write down a decomposition for ¢ in
the following way:

2

(15)

b =¢+ Ap, (16)

where ¢ is a random variable satisfying
Pr(p = ;] = @, 1. (17

This means that ¢ is the output of an exact phase esti-
mation for W and that A¢ is described by the following
conditional distribution:

ml wl
Pr[A¢>=ﬁ—¢ ¢]=‘F<¢—ﬁ)

We call A¢ the phase error.

In QPE, we want the phase error A¢ to be small. One
way to characterize this is through the variance of Ag,
which is minimized by using amplitudes proportional to
a cosine function [34]. The use of this control state for this
application has been considered in Ref. [29]. But often-
times we want to make A¢ small with a probability that
is arbitrarily close to 1, thus giving us reliable estimates in
many runs. More precisely, we want

2

(18)

Pr[|Ad] = e4l8] <, (19)

where |A¢]| is calculated modulo 2. The task of opti-
mizing the performance is described by the theory of
window functions, where the optimal performance is pro-
vided by the Slepian prolate spheroidal window [22,23].
That is difficult to calculate but can be approximated by the
Kaiser window, which can be calculated by Bessel func-
tions [25,35]. Either of these can be used to obtain scaling
0(6(; ! In(8~')) with a small constant factor.
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3. Window functions

In the theory of window functions, we would replace
y, with a continuous function w(z), so that w(n — N +
1/2) = y,. Then the kernel function is approximately

1 N1 e N=1/2x N
'x) = \/T_N Z ey, W N e w(z) dz.
n=0 -
(20)

In the phase estimation, it is also trivial to adjust the
measurement so that a continuous range of outcomes is
obtained. That is achieved by imposing an extra (known)
phase shift in addition to ¢ and correcting for it in the
estimate. Then we can consider the error probability dis-
tribution as a continuous function of x given by |I"(x)|?.
When I'(x) is approximated by the integral rather than the
sum, then it is no longer periodic modulo 7. The integral
gives a nonperiodic function of x over the whole real line.

The discrete case with y,, corresponds to sampling w(z)
at integer spacing at 2N points from —(N — 1/2) to N —
1/2. That corresponds to multiplying w(z) by a comb
function, so I'(x) is the periodic function obtained by
convolving the Fourier transform of w(z) with a comb
function. As described in Ref. [25], the tail probabilities
for this continuous case correspond to the average over
the tail probabilities for the discrete case, where the sam-
ples are shifted (so starting from —(N — v) for v € [0, 1]).
This means that some discrete case must give at least the
performance (in terms of small tail probabilities) as the
continuous case. A further advantage of using continuous
window functions is that they can be scaled to a unit inter-
val and analyzed independently of the specific value of
N.

Examples of the probability distributions for the error
for a range of window functions are given in Fig. 2. The

(a)

1.0
0.8
E 0.6
S
0.4
— flat
0.2 cosine
— Kaiser
0.0 1 x Slepian

—1.00 —0.75 —-0.50 —0.25 0.00 0.25 0.50 0.75 1.00
JIN

FIG. 2.

traditional textbook version [37] of quantum phase estima-
tion uses a flat distribution, which corresponds to a control
register of unentangled qubits in |4) states. That win-
dow gives a narrow peak for the error that decays slowly,
resulting in both large variance and large tails. The cosine
window gives tails that decay more rapidly, to yield excel-
lent performance for the variance. The Kaiser and Slepian
windows give tails that are lower, resulting in smaller tail
probabilities for confidence intervals. The Kaiser window
[35] is proportional to the modified Bessel function of the
first kind,

Wiaisr () 0 Io (/T G/N?), 21)

whereas the Slepian window [22,36] is proportional to the
prolate spheroidal function,

WSlepian (x) X PSO,O (C’ .X'/N) (22)

The Digital Library of Mathematical Functions [38] uses
the notation Psg(x/N ,v?) instead, with y instead of c.
These window functions do not decay as fast as the
sine window, so the variance is larger. Note that for
this example, the Kaiser and Slepian windows are almost
indistinguishable.

III. MPS PREPARATION

In this section, we analyze the Toffoli complexity
needed for preparation of MPSs. We first introduce a
general unitary-synthesis method that improves on the
approach of LKS and then we provide a method to gen-
eralize this approach to synthesizing columns of a unitary,
as is appropriate for MPS preparation.

(b) 100
— flat
1071 4 cosine
— Kaiser
10724 x Slepian
S
o 10774
d
E 10—4,
1075 4
-20 -15 -10 -5 0 5 10 15 20

N A

The (a) windows and (b) error probability distribution for phase measurements. The cosine window is the one that provides

the minimum phase variance. The Kaiser window [35] is used with o & 1.5 [see Eq. (21)] and the Slepian window [22,36] is used

with ¢ = 5 [see Eq. (22)].
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(a) (b)

FIG. 3.

The decomposition of a multiport interferometer for eight modes, equivalent to a transformation on three qubits: (a) the

triangular Reck-Zeilinger [41] decomposition; (b) the rectangular decomposition from Ref. [39].

A. New unitary-synthesis method

We now provide an alternative method of unitary syn-
thesis that significantly improves on the method of LKS.
We consider the rectangular array of beam splitters for
decomposing a multiport interferometer as in Ref. [39].
This has previously been considered for unitary synthesis
in the optical context in Ref. [40] but we provide a signif-
icant improvement over that work. It has been shown in
Ref. [39], that a general Ny, x N, interferometer can be
decomposed into N, layers of no more than N,,/2 beam
splitters. This is the problem of decomposing a unitary
matrix (which describes an interferometer) into a prod-
uct of Givens rotations (describing the beam splitters). The
method used in Ref. [39] is to choose a sequence of Givens
rotations such that multiplying the matrix by them zeros
out entries of the matrix. We will show how to derive
a quantum circuit given this decomposition; our method
is not dependent on the technique used to construct the
decomposition.

The form of the decomposition from Ref. [39] is shown
in Fig. 3(b) for the example of Ny, = 8. An M-port inter-
ferometer is equivalent to an Ny, X Ny, unitary and each
layer of beam splitters is equivalent to a block-diagonal
matrix with 2 x 2 blocks. The first layer of beam split-
ters corresponds to a block-diagonal matrix where the first
block is in rows and columns 1 and 2. The first layer of
beam splitters in Fig. 3(b) would correspond to a unitary
matrix with nonzero entries shown by the asterisks in

(23)

The next layer has blocks shifted by one and so would
correspond to a matrix with nonzero entries:

24)

The layers alternate between operators of these two forms.
Because the second form in Eq. (24) is equivalent to that
in Eq. (23) except shifted by 1, it can be transformed to the
same form by increment and decrement operations.

In the optical interferometer, each beam splitter may be
expressed as two 50:50 beam splitters with a phase shift in
between, as in Fig. 4. The 50:50 beam splitter corresponds
to a Hadamard matrix. That is equivalent to expressing a
general qubit unitary as

o el Al ]

0 e ||1/v/2 —1/v/2][0 1
12 1/4/27[e* 0
X{l/ﬁ —l/ﬁHO 1] =

X - X

FIG. 4. The crossings depicted in Fig. 3 are general beam split-
ters with arbitrary phases and reflectivities (left). They can be
implemented with two 50:50 beam splitters with phase shifts

(right).
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Since the layers correspond to 2 x 2 block-diagonal unitaries, this decomposition may be performed on the blocks
individually; so, for example, Eq. (23) is of the form (with A the Hadamard)

el%0
eiwl

o3
eiv4
&5
&6

e"p7 _

rei%o
H o1

H e

This can be further simplified, because the phases ¢; can
be combined with the next layer. Then, the next layer can
be similarly decomposed and its ¢; phases can be com-
bined with the layer after, and so on. As a result, the phases
on all basis states are only needed for the very last opera-
tion. As a result, we have 2N,, layers of phase shifts with
[ Mun/2] phases each and one final layer with N, phases.
Then the block-diagonal matrices have diagonals with all
Hadamards, which can be achieved with just a Hadamard
on a single qubit.

To illustrate how this procedure is performed, we show
the steps in Fig. 5. In Fig. 5(a), each of the general beam
splitters from Fig. 3(b) is expressed in terms of 50:50
beam splitters and phase shifts as per Fig. 4. Then, one
can combine phases as in Fig. 5(b), where, e.g., ¢ and
(p& are combined. One can also commute some of these
phase shifts through the 50:50 beam splitters. For exam-
ple, @) is moved from the left to the right of the 50:50
beam splitters on modes 2 and 3, so there are phases of
@) combined with ¢| and ¢? on the right. The fully simpli-
fied form, where this process of combining and commuting
phase shifts has been applied all the way through, is then
shown in Fig. 5(c). There are 16 layers of phase shifts with
four or three phases and a final layer where phase shifts are
applied on all modes (or computational basis states in the
case of applying a unitary operation).

Note that the Toffoli cost of QROM is minimized if we
are able to output more of the data together. It is possi-
ble to output the data for two layers of phase shifts at
once, so there are Ny, + 1 uses of QROM with output
size Ny,. Considering the first layer of beam splitters, it
is now decomposed into two layers of phase shifts that can
be chosen to be only on odd (or even) modes, as well as

2 H

—6190
ei91

i3

(26)

i3

(

two layers of 50:50 beam splitters. The equivalent quan-
tum circuit corresponds to two layers of phase shifts that
only depend on the first # — 1 qubits and two layers of
Hadamards on the last qubit, as shown in Fig. 6.

It is therefore possible to perform a QROM on the first
n — 1 qubits, perform the operations on qubit n, and then
erase the QROM because it does not depend on the last
qubit. The quantum circuit is shown in Fig. 7. A further
simplification is possible because of the way in which
QROM erasure is performed. The data qubits are measured
in the X basis and sign corrections need to be performed
on the control qubits. However, these sign corrections are
phases that can be combined into ¢;. That is, we just need
to modify the phases used in the remainder of the circuit to
account for the sign fix-ups needed for the QROM erasure.
The Toffoli complexity is therefore

Nun
’721\—‘ +(A—-1)2h—1

27)
to output the N,/2 items of data of size 2b (for two rota-
tions), with A a power of 2. In this expression, —1 accounts
for the fact that the cost in the first term is for unary itera-
tion [30] and the Toffoli cost of unary iteration is 1 less than
the number of items [29]. This is a cost including a con-
trol, and this control will be needed in the overall scheme
and so is allowed for here. The cost for the two rotations
is 2(b — 2), where the b — 2 cost for a phase rotation is
explained in Ref. [42]. In the following, we will bundle
these two costs together.

A minor issue is the even layers in which the blocks are
shifted by 1. This is easily accounted for in the quantum
circuit by applying an increment in the computational basis
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FIG. 5.

The sequence of steps in simplifying the interferometer to one involving 50:50 beam splitters. (a) The interferometer from

Fig. 3(b), with the general beam splitters implemented in terms of 50:50 beam splitters and phase shifts as in Fig. 4. The dashed boxes
indicate the columns of general beam splitters. (b) The initial step of simplification in which the ¢ phases are combined with others.
(c) The fully simplified form, in which the ¢ and ¢ phases are determined from combinations of those from (a) and (b).

to shift the blocks such that the layer may be implemented
in the same way as for the first layer. Each increment
(or decrement) can be performed with n — 2 Toffolis and
there are N, — 1 needed, for a total complexity of (n —
2)(Nuyn — 1). (Recall that the cost of modular addition is
n — 1 as per Ref. [43], with a saving of one Toffoli when
the number to be added is classical, rather than provided in
a quantum register.)

The complete quantum circuit for the case of dimension
Nun = 8 (three qubits) is shown in Fig. 8. There, it can be
seen that Ny, — 1 = 7 increment or decrement operations

ctrl
ctrl

—R(9) R(0)

FIG. 6. Two layers of phases controlled by the first n — 1
qubits and Hadamards on the last qubit. The boxes labeled R(¢)
and R(0) are phase rotations controlled by the first n — 1 qubits.

are needed. There are eight layers in which QROM is used
to output ¢; and 6, and these output registers are mea-
sured in the X basis to erase them. The appropriate sign

-1

QROM;

J

QROM,;

— R(¢5) R(0;) —

(.1 Py
(9] [és}—
(9] [0,

FIG. 7. Two layers of phases obtained by using a single
QROM. The bottom two registers are temporary data registers
used for the output of the QROM. The QROM on the left out-
puts both ¢; and 6; and then the QROM on the right is an inverse
QROM for erasure. In the middle, the rotations are controlled by
the values in the data registers.
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0)

0)

FIG. 8.

The complete circuit diagram for synthesis of a unitary operation, shown in two parts due to the length of the circuit. We are

applying the equivalent of the interferometer shown in Fig. 5. The pairs of phase shifts with ¢ and 6 are applied with the circuit shown
in Fig. 7. After each, there is an increment or decrement operation (INCR or DECR). The data-output registers are erased each time via
a measurement in the X basis, indicated by the meter. At the end, a final layer of phases ¢; is applied using a QROM on all qubits.

corrections are applied using the phases in the next steps.
At the end, QROM on all qubits is used to output ¢; and
an explicit QROM erasure step is used since there are no
further steps where sign corrections can be applied.

Bringing all these complexities together, we have the
following:

(1) The complexity for the 2N,, layers of phase shifts
and Hadamards is

N, Nun 2Ab—5 28
w([2]+2me-s) e

(i) The increments and decrements have complexity
(n—=2)(Nun — 1).
(iii) The final phase shifts have complexity

Nun Nun
2Ab

Note that the QROM cost appearing in Eq. (28) is for
Nun/2 items of data of size 25, whereas the QROM cost in
Eq. (29) is for Ny, items of data of size b. This expression
for the cost would normally be given as [Ny,/A”] + A”b
but, clearly, if A is optimal for minimizing the cost in
Eq. (28), then A” = 2A will be optimal in Eq. (29). For
this reason, we have simply used 2A in Eq. (29), rather
than giving a third value of A to be optimized. In contrast
to Eq. (28), it represents outputting 2A values of size b,
rather than A values of size 2b.

For Eq. (29), there is a term —6 that comes from —1
for the initial QROM, —2 for the addition into the phase
gradient, and —3 for the sign fix-up. The sign fix-up is
explained in Ref. [30, Fig. 6] and can be constructed from
two unary iterations on subsets of the qubits. That is, Ref.

W +A -6 (29)

[30, Fig. 6] has |A) indicating the most significant qubits
of the register and |/) indicating the least significant qubits
of the register. The X operation and S controlled by |/) in
that work indicates the conversion of / to one-hot unary.
This binary-to-unary conversion is not controlled and so
has cost A’ — 2 Toffolis (where A’ is the number of possi-
ble values of /). The T controlled by |%) is a unary iteration
combined with a controlled phase on the one-hot unary
representation of |/). We want the overall operation to be
controlled and this unary iteration may be made controlled
to give a cost of [Ny,/A’] — 1. The —2 and —1 give an
overall saving of —3 Toffolis for the sign fix-up. In numer-
ical testing of this approach against the LKS approach,
we find that the complexity is reduced by about a fac-
tor of 7 over a wide range of parameters. For details of
the costing of the LKS approach, see Appendix B. There,

7.6

N
IS
A

N
[N)

ratio of costs
~
o
%

J

] — b=10
b=15

6.6
/ —— b=20
4 6 8 10 12 14 16

n

FIG. 9. The ratio of the Toffoli cost for synthesis via the LKS
approach to our new approach as a function of Ny, = 2" for a
range of numbers of bits of precision in the rotations b.
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we show analytically that the leading order of the fac-
tor for the improvement is 3 + 2+/2 ~ 5.8, although the
factor is larger when including all costs. The numerically
determined factor of the improvement over a range of
dimensions and numbers of bits is shown in Fig. 9.

B. Synthesis of columns of unitary

We can now use this approach to reduce the cost for the
case in which it is only necessary to synthesize half the
columns of the unitary. The key to this simplification is
that the unitary can be simplified by an initial unitary on
dimension N,,/2 (ignoring the extra qubit) and then after-
ward using the extra qubit to control one of two unitaries
on the remaining qubits. This then diagonalizes the two
Nun/2 X Nyn/2 blocks of the unitary that we need. That is,
we have a decomposition of the unitary as

A ? (Ui O0||D: 2|V O

B 2110 Ull|D, ?]|0 V|
In this expression, the question marks indicate blocks that
we do not need to specify, so 4 and B indicate half of the
columns of the unitary matrix that need to be correctly pro-

duced. The blocks D; and D, are diagonal and U;, U,, and
J are unitaries. That is, we require

(30)

A=UDV, B=UD,V. 3D
The matrices U;, D;, and V are easily determined via a
singular-value decomposition of 4. Then, U, and D, can
be determined from a QR decomposition of BVT. The QR
decomposition guarantees that D, is upper triangular and
the requirement that D, and D, are blocks of a unitary
matrix ensures that D, is diagonal.

So, the procedure to apply the unitary that we need is as
follows:

(1) Perform a unitary of dimension Ny,/2 X Ny,/2 on
the first n — 1 qubits.

(2) Use n — 1 qubits to control rotation on the remain-
ing qubit.

(3) Use that qubit to control unitaries on the n — 1
qubits.

For the costing of this procedure, the cost of the first step
is the same as in the formulas for unitary synthesis above,
except replacing Ny, with Ny, /2 and n with n — 1.

However, in the MPS preparation, we have a unitary on
these n — 1 qubits first and this unitary can be combined
with that one, so that it need not be performed and requires
no additional complexity. This principle is illustrated in
Fig. 10, where it can be seen that the dimension-N,, /2 reg-
ister where U; and U, are performed is the same as that
where V' is applied for the next step.

U

!
1,2
!

FIG. 10. Two consecutive steps in the MPS preparation, show-
ing how the unitaries required for consecutive steps can be
combined. The primes show the unitaries needed for the sec-
ond step. The input registers with |0) are qubits and the top two
outputs are qubits.

Step 2 is just a QROM and rotation, for complexity

Nun +Ab-2
2A '

(32)
The —2 term is because the rotation is implemented by a
controlled addition or subtraction on half the phase, which
requires one more bit for the addition into the phase-
gradient register. The QROM erasure does not introduce
a Toffoli cost here, because the sign fix-up can be incor-
porated into the unitaries U; and U,. A subtlety in this
costing is that the blocks are distinguished by the least sig-
nificant qubit, so we only need consider dimension N,,/2
for the sub-blocks. For simplicity, we are assuming that
Nun 1s even for this discussion.

For the controlled unitaries on dimension N, /2, in each
layer we have the same size of the QROM as for the
operations on the full dimension Ny,, with the only dif-
ference being that we now only need N,,/2 layers rather
than N,,. Also, the increments and decrements are onn — 1
qubits rather than n, slightly decreasing the complexity.
The final phase shifts also have the same cost as before.
The complete cost is therefore

Nun . .
’7 —‘ + Ab —2 (controlled qubit rotation) (33)

2A

N, Ny i
+ 7‘1 <’721{1—‘ +2Ab — 5) (phasing layers) (34)

4+ (n —3)(Nun/2 — 1) (increments and decrements)

(35)

Nun Nun , )
+ "ﬁ"‘ +2A0+ ’77—‘ + A’ — 6 (final phase shifts).
(36)

This gives a similar factor-of-approximately-7 improve-

ment over LKS as for synthesis of the complete unitary.
So far, we have discussed the case in which the dimen-

sion on each site is d = 2 for the MPS. We can solve
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the case for d > 2 by iterating the procedure and the cost
is multiplied by d — 1. To explain the principle, we first
explain how to obtain the result for d = 3. Then, we can
construct a decomposition of the form

A 2?7 ? I 0 0 A ? ?
B ? ?2|=10 Uy Up||Ru Rz ?|.(@37
c ? ? 0 Uy Uxp 0 Ry ?

In this expression, 4, B, and C are the blocks of the unitary
that we wish to construct, the Uj; are blocks of a unitary,
and the R;; are blocks of an upper-triangular matrix. The
block Ry; must be zero because of the upper-triangular
form and so is just given as zero above. In this form, the
U; and R;; are obtained by a QR decomposition of the
four blocks of the desired unitary operation including B
and C and two unspecified blocks indicated by the question
marks. It does not matter that the blocks indicated by ques-
tion marks are unknown, because they can just be replaced
with zeros for the purposes of the QR decomposition. We
only need to determine R;;, U}, and U, because the other
blocks do not affect 4, B, and C, and those blocks are
obtained correctly by the QR decomposition with question
marks replaced with zeros.

It is now possible to correctly apply the blocks Uj; and
Uy, of the first unitary by the above procedure for synthe-
sizing half of the columns of a unitary. Similarly, 4 and
Ry have orthonormal columns and so can be regarded as
half the columns of some unitary, which can also be syn-
thesized by the above scheme. Moreover, the construction
of the unitary with blocks U;; and U, requires an initial
unitary of dimension Ny, /3. This unitary can be combined
with R and so need not add to the cost of synthesizing Uy,
and U,;. Similarly, if this unitary synthesis is part of MPS
preparation, the initial dimension-N,, /3 unitary for synthe-
sis of 4 and Ry can be combined with other operations and
does not add to the cost.

In the general case, we need to construct the correct
first x columns of a matrix of size Ny, = dyx. Consider
the block consisting of the last (d — 1)x rows and the
first (d — 1)x columns (equivalent to B and C and the
question marks in the above d = 3 example). Apply a QR
decomposition, to express it in the form of a unitary oper-
ation followed by an upper-triangular matrix. Similar to
the above example, the question marks may be replaced
with zeros in this decomposition, because they only affect
blocks that we do not need to specify.

In exactly the same way as in the above example, we
need only correctly synthesize the first x columns of the
first operation and the upper-triangular form guarantees
that the only nonzero blocks are 4 and an upper-triangular
X X x block (which is R;; in the above example). These
blocks may be synthesized by the above procedure for
d =2, where we are synthesizing half the columns of a
unitary.

The unitary that we have obtained by the QR decom-
position is of size (d — 1)x x (d — 1)x and we only need
to correctly reproduce the first x columns. In the above
example, these were U;; and U,;. Therefore, we have
reduced the problem to synthesizing the first x columns
ofa (d — 1)x x (d — 1) x unitary, which is the same as the
initial problem, with d reduced by 1. We may therefore iter-
ate this procedure to completely reduce the problem to that
for d = 2. Therefore, we are able to reduce the problem to
d — 1 applications of the scheme for d = 2.

There is a very small increase in the cost for d > 4.
Because the schemes for d = 2 are on a subspace, the
QROMs need to be controlled, which is a cost accounted
for above. However, for d > 4 we also need Toffolis to pro-
duce the qubit flagging the control for the QROMSs. That
is only performed once for each application of the d = 2
scheme and so is a negligible contribution to the overall
cost.

We can also combine the d = 2 schemes in a slightly
more efficient way. First, note that at each step, there is
a controlled unitary performed on two dimension-y sub-
spaces but only one is used in the next d = 2 scheme.
Instead of performing both, we can instead just perform
one unitary of dimension x x x and then perform con-
trolled unitaries on the d subspaces at the end. Then, the
costs of d — 1 controlled U,, U, operations are replaced
with d — 2 unitaries of dimension x x x, followed by
selection between d unitaries of this size.

In either case, the increase in cost with d is linear in d,
whereas for the LKS approach the factor is about /d/2,
so LKS has better scaling with d. For d = 4, we find that
the improvement over LKS is about a factor of 3.5 and the
crossover where LKS is more efficient is for large values
of d about 30.

It is also possible to prepare states more efficiently
than in the LKS procedure. Instead of using QROM in
sequence to output the rotations needed for each succes-
sive qubit, the principle is to output the data needed for
multiple qubit rotations at once. In addition, it is possi-
ble to combine that with the QROM to output the phases
for the basis states. This procedure is explained in detail
in Appendix C and reduces the cost to about 40% of the
original implementation.

Another method is to use interspersed layers of
Hadamards and diagonal-phasing operators, and we find
that three phasing layers are sufficient. That is, prepare
an equal superposition state, apply phases in the com-
putational basis, a layer of Hadamards, and then more
phases. The initial two layers of phases and Hadamards
produce the correct amplitudes. The phases may be found
efficiently by a simple generalization of the Gerchberg-
Saxton algorithm; we have tested this with dimension
up to 22°. These calculations may be performed quickly;
using a laptop, they take only about 5 min to achieve
machine precision for this dimension, or about 4s for
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dimension 2'3. The computation time is approximately
linear in the dimension.

The Gerchberg-Saxton algorithm is a method used for
phase retrieval (e.g., for creating computer-generated holo-
grams). That is, there are two distributions related by a
Fourier transform and given only amplitude information,
the goal is to retrieve the phase. To explain the method,
let the original function be f(x) and the Fourier transform
be F (k). The general principle is that one can start with
|F' (k)| and take the inverse Fourier transform to yield some
function of x. If it has the same amplitude as f(x), then
we are done, but otherwise we can use |f(x)| multiplied
by the phases from the inverse Fourier transform and take
the Fourier transform. This will give a new function of
k. Now take the phases from this function multiplied by
|F' (k)| and take the inverse Fourier transform again. Itera-
tion of this process then converges to phases such that the
function and its Fourier transform match. In pseudocode,
this algorithm is as follows, where FT and IFT represent
the Fourier transform and the inverse Fourier transform:

@x) = arg(IFT(|F(K)[))
while error above threshold
@ (k) = arg(FT(|f (x)|e"™))
¢(x) = arg(IFT(|F (k)|e'®®))
end while

In practice, this algorithm will be performed with dis-
crete samples and a discrete Fourier transform. It is
straightforward to generalize the algorithm for the case in
which Hadamards are used instead of a Fourier transform
and there are multiple layers. For the case in which there
are three layers, let the phases used be (,0;c for k=0,1,2
and let the amplitudes of the desired state be ;. The prepa-
ration starts with an equal superposition state [+)®”". Then
apply phases (p]Q, Hadamards, phases gz;jl, Hadamards, and
then finally phases <pjz. In this generalization of Gerchberg-
Saxton, we start with random initialization of ¢} and ¢/,
because otherwise the Hadamards would cancel. .

In the following pseudocode, we will use € to indi-

cate operators applying ei‘”/]'( to computational basis state j
and we will use arg on quantum states to indicate the vec-
tor of phases of the amplitudes in the computational basis.
The pseudocode for the three-layer generalization for state
preparation is then as follows:

while error above threshold
@* = arg(|y)) — arg(H®"e'' HE" ' | 4)5")
o' = arg(H®"e " |y)) — arg(H®" e’ |+)®")
¢ = arg(H" ™' H"e™%" |y))
o' = arg(H®"e ™" |§)) — arg(H®"e#" |+)®")
end while

That is, we loop back and forth through the layers,
choosing the layers of phases so that they are consistent.
The Toffoli cost of the preparation using three layers of
phases is primarily that of the QROM to output the phases.
The cost of each QROM is

Nun
{A1+m—na (38)

the cost of each phase rotation is approximately b, and then
the cost of each QROM erasure is

[&ﬂ+AC (39)

That gives a total cost for three layers of

3 Nun Ab Nun A 40
(1% | ao+ [T ]+n). w0

In contrast, the cost of the procedure described in
Appendix C is approximately 3/2 times that of a single
QROM, so its cost is about halfin all cases. For this reason,
one should always use the method in Appendix C for state
preparation. On the other hand, this procedure is easily
generalized by increasing the number of layers and apply-
ing the operations to an arbitrary input state. With enough
layers of phase shifts and Hadamards, it is possible to gen-
erate a general unitary operation or correctly implement
a limited number of columns of a unitary operation. Note
that the state preparation can be considered to be the spe-
cial case of just reproducing a single column of a unitary
operation. The procedure for finding the phases is an obvi-
ous generalization of the method described above. One can
simply run backward and forward through the layers of
phases, choosing them for consistency. The problem is that
the complexity of solving for the phases is now approx-
imately scaling as the cube of the dimension, rather than
linearly as in the state-preparation case. Although we have
been able to solve for phases up to test cases of dimen-
sion about 128, the projected solution time for cases of
interest in this work would be on the order of years. For
this reason, we do not propose this as our main method
for unitary synthesis, but if more efficient solution methods
are developed, then it may be a viable method for unitary
synthesis.

IV. PHASE ESTIMATION WITH WINDOW
FUNCTIONS

First, we describe how to perform phase estimation that
is optimal for confidence intervals. That is, for a given
number of controlled applications of an operator and con-
fidence level, it gives the smallest width of the confidence
interval. This problem is related to that of window func-
tions in classical signal-processing theory and optimal
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confidence intervals are given by the prolate spheroidal
window. The analysis of the prolate spheroidal window has
been given in Ref. [23] but it is difficult to calculate, so
Ref. [25] gives an analysis of the Kaiser window, which
gives near-optimal results. The use of the Kaiser window
has also been mentioned in Ref. [42, p. 35]. The error for
the Kaiser window is in terms of the sinc function and
so can be calculated with standard mathematical software.
The prolate spheroidal window can also be calculated
using specialist mathematical software.

We will provide both asymptotic results for the cost of
phase estimation using these window functions, as well as
exact expressions using special functions and numerical
results calculated from these functions. For the Kaiser win-
dow, we provide first-order approximations for the error
and cost in Eqgs. (45) and (48), respectively, and higher-
order approximations for the error in Eq. (49) and the cost
in Eq. (50). For the prolate spheroidal window, we provide
a higher-order approximation of the error in Eq. (54) and
for the cost in Eq. (55). We show that although the Slepian
window provides asymptotically improved error, the cost
is the same up to leading order.

A. The Kaiser window

First, we summarize the Kaiser window and its asymp-
totic scaling. The standard form of the Kaiser window is
proportional to

w(x) = I (noc\/l — (x/N)2> , (41)

for |x| < N, and 0 otherwise. As discussed in Sec. [IB 3,
the control state used would correspond to samples of
this continuous window at discrete points. The window
function yields a probability distribution for the error 6
proportional to

sin? (\/(1\79)2 - (mx)2>'

(N0 — (wa)*

(42)

i.e., the square of the Fourier transform of w(x).

A simple approximation for the tail probabilities with
the Kaiser window is given in Ref. [25]. The method used
there is to first approximate the normalization by approxi-
mating the center of the distribution by a Gaussian. In that
approximation, the integral over 6 then gives
/OO sinh’ (@) N2 (rarcothra)—192/(x2a?) g o E

_ Tl AN’/
(43)

The standard choice for the half-width of the confidence
interval is (;t/N)+/1 + «?2. Later, we will adjust this width
slightly to obtain improved performance, taking the half-
width to be (;r/N)+/A2 + 2 for an adjustable parameter

A. With the standard choice of the width, the tail prob-
abilities can be approximated by replacing sin® with 1/2
and integrating from the first zero at 0 = (7 /N)+/1 + a2
to give

__ InQa)
" aNa

o 1
f(n/zv)\/1+a2 [N262 — (ma)?] . @9

Dividing by the approximation for the normalization in
Eq. (43) then gives

§ ~ 4InQa)/a e 2. (45)

Therefore, to obtain confidence level 1 — § (so that the
probability of error outside the range is &), we take

In(1/8) ~ 2w — In[4 In(2)/ex]. (46)

Solving for « then gives the approximation
1 1
a~—In(1/8) + — In(81n(4/8)/m)
2 4r
1
+ = In[In(In(4/6)/m)]. 47)
T

The size of the confidence interval is (r/N)+/1 + &2, so if
that needs to be €, we should take

1
N=2Vlta2= 52 In(1/8) + O(e ™ InIn(1/2)).
€ €
(43)
The order In In term for « is larger than the correction term
for approximating +/1 + o by «.

In Appendix D, we show how to use the properties of
Bessel functions to derive higher-order terms, yielding

8 = 4C Jae 2™ [1 o + O(az)} , (49)

16

where C, = In(2a) 4+ Ci(2w). The expression for N is
then

N = ZW _ In(1/8) n In(81n(4/8)/m)
€

2¢ 4e
1 ) InIn(1/6)
+ % In[Ci(27) + In(In(4/8) /7)1 +O (W) .

(50)

To this order of approximation, +/1 + «? ~ « and the
correction is in the order term above.

Alternatively, using (7t /N)+~/ A% + a2 for the half-width
of the confidence interval gives

E) :4CaAﬁe—2na 1 —
’ lora

SN + O(a‘z)i| , (5]

where Cya = In(2a/A) + Ci(2r A). This asymptotic
approximation indicates that the asymptotically optimal
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choice of A is 1, so does not yield a distinct expansion
for N (for further details, see Appendix D).

B. The prolate spheroidal window

For comparison with the optimal window, the error is
given in Ref. [23, Eq. (13)] as

8§ =4ymce [1 3 + O(cz)] . (52)

32¢

We obtain a correction term of 7/16¢ rather than 3/32¢
and have verified it through numerical testing. The result
in Ref. [23] has been derived from an expression given in
Ref. [22] that appears to be incorrect. In the case n = 0,
Ref. [22, Eq. (4.4)] gives

§ = 4/mce ¢ |:1 — i 389

— ==+ 0cH|. (53
320 o TOC )] (53)
By repeating the derivation as given in Ref. [22, p. 138],
together with some further analysis, we obtain

7 91 2657
_ —2c e —4
8§ =4/mce [1 oo " P2 aba + O(c )i|
(54)

(for the details of this derivation, see Appendix E).

In this expression, the factor of Inc that has been
obtained for the Kaiser window error has been eliminated,
so this error has asymptotically better scaling. According
to the above analysis for the asymptotic expansion for N,
we would obtain

N € In(1/68) N In(87 In(44/7/8))
€ 2¢ 4e

O(lnln(1/8)> . (55)

e In(1/8)

That is, despite the optimal window giving asymptotically
smaller error, the cost N is reduced by only removing
the third term in Eq. (50). That term is triple logarithmic
in 1/8, meaning that the performance is only marginally
improved.

The optimal window is the angular spheroidal function
of the first kind PS¢ (c, z) forz € [—1, 1]. Integrating then
gives (for an explanation of why this integral is used, see
Appendix E)

1
(1 =8)PSp0(c,0) = < / sinc(cz) PSoo(c,z) dz
T J

2c 1 2
= ; PSo,0(c,0) [S(),()(C, DI, (56)

1.05
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1.02

1.01 1

1.00

1.0 1.5 2.0 2.5 3.0 3.5 4.0
c/n

FIG. 11. The ratio of the error for the Kaiser window to that
for the optimal Slepian window as a function of c. For the Kaiser
window, the value of A is optimized to minimize the error.

SO
2c
§=1-— [Sg0(c, DI, (57)

where the function Sé,o (c, 1) is the radial spheroidal func-
tion of the first kind. Thus it is possible to compute the
error in terms of special functions. Various methods are
discussed in Appendix F.

In comparison, the value of N for root-mean-square
(rms) error € is [29]

N~ (58)

N =

That is, to leading order, the expression for N for the con-
fidence interval replaces 7 with In(1/§). For, e.g., a 95%

1071 4
10—3 4
10—5 4
S
—
¢ 1077
10-°
—— corrected second-order
o error for Slepian series
1071 —— error for our series
10! 10?
c/n

FIG. 12. The differences between the various asymptotic
series and the exact error, divided by 4./ ¢ e~2. Results for the
series of Slepian [see Eq. (53)] are shown in orange, our series
in Eq. (54) is given in green, and results with just the corrected
second-order term are given in blue.
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confidence interval, In(1/§) is less than 7 but calculation
using the exact expression in Eq. (57) shows that the com-
plexity is about 63% larger than for achieving rms error
€. For a 90% confidence interval, the complexity is only
about 35% larger than for achieving rms error €.

Next, we numerically compare the error outside the con-
fidence interval for the Kaiser window versus that for the
optimal window. According to the above asymptotic anal-
ysis for the error, the ratio of the errors should increase
with ¢ and we find that this occurs even optimizing for A.
We show the ratio in Fig. 11 and it is very close to 1 for
¢ = m, and increases to be about 5% larger for ¢ = 4.

We now test the series of Slepian compared to the one
we have given in Eq. (54). In Fig. 12, we take the difference
between the exact error and the asymptotic approximations
divided by 4,/ c e~2¢. It can be seen that our expression is
far more accurate. A significant improvement is provided
by correcting the second-order term, with further accuracy
provided by the third-order term.

V. THE SAMPLING METHOD

A. Asymptotic approximations

When we are performing phase estimation on a block-
encoded Hamiltonian, the Hamiltonian is encoded as H /X
and the eigenvalues of the corresponding qubitized opera-
tor are d=e®aesin(Ex/%) for eigenvalues E; of H. This means
that restricting the error to < €/A for the phase estimation
means that the error in E}, is no more than €. In the follow-
ing, we denote the ground-state energy by Ey, so we aim
to have an estimate in the region [Ey — €, Ey + €]. Then,
the number of queries for phase estimation with either the
Kaiser or Slepian window becomes, to leading order,

A
5o In(1/8) + O((/€) InIn(1/5)). (59)

If we take the amplitude for the ground state to be y and
p = y?, then the probability of failing to have the ground
state once in sampling the energies n times is (1 — p)" &~
e P". If we want the probability of failing to be less than ¢,
we would need to take

n~ (1/p)In(1/q). (60)

If we are taking the minimum result for the eigenvalue,
then the probability of the error in that measurement result
being outside the € interval is now bounded by nd. This
suggests that we should divide § by » in order to obtain
an appropriately bounded error probability. However, the
importance of the errors is asymmetric. If the measurement
corresponds to an excited eigenstate but the measurement
error yields an estimate of the energy that is exceptionally
low, then that estimate could be taken to be the smallest out
of all samples, yielding an inaccurate result. On the other

hand, if the measurement error gives an estimate of the
energy that is exceptionally high, then it is far less likely to
be taken as the smallest estimate out of all samples. This
means that the measurement errors in each direction need
to be quantified differently.

To do this, let the confidence level for each individual
estimate of the phase be 1 — §, so that the probability of
error on one side is §/2. That is because we are choos-
ing a measurement technique where the error distribution
is symmetric. Given squared overlap with the ground state
p, then for each estimate there is probability 1 — p of it
corresponding to the wrong eigenstate, and p§/2 of it cor-
responding to the correct eigenstate but the true eigenvalue
being below the confidence interval on the lower side (so
that the estimate is too large). We will group these possibil-
ities together as a “high” error, which has total probability
1 — p(1 — §/2). The probability of there being high errors
on all n samples is then [1 — p(1 — §/2)]".

The probability of a “low” error outside the confidence
interval is /2 for any individual measurement, so the
probability of any low error occurring in the » samples is
1 — (1 —8/2)". Note that it is possible for measurements
corresponding to excited states to give a low error that is
still not below the desired confidence interval for the mea-
surement of the ground state. The above estimate does not
take that into account and so is a fairly loose upper bound
on the error. Our total upper bound on the error is then the
left-hand side of

[1-pd—=6/D]"+1-0-68/2)"=4q. (61)
Given an allowable error ¢ (confidence level 1 — ¢ in the
final estimate), we can then solve for 4.
The overall complexity will then be approximately

A
2% In(1/8), (62)
2¢
with § as chosen by solving Eq. (61) and n chosen as at
least (1/p) In(1/g), resulting in a total complexity

Lln(l/q) In(1/9). (63)
2pe

For any specific example, we can tweak the value of n in
order to minimize the overall complexity. As an example,
letus consider y = 0.1 sop = 0.01 and require a 95% con-
fidence interval so that ¢ = 0.05. In this case, we have the
factor nIn(1/8)/2 as a function of n shown in Fig. 13. That
is, this is the factor in the complexity that is multiplied by
A /€ to give the overall complexity. Here, it can be seen that
the optimal value of n is 325, which is moderately above
(1/p)In(1/g) = 300. Note that this choice of the optimal
value of 7 is independent of A and €.

We can further develop asymptotic approximations for
the solutions in the case of small p and ¢ to estimate the
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FIG. 13. The factor in the complexity as a function of »n for

p = 0.01 and g = 0.05, with § obtained by solving Eq. (61). The
blue curve is the approximation » In(1/8)/2, the orange curve is
the factor nir+/1 + a2 for the Kaiser window, and the green curve
is nr+/ A% + o? with A = 0.3239.

optimal values of #n and §. First, we linearize Eq. (61) to
give

1)
(1—p)" + 7”[1 +(=p)'plag (64

Solving for § then gives

%2 g— A —=p)

RNy (©

If we expand § to second order, then we obtain the next
term in the expansion,

L2 a-10=-p"
nl+{1—-p)y'p

m=DO-A=-p2
I’lz[l + (1 _p)n_lp]3 (q (1 P) ) . (66)

Up to terms that are smaller by factors of g or p, we can
give

n N n
2lg— (A =p)]  2(g—e)’

where p = —In(1 —p) =~ p.

Next, given the solution for §, the task is to choose n
to minimize n In(1/8). Let us first consider this expression
with only the leading order in the solution for §, which is
(ignoring the factor of 2 for the moment)

n

The higher-order terms in the solution for § will result in
corrections that are at least a factor of ¢ smaller and so

o

! 67
3 (67)

can be safely ignored in the following analysis where the
terms in the expansions are significantly larger. Taking the
derivative with respect to n gives

o
ALy & . (69)
T T

Setting this to zero and rearranging gives

h=g—1Ing, (70)
where
e "np
§= " (71)
q—e
h=1+np—1n2p). (72)

We can then solve for g as a series in /4 as

logh 2Inh—1In*h
~h+Inh
g~ h+Inh+ + o
6Inh—9In’h+21In*h In* h
ol— ). @3
+ 613 + h (73)
Now ¢ can be given in terms of g as
o
g=em 412 (74)
g
We can then rewrite this as
1
nQ2/q) =np—In(=+22), (75)
2 2g

By substituting a series for g in terms of / and inverting to
obtain a series for np, we obtain

B 0o+l _30-1
np = In(2/q) 21n(2/q) <1 41n(2/q)
_5+4Q—7Q2>+O< o > (76)
121n%(2/q) n*@2/q)/)’

Q :=In(In(2/9)/2p). (77)

The difficulty with using this expression is that the succes-
sive terms are not smaller if Q ~ In(2/g). That will be the
case if ¢ > p. This expression does give accurate results if
q is small compared to p.

A more accurate approximation may be given by

~ 0+ 30— 1
np =InG/o) =3 50 (1 41n(2/q)
P B0-0) oL oy
481n*(2/q) In*(2/9)

Using this expression with p = 0.01 and ¢ = 0.05 gives
n = 325, close to the true value determined numerically
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[as above, using (nX/2¢) In(1/§) with § found by solving
Eq. (61); see Fig. 13]. This series then gives the leading-
order terms for nIn(1/8)/2 as

_ (1+07
80 In(2/q)

" 10(1/8) = - In(2/g) In [m(z/ q)}
2 2p pq

(0 —D(1+0)?
+ ="
16p1n°(2/q)
(1+ 025+ 100 —70%)
192p In3(2/¢9)

9o
© (p 1n4(2/q>> ‘ 7

For this example, the estimated value using the terms
shown is 1525, within 1.5% of the true value of 1547.
Using only the leading term gives 1634, still within 6%
of the correct value. Note also that using only the leading-
order term for § in estimating the cost affects the result by
very little, less than 0.06% for this example. This justifies
omitting higher-order terms for § in the above analysis. In
contrast, using the approximation p = p affects the result
by about 0.6%, so it is useful to make that correction.

B. Real cost for window functions

Next, we consider the actual cost for the Kaiser and
prolate spheroidal window functions, rather than just the
asymptotic approximation. We can explicitly integrate the
probability distribution for the error in the Kaiser window.
That gives a factor of nw+/1 4 «? rather than n1n(1/8)/2,
with « solved to give error §. The resulting factor is also
shown in Fig. 13. The factor has been increased by about
37% above that for the asymptotic approximation given
above, from about 1547 to 2113. It is also possible to
adjust the cutoff used in the Kaiser window to +/ A2 + o2
for A # 1, which can give improved results. The result for
A = 0.3239 gives approximately the optimal result and is
shown in Fig. 13. Now the constant factor is only increased
by about 29%, to 1998. The accuracy of the asymptotic
approximation is better for smaller g, so ¢ = 0.01 results
in the cost being about 25% above the asymptotic value,
but it would take very small g for the approximation to be
accurate.

The prolate spheroidal window further reduces the cost
but only by a very small amount. The curve is indistin-
guishable from that for optimized A in Fig. 13 and so is
not shown separately. In this case, we find the constant
factor is reduced very slightly to 1997 with n = 320, a
reduction of only 0.06%. This shows that it is possible
to accurately approximate results for the optimal window
using the Kaiser window and adjusting A.

C. Contribution to cost from excited states

We can give a tighter bound on the cost by more accu-
rately accounting for the contribution to the error from
excited states. In practice, there will be a small contribu-
tion to the probability of low estimates of the ground-state
energy E, from excited states. When they are distant from
Ey, there is very little probability of them yielding an esti-
mate of the eigenvalue below the desired confidence inter-
val, and if they are close to Ej, they will also increase the
probability of having a result within the desired confidence
interval.

To gauge the effect, let us consider just a single excited
state with energy e above the ground state; i.e., when
B < 1, the energy is actually within the desired confidence
interval for estimating the ground state. It can be shown
that the error is maximized for a single excited state, so
our analysis for a single excited state is sufficient to bound
the worst case for any spectrum of excited states (see
Appendix G). We denote by §; the probability for the esti-
mate above the confidence interval for the excited state and
by &, that for the estimate below the desired confidence
interval. It will be expected that § < §; + &;, and in typi-
cal cases in which the eigenvalue is much higher than the
ground value, there will be 6; ~ 1 and §, ~ 0.

We can then replace 1 — p for the probability of error
due to the incorrect eigenstate being obtained with (1 —
p)d1; i.e., the incorrect eigenstate is obtained and the esti-
mate is too high. Then, the probability of all n samples
being too high is

[ =p)di +pd/D)]". (80)

Then, the probability of a single sample being too low is
pd/2 4+ (1 — p)d,, so the probability of any of the samples

being too low is 1 — {1 —[pd/2 + (1 — p)&:]}". Adding
together these two probabilities of error then gives

Perr = [P3/2 + (1 _p)él]n

+1-{1-[ps/2+ A =p)&l}". (B
This expression can be expected to be smaller than that
given before, because pd/2 + (1 — p)§; will be smaller
than pé/2 4+ (1 — p).

In numerical testing, we choose values of «, A, and »
without knowing B (the excited-state energy), so the above
error needs to be no greater than ¢ for all choices of 8. That
1s, for our choices of «, A, and n, we need

I?aé(Perr(a: A,n,B) <q. (82)

We choose «, A, and 7 to minimize the cost nw v/ A% + o2
given this constraint. This will result in the total number of
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queries to the qubitized walk operator being

nmwa

ZRVAY a2, (83)
€

The value of P, is determined from «, A, and n by
calculating 8, &1, and §;, using

6= 2/ Prraiser (0) dO, (84)
(N/N)\/A2_+az aiser
o0

81 =/ Pryaiser (6) d6, (85)
(1=B)(/N)A/ A24a? e
—(14+B)(/N)A/ A2 +a?

& Z/ Praiser (60) d6. (86)
—00

The probability distribution for the errors Pri,ise;(0) is
given as in Eq. (42). That is, §; is the probability for an
estimate above the confidence interval and the factor of
(1 — B) reflects the fact that the center of the distribution is
shifted for the excited state. Similarly, there is a shift in the
bound of the integral for §,. In practice, we are interested
in these results for the limit of large N, so the integrals are
taken to infinity and 6 is rescaled by N in the numerical
calculation.

We find that in most cases, the value of P, as a function
of B has two peaks, one for § = 0 and another for § a little
above 2, as shown in Fig. 14. In such cases, we find that
the best results are when both peaks satisfy P = ¢. The
numerical optimization can then proceed by an iterative
process as follows.

choose 7 and initial values of « and A
while change in o, A,and Biax above convergence threshold
ﬁmax = argmaxﬁperr(aa As n, ﬂ)
solve Py (o, A, 1, Bmax) = ¢, Perr(t, A, n,0) = g for @ and A
end while

That is, a choice of 8 is made that maximizes P, and
then o and A are found to solve the two simultaneous equa-
tions Pe = g at both § = 0 and Bpax. Then Bax needs to
be solved for again with the updated values of «, A and this
process is repeated until the values converge. This iterative
solution is performed for a range of values of » to find the
one that yields the minimum value of nr+/ A% + o2

We find that for p = 0.01 and ¢ = 0.05, we can choose
a=1.70116, A =0.074476, and n = 309. These val-
ues minimize the constant factor while keeping the error
below g (see Fig. 14). The constant factor nw+/ A2 + a? is
approximately 1673, so it is significantly smaller than the
results not taking this factor into account, and similar to
the result with the very simple asymptotic approximation

0.051
. 0.031 —— error above the interval
é’ error below the interval
¢ 0.02 1 —— total error probability

0.014

0.00 1 -j

0 1 2 3 4 5 6
B

FIG. 14. The error according to Eq. (81) as a function of 8
with p = 0.01, « = 1.70116, A = 0.074476, and n = 309. The
probability of an error above the interval is given by the first term
in Eq. (81), [p8/2 + (1 — p)é;]", and the probability of an error
below the interval is given by the remaining expression, 1 — {1 —
[p6/2 + (1 — p)é2]}". The total error probability P, does not
exceed ¢ = 0.05.

that we gave first. In testing with multiple excited-state
eigenvalues, the results are no worse than with just one
excited-state eigenvalue, as predicted.

An interesting feature of the results is that the error
is larger for larger 8 (around 2 and above) and then is
smaller for small 8, but with a spike near § = 0. The
reason for this is that as 8 is reduced below 2, there is
greater overlap between the distribution of measurement
results obtained for the excited state and the desired inter-
val [Ey — €, Ey + €] for estimates of Ey. That is, both of
these are of half-width €, so reducing the gap below Be
means that the two regions overlap. This means that mea-
surements of energy for the excited state being within the
desired region are reducing the overall error probability. It
reduces quite quickly, because we are taking the minimum
of the measurement results, and with many samples there
is a high probability of a measurement result on the excited
state being around € below its true energy.

But then there is a separate spike for the error probability
as the gap closes to zero. This is because the measurements
of energy on the excited state now have a significant prob-
ability of being below the desired confidence interval. To
bound the error by g, we need to ensure that the error for
both g = 0 and g around 2 is bound by ¢g. We find that the
best results (in terms of the lowest constant factor) tend to
be those where the error reaches ¢ for both. This is also
illustrated in Fig. 14. It shows that the probability of errors
more than € above the true ground state rapidly approaches
zero as B is reduced below 2, and the probability of errors
that are too low gradually increases. This behavior is for
small p, whereas for p close to 1, the error is less than ¢
for g = 0.
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The method of solution for the prolate spheroidal wave
function is a little simpler, because there is one fewer
parameter to optimize, with o and A replaced by c. In this
case, rather than the optimal solution having P, = ¢ for
both § = 0 and a second value = Bmax, there is a sin-
gle maximum. Then, instead of solving o and A for two
simultaneous equations as for the Kaiser window, we sim-
ply solve for ¢ such that P, = ¢ at the single maximum;
1.e., for each n, find ¢ that solves

m/;lX P (c,n, B) =¢q (87)

and then choose the value of » that gives the minimum of
nc with this solution.

It turns out that for the smaller values of p, use of the
prolate spheroidal wave function gives worse results than
the Kaiser window. This is surprising, since the prolate
spheroidal wave function is optimal for just a single phase
measurement. For this example, we find that the perfor-
mance is optimized for n = 318 and o = 1.71229, where
the constant factor is about 1711, or 2% worse than for
the Kaiser window. To see why, consider the same param-
eters as for the Kaiser window, with 8 = 2.12103. We
then find that most of the probabilities are the same but
8, is significantly lower for the Kaiser window. It is about
0.0000184942, versus &, ~ 0.0000336569 for the prolate
spheroidal window, which is about 82% larger.

This is very significant in this case with small p, because
it contributes to the chance of the excited state yielding an
estimate of the energy that is too low. In this case, with the
prolate spheroidal wave function, the probability of an esti-
mate that is too low with the excited state is only about 1/5
that for the ground state. Since the excited state is about
100 times more common in this example, that is a signifi-
cant contributor to the error. In contrast, the Kaiser window
more strongly suppresses the tails, so estimates that are too
low coming from the excited state are less of a problem.
Again, the behavior is different for p close to 1, where the
prolate spheroidal window provides better performance.
That is because there are few repetitions, so the effect of
the contribution to the error from 8, being amplified by
repetitions is less.

VI. THE BINARY-SEARCH APPROACH

In the previous sections, we have focused on estimating
the ground-state energy by directly reading off the energy
samples from the quantum phase-estimation algorithm and
taking the minimum among these samples. As shown in
Eq. (60), the number of samples needed scales as O(1/p).
This is, however, not the optimal scaling. As shown in Ref.
[26, Theorem 8], one can improve the dependence on p to
O(1//p)- In this section, we will propose a method based
on Ref. [26] and incorporating the window functions to
reduce the resources needed in practical implementation.

We also show numerically that this method is beneficial
when p < 1073, Henceforth, we will refer to this method
as the binary-search approach.

A. From the fuzzy-bisection problem to amplitude
estimation

From the previous sections, we can see that in a single
run of the QPE algorithm, in order to ensure that the phase
error is below n with probability at least 1 — §, the query
complexity is given by a function Q(#,§), which in the
case of the Kaiser or Slepian window scales as

1
O,8) ~ —1In(1/8) (88)
27

for small 7 and §, according to Eq. (50). In this notation,
we use 7 for the phase-estimation error to distinguish it
from the error € for estimation of eigenvalues. We will use
this expression in our computation of the asymptotic com-
plexity of the binary-search approach but in numerics we
will numerically compute the function Q(n,5) in a more
accurate manner.

In the binary-search process in Ref. [26], we gradually
shrink an interval [A;, Az] in which the ground-state energy
is located. In particular, in the last search step, in order to
estimate Ay to € precision, we have A; and Ag such that
AL < Ag < Ag, with A — A7 = 3€. We want to distinguish
between two cases:

1 2 2 1
)»() > _)\L + —)LR or }\0 < —)\.L + —}\.R.

&9
3 3 3 3 (89)

If%AL + %)»R <Xl < %)»L + %AR, then we can output any-
thing. Solving the problem of distinguishing the cases will
give us an interval [A]Y, AF™] 3 A of size 2¢. That inter-
val corresponds to an estimate of Ay up to € error. We call
this problem the fuzzy-bisection problem.

Because arccos is monotonically decreasing in [—1, 1],
we only need to distinguish between

Ao AL+ 2Ag
arccos [ — | < arccos [ ——

A 3

Lo 2A1 4+ Ag
arccos [ — ) > arccos [ ———— | .

A 3

We then perform QPE with a Kaiser or Slepian window on
W. We denote the phase output by ¢ € [—m,7]. We want
the phase error to be at most

(90)

€ _)\R_)\L

2L 6A

1 2)LL + )“R )hL + 2)\R
< —-{arccoS{ ——— | —arccoS| —— ,
2 3\ 3x

on

with probability at least 1 — §;.
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If arccos(ro/A) < arccos((Ap + 2ig)/3)), then all
eigenvalues et ¥cos/2) of W satisfy arccos(ii/A) <
arccos((Az + 2Ag)/31). Therefore, if

Pl > ¢

1 201 + Ar n AL+ 2Ag

= —|ar _ r _
7 arccos SA arccos 3A ,
92)

then a phase error larger than
- AL+ 2Ap €

— —_ ) = = 93
[0) arccos( T ) Z 5 (93)

must have occurred. This event has probability at most §;.
Consequently,

Pi[|$| > ¢] < §1. (94)

If arccos(ro/A) > arccos((2A, + Ag)/31), suppose that ngﬁ
comes from eigenvalues e3¢0/ Then, it will satisfy

|| > ¢ with probability at least 1 — €. This is because

Z)xL + AR - €
— )= —. 95
arccos( 3k ) ¢ > 7 95)

The phase ¢ comes from eigenvalues e*/2ecos(o/2) yith
probability at least p. Therefore,

Pil|p| > ¢] = p(1 —&)). (96)

We therefore only need to distinguish between two cases
in Eqgs. (94) and (96). This is an amplitude-estimation
problem. We define

n =V, n=+pd-2s), (97)

and aim to distinguish the cases in which the amplitude
corresponding to || > ¢ is at most y; or at least y,. We
choose the parameters so that y; < y,. To generate a single
sample of é, we need to run a coherent QPE circuit that
involves

dy = Q(n,81) (98)
queries to W, where n = €/(21) is the allowed phase error.

B. Amplitude estimation with the Kaiser window

From the previous section, we can see that to solve the
fuzzy-bisection problem, it suffices to estimate

A= \/Pt[|¢| > &]. (99)

We will do so using amplitude amplification. If this ampli-
tude can be estimated with error at most (y, — y1)/2, then

we will be able to distinguish between 4 > y, and 4 < y,.
In amplitude estimation, we construct a walk operator W
using the QPE circuit (two applications of it), such that

w |CI>i) — eiiZarcsin(A) |CI)i) (100)
and | D) = %(|<I>+) + |®7)) can be prepared using the QPE
circuit.

With this walk operator 1V, we can then run QPE with
the Kaiser or Slepian window to estimate arcsin(4). We
only need to estimate 4 to precision (y» — y1)/2, which
means that it suffices to estimate the phase 2 arcsin(4) to
precision ¥, — y;. To do this with probability at least 1 —
8, requires running W d, times, where

dy = Q(y2 — y1,62). (101)

For the last search step, we need to use W for a total of

d12dy+1) = 0(57.81) 200z = 7.8 + 1) (102)

times, which in the context of the Kaiser window, and
using Eq. (59), is

A
diQdy, +1) = 2ddr, = —)11’1(1/81)11’1(1/52)
Y1)€

(2 —n
(103)

times, up to the leading order. Note that in 2d; + 1, the +1
comes from preparing the initial state V' |0) for amplitude
estimation (see Ref. [44, Fig. 1]). The number of times we
need to use Uiyt 1S 2d, + 1, which in the context of the
Kaiser window is

1
— In(1/8y).

2d, + 1~ 2d, =
(2 — )

(104)

The value of 8; can be chosen to minimize the cost
as follows. Using the expressions y; = +/8; and y» =
+p(1 —&1), we have a factor in the complexity

In(1/4:)

VA =38) — /&

Approximating /1 — §; ~ 1 and using x = /81, this fac-
tor is approximately proportional to

(105)

In(1
nd/m (106)
N/
Taking the derivative with respect to x then yields
-1 In(1
/x n(1/x) (107)

-
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For this to be zero, we should have

X = ﬁ_x
T In(1/x)°

(108)

Starting with x = ,/p/In(1/y) and then iterating x
(/7 —x)/In(1/x) quickly gives the solution.

C. Query complexity of all search steps

Previously, we have focused on the cost of the last
search step. Here, we account for the costs in all search
steps: the binary search terminates in L = [log; nA/e)]
steps. If we want a final success probability of ¢, we need
8, = g/L. For the number of queries to ¥, we observe that
each search step requires 2/3 of the resolution of the next
step and therefore the query complexity is also 2/3 of that
of the last step. Therefore, the total number of queries to
W is

€ s)@ sy (1424 (2)
Q(ﬁ, 1)( Oy, —v1,8)+ 1) +§+<§> + -

€
=30 (5,81) 2O(y2 =n,8) + 1). (109)
For the Kaiser window, the total number of queries needed
is then

3_*6111(1/51)111(1/52). (110)

2 — 1)

The total number of queries to Uy is the same for each
search step. Therefore, it is

In(1/85). (111)

Y2 — N
We recall that

L~logy,(A/e), & =gq/L. (112)

At the end of the previous section, we have discussed how
to choose 8; by solving an optimization problem, but here
to get a concise expression we will choose a suboptimal §;,
which does not have much effect on the final cost. Here, §;
is chosen to be

8, =p/16 (113)
and then
2 =p(L=8) =/p(L—p/16), y1 =81 = \/p/4.
(114)
Consequently,
2=~ QG/4p. (115)

Substituting these values into Egs. (110) and (111), we can
see that in order to estimate the ground-state energy to

1015,
—— binary search, 0.95
10144 binary search, 0.99
% —— Kaiser, 0.95
£ 100 —— Kaiser, 0.99
QL 1
5 10
&
11 |
5 10
8 1010,
£
= 109,
108,
108 1077 1076 107° 1074 1073 1072
p
FIG. 15. The number of queries to W as a function of the

squared overlap p for FeMoco with A = 306 and € = 0.0016,
using both the binary-search method discussed in this section and
pure QPE+Kaiser window. At p = 0.01, the numbers of queries
using the binary-search method are 571 x 10° and 691 x 10° for
95% confidence and 99% confidence, respectively, compared to
320 x 10° and 587 x 10° using pure QPE+Kaiser window. The
binary-sampling cost is affected very little by whether the Kaiser
or optimal window is used for phase estimation. For the 95% and
99% confidence intervals, the cost is only reduced by 0.04% and
0.06%, respectively. The value of w is chosen to be 1/+/2.

precision € with probability at least 1 — ¢, with an initial
squared overlap of p, we need to use W

A 4 lo A€
8 ln(—> ln( 8322/ )) (116)
Ve \Jp 1
times and we need to use Uy
410 A€ lo A€
32 (A/ )ln( g3/2(A/ )> (117)
3P q

times. Adjusting the shrinking factor yields the slightly
improved result (see Appendix H)

777 (i) In <logﬁ(/\/e)>_
NN/ q

In Fig. 15, we numerically compute the query complexi-
ties of the binary-search method and the direct-sampling
approach, both based on the Kaiser window. The results
suggest that a crossover of the query complexity takes
place between p = 1073 and p = 1072 for 95% and 99%
confidence levels. This agrees well with the estimated
crossover of around p ~ 0.003 based on the constant
factors in the scaling.

(118)

VII. SINGLE-ANCILLA PHASE ESTIMATION

In the previous sections, we have explored phase-
estimation algorithms based on QFT, including the sam-
pling method and the binary-search approach. Recently,

020327-23



DOMINIC W. BERRY et al.

PRX QUANTUM 6, 020327 (2025)

a class of “post-Kitaev”” phase estimation algorithms [17,
19-21,45-47] has been proposed for early fault-tolerant
quantum computers [48]. Similar to the original Kitaev
algorithm [49], many of these algorithms utilize the output
from the Hadamard test circuit. However, what distin-
guishes them from the Kitaev algorithm is the strategy for
choosing the Hamiltonian simulation time and the classi-
cal signal-processing techniques to handle quantum noisy
data. Unlike QFT-based algorithms, these new methods
require only a single ancilla qubit while still achieving
Heisenberg-limited scaling. Furthermore, when the initial
state has a large overlap with the ground state (i.e., the
initial overlap p & 1), the minimal circuit depth can be
significantly reduced to O((1 — p)/€) for a given preci-
sion €, which vanishes in the limit of a perfect initial state
(» = 1). In Appendix I, we demonstrate the core princi-
ples of these signal-processing-based algorithms, using the
recent QMEGS algorithm [47] as an example.

Here, we numerically compare QMEGS [47] and
QPE Kaiser. For simplicity, we only focus on the total
(controlled-)Hamiltonian running time 7iy, of both meth-
ods, which is proportional to the number of queries to W
or the number of non-Clifford gates. Also, instead of using
traditional controlled-/ in QPE and the Hadamard test cir-
cuit, we implement the quantum walk operator in Eq. (9),
which doubles the resulting phase difference.

In our tests for QPE Kaiser, we choose optimal o ~
0.765375 and consider the version that incorporates a
randomly perturbed angle, achieved by adding an extra
(known) phase shift to the phase and correcting for it
during estimation. This random perturbation allows us to
obtain a continuous range of outcomes. Given a fixed max-
imum running time 7i,,, and the number of measurements
Ngpg, the total running time is given by Tioal = Nope X
Timax- When implementing the quantum walk operator, the
maximal phase difference in QPE is 27},,xA for an eigen-
value 1. For QMEGS, we fix 0 = 1 and vary T. Due to the
implementation of the quantum walk operator, the maxi-
mum running time is T, = %max,, |t,| < T/2, while the
total running time is Tiora1 = Y _,, |t 1.

We test both methods in estimating the ground-state
energy of the transverse-field Ising model (TFIM) with
eight qubits and the Hubbard model with four qubits, with
po=0.9 and p; =1 — pg = 0.1, where py is the overlap
with the ground state and p; is the overlap with the first
excited states. For each test, we repeat both algorithms
1000 times with output energy {Ao,,}.%°0. We then com-
pute the half-width €95, of the 95% confidence interval for
the error,

Cos0p = irElf{|{|Xo,n — ol < E}| = 950}. (119)

This serves as an approximation for the exact half-width
of the 95% confidence interval for the error of the

algorithm:

o, = 1 x — < >
cosyo = Inf{P (Ao — Aol < E) = 0.95}, (120)
where X is the estimate output by the algorithm.

In the experiment, we choose Ngpr =2,4,6 and
Nomegs = 40, 80. Before showing the results, we first
summarize two observations:

(1) For both algorithms, when the number of samples
N is chosen optimally, the total cost Ty, for QPE
Kaiser is 50% lower than that of QMEGS. For
instance, when py = 0.9, the error curve of QPE
Kaiser with Ngpg = 4 matches that of the optimal
QMEGS with Nomegs = 40, making QMEGS twice
as costly as the optimal QPE Kaiser with Ngpg = 2,
as shown in Fig. 16.

(i1)) When the optimal number of samples is not avail-
able, as is often the case in real applications in which
po is unknown, the error in QMEGS is more stable
compared to QPE. For example, when py = 0.9, the
cost of QPE Kaiser increases by a factor of 1.5 if
the number of samples Nqpg increases by a factor
of 1.5 (from Ngpg = 4 to Nopg = 6). In contrast, for
QMEGS, the cost increases by only a factor of 1.4
when Nomegs doubles (from 40 to 80), making it
more cost-effective than QPE Kaiser with Ngpg = 6,
as shown in Fig. 16.

We note that the optimal cost of QMEGS is roughly
twice that of QPE, because two Hadamard tests are
required to obtain a single signal estimation in Eq. (I1),
doubling the Tio for QMEGS. It would be interesting to
explore whether additional techniques could be employed
to reduce the noise in the Hadamard test or to gener-
ate a signal estimation directly using a single shot of
controlled-Hamiltonian evolution.

v ~¥- QPE Kaiser N=2
QPE Kaiser N = 4
1021 ' ~—+- QPE Kaiser N=6
) —o— QMEGS N =40
. —® QMEGS N =80
€95%
10—3,
103 104 10°
Ttotal

FIG. 16. QMEGS versus QPE Kaiser for the TFIM-8 model
with po = 0.9 and p; = 0.1. The half-width of the 95% confi-
dence interval is denoted by €gs0, and defined in Eq. (119).
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For the TFIM-8 model, we have rescaled the Hamilto-
nian so that Ay = —1 and A; &~ —0.8154. The results are
summarized in Fig. 16. In terms of Ty, QPE Kaiser with
Nope = 4 performs similarly to QMEGS with Nomegs =
40, whereas QPE Kaiser with Ngpg = 6 performs worse
than the suboptimal QMEGS with Nomegs = 80. For the
Hubbard-4 model, we rescale the Hamiltonian so that
rlo = —1 and A = —0.9767. The result is summarized in
Fig. 16.

VIII. TOTAL RESOURCES FOR GROUND-STATE
ENERGY ESTIMATION IN CHEMICAL SYSTEMS

As previously discussed, a key quantity in the cost of
applying QPE to ground-state energy estimation is the
overlap of the initial input state with the ground-state
wave function. Prior work has investigated overlaps for
simple small molecules [3] and found high overlaps with
product-state wave functions substantially above the low-
p settings discussed in this work. More recently, it has
been shown that in realistic examples of more complicated
molecules, product states can have a small overlap, while
adiabatic state preparation from the lowest-energy mean-
field state can be more costly than the phase estimation
itself, motivating the development of more sophisticated
state-preparation protocols [12]. However, determining an
overlap, or a faithful estimate of it, in problems where
classical algorithms have difficulty computing an accu-
rate ground state (and thus which are of most interest for
quantum applications) is by definition challenging.

In this section, we describe an extrapolation protocol
that allows us to estimate the overlap with the ground state
by extrapolating with respect to the bond dimensions of
two MPS wave functions. Although this extrapolation does
not provide any rigorous guarantees, we provide bench-
mark data to support the procedure (see Appendix K). In
addition, in the most challenging systems, such as FeMoco,
it is not possible to classically determine MPS wave func-
tions with sufficiently large bond dimension to distinguish
between the ground state and nearby excited states. In this
case, under the assumption that the MPS we are prepar-
ing has good overlap with some low-energy eigenstate, we
provide an estimation of the overlap with this eigenstate
and QPE can then be used to resolve the energies of the
different eigenstates associated with the different MPS ini-
tial states. Leveraging these estimates, we account for the
full resources needed for resolving the energy landscape of
competing spin structures in FeMoco.

A. Model generation

In this study, we have employed active-space mod-
els for Fe-S simulations suggested in previous studies
for the Fe,S,, FesS4, and FeMoco iron-sulfur systems
[31,50]. The active spaces for the Fe,S; and FesSy4
models consist of Fe-3d, S-3p, and o-bonding orbitals

between the Fe and thiolate ligands, defined as complete
active spaces CAS(30e,200) for 2Fe(Ill), CAS(54¢,360)
for 2Fe(11I)2Fe(Il), and CAS(52e,360) for 4Fe(III). In this
notation, CAS(ne,mo) indicates the complete active space
with 7 being the number of electrons and m the spatial
orbitals in the active space (with “e” and “o0” labeling
electrons and spatial orbitals). The active-space model of
FeMoco also includes additional Mo-4d and central C-
2s and C-2p orbitals, resulting in a CAS(113e,760) for
4Fe(II1)3Fe(I)Mo(1II).

The energy landscape of ansatz approximations to
FeMoco ground-state wave functions with total spin
S =3/2 is characterized by numerous local electronic
minima. Therefore, obtaining the correct ground state
requires starting from a good initial guess. To achieve
this, we have used a density matrix renormalization
group (DMRG) initialization procedure as described in
earlier studies [28,31] within the implementation in
BLOCK2 [51,52]. For the initial guess in the spin-adapted
DMRG calculations, we have first performed a spin-
projected MPS calculation, initiated by a spin-projected
broken-symmetry determinant. We have explored 35 dif-
ferent spin-projected determinants corresponding to the
broken-symmetry configuration of {2Fe(Il)1, 2Fe(IIl){,
2Fe(I)4, Fe(I){, Mo(IIT)| }, which have previously been
studied using broken-symmetry density-functional theory
in Ref. [53]. The resulting spin-projected MPS has then
been optimized up to a bond dimension of 50.

These initial MPSs have subsequently been optimized
using spin-adapted DMRG calculations, with the bond
dimension increased to 2000. Out of these 35 MPSs, we
have selected the three lowest-energy states at this bond
dimension as example initial states, denoted MPS1, MPS2,
and MPS3. The character of the spin couplings of these
states, as represented by the spin-projected determinants
used to initialize them, is shown in Fig. 17(a). The three
MPSs have been further optimized, increasing the bond
dimension to 7000 for MPS1 and 4000 for MPS2 and
MPS3. In Fig. 17(b), we show the spin-correlation matrix
(S4 - Sg) between metal centers {4,B} of these further
optimized MPSs, which is defined by

Si-Sp= Y SiS5 with (121)

nefx,y.z}

Sh=Y s (122)
ped
L t

5=5 (afraps +afyant) (123)
Ly i

s; = % <apTap¢ - ap¢apT) , (124)
Ly t

s, = 3 (apTapT - apia,w) , (125)

such that p indexes the orbitals local to metal center 4.
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FIG. 17.

MPS2

MPS3

(a) A schematic representation of the metal-site numbering in FeMoco, along with the spin-projected broken-symmetry

determinants used in the spin-projected MPS calculation. Out of 35 broken-symmetry determinants, the three with the lowest DMRG
energies at a bond dimension of 2000 are represented. (b) The spin-correlation matrices for the three chosen MPSs. MPS1, MPS2, and
MPS3 started from the BS1, BS2, and BS3 guesses, respectively, and have converged to different states.

We have used a well-known energy-extrapolation
scheme to estimate the energy errors of these MPSs
[28,54-56]. In the zero-discarded-weight limit, which rep-
resents the exact MPS, the energies are expected to be
86, 109, and 92 millihartree lower than the DMRG ener-
gies of MPS1 (M = 5500), MPS2 (M = 3500), and MPS3
(M = 3500), respectively. We demonstrate linear extrap-
olation to these energies in Appendix K. Because these
three states contain qualitatively different correlations, we
consider these estimates to correspond to different low-
energy eigenstates in the system. In this section, we use
M for the bond dimension for consistency with the litera-
ture on DMRG, in contrast to the notation x used for MPS
preparation.

B. Overlap-extrapolation protocol

Here, we present an extrapolation scheme to pre-
dict the squared overlap between a spin-adapted DMRG
state with a given bond dimension M and the exact
wave function, |(®(M)|®(c0))|*>. For the extrapolation,
we have utilized the following two empirical linear
relations:

log (1= (@] @(00))[) versus (log))?, (126)
tog ([ @) — [(@ )@ (00 [*)

versus (log(M”))z, where M’ < M". (127)

In Appendix K, we show that these linear relations are
satisfied in the Fe,S, system where the exact wave func-
tion for the complete active-space model of CAS(30¢e,200)
is accessible. Building on these empirical linear relations,
here we demonstrate the extrapolation scheme in detail.
Specifically, we show an example of estimating [(®(M =
1000)|®(00))|? for the 2Fe(I)2Fe(I1I) system. The main
objective of this scheme is to accurately determine the
squared overlap using data from MPSs with bond dimen-
sions less than M = 1000. To achieve this, we have first
generated MPSs with bond dimensions of 800, 600, 60,
40, and 20 using a reverse-sweep DMRG calculation. We
have then estimated |(® (M’ = 20)|® (00))|? using the val-
ues of |[(®(M' = 20)|P(M"))|* for M” = 600, 800, 1000
based on the second empirical linear relation of Eq. (127).
We have performed a linear fit of

log ([(@0)| 0" )[* — [(@Q0I®©E)1)

versus (log(M”))2 (128)
to determine the value of [(®(20)|®(c0))|?. In a sim-
ilar fashion, we can estimate |(®(M’')|®(c0))|*> for the
other bond dimensions of M’ =40 and 60. The empty
black triangles in Fig. 18(a) represent the infidelities for
these estimated values using M’ = 20, 40, 60. Each empty
black triangle has been estimated from the blue, yellow,
and green triangles directly below it. In Appendix K, we
discuss the validity of this extrapolation in detail.

Finally, these estimated values have been used to
obtain a linear fit represented by the dotted line in
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FIG. 18. The extrapolated overlap for (a) 2Fe(I[)2Fe(III) and 4Fe(I1I), and (b) FeMoco.

Fig. 18(a), based on the first empirical linear relation-
ship of Eq. (126). Using this line, we have estimated the
value of [(®(1000)|®(c0))|? at the black square. We have
used the same extrapolation scheme to predict the over-
lap for the 4Fe(Ill) and FeMoco systems. For 4Fe(Ill),
we have utilized MPSs with M’ = 20,40,60 and M" =
600, 800, 1000. For FeMoco, we have used MPSs with
M’ = 1000, 1500 and M” = 5000, 5500, 6000 for MPSI
and M” = 3000,3500,4000 for MPS2 and MPS3. It is
noted that we have used MPS1 with M = 6000 for the
overlap estimate although MPS1 with M = 7000 has been
obtained from the DMRG calculation. This was because
the site of the renormalized wave function with M = 7000
differed from the MPSs obtained through the reversed
sweep, making it difficult to compute the overlap. The pre-
dicted overlap values are summarized in Table I along with
the associated state-preparation costs using the unitary-
synthesis techniques described earlier. Note that although
the bond dimensions are on the order of thousands, they do
not require many qubits in the preparation. The dimensions
of 1000, 4000, and 6000 correspond to only 10, 12, or 13
qubits, respectively.

TABLE L.

C. MPS preparation costs versus phase-estimation
costs

With the costs of performing MPS preparation,
extrapolated overlap values, and number of samples
using phase estimation, we are in a position to per-
form resource estimation for the full task of ground-
state energy estimation. The cost of performing block
encodings for two [4Fe-4S] systems and FeMoco are
determined using the tensor-hypercontraction (THC) fac-
torization of the two-electron integral tensor [27] and
double factorization [58] using number-operator sym-
metry shifting described in Ref. [59] on the one-body
and two-body components of the Hamiltonian. For THC
resource estimates, we apply symmetry shifting only to
the one-body component. We provide symmetry-shifted
and nonsymmetry-shifted block-encoding costs along with
high-spin coupled-cluster correlation energies (obtained
using PySCF [60,61]) for a variety of cutoff parame-
ters in Appendix J. For resource estimates, we use the
I-millihartree threshold in correlation-energy differences
(with respect to the nontruncated integrals) previously used

Extrapolated MPS overlaps as the output of the protocol described in Sec. III. The physical dimension of each subsystem

for the MPS is taken to be d = 4, corresponding to {|%), 1), [{),[1!)}. In the case of FeMoco, the overlap is with respect to a
low-energy eigenstate, which may not be the ground state. The Toffoli and qubit counts are calculated using QUALTRAN [57].

System Estimated Bond Spatial MPS Toffolis Qubits
[{{(MPS| )| dimension orbitals

Fe, (I Fe, (1) 0.88 1000 36 42200000 359

Fe4 (IIT) 0.92 1000 36 42200000 359

FeMoco [50] MPS1 0.99 6000 76 1360 000 000 833

FeMoco [50] MPS2 0.95 4000 76 733000 000 682

FeMoco [50] MPS3 0.98 4000 76 733000 000 682
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in Ref. [27]. We find that for all iron-sulfur clusters studied,
the 1-norm value is approximately halved by symmetry
shifting.

For the cost of sampling to obtain the confidence inter-
vals, one could use Eq. (1) but in this high-overlap regime
that expression tends to overestimate the cost. For a
more accurate estimate, one can perform the following
procedure:

(1) For a given number of samples n, solve Eq. (61)
for §.

(2) Given that §, solve Eq. (57) for c.

(3) Take the cost as ncA /€.

This procedure is used for a number of values of » to find
the one that gives the minimum cost. Here, we are using
the prolate spheroidal window, which we find to give the
best performance in the high-overlap regime. In the results
below, we also use the method in Sec. V C to obtain a more
accurate estimate accounting for the excited states. In this
high-overlap regime, it only gives a small correction.

Given these sampling costs, we then use this overhead
multiplied by the block-encoding cost. We then add » times
the MPS-preparation cost to obtain the total complexity.
For consistency with previous studies, we select e = 1.0 x
1073 hartree, although here we are taking this to be the
confidence interval half-width, rather than the rms error as
in previous studies. As a result, the accuracy requirement
is somewhat more demanding, as confidence intervals are
significantly wider than the rms error.

We provide estimates for double factorization (DF) and
denote the corresponding value of A for the block encod-
ing of double factorization by Apg. In our estimates, we
have reduced the value of Apr with a symmetry shift of
(cta/ Z)N N+ (a1 —ay /2)N , where N is the number oper-
ator and o and o, are optimized to minimize Apg. With
this shift, the 1-norm of the effective electron-repulsion-
integral (ERI) tensor depends only on «, which is opti-
mized first subject to the constraint that the ERI tensor
remains positive semidefinite. After o, has been deter-
mined, «; is chosen to minimize the 1-norm of the effective

one-electron part of the Hamiltonian, which depends on
both o) and «;. For THC, the LCU 1-norm X is computed
with a number-operator symmetry shift computed as the
median of {f;}, where the f; are eigenvalues of the one-body
operator being block encoded.

Using these results for A values, we analyze the cost
of Fe-S cluster ground-state energy estimation with 95%
and 99% confidence levels. The total Toffoli and qubit
requirements are listed in Table II. Due to the overlaps
being so high, few QPE samples are needed, only two
in the example of FeMoco. We should note that this
corresponds to only one candidate MPS initial guess corre-
sponding to a specific structure of spin coupling. Including
all the BS-DFT—derived MPS initial guesses considered in
this work would multiply this cost by 35. This number may
be reduced by prefiltering some of the MPS initial guesses
by the DMRG extrapolated energies.

For comparison with the costings given in Ref. [27],
first note that we are using the Li Hamiltonian as from
Ref. [50], whereas Ref. [27] has also considered the Reiher
Hamiltonian from Ref. [62]. The Li Hamiltonian has
higher cost to simulate and it is those costs in Ref. [27] with
which we should compare. The relevant costs to compare
with are therefore the right column in Ref. [27, Table III].
For THC, the Toffoli cost is 3.2 x 10'?, so the estimated
cost here for a 95% interval is about 2.3 times higher. This
factor comes from three main considerations:

(1) Here, we have used symmetry shifting to reduce A
to 781.8, which reduces the complexity by a factor
of about 1.54 as compared to the A in Ref. [27] of
1201.5. For the value of A, see the line for M = 450
in Ref. [27, Table V].

(2) Requiring two samples doubles the complexity.

(3) Requiring the measurements to provide confidence
intervals of half-width € rather than rms error of € is
more demanding, and also increases the cost.

For DF, the estimated cost from Ref. [27] is 6.4 x 10'°,
so the estimated cost for 95% confidence intervals here is
about 1.7 times larger. The reduction in A due to symmetry

TABLEIL. The combined QPE and MPS preparation costs for confidence intervals of half-width € = 1.0 x 1073 hartree at 95% and
99% confidence levels. The QPE costs for FeMoco are calculated using only the smallest 0.95 overlap for MPS2. The abbreviation

“BE” stands for “block encoding”.

System Method A BE Toffolis Qubits QPE cost 95% QPE cost 99%
Fe, (II1)Fe, (11) THC 168.7143 9120 1149 1.33 x 1010 2.45 x 100
DF 154.7362 15545 3111 2.08 x 10'° 3.82 x 10'°
Fe, (11 THC 164.1287 8573 1081 8.37 x 10° 1.67 x 10'°
DF 150.2923 15602 3113 1.39 x 10%0 2.77 x 10'0
FeMoco [50] THC 781.8172 16923 2194 7.27 x 100 1.38 x 10"
DF 582.4211 35006 6402 1.11 x 10" 2.11 x 101
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shifting for DF is more significant than for THC. The value
of A is given in the line for L = 394 in Ref. [27, Table XIV]
as 1171.2, so the improvement in A here is more than a
factor of 2. The other considerations for the sampling cost
for DF are the same as for THC.

IX. CONCLUSIONS

In this work, we have developed improved methods
for ground-state energy estimation via both improved
initial-state preparation and improved filtering of the ini-
tial state. For initial-state preparation, we have developed
an improved method for preparing MPSs. This preparation
has been based on our new technique for synthesizing gen-
eral unitary operations, which improves the Toffoli count
by about a factor of 7 over prior work. We have then used
that to construct an iterative procedure to prepare MPSs
with a substantially reduced complexity. The method for
synthesizing general unitary operations is of independent
interest, as this is a very common task in quantum com-
puting. Moreover, we have found that it may be possible
to further improve the complexity by a procedure inter-
spersing phasing with Hadamard gates. The drawback to
that approach is that we do not have an efficient proce-
dure to determine the phases required, so the unitaries are
restricted to lower dimension (no more than about eight
qubits). In future work, it may be possible to develop more
efficient procedures to solve for the phases, making that a
more viable approach.

For improved filtering, we have proposed two approaches
for ground-state energy estimation, both using quan-
tum phase estimation, the efficiency of which is boosted
through window functions. These window functions have
been chosen to minimize the error in a confidence interval,
as opposed to rms error, which is more commonly con-
sidered. This choice for the phase measurements is useful
as we need to perform multiple phase measurements, all of
which need to avoid large error. The two methods are direct
sampling and a binary search using amplitude estimation.
For both, we have provided both asymptotic expressions
and numerical estimates of the complexity. The advantage
of the binary search with amplitude estimation is that it
provides a square-root speedup in the overlap, although
it has a larger constant factor than the direct-sampling
approach. This means that the direct-sampling approach
is preferable for the case in which the initial guess has
large overlap with the exact ground state, whereas the
binary-search approach is more advantageous in the small-
overlap situation. The asymptotic expressions suggest that
the crossover is at p ~ 0.003, and that prediction is borne
out by the numerics.

Building on the efficient MPS-preparation results along
with the optimal window function analysis, we have ana-
lyzed the cost of refining energy estimates using QPE ini-
tialized with an MPS wave function. In order to determine

total costs for energy refinement in the high-confidence
regime, we have determined the overlap through an extrap-
olation. The extrapolation protocol uses two MPS wave
functions to determine the infinite-bond-dimension over-
lap of a finite-bond-dimension wave function. The extrap-
olation is empirical but is supported in this set of systems
by verifying against true overlaps computed in the smaller
FeS cluster where exact ground states can be found through
large-bond-dimension MPS calculations. In the case of
FeMoco, where the ground-state energy manifold has
many competing spin configurations, we have estimated
the overlap for different MPS initial-state wave functions
that are candidates for different low-energy eigenstates.
The role of QPE in this setting is then to refine the energy
ordering of the states, enabling the determination of the
ground-state energy. Ultimately, due to the high extrapo-
lated overlap, achieving 95% or 99% confidence intervals
only requires two samples from QPE. Improvements to
block encoding the LCU 1-norm through symmetry shift-
ing result in total complexities that are only 2.3 times those
of naive QPE, assuming perfect overlap (and with the less
demanding requirement of rms error €) [27].

The extrapolations and overlaps estimated here provide
a concrete numerical example of a complex chemical prob-
lem in which classical precomputation can be used to
prepare initial states of high overlap, enabling efficient
QPE. As discussed previously [12,13], the degree of quan-
tum advantage can then be evaluated from the relative cost
of classical and quantum refinement from such an initial
state. While the MPS wave functions considered here are
attractive candidates for strongly correlated molecules up
to a given finite size, other types of ansatz and techniques
may also be used, particularly in the study of even larger
strongly correlated molecular problems. In conclusion, our
work has found that algorithms based on preparation of
a classically computed state and QPE provide a practical
approach in real-world examples of challenging molecular
chemistry.
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APPENDIX A: SUMMARY OF NOTATION

Nun The dimension of a unitary operation to be synthesized.

N The dimension of the control register used for phase estimation.

N The number of subsystems in the MPS representation of a state.

N The number operator for fermions.

d The dimension of the subsystems used in the MPS representation of a state.

X The bond dimension for the MPS.

M This symbol is also used in some places for the MPS bond dimension, primarily in Sec. VIII.

P The initial squared overlap of the prepared state with the ground state. It is also used in Sec. VIII as an index of
summation, or in the text without italics to mean the name of an orbital, with the meaning clear by context.

A The block-encoding normalization factor.

€ The allowable error in the energy estimate.

q The confidence level of the desired confidence intervals is at least 1 — g.

8 The confidence level for individual measurements (which are combined to give the overall ground-state energy
estimate) is 1 — 4.

n Primarily used for the number of samples to distinguish the ground state. In some places, # is used for the
number of qubits, or a variable of summation, with the meaning being clear by context.

Glj] Unitaries used in the preparation of the MPS.

/4 The walk operator constructed from the block encoding of the Hamiltonian.

ot Used for eigenvalues of W, and elsewhere as rotation angles used in unitary synthesis, with the meaning being
clear by context.

é An estimate of the eigenvalue of .

Aj Eigenvalues of the Hamiltonian.

Y Amplitudes used in a control state for phase estimation.

r The kernel function describing the error in the phase estimation.

Iy The modified Bessel function of the first kind.

PSo,0 The prolate spheroidal function.

S(l),o The radial spheroidal function of the first kind.

Ci The cosine integral function.

D, The parabolic cylinder function.

9,9, 9 Angles used in rotations for unitary synthesis.

The Hadamard matrix.

A A power of 2 that is chosen to reduce Toffoli costs for QROM.

b The number of bits used in rotations.

A,B,C Blocks of a unitary operation to be synthesized.

U, Ur,V Unitaries generated in the decomposition of the unitary operation to be synthesized.

D,,D, Diagonal matrices generated in the decomposition of the unitary operation to be synthesized.

o The parameter used in the Kaiser window.

A A parameter used to adjust the width of the confidence interval used with the Kaiser window.

c The parameter used in the Slepian window.

o Equal to — In(1 — p) and used in estimating sampling costs.

h Equal to 1 — np — In(2p), and also used in estimating sampling costs.

81,82 In Sec. V, these are the single-sided errors in phase measurements on excited states.

B The excited-state energy is Be above the ground-state energy.

Perr The probability of error in estimating the ground-state energy using a particular sampling scheme.

n Used for the phase-estimation error (confidence interval half-width) in Sec. VI.

0, d) The query complexity (to steps of the walk W) for phase estimation with error n and confidence level 1 — §.

AL, AR Lower and upper bounds on the estimation of an eigenvalue in the binary-search approach.

31,82 Particular choices of § used in the binary-search approach in Sec. VI (distinct from its usage in Sec. V).

Vi, V2 Choices of amplitudes in the binary-search approach.

w A walk operator that encodes the amplitude for phase estimation of ¥ to be above a threshold.

di,ds Numbers of queries to # and V used in the binary search.

w A shrinking factor used in the binary search.

L The number of steps in the binary search, and also a quantity used when referring to Ref. [27].

a,at Fermionic annihilation and creation operators.

|D(M)) An MPS approximation of the ground state with bond dimension M.
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APPENDIX B: COSTING FOR LKS SCHEME

Here, we give a detailed analysis of the cost of uni-
tary synthesis using the method of Low, Kliuchnikov,
and Schaeffer [8]. For the unitary synthesis, the approach
of Ref. [8] is to perform a sequence of K reflections
1 — 2 |vg) (vg| when K columns of the unitary need to be
specified (here, K = x), as well as a diagonal operation
(phases in the computational basis). The reflections are
implemented by a sequence of two state preparations (one
forward and one reverse). In the following description, we
take the dimension to be N,, which need not be a power
of 2, and the number of qubits to be n, so that 2" > Ny,.
The qubits are ordered such that the most significant qubit
is first. The state preparation is applied by the following
procedure:

(1) Perform a rotation on the first qubit to prepare
/Po 10) + /p1|1). This has Toffoli complexity b
for b bits of precision for the rotation, by using a
phase-gradient state.

(2) Use the state of the first qubit to output b bits for
the rotation on the second qubit. Then use that data
to perform a controlled rotation on the second qubit,
and then erase it. There is zero Toffoli complexity
for the QROM on the single qubit and again there is
complexity b for the rotation.

(3) For qubits k = 3 ton — 1, use QROM on qubits 1 to
k — 1 to output a rotation angle. This has complexity

(B1)

Nun
[m—‘ + (Ar — Db,

for the parameter Ay a power of 2 in the QROM. In
Ref. [8], it is assumed that A is taken independent of
k but it may be adjusted to minimize the complexity.
Then there is complexity b for the rotation on qubit
k and erasure of the QROM needs complexity

N
[2/(—“1& + AL

for total complexity

(B2)

Nun Nun /
’Vm—‘ + Axb + [m—‘ + Ak’ (B3)

where Ay and A} may be chosen independently.

(4) At the end, the phases are applied. This requires a
QROM on all n qubits, then addition into a phase-
gradient register, and erasure of the QROM, with
complexity

N, N,
21+ Ab i RS B4

n n

Steps 1-3 prepare a state with real amplitudes and then the
final step applies phases. This final step applying phases
would be applied twice between each of the K reflections.
It is more efficient to combine these phases, so that there
are K reflections by states with real coefficients, and K + 1
diagonal-phasing operations. This procedure is illustrated
for the case of preparation of a state on four qubits in
Fig. 19.

-1

QROM:

QROM,;
QROM
-1

QROM;

FIG. 19.

il e B Kl

An example of the LKS preparation on four qubits. The top four lines are these four qubits and the register at the bottom is

for the data output of the QROM:s (and is b qubits). The initial R, (¢) is step 1 and then the first dashed rectangle is step 2. The second
and third dashed rectangles correspond to step 3 for k = 3,4. The last dashed rectangle is step 4, where ¢ indicates a gate applying

this phase factor using the data stored in this register.
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The complete cost of this procedure, excluding the cost
of the phases, can be given as

n—1

[ Nenb
Zz 2njk+1 ~ 2(1 + vV2)/Nunb. (B5)
k=3

The cost including the cost of the phases is then approxi-
mately 2(2 + V2)/Nanb and so about 1 4+ +/2 ~ 2.4 times
the 24/2Nyyb cost for the improved method in Appendix C.

In the LKS approach for unitary synthesis, each step
uses a forward and reverse preparation of the correct ampli-
tudes, as well as applying the phases. That gives a cost of
2(3 4 24/2)/N,b for each layer, as compared to 24/ Nyyb
for our improved unitary-synthesis method. This cost is a
factor of 3 4+ 2+/2 ~ 5.8 times larger than our improved
method. In this approximation, the cost of the controlled
rotations is omitted but this cost is significantly larger in
LKS than in our improved scheme due to the need to per-
form rotations on all qubits. There is also a larger QROM
erasure cost for the LKS approach. When including these
contributions, our method provides an improvement by
about a factor of 7, as shown in Fig. 9.

APPENDIX C: IMPROVED IMPLEMENTATION
OF STATE PREPARATION

The Toffoli cost of the LKS approach can be sig-
nificantly reduced by combining QROM with Grover-
Rudolph in a new way. We choose a set of numbers m < n
and perform the preparation using the following sequence
of steps:

(1) Prepare the state with the correct amplitudes on
qubits 1 to m by using standard QROM to output the
correct rotation angle for each qubit in sequence.

(2) Output the correct rotation angles for the remaining
qubits, as well as the correct phases for the state,
using QROM on qubits 1 to m.

(3) Perform the sequence of rotations on the following
qubits using data output from step 2 and controlled
SWAPS.

(4) Apply the correct phases for the state using the
QROM output and controlled SWAPs.

(5) Erase the QROM output by measuring in the X basis
and applying sign corrections (the standard QROM
erasure procedure).

Over the entire procedure, we have cost b for rotation of
each qubit, for a total cost of nb for the qubit rotations
to provide the correct amplitudes. In the following, we
will quantify the QROM cost in the procedure. The cost-
ing for the first part can be determined by the following
procedure:

(a) Rotate the first qubit.

(b) Do QROM on the first qubit to output the rotation
angle for qubit 2. This has zero Toffoli cost since
it can be done with controlled-NOTs (CNOTs). Then
rotate qubit 2.

(c) Perform QROM on the first two qubits with Toffoli
cost 2 to output the rotation angle for qubit 3 and
then rotate qubit 3.

(d) For QROM on qubits up to j for rotation of qubit
j + 1, we have cost 2 — 2.

This gives a total cost of

m—1

> (@ -2 =2"-2m. (C1)
j=l1

However, it is possible to further reduce the cost by out-
putting a one-hot unary representation of the binary value
in each step. Then, the extra cost of the QROM on qubits
2toj is 27!, because it corresponds to a sequence of 2/ ~!
SWAPS controlled by qubit j between the 2/ ! qubits in the
one-hot representation of qubits 1 to j — 1 and an addi-
tional 2/~ qubits. Using that approach, the total Toffoli
cost is about half, at

am=t 2, (C2)
For an illustration of this procedure for the case m = 4, see
Fig. 20.

Now for step 2, the cost of QROM on qubits 1 to m
is assuming that a one-hot representation is provided for
qubits 1 to m — 1, so the total QROM cost for steps 1 and
2 is 2™ — 2. Then, for step 3, we have costs as follows:

(a) There is no Toffoli cost to select the register with the
rotation angle for qubit m + 1.

(b) There is a SWAP cost of b to select the correct output
register for the rotation angle for qubit m + 2.

(c) In general, there is a SWAP cost of (2! — 1)b for
the rotation angle for qubit m + ;.

This gives a total cost for these SWAPs as
Y@ —Db=[2""—(n—m+ Dp. (C3)
j=1

The total cost so far for steps 1-3 is then

nb+2"—-242""—m—m+1)]b. (C4
For an illustration of the procedure for steps 2-4 for the
case n = 7, see Fig. 21.

Next, we consider the complexity of applying the final
phase for step 4. Rather than using a separate QROM at
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FIG. 20. An example of step 1 of the improved LKS-style preparation with m = 4 (the initial qubits for preparation). The top four
lines are these four qubits, then below that are three registers for the one-hot unary representation, and then the register at the bottom
is for the data output of the QROMs. “B2U” indicates the binary to (one-hot) unary representation. The first B2U can be performed
with just controlled-NOTs (CNOTs) and two target qubits for the unary (which is why the target is shown as @). The second B2U can
be achieved with controlled SWAPs with a second register also containing two qubits (which is why it is shown as x). The third B2U
can again be achieved with controlled SWAPs, this time between the four qubits in the first two registers used for the unary and the
third register of four qubits. The unary registers are used to output ¢!, ¢?, and ¢1.3 with CNOTs, and no erasure is used because it can be

incorporated in the next output.

the end to output the phases for the various basis states,
we can output these phases together with the final QROM
on qubits 1...m. Then, the cost of controlled SWAPs of the
correct phase into an output register is

[2"7™" — 1]b. (C5)
There is also a cost b for the rotation used for the phase.
This gives a total cost of

2" — 2 4 2" 4 (m — 1)]b. (C6)
The optimal choice of m is then
m=~ (n+logbh+1)/2. (CT

The leading term in the complexity is then +/273p. This is
only about 40% more than the complexity of a single phas-
ing layer. For step 4, the erasure cost for the QROM is, to
leading order, 24/27, which is a smaller contribution to the
complexity. Numerically, we find that it is possible to pre-
pare a state of dimension 2" using three phasing layers, but
this cost is less than half the cost of three phasing layers,
providing a significant improvement.

For the ancilla-qubit usage of this algorithm, there are
2"=1 qubits for the one-hot representation of qubits 1 to
m — 1,2 ~'h qubits for the rotation angle(s) for qubit m +

j (forj =1 to n — m), and then 2"~"b qubits for the final
phase rotations. That gives a total of

n—m
om—l + szflb_i_znfmb — pn—mtly +2m71 —1.
=1
(C8)

Using the choice of m above, the total number of ancilla
qubits is approximately 3+/2"—1h. This ancilla-qubit usage
is approximately 3/ V/2 2 2.1 times that for LKS or three
phasing layers. In the standard form of the LKS approach,
the maximum ancilla-qubit usage of approximately +/2"h
is in the final phasing step. That is also the ancilla-qubit
usage for state preparation via three phasing layers. For
our application, the number of ancilla qubits is less than
used in the block encoding of the Hamiltonian and so does
not increase the total qubit usage of the complete algorithm
with state preparation and filtering.

As an example, consider the case in which n = 20 and
b =16 again. Then, the Toffoli cost via this approach
is 14510. In contrast, the cost of three diagonal-phasing
operations is 30 642, which is a little more than double.
Part of the reason for this is that it is necessary to erase
the QROM multiple times. The cost of the original LKS
approach for preparation would be 35800 Toffolis. As
another example, » = 14 and b = 16 gives a cost for this
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FIG. 21. An example of steps 2, 3, and 4 of the improved
LKS-style preparation with n = 7. The top register is the one-hot
register from Fig. 20 (shown there as three registers) storing the
value of system qubits 1, 2, and 3. The next registers are system
qubits 4 to n = 7 and then the registers below that are data-output
registers. The initial QROM uses the value of that one-hot reg-
ister together with the value in system qubit 4 to output the data
needed for the remainder of the procedure. That is step 2. The
angle ¢j‘-‘ is then used to rotate qubit 5 and then the value in this
qubit is used to SWAP the two possible values of ¢j5, indicated by
the x. This register is shown as a single line for simplicity but
has two subregisters of b qubits each containing the two possible
rotations for qubit 6. We use a similar convention for the regis-
ters with d)f and 6;, with these being composed of four and eight
subregisters, respectively. Similarly for these registers, the x is
used to indicate the controlled SWAPs to place the correct subreg-
ister in the output location. Step 3 is the selection of angles ¢}‘
and rotations on qubits 5, 6, and 7. Then step 4 is the selection of
6;, and the application of this phase indicated by ¢ .

method of 1918 Toffolis, versus 3780 for three layers of
phases or 4446 for LKS.

In our application, the state preparation is used in the
initial step of the MPS preparation, where the dimension of
the state to be prepared is xd. The case x = 4000, d = 4
approximately corresponds to the example with n = 14
above, and for » = 16 the ancilla-qubit usage is less than
1100. Even increasing x to 2'3, which is beyond that con-
sidered in this work, only about 1500 ancilla qubits are
used. In contrast, the qubit usage for the block encoding
of FeMoco in Table II is over 2000. Note that the qubit
numbers provided in Table I are for three phasing layers.
The Toffoli cost of this step in the MPS preparation is less
than the rounding of the Toffoli costs reported in Table 1.

These costings are assuming that the number of basis
states is a power of 2. In the more general case, for QROM
on qubits up to j, assuming a one-hot representation of
qubits 1 toj — 1 there should be

Nun
on—j+1

of these qubits. The number of possibilities to iterate
through for the QROM on qubits up to j is

Nun

If this is an even number, then it is exactly twice that in
Eq. (C9). This means that for each one-hot qubit provided,
a single Toffoli is used together with qubit j to distin-
guish the two cases. The Toffoli cost can alternatively be

expressed as
Nun Nlll’l
on—j | | gn—j+1 |

Alternatively, if the value in Eq. (C10) is odd, then the
maximum value encoded on qubits 1 to j — 1 must corre-
spond to the maximum value encoded on qubits 1 toj. That
is, if the final one-hot qubit provided is equal to 1 (corre-
sponding to the maximum value on qubits 1 toj — 1), we
know the value encoded on qubits 1 to j and no Toffoli is
required. This means that in this case, the Toffoli cost is

Nun | = Nun Nun
n—j+1 | 5 T | on—j | | on—j+1 |”

This means that the additional Toffoli cost for QROM on
qubits 1 to j can be expressed as in Eq. (C11) in either
case. As a result, the total Toffoli cost is equal to

(C9)

(C10)

(C11)

(C12)

Nun
2n—m

—2. (C13)

That is, the Toffoli cost via this iterative process of using
one-hot qubits to store the intermediate results of QROMs
is just the same as the usual form of QROM. Moreover, the
overall cost of the preparation should have leading order
/8Nunb. Tt is also possible to reduce the number of Toffolis
slightly by an in-place binary-to-unary conversion, as in
Ref. [42]. That requires significantly more Clifford gates
and so would likely not be useful in practice.

APPENDIX D: HIGHER-ORDER
APPROXIMATIONS FOR KAISER WINDOW

Here, we show how to use the properties of special
functions to obtain the asymptotic results for the Kaiser
window such as given in Eq. (49). First the integral can be
given, using the Plancherel theorem, as
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in? (,/N202 — )2) i
sin To T
do = = | 13 (a1 =x7) ax. DI
/ N26? — (na)? N /_1 o (FaviT ) ax @b
Ignoring the factor of 1/N for simplicity, this integral can be evaluated as
1
d
%/ Ig (mx\/l —x2) dx = n/ I0 (ray) A4 == %[10(27101)(2 +7lQ2ra)) —a[2Cra)Ly2ra)], (D2)
—1 J1 = y
where Ly and L; are modified Struve functions. Expanding about &« = oo then gives
e 5 129 2655 301035 10896795 961319205 O
A od)? I+ 2470 + 97202 | 2B373g3 | 2197404 2231750, 2297766 @) (D3)
For the integral over the tails, we can use
5 /00 0’ VN2 — 7 2 /°° sin’ V02 — 72>
(r/N) /1402 N292—7T a? _N 142 6 -7 22
2
_/ sin? x _osix
N Jz xJx2 + 7242
1 / 1 —cos2x
TN S =y
_ arcsinh(o) B i *° cos 2x » (D4)
TN« N Jo x/x2+ 722
For the remaining integral, we can use integration by parts to give
o cos 2x i
r xvVx?+ mla?
_ Ci(2x) *© /‘ *©  xCi(2x)
N 2+ 2, (2 + m2a2)32
_ Ci(2m) *  xCi(2x)
Ta it ) eyt
_ Ci(2m) cos(2x) + 2x sin(2x) — 4x2 Ci(2x) 1™ n / ® 3x[cos(2x) + 2x sin(2x) — 4x? C1(2x)]
a1+ a? 8(x% + m2a?)3/? - - 8(x2 + m2a2)5/2
Ci(2m) n 472 CiQ2m) — 1 /OO 3x[cos(2x) + 2x sin(2x) — 4x? Ci(2x)] d
X
V1 + a2 873(1 +«?)3/2 8(x% 4 m2a?)/?
_ Ci2n) + 472 CiQem) — 1 3[(2x% — 3) cos(2x) — 2x(2x% + 3) sin(2x) + 8x*Ci(2x)] 1™
= 7-[\/1+—O(2 87‘[3(1 + 062)3/2 64(x2 + 7.[20[2)5/2 .
/‘OO 15x[(2x% — 3) cos(2x) — 2x(2x? + 3) sin(2x) + 8x4C1(2x)]
. 64(x? + m2a?)%/?
Ci(2n) N 47’ Ci2m) — 1  3[(2n? —3) 4+ 87*Ci(2m)]
T /1 + az 87‘[3(1 +a2)3/2 647T5(1 + a2)5/2
% 15x[(2x? — 3) cos(2x) — 2x(2x% 4 3) sin(2x) + 8x4C1(2x)]
x 64(x? + m20?)7/?

where Ci is the cosine integral. Note that the final integral here is of order « =7, and repeating the integration by parts makes
the remaining integral higher and higher order in «. Dividing by the above asymptotic expression for the normalization
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factor in Eq. (D3) gives, with C, = In(2a) + Ci(27),

_ 5C, (64+79C, — 12872)  5(64 — 323C, — 1287?)
§=4 2ra Cot _ _
Ve |: l6ra 2972 + 287303
195253C, + 128(497 — 99472 + 3847*)  7579195C, — 640(899 — 179872 + 3847%)
B 2197404 - 223 750,5
2131315809C, + 64(6514017 — 13028 03472 + 4733 1847 — 655 3607%)
B 2283 76,6

+ O(a—7)] . (D6)

Retaining the leading-order terms gives the result in Eq. (49).
Given error §, expanding in a series solution for « yields

_ In(1/8) | In(8In(4/8)/m) 1 , Inln(1/8)

The leading-order terms here only differ from Eq. (47) in that there is an extra Ci(2) in the third term, so the previous
approximation given can be expected to be accurate. The expression for NV is then that given in Eq. (50).
The performance of the Kaiser window can be improved by adjusting the width from w+/1 + a2 to w+/A2 + a2 for

some general A # 1. Then, the integral over the tails can be adjusted to

2/°° sin® \/N2¢? — m2a2 dp = 2 /°° sin® \/¢? — 202 b
/N D12 (N?Q? — m2a?) N Jaarra (9P —72a?)
N sin? x i
NNy
_ l *© 1 —cos2x g
N Jaa x2 2
_arcsinh(e/A) 1 (™ cos2x

— —dx. D8
nNa N Jia xx2 + 7202 * (D)

Integration by parts gives

B /‘O" cos 2x e
xa xv/x2 + 2o’
Ci(2x) °° ©  xCi(2x)
T [mh - /m o2 + w222
CiQ2r A) ©  xCi(2x)
TVt @ e Pty

Ci2r/A) c0s(2x) + 2x sin(2x) — 4x2 Ci(2x) 1™ * 3x[cos(2x) + 2x sin(2x) — 4x2 Ci(2x)]
- 7V A2 + a? * [ 8(x2 + m2a2)3/? :|nA " /m 8(x2 + 72a2)3/2 dx
_ Ci@2rA) 472 A% Ci(21) — cos(Qm A) — 2w Asin(2w A)
NN + 8T3(A2 + a2)32
4 /00 3x[cos(2x) + 2x sin(2x) — 4x? Ci(2x)] e
A 8(x2 4+ m2a?)5/?
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Ci2r A) 472 A2 Ci(27r) — cos(Rm A) — 2 Asin(2r A)
AvA gl | 8T (A + a2l
- [3[(2x2 — 3) cos(2x) — 2x(2x% + 3) sin(2x) + 8x4Ci(2x)]T°
64(x2 + m2a?)52 N
B /OO 15x[(2x> — 3) cos(2x) — 2x(2x2 + 3) sin(2x) + 8x*Ci(2x)] 5

A 64(x% + m2a2)9/2
_ Ci@2rA) N 4% A? Ci(27) — cos(Qm A) — 2w Asin(2w A)
NI ET 83 (A2 + 2)3/2

3[2r2 A% —3)cosRr A) — 2 AQmT?A? 4 3)sin(2r A) + 874 A*Ci2m A)]
+ 6415 (A2 + m202)5/2
B /°° 15x[(2x% — 3) cos(2x) — 2x(2x? + 3) sin(2x) + 8x*Ci(2x)] o

A 64(x2 4 m2a2)7/2 ’

(D9)

Dividing by the normalization gives the error as

5= avae |, — 5Con  (64cos@mA) +1287A sin(2mr A) + 79C, o — 12872 A2%)
’ 167 2972

5(64cos2m A) + 1287 A sin(2mw A) — 323C, a0 — 12872A2)

+
137303

195253Cy a + 128[272 A%(79 + 19272 A?%) + (497 — 115272 A%) cos(Rm A) + 2w A(497 — 38472 A?) sin(Rrw A)]
o 219 740/

7579 195C, A + 640[272A%(323 — 19272A%) — (899 — 115272 A?) cos(2m A) — 2 A(899 — 38472 A?) sin(2w A)]
N 2237505

+(’)(oe_6)] , (D10)

where Cy o = In(2a/A) 4+ Ci(2mw A). Retaining the leading-order terms yields the expression given in Eq. (51).
If we take ¢ = w+/A? + «? and expand in a series in ¢, then we obtain

5—1672A%)C,
§=4/c/me [CC,A ! T6 )Ce (D11)
C

[64 cos2m A) + 1287 A sin(2r A) + (79 + 28872 A2 — 25674 A*)C.p — 12872 A%]
B 29¢2
+64(5 — 167T2A2)[COS(27TA) 4+ 27 Asin2r A)] — (1615 + 190472 A% + 12807% A% — 2127T6A6/3)CC,A
7133

64072 A2 — 24
213C3

+ O(c—“)] . (D12)

Retaining just the leading-order terms gives

— 1672 A?
§ = 4C,nv/c/me [1 - % n O(c‘z)] , (D13)

where C, o = In(2c/m A) + Ci(2w A). Now, C, A takes its minimum value at A = 1 but the second term in square brackets
above increases with A. This implies that for ¢ not too large, the optimal value of A will be less than 1, but in the limit of
large c the optimal value of A approaches 1. That is indeed what is found numerically. This also implies that the first terms
for N in terms of € in Eq. (50) are appropriate even when optimizing A. In fact, optimizing A would make the third term
larger, with the improvement only in the higher-order terms. This is because the third term is equivalent to In(C, 4)/2€.
It is more accurate to continue using the third term as given, since the true value of N is reduced when optimizing A, and
using a larger value of C, 4 in this term would make the estimate of N larger.
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APPENDIX E: SLEPIAN EXPANSION

Here, we explain the details of how to derive the higher-
order terms to correct Eq. (4.4) of Slepian [22] for the case
n = 0. In the notation of that work, ¥, ,(x) is a prolate
spheroidal wave function of order m, which is a solution of

2
4oy (X—czxz— " >w=o, El)
1 —x2

for an eigenvalue x,,,. That is, ¥0(x) is alternative nota-
tion for the function PSyy(c, x). Then, for the zeroth-order
case, A, satisfies

1
M) = < / dz o) sinc(ex —2)).  (E2)
1

This means that A, corresponds to the confidence level for
a phase measurement. Since the 1, are given in descending
order, we take n = 0 for the minimume-error solution. In
the notation of Ref. [22], ¢ is the same as we use here, and
there are many other quantities such as P(c), Q(c) that are
used as intermediate steps in the calculation. We will use
those without further definition, as all that is needed is their
values for use in deriving the final result.
We start from Eq. (4.3) of Ref. [22], which is

1 oA,
A OC

2
=" [Yo.(D]. (E3)

According to the expression below Eq. (4.3) of Ref. [22],
[Yoo(1)]* = Njok3. Now, ks is given in Eq. (1.12) of
Ref. [22], as

ky = efcc(l+1)/22(3/+2)/2ﬁp(c)Q(C)‘ (E4)

Now [/ = n — m, as per the expression below Eq. (1.10) of
Ref. [22],and n > m > 0, so withn = 0 we have m = [ =
0. Therefore the expression for k3 simplifies to

ks = 2e /e P(c)O(c). (ES)

For m = 0, we have Q(c) = 1, according to the explana-
tion below Eq. (1.15) of Ref. [22]. The function P(c) is
given in terms of g coefficients in Eq. (1.14) of Ref. [22],
which is

_ltgi/etg/d 4

P(c) = .
Itgi/etgs/c+-

(E6)

The values of g are given as per Ref. [22, Table IV, p. 103],
which have the simplified form for / =m =0

, 24
gl = _?9

. 51840
&= 3

. 857226240
&=~ e

3161221
(E7)

2_ 64
gl - 28:

, 165888
827 3

5 902430720
8= "eom

Next, N(io is given by Eq. (1.16) of Ref. [22] as (taking
[=m=0)

1 3

To provide a further term, we can use Eq. (1.6) of Ref. [22]
(withm =n = 0)

1 joY '
Yoo(x) = Do(xv20) + Y (Z) > A Dy(xv20),

j=1 k==2j
(E9)

where D, (x) is called the Weber function in Ref. [22] but
is more commonly called the parabolic cylinder function
(ParabolicCylinderD in Mathematica). Using that expres-

sion together with the values of 4, provided by the
recurrence relation in Ref. [22] gives

V0,0(0) = ¥,0(0)
3 63 1449

=l - .
6c 3128 g9 T
(E10)

An alternative formula for the normalized form of o (x)
is given by Eq. (8.88) of Ref. [63]. That gives, for the
normalized function,

Voo = (£)"

3 159 8049
x (1-—=—— -
16c  2048¢2 655363

+ 0(6_4)).
(E11)
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Because ¥0(0) = No,oiﬁo,o (0), the normalization satisfies

RO,
Ngo V0,0(0)
=r/c (1 + 2 + — + O(c“‘)) . (E12)

27¢2  28¢3

This gives the extra term not given directly in Ref. [22].
We then obtain

2 2,
= D] = =Nj k3
c [W0,0( )] c 0,013
11 147 3749
— 8./ 2 = _ - -7 _
Tee ( 16c 51282 819283 )
(E13)
Equation (E3) can be rewritten as
d 2 2
—loghg = - 1 El4
i c[lﬁo,o( )], (E14)
and lim._, oo Ap = 1, so
0 5 ,
—loghg = ;[wo,o(l)] dc’. (E15)

Evaluating that integral gives

1985 3749
—logho ~ 4 /mce | 1 -
O8t0 T aVICE ( * 1536 6144c2)
26577 erfc(\/Z_c). E16)
19242

It is appropriate to make the approximation § = 1 — Xy =~
— log Ao, since the difference is of order ce~*. Expanding
an asymptotic series for the erfc function then gives the
error outside the confidence interval as

7 91 2657
8§~ dmce (1 - W) . (E17)

Next, we describe how to derive Eq. (56). In the discrete
case, the probability distribution for the phase error is

- .
o O Sefme . (E18)

nm=—N

In the continuous limit, we replace x = n/(N + 1/2) and
z=m/(N +1/2) and use ¥ = (N + 1/2)0, to give the
probability distribution for the error

1 1 1 )
— | dx / dzf (x)f (z) €727, (E19)
2 J -1
with the convention that the continuous function f(x) is
normalized over the interval [—1, 1]. Then, the integral for

the confidence level is

c 1 1
L/ dz?/ dx/ dz f (X)f (z) €“7
27 J_. -1 -1

1 1
— % / dx / dzf (0)f (2) sinc(c(x — 2)).  (E20)

The solution for f(x) with maximum confidence level
then corresponds to an eigenfunction of the maximum
eigenvalue, so that

1

1-8fkx) = 5 / dzf(z) sinc(c(x —z)). (E21)
-1
In particular, we have
1
(1=8)f(0) = % / dz f(z) sinc(cz). (E22)
—1

We can use this expression for the function f(z) =
PSo(c,z) to give Eq. (56). The function PS¢ o(c,z) is not
normalized to 1, but that is unimportant because it appears
on both sides of the equation and so the normalization
cancels.

APPENDIX F: METHODS OF CALCULATING
PROLATE SPHEROIDAL FUNCTIONS

The prolate spheroidal functions are given in various
mathematical software programs as follows:

(1) In Mathematica, PSq(c,z) is given as SpheroidalPS
[0,0,c,z] and Sé,o(c, 1) is given as SpheroidalS1
[0,0,c,1]. These are normalized according to the
Meixner-Schéfke scheme.

(2) MATLAB gives the discrete prolate spheroidal
sequences (i.e., for finite V) via the function DPSS.

(3) In PYTHON, SCIPY.SIGNAL.WINDOWS.DPSS has sim-
ilar functionality as DPSS in MATLAB. PYTHON
also provides SCIPY.SPECIAL with PRO_ANG! and
PRO_RAD1 for the angular and radial prolate
spheroidal functions, respectively. Unfortunately,
PRO_RADI only outputs nan (not a number) in our
testing, making it unusable.

Very similar results to those obtained in Mathematica
are obtained using DPSS in MATLAB, which is a useful
independent verification. To be more specific, consider the
control state for phase estimation of the form

N

> fmyin). (F1)

n=—N
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Applying a phase shift and taking an inner product with the
phase state gives

1
Nogal: Z fn)e" =9, (F2)
The inner product squared is
N
i(n—m)O’ (F3)

where we have replaced ¢ — ¢3 with 6. The usual con-
vention for phase measurements is to consider a slightly
different normalization convention with a continuous range
of 6 values, so the probability distribution for the error is

Z F)f (mye =7 (F4)

n,m=—

Integrating 6 over [—m, 7] then gives 1.
To obtain the probability in the confidence interval
[—c/(N 4+ 1/2),c/(N + 1/2)], the integral is

1 [e/WN+1/2)

N
oy fmfme "

nm=—N

Z S (m)f (m) sinc (1\5+—1/m;>
(F5)

2w —c/(N+1/2)

zr(N—i- 1/2)

Given f'(n) from DPSS, this expression can be used to deter-
mine the value of § for given N. The function DPSS also
gives 1 — § as an output, which can be used instead of per-
forming the explicit sum. The relative error for the value of
8 estimated with various values of NV is shown in Fig. 22.
It can be seen that the results using DPSS are very accu-
rate, even for moderate values of N. The results for ¢ > 4w
are obtained less accurately, because DPSS gives 1 — § to
double precision accuracy and so cannot give accurate val-
ues for § below about 10~'%. Nearly identical results are
obtained using SCIPY.SIGNAL.WINDOWS.DPSS in PYTHON,
although the function breaks down for N > 2'3.

Note that DPSS is giving the error for a specific value of
N, so the relative errors seen in Fig. 22 correspond to the
difference between using the continuous window and the
sampling of the continuous window for finite N. For phase
estimates of relevance to quantum computing, N would be
well above 2!° and even for that value the relative error
is less than about 0.01%. This difference is less than the
significant figures usually reported for complexities and so
it is reasonable to ignore it in the analysis.

relative error

1.0 1.5 2.0 2.5 3.0 3.5 4.0
c/n

FIG. 22. The relative error for the values of § estimated with
various values of N using DPSS in MATLAB. The lines show the
results using N = 2'% to N = 2'° from top to bottom.

These results can be further checked by determining the
maximum eigenvalue of a matrix. The maximization of
the confidence level in Eq. (F5) corresponds to finding the
maximum eigenvalue of a matrix with entries

c . (c(n—m))
Anm = sinc 5
"IN+ 1/2) N+1/2

for n and m in the range —N, ..., N. The maximum eigen-
value of this matrix can be determined from the spectral
norm. Numerical testing with a range of values of ¢ and
N yields results equal to those from DPSS within numerical
precision.

(F6)

APPENDIX G: COMBINATIONS OF EXCITED
STATES

To show that the probability of error should not be
increased for combinations of excited states with differ-
ent B, let us first consider a weighted linear combination
of excited states, so that §; = s6{ + (1 — s)8’£ and, simi-
larly, 8, = s89 + (1 — )85 for 8¢, 84, 8%, and 83, the values
for the individual excited states. It turns out that the max-
imum error of probability will be for either s = 0 or s =
1. For this result, we use the condition 8, < 1 — §; (for
each of the excited states). This condition is satisfied for
these measurements because 1 — §; is the probability of
the measurement result being less than Ey + € and §, is the
probability of the estimate being less than £y — € (which of
course must be less).

Lemma G1. If P (s) is given by, for n € N,
Per(s) :==[pd/2 + (1 —17)51]n
+1—={1—[pd/2+ (1 = p)&l}",
81 =894 (1 — 5)8%,

8 := 585 + (1 — )83, (G1)
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and 8§ <1—68¢,85 <1—682,p €(0,1),8 < 1, then

max P (s) = max (Pe(0), Per (1)) .
s€[0,1]

(G2)
Proof. 1f there were a larger probability of error for
some intermediate value of s, then we would need the first
derivative of Py (s) to pass through zero (so that there is
a turning point), with the second derivative being negative
(so that there is a maximum). The first derivative gives

dPClT a b n—1
i n(l —p)(&f — 8))[pd/2+ (1 —p)di]
+n(1=p)(5 = )1 = [p8/2+ (1 =)&),
(G3)
so the first derivative being zero implies
b _ ga _ _ n—1
& =87 {1 =[pé/2+ (1 =p)d]} (G4)

8 —8  [p8/24+ (1 —p)& ]!

The conditions 8§ <1 —89 and 8% <1 — 8% imply that
8y > 1 — 6§, which together with p € (0,1) and 6 < 1
gives

pé+ A —p)sy <p+ (1 —p)1—4é),

pd/2+ (1 —=p)s <1—=p§/2—(1—p)d,

1 —[pd/2+ (1 —p)d]>pé/2+ (1 —p)d,

1 —[pé/2+ (1 —p)é]
pé/2+ (1 —p)é

{1 —[ps/2+ (1 —p)s1)"!
[p8/2 + (1 —p)é&i]*—!

(G5)

> 1,

Therefore, if we have a zero derivative, then both the left
and right sides of Eq. (G4) are greater than 1. Squaring the
left-hand side of Eq. (G4) increases it, whereas taking the
right-hand side to the power of (n — 2)/(n — 1) decreases
it, implying that

(6? - 8?)2 U= pd2+d=poly oo
89 — 8% p8/24+ (A —p)si"—=2
Now, the second derivative gives
dzPerT 2/qa b2
-5 = nin— 1) — D*(8¢ — 8b)
x [p8/2+ (1 —p)&i1" >
—n(n— 1)@ — )% — 85)?
x {1 = [p8/2+ (1 —p)&1}" 2, (G7)

which must be positive given Eq. (G6). Therefore, either
there is no turning point for s € [0, 1] or there is a mini-
mum; in either case, the maximum must be either for s = 0
ors=1. |

Thus we find that it is impossible to obtain a larger
error probability by taking a combination of two excited
states. Moreover, this argument shows that it is impossi-
ble to obtain a larger error probability with a combination
of any number of excited states. To see that result, we
can use 47,65 and 8{’,55 to be the probabilities resulting
from disjoint sets of eigenstates. The reasoning is that
8> < 1 — §; holds regardless of the combination of excited
states, because the probability of a measurement result
below Ej + € must always be greater than the probabil-
ity of a result below Ej — €. Thus, for any combination of
excited states, we can always split the set into two such
that one of the subsets gives at least as large a value of
P.... Repeating this process gives a single excited state with
at least as large an error probability. Thus we can obtain
the maximum error probability with a single excited state
and this result upper bounds the error probability for any
spectrum of excited states.

APPENDIX H: FURTHER IMPROVEMENT OF
BINARY-SEARCH APPROACH

1. Optimizing the shrinking factor

In the binary-search algorithm that we have discussed
above, we have shrunk the interval in which Ag is located
by 2/3 in each iteration. This is, however, not the optimal
shrinking factor. If we shrink by a factor of w instead of
2/3 at each search step, then using the leading order in the
asymptotic expression for the Kaiser and Slepian windows
in Eq. (50), we need to use W

1 o A (16
o “200-ne™5
—— p

search steps QPE
4 (10g1/w()»/€))
X In
3Jp q

amplitude estimation

_ 4o A In (i) In (logl/w()»/é))
C3Qew—D(1—w) Jpe \ P q
(HT)

times.

We will explain how we have arrived at the above
expressions. For each binary-search step, the two cases that
we wish to distinguish are now

A > (1 —w)hp +wAhp or Ay < wrp + (1 — w)Ag.

(H2)

020327-41



DOMINIC W. BERRY et al.

PRX QUANTUM 6, 020327 (2025)

If we have eliminated the first case, then the value of Ay is
mapped as

Ar > (1 — w)Ap + whpg, (H3)

with A, unchanged, so the range of values is mapped as
AR — AL (I —w)Ap + wig — AL = w(Ag — Ap). (H4)

The reduction in the range is equivalent if we eliminate

)\.() < a)AL + (1 - w)kR.
We now need phase error at most

QCw—1)(Ag — ) - l [arccos (a))»L + (1 — w)AR>

2 A
((1 — o) + w,\Rﬂ
— arccos .
A
(HS)

At each step the range is shrunk by w, and we start with
Ar — Arp = 2X, so at stepj the error is
Qw — D/ L. (H6)

The number of queries for the QPE circuit is then approxi-
mately, using Eq. (59),

1 4
———— (/oY 'n(1/8)). H7
20— (/@ In1/8) (H7)
Now, the number of steps L is calculated so that
(1/w)rr = €. (H8)

If we sum the above cost over j = 1 to L, then we obtain

1 (1/w)t — 1
20 —1) " 1o-—1

~ @ * n1/s
N 0o D —a) ¢ MU/

In(1/81)

(H9)

To minimize the cost, we therefore aim to maximize 2w —
1)(1/w — 1). That has a derivative of 1/w? — 2, so the
turning point is w = 1/+/2.

Note that an extra factor needs to be taken into account
for amplitude estimation. This is independent of the choice
of w and therefore identical to the case that we have studied
before for w = 2/3, which is given in Eq. (110). With the
parameters y; and y, given in Eq. (114), we thus arrive at
the expressions in Eq. (H1) by multiplying this extra factor
by Eq. (H9).

108 —— binary search, 0.95
2 binary search, 0.99
S 1074 —— Kaiser, 0.95
S Kaiser, 0.99
& 10
—_
o
3 105]
“
o
a 104,
E
3]
2 10
102 4
108 1077 106 1073 1074 103 102
p
FIG. 23. The number of queries to Ui, as a function of the

squared overlap p for FeMoco with A = 306 and € = 0.0016,
using both the binary-search method discussed in this appendix
and a pure QPE+Kaiser window. At p = 0.01, the numbers of
queries using the binary-search method are 3683 and 4457 for
95% confidence and 99% confidence, respectively, compared to
309 and 472 using the pure QPE+Kaiser window. The value of @

is chosen to be 1/+/2.

Optimizing w for Eq. (H1) outside the In In we have w =
1/+/2 and the number of queries is roughly

777\ In (i) In (logﬁ(k/e)> '
vpe  \Jp q

We need to use Uinie

(H10)

log;,,(A/€) x
—
search steps

4 In <logl/w()\'/€)>
3Jp q

amplitude estimation
_ 4logy,,(A/€) In <10g1/w()‘/€) )
3Jp q

times, which is monotonically increasing with respect to w.

In Fig. 23, we numerically compute the complexity in
terms of queries to U, of the binary-search method and
the direct-sampling approach. In this case, the crossover of
query complexity is significantly lower, around p ~ 1074
This is because the binary-search approach uses many low-
accuracy phase estimates, reducing the queries to /' but not
[]init~

(H11)

2. Trading W queries for Uy, queries

We may improve the number of queries to VV slightly at
the expense of queries to Uy,;;. Instead of a uniform failure
probability as in Eq. (112) for amplitude estimation across
all L steps of fuzzy bisection, we may choose a nonuniform
schedule where in the /th step, we choose the failure prob-
ability §;, to be some monotonically increasing function of
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I=1,2,...,L. For instance, let §;» = qo/(L — [+ 1)* for
some constant @ > 1. Then, by a union bound, the failure
probability of amplitude estimation after all L steps is at
most

(H12)

L 00 g

0
E 012 < E ITZ:%C(W):%
=1 =1

where ¢ is the Riemann zeta function, and the last equality
follows by choosing gy = q/¢ (o).

At step [, we perform phase estimation to a precision that
is at least (2/3)! and with a failure probability §, = @ (p).
Subsequently, we apply amplitude estimation to a preci-
sion O (,/p) with a failure probability §;,. The numbers of
queries Cyy and C; . at step / to W and Uy, respectively,
are then

w = 0((2/3), ()OO (/p),812)
1 /2\ 1 1

=0O|l— (=) Inl—|In| — , (H13
(ﬁ<3> n(ﬁ)n<\ﬁ8u)> (1

1 1
C ® o) =0 —1 .
LU = QO (/D). 812) (\/17 II(@))

(H14)

The total number of queries to W across all steps is then

- Ben-o ()
XIX::() (J;“(a)(LJ;lH)a))
-o(Go()(H) )
-0 (e (%)m%))’

which improves on Eq. (118) by a factor of Inln(1/€).
Above, the second line follows from the sum identities

(H15)

1 —x)+x(xrf—=1)

=17
X

_ L+1 Lx—1)+x
a (x—1>2_0< (x—1)2 )

(H16)

le—l(L—lJrl):L(

le[L]

and that (2/3)/In(L — I+ 1) = O(2/3)'(L — 1+ 1)).
Similarly, the number of queries

Uinit 2 : G ,Uinit

)
e (% ZZLl:ln (%) + gln(c(a)(L -+ 1)))
_o (% <ln <%) +2m (L)))
“o(Ln(2)n(n0L))

Note that Cy, , is asymptotically similar to Eq. (H11) but
will have a larger constant factor that grows with «.

(H17)

APPENDIX I: QUANTUM
MULTIPLE-EIGENVALUE GAUSSIAN FILTERED
SEARCH (QMEGS)

Although QMEGS [47] was originally designed for
the simultaneous estimation of multiple eigenvalues, the
algorithm can also be directly applied to estimate the
ground-state energy. In this appendix, we assume quantum
oracle access to a Hadamard test circuit that implements
controlled-Hamiltonian evolution exp(—iHn) for n € Z,
as depicted in Fig. 24. Although the theoretical results
in Ref. [47] focus on the case of Hamiltonian evolution
using rational powers, exp(—iHf) for ¢ € R, these results
can be readily extended to the case of integer powers, as
discussed in Ref. [47, Appendix C]. The algorithm con-
tains two steps—“Step 1. Data generation” (the quantum
part) and “Step 2. Filtering and searching” (the classical
part)—as discussed in the following.

FIG. 24. The Hadamard test circuit is used to estimate
(¥ |W)¥r). The Hadamard gate, denoted by H, is applied to an
ancilla qubit. By choosing either the  or ST operator on the
ancilla qubit, we can estimate the real or imaginary parts of
(Y| W), respectively. In QMEGS, W is often chosen as W =
exp(—iHt), where t € Ror ¢t = nt withn € Z and t > 0.
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Step 1: Data generation. We implement the Hadamard
test quantum circuit as shown in Fig. 24 to obtain the
data set. Specifically, given t € R, we set W = exp(—iHt),
apply I (or ST, with S being the phase gate) on the ancilla
qubits, measure the ancilla qubit, and define a random vari-
able X (or Y) such that X =1 (or Y = 1) if the outcome is
0and X = —1 (or Y = —1) if the outcome is 1. Then,

EX; +iY,) = (Y| exp(—itH) |{) . (I1)

We first generate a set of integer time points {r, =
L2, ] }ff:1 C 7", with {t,} independently drawn from a trun-
cated Gaussian with density

ol 1 2
a(t) = (1 —/ mexp (_2S_T2> 1[(7T,(7T](S)d$‘> So(t)
—oT
1 £
T P <_ﬁ> lo70n(), (12)

where o, T > 0 and Jy is the delta function. For each #,,, we
apply Hadamard tests twice to generate the data set

Each evaluation of X, (or Y,) only requires running the
Hadamard test circuit with 7 (or S*) once at t = t,. The
detailed data-generation process can be found in Ref. [47,
Algorithm 1].

Step 2: Filtering and searching. After generating the
data set in Eq. (I3), we construct the filtering function

N
G©O) = ‘% D Z(t,) exp (i61y) (14)
n=1

and solve the optimization problem to find the approxima-
tion Ag to Ag:

Ap = argmax, ~ Ao.

as)

N

1

~ 2 Z(t) exp (i01,)
n=1

All computations in the second step are performed on a
classical computer, with no additional quantum cost. In
this case, Eq. (I5) can be solved by a brute-force search
over a finite set of discrete points. Since we are only con-
cerned with estimating the ground-state energy, no filtering
is needed. The detailed algorithm for this procedure is
provided in Ref. [47, Algorithm 2].

Dy = {(tn, Z)Y | = {0 X + V)Y, . (13)

APPENDIX J: THRESHOLD ANALYSIS FOR RESOURCE ESTIMATES

In this appendix, we provide data used for determining truncation thresholds for double-factorized and tensor-
hypercontraction representations of the two-electron integrals used in DF and THC block encodings. The phase-
estimation cost is based upon an uncertainty of opga = 1 millihartree, consistent with prior work (allowing for additional
error in other parts of the algorithm). To numerically determine truncation thresholds, we use high-spin unrestricted
coupled-cluster singles and doubles with perturbative triples (UCCSD(T)) as a metric for the correlation energy of
truncated Hamiltonians. All energy differences in the following tables are in millihartree.

TABLEIII.  Analysis of the THC rank versus the accuracy of coupled-cluster singles and doubles with perturbative triples (CCSD(T))
for Fe, S, with (Felll, Felll) oxidation states [31] using a high-spin ny — n = 8 reference for CCSD(T). The CCSD(T) calculations
are performed using UCCSD(T) in PySCF.

ATHC ATHC IV = Vrncll Ecorr — EY,, Cge QPE Logical qubits
60 104.4673 0.1431 3.7846 3903 4.0030 x 108 575
80 105.3320 0.0400 4.9146 4222 43660 x 10° 580
100 105.4446 0.0219 6.9844 x 107! 4414 4.5694 x 10° 581
120 105.5165 0.0124 —1.4958 x 107! 4626 4.7921 x 108 581
140 105.5543 0.0082 —4.2948 x 10! 4951 5.1306 x 108 598
160 105.5910 0.0069 —3.8850 x 107! 5208 5.3988 x 108 598
180 106.0045 0.0070 —3.1358 x 107! 5418 5.6385 x 108 1045
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1. Fez Sz

TABLE IV. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe,S, with (Felll, Felll) oxidation states [31] using
a high-spin ny — n = 8 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The LCU
I-norm A is computed with a number-operator symmetry shift computed as the median of {f;}, where the f; are eigenvalues of the
one-body operator being block encoded.

ATHC ATHC IV — Vrucll Ecorr — Egor (6:] QPE Logical qubits
60 62.7590 0.1431 3.7846 x 10° 3903 2.4048 x 108 573
80 63.6236 0.0400 4.9146 x 10° 4222 2.6372 x 108 578
100 63.7363 0.0219 6.9769 x 107! 4414 2.7620 x 108 579
120 63.8082 0.0124 —1.3363 x 107! 4626 2.8979 x 108 579
140 63.8460 0.0082 —4.1996 x 107! 4951 3.1033 x 108 596
160 63.8827 0.0069 —3.8494 x 107! 5208 3.2663 x 108 596
180 64.2961 0.0070 —3.1175 x 107! 5418 3.4200 x 108 1043
200 72.3297 0.0069 —5.5725 x 107! 5621 3.9915 x 108 1047

TABLE V. Analysis of the accuracy of double factorization using the CCSD(T) correlation energy (in mEy,) for Fe,S, with (Felll,
Felll) oxidation states [31] using a high-spin ny — n, = 8 reference for CCSD(T). The CCSD(T) calculations are performed using
UCCSD(T) in PySCF. The results are shown with no shift («; = 0) and with a shift (e, = 0.1).

Oy = 0 o) = 0.1
DF threshold NpF 1V — Vogll [Ecorr — Elyyl DF threshold NpF IV — Vogll [Ecorr — Elyyl
1.0 x 1072 62 0.0473 7.864 1.0 x 1072 62 0.0471 8.250
3.0 x 1073 80 0.0154 8.804 x 107! 1.0 x 1073 80 0.0159 1.606
1.0 x 1073 93 0.0044 2.496 x 107! 1.0 x 1073 93 0.0046 6.849 x 107!
3.0 x 10~ 111 0.0014 1.424 x 107! 1.0 x 10~* 111 0.0014 1.164 x 107!
1.0 x 10~ 131 0.0005 6.639 x 1072 1.0 x 10~* 131 0.0005 4.667 x 1072
3.0 x 1073 152 0.0001 6.824 x 1072 1.0 x 1073 152 0.0001 3.560 x 1073
2. Fe4S4

TABLE VI. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe4S4 with (2 Fell, 2 Felll) oxidation states [31] using a
high-spin ny — ny, = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF.

ATHC ATHC IV — Vrucll Ecorr — Eore CsE QPE Logical qubits
108 271.5315 1.2684 1.9652 x 10! 6888 1.8362 x 10° 937
144 292.3270 0.1294 2.8155 x 10° 7384 2.1191 x 10° 942
180 292.8878 0.0796 1.9821 x 10° 7804 2.2440 x 10° 1081
216 293.5319 0.0431 7.5063 x 107! 8175 2.3558 x 10° 1083
252 293.7534 0.0301 —1.9193 x 107! 8573 2.4724 x 10° 1083
288 293.8331 0.0273 —1.7791 x 10! 9120 2.6308 x 10° 1151
324 293.9603 0.0217 6.7870 x 1072 9590 2.7676 x 10° 1151
360 293.9936 0.0198 2.2911 x 107! 10031 2.8952 x 10° 2110
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TABLE VII. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe4S4 with (2 Fell, 2 Felll) oxidation states [31] using
a high-spin ny — ny = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The LCU
I-norm A is computed with a number-operator symmetry shift computed as the median of {f;}, where the f; are eigenvalues of the
one-body operator being block encoded.

ATHC ATHC IV = Vincll Ecorwr — Ey, Cge QPE Logical qubits
144 166.9151 0.1294 2.8155 x 10° 7384 1.2100 x 10° 940
180 167.4759 0.0796 1.9821 x 10° 7804 1.2831 x 10° 1079
216 168.1200 0.0431 7.5063 x 107! 8175 1.3493 x 10° 1081
252 168.3416 0.0301 —1.9193 x 107! 8573 1.4169 x 10° 1081
288 168.4212 0.0273 —1.7791 x 107! 9120 1.5080 x 10° 1149
324 168.5485 0.0217 6.7870 x 1072 9590 1.5869 x 10° 1149
360 168.5817 0.0198 22911 x 107! 10031 1.6602 x 10° 2108

TABLE VIII. Analysis of the accuracy of double factorization using the CCSD(T) correlation energy for FesS4 with (2 Fell, 2
Felll) oxidation states [31] using a high-spin ny — n, = 16 reference for CCSD(T). The CCSD(T) calculations are performed using
UCCSD(T) in PySCF. The results are shown with no shift (a¢; = 0) and with a shift (e = 0.1).

o) = 0 o) = 0.1

DF thresh. HDF 1V — Vorl |Ecorr — EZ,.| DF threshold HDF 1V — Vorl |Ecor — EZ,|
3.0 x 1073 152 0.0217820 1.223 3.0 x 1073 152 0.0221000 1.444

1.0 x 1073 181 0.0070033 1.579 x 107! 1.0 x 1073 181 0.0070700 3.610 x 107!
3.0 x 1074 222 0.0020602 1.719 x 107! 3.0 x 1074 222 0.0020400 2.576 x 107!
1.0 x 10~* 260 0.0006839 4.648 x 1072 1.0 x 10~* 260 0.0006840 5.879 x 1072
3.0 x 1073 312 0.0002120 6.671 x 1073 3.0 x 1073 312 0.0002130 1.180 x 1072
1.0 x 1073 365 0.0000736 9.582 x 1073 1.0 x 1073 365 0.0000731 1.067 x 1072

TABLE IX. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe;,S4 with Fe-4(IIl) oxidation states [31] using a
high-spin ny — ny = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF.

ATHC ATHC IV = Vrncll Ecorr — E}yy Cge QPE Logical qubits
108 261.8652 1.1938 3.1102 x 10! 6888 1.7708 x 10° 935
144 280.7802 0.1477 7.2471 x 10° 7384 2.0354 x 10° 942
180 282.0736 0.0691 —6.4487 x 107! 7804 2.1611 x 10° 1081
216 282.4604 0.0464 —6.7771 x 107! 8175 2.2670 x 10° 1083
252 282.7991 0.0280 —2.0255 x 107! 8573 2.3802 x 10° 1083
288 282.8973 0.0225 —3.2773 x 107! 9120 2.5329 x 10° 1151
324 282.9653 0.0199 —7.2980 x 107! 9590 2.6641 x 10° 1151
360 283.0203 0.0175 —4.2608 x 107! 10031 2.7872 x 10° 2110

TABLE X. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe4S4 with Fe-4(III) oxidation states [31] using a high-
spin ny — n, = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The LCU 1-norm
A is computed with a number-operator symmetry shift computed as the median of {f;}, where the f; are eigenvalues of the one-body
operator being block encoded.

ATHC ATHC 1V = Vrucll Ecor — E}. . Cge QPE Logical qubits
108 143.1948 1.1938 3.1102 x 10! 6888 9.6833 x 108 935
144 162.1098 0.1477 7.2422 x 10° 7384 1.1752 x 10° 940
180 163.4031 0.0691 —6.4487 x 107! 7804 1.2519 x 10° 1079
216 163.7900 0.0464 —6.8280 x 107! 8175 1.3145 x 10° 1081
252 164.1287 0.0280 —2.0255 x 107! 8573 1.3814 x 10° 1081
288 164.2269 0.0225 —3.2750 x 107! 9120 1.4704 x 10° 1149
324 164.2949 0.0199 —7.2980 x 107! 9590 1.5468 x 10° 1149
360 164.3499 0.0175 —4.2608 x 107! 10031 1.6185 x 10° 2108
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TABLE XI. Analysis of the accuracy of double factorization using CCSD(T) for Fe4S4 with Fe-4(III) oxidation states [31] using a
high-spin ny — ny = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The results are
shown with no shift (¢, = 0) and with a shift (o, = 0.1).

Oy = 0 o) = 0.1

DF threshold NDF IV — Vorll [Ecorr — E}opl DF threshold NpF 1V — Vorll [Ecorr — E}opl
3.0 x 1073 154 0.0228617 1.920 3.0 x 1073 154 0.0228752 2.908

1.0 x 1073 185 0.0075771 6.028 x 107! 1.0 x 1073 185 0.0075597 5.635 x 107!
3.0 x 10~ 226 0.0020788 7.355 x 1072 3.0 x 1074 226 0.0020692 1.129 x 107!
1.0 x 10~ 265 0.0006872 8.432 x 1072 1.0 x 10~ 265 0.0006910 7.745 x 1072
3.0 x 1072 316 0.0002163 7.598 x 1073 3.0 x 1072 316 0.0002147 1.807 x 1072
1.0 x 1072 369 0.0000738 1.080 x 1073 1.0 x 1072 369 0.0000740 3.570 x 1073

TABLE XII. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe4S4 with 2Fe(III)2Fe(Il) oxidation states [31] using a
high-spin ny — n;, = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF.

ATHC ATHC IV — Vrucll Ecor — EZ,, Cge QPE Logical qubits
108 280.7099 0.7869 3.0641 x 10! 6888 1.8982 x 10° 937
144 291.3346 0.1912 5.4497 x 10° 7384 2.1120 x 10° 942
180 293.2292 0.0799 —3.8260 x 10° 7804 2.2466 x 10° 1081
216 293.8136 0.0466 2.2190 x 10° 8175 2.3581 x 10° 1083
252 294.1204 0.0286 1.8563 x 10° 8573 2.4755 x 10° 1083
288 294.2313 0.0206 5.1673 x 1072 9120 2.6344 x 10° 1151
324 294.2698 0.0192 3.0606 x 107! 9590 2.7705 x 10° 1151
360 2943255 0.0168 —7.6609 x 107! 101,031 2.8985 x 10° 2110

TABLE XIII. Analysis of the THC rank versus the accuracy of CCSD(T) for Fe4S4 with 2Fe(III)2Fe(Il) oxidation states [31] using
a high-spin ny — ny, = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The LCU
I-norm X is computed with a number-operator symmetry shift computed as the median of {f;}, where the f; are eigenvalues of the
one-body operator being block encoded.

NTHC ATHC IV — Vrucll Ecorr — E,, Cge QPE Logical qubits
108 155.1929 0.7869 3.0641 x 10! 6888 1.0495 x 10° 935
144 165.8176 0.1912 5.4497 x 10° 7384 1.2021 x 10° 940
180 167.7122 0.0799 —3.8260 x 10° 7804 1.2849 x 10° 1079
216 168.2966 0.0466 2.2190 x 10° 8175 1.3507 x 10° 1081
252 168.6034 0.0286 1.8563 x 10° 8573 1.4191 x 10° 1081
288 168.7143 0.0206 5.1673 x 1072 9120 1.5106 x 10° 1149
324 168.7528 0.0192 3.0606 x 107! 9590 1.5888 x 10° 1149
360 168.8085 0.0168 —7.6609 x 107! 10031 1.6624 x 10° 2108
396 168.8265 0.0174 —3.3251 x 1072 10386 1.7214 x 10° 2110
432 168.8812 0.0082 —3.6832 x 1072 10757 1.7835 x 10° 2110
468 168.9190 0.0073 3.4664 x 107! 11156 1.8501 x 10° 2110
504 168.9603 0.0078 —6.8758 x 107! 11561 1.9177 x 10° 2110
540 168.9765 0.0058 —1.3886 x 107! 12167 2.0184 x 10° 2242
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TABLE XIV. Analysis of the accuracy of double factorization using CCSD(T) for Fe4S4 with 2Fe(II1)2Fe(II) oxidation states [31]
using a high-spin ny — n| = 16 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The
results are shown with no shift (¢, = 0) and with a shift (e, = 0.1).

0y = 0 0y = 0.1
DF threshold npF || V— VDF” |Ecorr — Ejorr| DF threshold npF || V — VD}:” |Ecorr — E:0rr'
3.0 x 1073 152 0.0221358 7.301 x 107! 3.0 x 1073 152 0.0224483 2.619 x 107!
1.0 x 1073 183 0.0069379 2493 x 107! 1.0x 1073 181 0.0070526 6.233 x 107!
3.0 x 107 222 0.0020665 8.187 x 1072 3.0 x 107 222 0.0020752 1.715 x 1072
1.0 x 107 260 0.0006887 4.144 x 1072 1.0 x 10~ 260 0.0006901 1.664 x 1072
3.0 x 1073 312 0.0002146 1.359 x 1072 3.0 x 1073 312 0.0002151 2.107 x 1072
1.0 x 1073 365 0.0000741 4.842 x 1073 1.0 x 1073 365 0.0000736 2.165 x 1072
3. FeMoco

TABLE XV. Analysis of the accuracy of double factorization using the CCSD(T) correlation energy for FeMoco [31] using a high-
spin ny — ny = 35 reference for CCSD(T). The CCSD(T) calculations are performed using UCCSD(T) in PySCF. The results are
shown with no shift (e, = 0) and with a shift («x = 0.1).

o) = 0 o) = 0.1
DF threshold nDF WV = Vorl |Ecorr — EZ,.| DF threshold HDF IV — Vol |Ecor — E%.|
5.00 x 1073 312 0.0578095 2414 5.00 x 1073 312 1.706 0.0580414
2.50 x 1073 344 0.0289546 1.470 2.50 x 1073 344 1.621 0.0289732
1.25 x 1073 394 0.0144793 5.330 x 1072 1.25 x 1073 394 3.872 x 107! 0.0144793
5.00 x 10~ 470 0.0057589 4.048 x 107! 5.00 x 10~* 472 4.500 x 107! 0.0057756
2.50 x 1074 526 0.0028081 6.060 x 1072 2.50 x 10~* 522 6.970 x 1072 0.0028139
1.25 x 1074 589 0.0013772 3.989 x 1072 1.25 x 10~* 585 7.884 x 1073 0.0013765
5.00 x 1073 679 0.0005509 1.028 x 1072 5.00 x 1073 679 7.430 x 1073 0.0005514

APPENDIX K: VALIDATION OF OVERLAP-EXTRAPOLATION PROTOCOL

Here, we show several examples that demonstrate the validity of the overlap-extrapolation protocol for the Fe,S, and
Fe4S, systems. For the Fe,S; system, the exact wave function (®(00)) for the active-space model of CAS(30e,200) is
accessible. We have obtained the exact MPS and other MPSs with several bond dimensions and calculated the overlap
between them. As a preliminary study, in Fig. 25 we show the extrapolations for the three energies using data obtained with
the reverse-schedule DMRG, showing that there is linear behavior of the energy. In Figs. 26(a) and 26(b), we show the
plots corresponding to Egs. (126) and (127), respectively. We can see that both empirical linear relations hold remarkably
well.

However, the exact wave functions for the complete active-space models of the Fe4S4 systems, namely, CAS(54¢,360)
and CAS(52e,360), are not accessible. Therefore, while we are unable to directly confirm the empirical linear relations
for these systems, in Fig. 27 we provide strong evidence supporting the validity of the overlap extrapolation. Each empty
triangle corresponds to |{®(M’)|®(o0))| for each value of M’ = 20,40, and 60, and has been obtained by fitting the
blue, yellow, and green triangles just below it, as discussed in Fig. 18. Based on these |(® (M')|P (c0))| values, we have
applied the linear relation of Eq. (127) to predict the values of [{(®(M')|D (M = 8000))|, corresponding to the empty
circles in Fig. 27. On the other hand, we have obtained the MPS for M"” = 8000 using DMRG and directly computed the
overlaps between this MPS and those for M" = 20,40, and 60, corresponding to the red circles. The excellent agreement
between the red and empty circles provides indirect validation of |(®(M")|®(c0))| for M’ = 20, 40, and 60, indicating
the reliability of the extrapolation.
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FIG. 25. The extrapolated DMRG energy for FeMoco with (a) MPS1, (b) MPS2, and (c) MPS3 with respect to discarded weight,
assuming a linear relationship between discarded weight and energy. The energy differences (AFE) in hartree are represented relative to
the DMRG energy at the highest bond dimension used for each extrapolation, which are —22 140.270, —22 140.249, and —22 140.223
for MPS1 (M = 5500), MPS2 (M = 3500), and MPS3 (M = 3500), respectively.
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FIG. 26. Two empirical linear relations for the Fe,S, system. We demonstrate the first linear relation (a) using the overlap between
MPSs for M’ = [10, 1400] and the exact MPS, while the second linear relation (b) is demonstrated using the overlap between MPSs
for M’ = [20, 60], MPSs for M" = [200, 600], and the exact MPS.
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FIG. 27. Validation of the overlap extrapolation for the FesS4 systems: (a) Fe,(III)Fe,(IT); (b) Fey(IIT). The data from the overlaps
of the MPSs for M’ = 20,40, 60 and M” = 600, 800, 1000, 8000, obtained by DMRG, are represented by the colored dots, while the
data obtained through extrapolation based on the linear relation in Eq. (127) are represented by the empty dots. The close agreement
between the empty circles and red circles demonstrates the robustness of the extrapolation protocol.
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