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Quantum algorithms for ground-state energy estimation of chemical systems require a high-quality ini-
tial state. However, initial state preparation is commonly either neglected entirely, or assumed to be solved
by a simple product state like Hartree-Fock. Even if a nontrivial state is prepared, strong correlations
render ground-state overlap inadequate for quality assessment. In this work, we address the initial state
preparation problem with an end-to-end algorithm that prepares and quantifies the quality of initial states,
accomplishing the latter with a new metric—the energy distribution. To be able to prepare more compli-
cated initial states, we introduce an implementation technique for states in the form of a sum of Slater
determinants that exhibits significantly better scaling than all prior approaches. We also propose low-
precision quantum phase estimation (QPE) for further state quality refinement. The complete algorithm is
capable of generating high-quality states for energy estimation, and is shown in select cases to lower the
overall estimation cost by several orders of magnitude when compared with the best single product state
ansatz. More broadly, the energy distribution picture suggests that the goal of QPE should be reinterpreted
as generating improvements compared to the energy of the initial state and other classical estimates: such
an improvement can still be achieved even if QPE does not project directly onto the ground state. Finally,

we show how the energy distribution can help in identifying potential quantum advantage.

DOI: 10.1103/PRXQuantum.5.040339

I. INTRODUCTION

One of the main contenders for useful applications
of quantum computers is the simulation of many-body
physics, in particular, for quantum chemistry and mate-
rials science. Of special interest is the determination of
ground-state energies, which have broad application [1-9].
Many different quantum methods for ground-state energy
determination have been proposed, ranging from quantum
phase estimation (QPE) and its variants [10—14], to more
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recent developments [15—17]. We refer to these methods
as quantum energy estimation algorithms. Each of these
methods requires a high-quality initial state, where qual-
ity is traditionally understood in terms of the overlap with
the ground state. The quality of the initial state directly
impacts the performance and runtime of any energy esti-
mation algorithm, making it crucial to develop advanced
methods for initial state preparation.

While decisive for the success of quantum algorithms,
initial state preparation is often treated as separate from
the energy estimation algorithm, and has not received as
much attention as other aspects of quantum algorithms in
the literature. A common approach to preparing an ini-
tial state is to take an approximate wavefunction from a
traditional quantum chemistry method and encode it on
a quantum computer. The Hartree-Fock state is the sim-
plest and computationally cheapest choice. Even though
it has been found to have high overlap with the ground
state in small molecules [2,4,18,19], it is seriously lacking

Published by the American Physical Society
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for strongly correlated systems [20], such as molecules
with stretched bonds [18,19,21-24] and more complex
molecules with transition-metal centers [25]. Beyond the
Hartree-Fock state, a variety of methods have been pro-
posed to encode sums of Slater determinants (SOS) [18,
26-29] or matrix product states (MPS) [30,31]. Ground-
state energy estimation was explored using SOS states
obtained from configuration interaction singles and dou-
bles [28], active space methods [19,21,22], and selective
configuration interaction methods [18]. However, the per-
formance of these approaches has mostly not been evalu-
ated or compared beyond small, uncorrelated molecules.

Other approaches that can be categorized as quan-
tum heuristic methods have also been considered widely.
While adiabatic state preparation is likely the most well
known [1,32-35], other heuristics include variational
methods [36—42] and quantum imaginary time evolution
[43—46]. While promising, to date most of these meth-
ods have been demonstrated only for small molecules
[1,23,37—40,42], and suffer from various shortcomings
such as long runtimes, expensive classical optimization,
or costly state tomography. More broadly, the absence
of any guarantee of their success in state preparation is
problematic.

The variety of state-preparation approaches raises the
question of which method is best suited to which situa-
tions. Furthermore, it is not even clear how one should
compare different possible state-preparation schemes for
actual problems of interest. For example, in general, the
overlap with the ground state cannot serve as a practical
metric for comparison or quality assessment since we typ-
ically do not know what the ground state is. These issues
also make it difficult to quantify the total runtime of quan-
tum algorithms and to understand their actual potential to
outperform classical methods. Overall, there is a need for
a framework that encompasses the most powerful methods
for initial state preparation, provides tools to evaluate their
quality, and allows us to make informed statements about
the prospects for quantum advantage.

In this work, we present a complete algorithm for
preparing high-quality states for quantum energy estima-
tion. Our state-preparation algorithm begins with using
quantum chemistry methods to obtain classical descrip-
tions of approximate ground-state wavefunctions, either in
SOS or MPS form. We then introduce a novel quantum
algorithm for preparing SOS states on a quantum com-
puter, with a better cost compared to all previous methods.
This is complemented with resource estimation formulas
quantifying the number of qubits and gates needed for
implementation, both for our new SOS algorithm and for
previously developed techniques for implementing MPS
states [30]. To assess and compare the quality of the sev-
eral candidate states in hand, we develop a methodology
that works based on their associated energy distributions.
These are projections of the candidate wavefunction on the

eigenspectrum of the system Hamiltonian: while obtaining
them exactly is more difficult than computing the overlap
with the ground state, they can be approximated—a task
for which we propose new classical and quantum meth-
ods. Once the state quality is assessed, and the state with
the highest quality as per the energy distribution metric is
implemented, it can also be further refined with the use of
a quantum filtering algorithm. On the basis of our anal-
yses, we find that coarse QPE with postselection—that
is, QPE performed with low precision—generally outper-
forms other filtering methods.

The concept of the energy distribution has utility beyond
state quality assessment. First, it suggests an alterna-
tive interpretation of quantum energy estimation algo-
rithms—not as a means of projecting onto the ground
state, but as a way to improve classical estimates of the
ground-state energy. Second, when QPE is performed,
the energy distribution can help address the problem
of the contribution of higher-energy states towards low
outcome values—what we call the leakage problem in
QPE. We show that this problem can be diagnosed when
the energy distribution is at hand, and can furthermore
be mitigated through quantum refining mentioned above.
Finally, the energy distribution picture can be a guide
towards potential quantum advantage: the amount of low-
energy support of the initial state below a classical target
energy estimate can be a proxy for the likelihood that
quantum energy estimation algorithms can obtain lower-
energy estimates than the classical reference. With this
in mind, we discuss the concept of Goldilocks problems.
By these, we mean energy estimation tasks where the
initial state is neither too good, such that classical meth-
ods cheaply obtain the ground state with high accuracy
(like in a small, uncorrelated molecule); nor too bad, as
in the orthogonality catastrophe regime where even quan-
tum algorithms fail (like with large clusters with multiple
transition metals [25]). These extremes suggest the pres-
ence of an intermediate-complexity system where clas-
sical methods cannot obtain the ground state accurately,
but the approximate ground states they can produce, if
used as initial states, can allow the quantum computer
to obtain the ground-state energy accurately with rea-
sonable cost. Our energy distribution techniques can be
used to search for such problems, which are candidates
for quantum advantage, as we illustrate with numerical
examples.

All of the subroutines discussed above combine to give
an initial state preparation algorithm, which can be applied
for quantum energy estimation in any quantum chemi-
cal system. The complete algorithm, illustrated in Fig. 1
consists of the following steps:

(1) Classical computation of a candidate initial state.
(2) Converting the candidate initial state to either SOS
or MPS form.
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The initial state preparation algorithm consists of the following steps: classical search for a low energy state, conversion of

the state into a standardized form, i.e., SOS or MPS, quality assessment performed based on the energy distribution of the candidate
state, implementation of the highest-quality state on the quantum computer, and quantum refining. The end-to-end procedure results in

a high-quality state prepared on the quantum computer.

(3) Assessing the quality of different candidates through
the energy distribution.

(4) Implementing the highest-quality state from (3) into
the quantum computer.

(5) Quantum refining of the state with an energy-
filtering method.

(6) With the implemented state, execute QPE or any
other quantum energy estimation algorithm.

Using our algorithm, we find that for nontrivial prob-
lems of interest in quantum chemistry such as estimating
ground-state energies of iron-sulfur complexes, by improv-
ing state quality we can reduce the total algorithm cost by
several orders of magnitude, compared to using a single
product state.

The rest of the paper is structured as follows. In Sec. I,
we briefly review the traditional quantum chemistry meth-
ods we use for calculating candidate initial states. In
the following Sec. III, we describe our state-of-the-art
algorithm for implementing such initial states in their SOS
form, as well as a separate way of implementing a state
in the MPS form, providing resource estimations for both
approaches. To assess and compare our candidate states,
in Sec. IV we introduce the concept of the energy distri-
bution, pioneering new methods to estimate the quality
of candidate states. As a case study, we apply our new
techniques to address the QPE leakage problem. Once a
state is prepared, assessed, and implemented, we can use a
quantum algorithm to refine it by filtering out high-energy
contributions, as we discuss in Sec. V. Having described
each step of our algorithm individually, in Sec. VI we
look at the entire pipeline, and showcase numerical experi-
ments that demonstrate the state-preparation algorithm for
different molecules.

I1. OBTAINING CLASSICAL DESCRIPTIONS OF
INITIAL STATES

The initial state preparation algorithm starts from exe-
cuting a traditional quantum chemistry method to generate
a candidate wavefunction. It is likely that the choice of

which method to run is highly situation-dependent, so
we consider a wide variety of techniques, which we now
briefly describe. We also review the concept of electronic
correlation and its implications for choosing a quantum
chemistry method for a given molecule. Experts are wel-
come to skip this section, but concepts from it will be
employed throughout our paper.

Here and in the rest of the paper, we work in the sec-
ond quantized language and represent states with Fock
occupation number vectors. By a Slater determinant we
mean a many-particle product state built by distributing
the available n, electrons over 2N single-particle spin-
orbitals. We will use either spatial orbital occupation
numbers n; = 0, «, B, 2 or spin-orbital occupation numbers
n; = 0, 1, typically ordered according to their Hartree-Fock
energy (increasing from left to right): the choice of whether
orbital or spin-orbital occupations are used will be clear
from context. For example, a generic S, = 0 Hartree-Fock
state is written as [222...200...) in the first scheme and
[1111...100...) in the second scheme, respectively. More
broadly, a generic Slater determinant reads

|WSlater> = |n1,n2,. . "nN> or |n1’n29" -7n2N> . (1)

A. Quantum chemistry methods for obtaining
approximate ground states

The strategies we consider can be split into two groups.
The first includes methods in the configuration interaction
family, building the wavefunction as a superposition of
Slater determinants (SOS). The second includes just one
approach: representing the wavefunction using the matrix
product state (MPS) ansatz, and variationally optimizing
it over a series of sweeps using the density matrix renor-
malization group algorithm (DMRG) [47,48]. We focus
first on methods based directly on the basis of Slater
determinants.

The configuration interaction with single and double
excitations (CISD) aims to prepare a wavefunction of the
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form

[Yasp) = IHF) + Y e IS) + Y di D),  (2)

with singly and doubly excited determinants S;, D; that are
parametrized by CI coefficients c¢;, d;. The coupled clus-
ter with the singles and doubles (CCSD) technique instead
builds a wavefunction of the form

[Weesp) = €172 |HF) 3)

where the excitation operators T 1, T » are single and double
excitation operators parametrized by amplitudes 7> that
connect only occupied orbitals to virtual ones. Both meth-
ods are built on top of the Hartree-Fock reference state
|HF) and are hence termed single-reference methods.

On the other hand, instead of restricting the many-body
Hilbert space in terms of excitations, we can recognize that
in many cases the majority of correlation—the majority of
the difference between different determinants entering the
wavefunction—is restricted to a few orbitals, for exam-
ple, the d orbitals of transition metals or the & orbitals
in organic molecules. The remaining orbitals—say high-
energy virtual orbitals, or deep core orbitals—are merely
spectators, maintaining the same occupancy in all determi-
nants entering the wavefunction. Given this observation,
we could consider a wavefunction ansatz that freezes the
occupancy of those spectator orbitals to zero (for virtual
orbitals) or to doubly occupied (for core orbitals), and
then perform full diagonalization in the remaining, much
smaller Hilbert space. This is the nature of the complete
active space configuration interaction (CASCI) method.
With N spatial orbitals and 1 </ < L < N, we fix the first
I — 1 orbitals to be fully occupied and set the final N — L —
1 orbitals to be unoccupied. Then the wavefunction takes
the form

[Vrcascr) =

§ Cn;,n/+1,...,nL |2a ce 29 nln nl-‘rln AR nL9 09 e

R4 L

,0),

“)

parametrized by coefficients ¢y, ,....,;- CASCI entails
exact diagonalization within the active space of orbitals
{I,I+1,...,L}. While this lets CASCI produce complex
multireference wavefunctions that can have many deter-
minants with similar weights, there are two limitations.
First, the choice of active orbitals is widely acknowledged
to be challenging [49] (although automated approaches
[50,51] are gaining popularity). Second, exact diago-
nalization scales too prohibitively to be useful in non-
trivial molecules. The impact of frozen orbitals on the
CASCI wavefunction could be partially taken into account

with multireference perturbation theory (MRPT), which
is applied on top of a CASCI calculation. The pertur-
bative correction modifies the coefficients ¢, ,, of the
CASCI wavefunction, typically using standard second-
order (Moller-Plesset) perturbation theory. In practice,
MRPT is usually much better at improving the energy
estimate than at improving the wavefunction: largely used
for recovering dynamic correlation energy, it is not capa-
ble of adding multireference character from the nonactive
space states. However, note that, in general, the idea of an
active space may be freely combined with any of the other
techniques described in this section: so while CASCI-style
exact diagonalization within the active space could be too
prohibitive, techniques like selective configuration interac-
tion and DMRG are performant enough to handle a large
active space.

Selective configuration interaction (SCI) methods are
inspired by the observation that for many wavefunctions
of interest, written in the full basis as

|¢SCI) = Z cn1,n2 ..... nyN |nlan27"'9nN>9 (5)

n1,12,.. AN

most coefficients ¢, ,, ..y vanish. The goal is to iden-
tify an efficient way or criterion to search for these
nonzero coefficients. There are a broad variety of meth-
ods in the SCI family [52-58]: among the most recent
approaches that include code implementation are adaptive
configuration interaction (ACI) [53], adaptive sampling
configuration interaction (ASCI) [52,59], and heat-bath
configuration interaction (HCI) [54,60]. In this work, we
focus on HCI [54,60], owing to its open-source nature and
Python interface.

At a high level, HCI starts with an initial collection
of Slater determinants |v;) (or even just the Hartree-Fock
determinant by itself), and finds the ground state in the
subspace spanned by them, namely ‘\Iféo)> = .cilv).
Next, an iterative procedure begins: consider a pool of all
determinants |v;) that are connected to one of |v;) by the
Hamiltonian, meaning the determinants differ by only a
single or a double excitation. Such a determinant |v;) will
be added to the pool only if it satisfies the relatively simple
criterion max;({vi| H |v;) ¢;) > €1, i.e., when the largest
Hamiltonian matrix element between the candidate |v)
and some determinant |v;) from the pool, times the coeffi-
cient ¢; of that determinant in the ground-state expansion,
is above a user-specified cutoff €. (Note that this particu-
lar criterion is unique to HCI: other methods like ASCI and
ACI have different criteria, which could be more useful for
different classes of systems.) Once the new pool is deter-

mined this way, a new ground state ‘\Dél)> is calculated

within this pool, and the process of pool augmentation
begins again. The iterative loop continues until no more
determinants are being added to the pool. The threshold €
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acts as a convergence parameter: setting it very high lim-
its the pool to the original determinants, while continually
decreasing it allows more and more determinants to enter
the pool.

For completeness, we note that there are post-HCI per-
turbative approaches to further refine the energy estimate.
In this work, however, we will employ only the varia-
tional version of the method as described above, as we
are mainly interested in the wavefunction rather than the
energy estimate, and perturbative corrections do not affect
the wavefunction in the HCI implementation we are using.

Finally, we summarize the DMRG approach for obtain-
ing wavefunctions in MPS form. DMRG has proven to
be a reliable, robust, and efficient method for constructing
approximate ground states for a wide variety of molecules
[4,25,61-66]. An MPS can be seen as an efficient way of
factorizing the general N-tensor coefficient ¢, ., of a
Slater determinant series into a product of matrices, whose
size is limited by the bond dimension y [67]. The MPS
wavefunction can be written as

_ ny ny ny
|¢MPS> = Z Al;oq AZ;oqaz "'AN;DtN_l

AN |
RN
X |ny,na,...,08),
ni€{0,a,B,2}, o <x. (6)

This factorization scales polynomially with system size
for a fixed bond dimension [68,69]. Combined with the
DMRG algorithm, it gives a wavefunction-based varia-
tional approach that provably converges to the exact solu-
tion in the limit x — oco. To apply the DMRG method to
molecules, which exhibit inherently nonlocal interactions
between molecular orbitals and do not resemble the spin
chains that DMRG was originally developed for, orbitals
must be arranged along a one-dimensional chain. Ide-
ally, the arrangement is such that it minimizes the amount
of long-range nonzero molecular integrals. The standard
choice is to arrange the molecular orbitals according to
their Hartree-Fock energy; more sophisticated reordering
schemes are also considered [65].

Throughout the paper we will find it convenient to con-
vert between the SOS and MPS formats regardless of the
original method (e.g., CISD or HCI or DMRG) used to
obtain the wavefunction: we describe how the conversion
is done in Appendices A and B.

The diversity of wavefunction forms resulting from dif-
ferent methods presented above means that in practice it is
difficult to compare and evaluate them. To do the compar-
ison, we will use the publicly available software package
Overlapper [70]. On the other hand, this variety suggests
that there are trade offs that could be exploited depending
on the molecule being considered. The strengths and weak-
nesses of different approaches are largely determined by

the amount and type of correlation present in the system,
as we discuss next.

B. Electronic correlations

Correlation energy is the portion of total system energy
that is not accounted for by the Hartree-Fock ansatz. It is
due to Coulomb interactions between electrons.

Strong correlation necessitates the use of additional
determinants in the many-body wavefunction for an accu-
rate description. Depending on the amount of correlation
and its type, different methods might be preferable. Corre-
lation energy is usually partitioned into static and dynamic
types. Each of these has a unique origin, and thus different
quantum chemistry methods will provide different-quality
initial states for each situation.

Dynamic correlation is a consequence of electrons
avoiding each other due to Coulomb repulsion. When elec-
trons approach each other in real space—as when sharing
a spatial orbital—their wavefunctions acquire nonanalytic
cusps approximately e~ ™ due to the Coulomb poten-
tial 1/r divergence. Resolving these cusps with smooth,
Gaussian-type orbitals requires a large basis set, and many
determinants. Dynamic correlation leads to the many-body
wavefunction having one dominant determinant with a
large weight, often the Hartree-Fock state, together with
many small-weight contributions necessary to account for
the nonanalytic cusps. While the weights of these addi-
tional determinants are small, there are many of them:
if they are neglected, such as when using a simple ini-
tial state like Hartree-Fock, large energy errors relative
to the true ground-state energy will result. Fast single-
reference methods such as CISD and CCSD are usually
capable of recovering dynamic correlation energy well,
as they are able to work with a larger basis set and their
single-reference nature is conducive to the task. On the
other hand, scale limitations of CASCI, DMRG, and HCI
make them comparatively worse at recovering this type of
correlation.

By contrast, static correlation arises in the presence of
nearly degenerate eigenstates: in such a situation, multi-
ple determinants with roughly similar weights are needed
for an accurate description of the ground-state wave-
function. Typical situations where static correlation arises
are nonequilibrium geometries, low-spin states of open-
shell molecules (spin-state degeneracy), excited states and
molecules containing transition-metal atoms (due to high
degeneracy of d-type orbitals). In such situations a single-
reference method, such as the Hartree-Fock state or CISD
and CCSD, will not be a good starting point, because fun-
damentally they are both built around a single reference,
which will remain dominant despite optimization. Instead,
a multireference method—one that does not give prefer-
ence to any particular reference—is needed, for example,
CASCI, DMRG, or HCI. In practice, CASCI is strongly
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limited by the active space size; and while MRPT improves
the CASCI energy appreciably through adding dynamic
correlation, it provides only minor improvements to the
wavefunction itself, which is the object of interest in quan-
tum algorithms. This leaves DMRG and HCI as the leading
contenders. DMRG can boast polynomially efficient repre-
sentation of even strongly multireference states and rela-
tively straightforward convergence with bond dimension;
by contrast, HCI’s lower computational demands make it
easier to run calculations for larger spaces, without sac-
rificing accuracy even for correlated systems such as the
chromium dimer [66].

III. EFFICIENT ANSATZ IMPLEMENTATION ON
QUANTUM COMPUTERS

In Sec. II, we detailed how approximate ground states
can be found using classical computational methods and
expressed in two standardized forms: SOS (Appendix A)
and MPS (Appendix B). In this section, we detail how
SOS and MPS states can be implemented on a quantum
computer and estimate the number of qubits and gates
required for these tasks. Typically the cost of encoding
classical states is lower than the cost of the energy esti-
mation algorithm, even for sophisticated states with many
Slater determinants or large bond dimension. This results
in considerable runtime reductions of the full algorithm by
lowering the number of repetitions needed to achieve a tar-
get accuracy, while incurring only small increases in the
cost of each independent run.

A. Sum of Slater determinants (SOS)

The goal is to prepare the normalized state
D
2EDIANS (7
i=1

where «; are the given amplitudes and |v;) = |n,-,1n,-’2 ‘.
n,»,zN) are states of 2N qubits. The bits n;; denote the
occupation number of spin-orbital j for the ith Slater deter-
minant |v;). We use N to denote the total number of spatial
orbitals, each supporting one spin-up and one spin-down
particle.

We are interested in cases where the number of Slater
determinants D is much smaller than 22V, which is the case
in practice. Therefore, the problem is to prepare a sum-
mation of relatively few basis states picked from a very
large Hilbert space. The gate cost of the algorithm will
be measured in terms of the number of non-Clifford Tof-
foli gates, which is a standard complexity measure used
in the literature. On a fault-tolerant architecture, Toffolis
require orders of magnitude more qubit seconds and phys-
ical qubits due to the need for magic state distillation to
implement them. Since our algorithm is explicitly meant

for state preparation on fault-tolerant quantum computers,
we use Toffoli gate count (and not CNOT gate count) to
measure the cost.

There has been previous work in this direction. Ref-
erence [18] proposes an iterative generation of the state
using (2N — 1)(D — 1) Toffoli gates and 2N — 1 ancilla
qubits (when D > 1). Other algorithms include [26,28],
but have Toffoli complexity even higher than O(ND), or
potentially exponential in N [27]. Instead, we present an
algorithm with asymptotic runtime of O(D log D), where
log is in base two throughout this paper. This is a consid-
erable improvement since the number of Slaters D is at
most the full space 22", and so, it is often the case that
log D « 2N: Fig. 4 makes this comparison explicit for a
few different model systems and molecules studied in this
paper and elsewhere. Notice that the advantage is even
more explicit for larger systems; for example, with N ~
400 spin-orbitals, our algorithm is an order of magnitude
more efficient in Toffoli cost as long as D < 240 ~ 10'2,

We aim to prepare the state in Eq. (7), where |v;) rep-
resents the occupation bitstrings of length 2N mentioned
above. Our main technical result is a mapping from the
bitstrings v; of 2/ bits, that identify each Slater determi-
nant, to more compact and unique bitstrings b; of only
O(log D) bits. This compression from size N to O(log D)
is the key reason behind the Toffoli complexity advantage
of our method. The following lemma formalizes the com-
pression scheme. We will assume that D is a power of two
for convenience; otherwise, log D should be replaced with
its ceiling.

Lemma 1. Given as input a set {v;} of bitstrings rep-
resenting unique Slater determinants, there is a clas-
sical algorithm with complexity O(tD?), where <
min(2N, D) — 2log D + 1, that outputs substrings v; of v;
and 2logD — 1 bitstrings u; of length O(min(2N, D)),
such that the bitstrings b; := (u1 - Vj, ..., U109 D—1 * V;) Pre-
sented as column vectors in

T
u
T
U 10gD—1

are mutually distinct, i.e., b; # b; forall i and ;.

The proof can be found in Appendix C. The algorithm to
implement the SOS state in Eq. (7) is described below. We
employ three registers: the system register, used to store v;
and where we wish to prepare the desired state, and two
ancilla registers: an enumeration register with log D qubits
enumerating the Slater determinants, and an identification
register with 2 log D — 1 qubits storing b;.
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Quantum algorithm for encoding SOS states

1. Prepare the state

D
D e 10) 1) 10), ©)
i=1

in the enumeration register using the quantum read-
only memory (QROM) state-preparation method in
Ref. [71].

2. Use a QROM oracle O of Toffoli cost D as in
Ref. [71] that implements the transformation

010) |2} 10) = |vi) [i) 10) . (10)

This results in the state
D
> e v 1i) 10) . (11)
i=1

3. Using the output bitstrings u; from Lemma 1, do the
following. If the j th bit of u; is equal to 1, apply a
CNOT gate between the system register and the iden-
tification register. The CNOT is controlled on the j th
qubit of |V;). This results in the state

D
> e lvid 1) (- 53) 10)) (12)
i=1

D
=Y e lvi) li) (|bir) 10)). (13)
i=1

Notice the bits in #; are matched with the bits of the
substring v; obtained from Lemma 1.

4. Repeat the above step for all u;. This results in the
state

D
D el i) 1) (14)
i=1

which now contains the unique compact identifier b;
for the Slater determinant |v;).

5. Using multicontrolled operations, apply the trans-
formation |i) — |0) to the first ancilla register con-
ditioned on each unique b;. This costs (2logD —
2)D Toffolis and results in the state

D
D e lvi) 10) [By) (15)
i=1

6. The final step is to uncompute the sequence of
CNOTs used to prepare the state |b;) in steps 3 and

V1 V2 V3 Vy

1 1 0 1 ~

1100 vy Vg U3 Uy

1 0 1 0 1 1 01

1 0 1 1 \ 1 1 00

01 0 0 0 1 00

00 1 1 0 010

01 0 1

0 0 1 0
(b)

PR

ur /1 1 1 1 110 0 01 1 1
uzll1 1 0 O 010 0| = 0 0 0 1
u¢
3\0 0 0 1 00 1 0 0 01 0
(c)

Uy U2 us

D———
bD—bD
('\

FIG. 2. Schematic representation of important steps in the

SOS encoding algorithm: for illustrative purposes, we show a
particular example with 2N = 8 orbitals and D = 4 Slater deter-
minants, for which the identification strings require 2logD —
1 = 3 bits. (a) Matrix of Slater determinant strings v;. By select-
ing only rows 1, 2, 5, and 8, we can construct substrings v; that
form a matrix of full rank. This is the minimum number of rows
that preserve the rank of the original matrix. (b) Using the result
from Lemma 1, we construct bitstrings u; that form a linear map
transforming the substrings v; to the identification bitstrings b;.
(c) The encoding quantum algorithm applies a series of CNOT
operations for each u;, acting only on qubits 1, 2, 5, and 8 in
the system register, in accordance to the choice of bitstrings.
These are responsible for setting every individual qubit in the
identification register to the desired value.

4. This leads to the final output

D
> ai|v;) [0} 10), (16)
i=1

which contains the target state in the system register
disentangled form all other registers, as desired.
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Important steps of the algorithm are illustrated in Fig. 2.

Taking into account the first two usages of QROM for
preparing Zfil a; |i) and in Eq. (10), with costs dominated
by D and 2'°¢P+! | respectively, the overall Toffoli cost is
dominated by

(2logD —2)D +2"°¢P+! 4 p <
(2log D + 3)D = O(Dlog D). (17)

The overall additional qubit cost due to use of ancillas is
4logD —3 +1logD = 5logD —3 = O(logD). (18)

One could trade off Toffolis with qubits, within the
same volume cost of O((logD)*D). In most cases,
this means using the SELSWAPDIRTY variant of QROM
[71], also called QROAM in Ref. [72]. Importantly,
this variant allows using uninitialized qubits for this
trade off. The trade off leads to a Toffoli cost of
min(2+/32ND, D) + (7log D +2,/32log D)v/D, a clean
qubit cost of (2logD — 1)+/D, and an additional unini-
tialized qubit cost of +/32ND. We explain this in details
in Appendix D, along with comments on how one could
lower the expected Toffoli cost by combining our strategy
with Ref. [18].

In the above, we employed the formalism of second
quantization, but the implementation method is general
and can also be used for algorithms employing a first quan-
tization representation, or indeed in any situation where
the states v; are represented by bitstrings. More precisely,
in first quantization quantum algorithms, the size of the
Hilbert space scales as N, where N is the size of the basis
set. This number is far larger than D, especially in indus-
trially relevant applications of the quantum algorithms
using plane waves [73], meaning that the technique should
remain an advantageous method of state implementation in
first quantization.

B. Matrix product state (MPS)

Here we discuss how to implement initial states
expressed in the MPS form. While it is always possible to
transform an MPS into an SOS formulation, direct imple-
mentation of an MPS can be beneficial in certain cases. We
consider mainly the method introduced in Ref. [30] and
perform an estimation of the total Toffoli cost. We note
that there are many variations of this technique considered
in the literature [74—76] and also newer versions requiring
lower-depth circuits [31] for short-range correlated MPSs.

First, we give a quick review of the method in Ref. [30].
We start with the MPS form shown in Eq. (6) and use
standard graphical notation for representing the MPS.

10)—
‘0>®ﬂog2 Xl —

Gl

|

) 4

e

|0)@Mog2 X1

FIG. 3. Circuit for MPS implementation. Since the bond
dimension can change as the circuit traverses the system, one can
start with a number of ancillae equal to [10g xmax | and use more
or less of the available anciallae as the bond dimension dictates.

We denote its tensors as

nj
Dy Qj—1Q5 J J (19)

The physical index n; runs over d values, where d is the
local Hilbert space dimension. The auxiliary indices «;
run over x; values, where yx; is called the bond dimension,
which generally may be different for each index j. For the
implementation, the MPS is turned into its left-canonical
form:

niy Mg N3 N
S

It means that for allj > 1, we have

*
l’lj nj _ )
ZA/;aj—laj (Aj;aj/._laj) - (Saj,l(xj_lv (21)

Olj ,i’lj

or diagrammatically

(22)

This is in general possible using singular value decomposi-
tion of tensors [69]. A note regarding notation: in the above
equations and everywhere else, the summation over left
and right auxiliary indices of the leftmost and the right-
most tensors, respectively, can simply be dropped. This is
equivalent to setting o, xny+1 = 0.

The implementation works by first observing that the
above tensors of the MPS, owing to the left-canonical
form, can be directly used to define unitaries, which we
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denote as G, that are used in a quantum circuit for prepar-
ing the MPS:

. nj
Gl Jegmy 10 = Ay oy >
n;
0 "
. , G
a]_laj o m_%“

Each unitary acts on a d-level system composed of
[log(d)] qubits as well as [log x] ancillae, where we
remind the reader that log is in base two throughout this
paper. For example, for fermionic systems, d = 4 and two
qubits are required for each spatial orbital of the system.
We note that G[j ] has more degrees of freedom than A[/ ].
In particular, we note that in Eq. (23) the incoming phys-
ical index for the unitary is set to be equal to 0. Thus the
above relation does not specify all the elements of G[j],
and there is some freedom in G[j] for when the incoming
index is different from 0. However, such a situation does
not occur in the MPS preparation circuit and thus as long
as the rest of the elements are chosen so that G[j | remains
unitary, the effect of G[j ] on such states can be taken to be
arbitrary. In fact in the unitary synthesis described below
we have used this freedom and focused only on states with
0 on the incoming physical index.

A quantum circuit that implements the desired MPS and
works with these unitaries is shown in Fig. 3. Note that an
auxiliary register of a size, which we have denoted collec-
tively as [log x 1, is required to reconstruct the MPS and
that we are schematically moving it around to act with uni-
taries on this register and different qudits in the system.
Also, note that for the first and the last unitaries the input
and output auxiliary registers also have value 0.

For the above circuit, we need to synthesize the uni-
taries G[j], for which we use the method in Ref. [71].
Details of how the synthesis can be performed is discussed
in Appendix E. There, it is shown that each G[j] imposes
a Toffoli cost of

(23)

Xi-1 [8x:d + (b + D log(x;d)], 24

where b is the number of digits for storing the angle
for implementing single-qubit rotations required in the
synthesis process.

Assuming a number N of qudits in the physical sys-
tem, the total cost will be the sum of the above over all
J ; asymptotically and with using x selectively for all bond
dimensions, the dominant Toffoli cost can be written as
O(N x?). Using trade off schemes of Ref. [71], we can
show that it is also possible to use O(N x>/?) Toffolis for
implementation of the MPS.

C. Discussion of the implementation methods

As with many questions concerning initial state prepa-
ration, the choice of SOS vs MPS is highly context depen-
dent. The polynomial scaling (with system size) of the
number of parameters in an MPS may provide it with a
decisive advantage for strongly multireference systems;
while in single-reference molecules (or ones not being
highly multireference), the reduced cost of implementing
the SOS form might be preferable. A concrete comparison
between these two methods is done in Sec. VIB. Either
way, these two forms are interconvertible, and we have
outlined advanced quantum algorithms for implementing
states of either form. This includes a novel method for SOS
states with lower asymptotic cost than the previous state of
the art.

Regardless of the method, the cost of implementing a
classical state on a quantum computer is typically a lot
lower than that of the full energy estimation algorithm.
Our estimates earlier in this section (such as in Fig. 4)
for preparing even quite complex initial states with hun-
dreds or thousands of determinants for systems with over
a hundred orbitals, suggest state-preparation costs of only
around 10°~° Toffoli gates. At the same time, estimates
from the literature for the cost of QPE for industrially rel-
evant contexts (for example, FeMoco [2,77], cytochrome
P450 [78], electrolyte molecules in batteries [79], or bat-
tery cathodes [8,73] and general periodic crystals [80])

10°

—e— This work
—e— Ref. [18]

— — —

(o] o o
B w [
T T

Cost, Toffoli gates

—
(]
T

gt FeySYV  H

1 0(1

10° 10! 10?
D

FIG. 4. Comparing the cost of implementing an SOS wave-
function with D determinants between the algorithm proposed
here and that of Ref. [18] for a hypothetical system with N = 100
spatial orbitals. Inset: comparing the cost of preparing an SOS
wavefunction of quality 0.2, as measured through overlap with
the highest-fidelity reference, for specific molecules. In the inset,
the superscript on the molecule formula indicates how much the
bond is stretched relative to the approximate equilibrium bond
length as noted in more detail in Sec. VI. Note that system size N
varies between the molecules: it comprises 10 spatial orbitals for
Cr,, 32 for Fe4S4, and 16 for Hi¢. The number of determinants
required to achieve a quality of 0.2 also varies.
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suggest a Toffoli gate cost of 10'9~1% gates for molecules

and 10'>~1 for materials—for a single run of QPE. With
such a high cost ratio, it is prudent to implement as good
of an initial state as one can find, regardless of how com-
plex it is, because the extra cost incurred in this way
will be dwarfed by a corresponding cost reduction due
to fewer iterations needed for the expensive QPE routine.
This means effectively there is a large budget available
for implementing sophisticated states with many Slater
determinants or large enough bond dimension that better
approximate the true ground state compared to simpler
approaches like the Hartree-Fock state. This can lead to
considerable runtime reductions for the entire quantum
algorithm.

IV. ENERGY DISTRIBUTION OF THE INITIAL
STATE

Using the overlap with the ground state as a way to
assess the quality of an initial state is a challenging task,
especially in strongly correlated systems. This is largely
because the true ground state is generally not known: after
all, this is the problem we are attempting to solve. Instead,
we propose a new way to assess state quality through the
use of the state’s associated energy distribution. In this
section, we first define the concept of an energy distri-
bution in precise terms. We then discuss how the energy
distribution picture can change our view of performing
quantum phase estimation (QPE). Our main technical con-
tribution is a description of methods for approximating
energy distributions, as well as formalizing how the energy
distribution picture can be used to predict statistics of QPE
outcomes. Finally, we describe how the energy distribution
of the initial state can be used to address the so-called QPE
leakage problem.

A. Definition of the energy distribution

We define the energy distribution of the state |y) with
respect to the Hamiltonian H as

P(E) =) KE|¥) £y (En — E), (25)

where E,, |E,) are, respectively, eigenvalues and eigen-
states of H, and f, is a kernel, for example, Gaussian or
Lorentzian, with width n, a copy of which is centered at
each of the eigenvalues. The limit of » — 0 corresponds to
a discrete distribution—the actual distribution of the state’s
overlaps with the Hamiltonian spectrum. With n # 0, each
energy level is broadened and the result is a continuous
distribution. While accessing the true n = 0 distribution
is as hard as determining the eigenvalues of the Hamilto-
nian, estimating it for a given n # 0 turns out to be much
cheaper—and much can be inferred about state quality
from the broadened distribution.

We use the energy distribution in a number of applica-
tions. Most importantly, we formulate a simple criterion
based on the energy distribution for assessing the quality of
initial states. Suppose we are given a number of candidate
states with similar energies, i.e., with similar expectation
values of H. We can compare the quality of the states by
focusing on the left-side tails of the states’ energy dis-
tributions. Intuitively, whichever state has a distribution
with more weight at lower energies is a better candidate,
as it provides a higher probability for obtaining a low-
energy estimate. We will make this statement more precise
in Sec. IV D. The state thus identified becomes an input
to the next stage of the initial state preparation pipeline
(Fig. 1)—the implementation stage.

B. Quantum phase estimation through the lens of
energy distributions

In many of the quantum routines for quantum energy
estimation, the energy distribution has a very close rela-
tion with the distribution of outcomes. Most prominently,
the outcomes of QPE are roughly sampled from the energy
distribution of the initial state. More precisely, in a QPE
measurement with & phase digits, the probability of an inte-
ger outcome x,, (that can be interpreted as an estimated
energy of 27 ¥x,,) in the phase register reads [11]

sin® (7 2FE,)

> L
; (EIP (sz i, —xm/2"])> . (6

Notice that in the above, we have assumed a nor-
malization of the Hamiltonian such that 0 < FE, <1
for all n. We similarly assume that the integer out-
come x,, satisfies 0 < x,, < 2. The discrete QPE ker-
nel (1/2%) ((sin®(w2*E,)) /(sin® (7w [E, — xn/2¢]))) broad-
ens each energy level, and is maximized when the integer
X, is closest to 2¥E,, for each level. Thus, performing QPE
can be thought of as sampling from a discrete distribution,
which is obtained by spreading the weight of each energy
level by the discrete QPE kernel. As the number of digits
k increases, the sampling gets closer to sampling from the
actual underlying distribution.

The traditional perspective on QPE is that the algorithm
must be repeated enough times so that there is a high
probability of sampling the ground-state energy (up to the
allowed precision). This view tacitly implies that all sam-
ples other than the ground-state energy should be discarded
as useless.

Instead, we recognize that the goal of any algorithm,
whether classical or quantum, is to provide the best possi-
ble energy estimates. Ideally the estimate is exactly equal
to the true ground-state energy, but that may be too ambi-
tious in practice, especially for large systems with strong
electronic correlations. The energy distribution picture
presents an alternative, where QPE is viewed as a method
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re) f

- >
Ec,2 Ec,l E E

FIG. 5. Schematic depiction of an energy distribution for a
particular initial state, illustrating the possibility of improve-
ment over classically found energy estimates. If the best classical
energy estimate is E, , there is a high chance of obtaining better
quantum estimates using quantum routines e.g., QPE. However,
if the best classical estimate is E., the chance is quite slim.
E, the energy of the implemented state is also shown, but its
value is irrelevant for predicting the likelihood of obtaining bet-
ter energy estimates. Note that in practice, one must ensure that
the weight to the left of each of these energy estimates is not
due to the broadening of higher-energy weight; such broadening
[# in Eq. (25)] is inevitable in any actual calculation, but one
can examine the behavior of the tails as # is varied to determine
whether the weight in the tail is due to such broadening or not.

to improve the energy estimate associated with the initial
state, as we now describe.

Consider an initial state [i), for example, obtained by
executing some classical computational method (Hartree-
Fock, configuration interaction, or similar). This state has a
representation [{) = Y ¢, |E,) in terms of the eigenstates
|E,) of the Hamiltonian. The overlaps ¢, = (E,|¥) define
an energy distribution P(F) via Eq. (25)—suppose it has
the shape as pictured in Fig. 5. The (variational) energy £
of the state [y) is

E=(y|H|y) =) le,'E,=) PEE,  (27)
E

n

exactly equal to the mean of the energy distribution. Since
the distribution has nonzero probability density on either
side of the mean classical energy E, QPE will, in gen-
eral, sample energies that are higher or lower than £: thus
already after a handful repetitions, we will obtain an energy
bound on the ground state below the classical estimate
E, even if we do not necessarily sample the ground-state
energy Ey. In the particular example in Fig. 5, the large
peak in the energy distribution to the left of £ means that it
is quite likely for QPE sampling to yield a better energy
estimate than E, which would be the value add of the
quantum algorithm. This identification of low-energy com-
ponents within an initial state by projection is the unique
aspect of QPE, unavailable to classical algorithms.

Now consider two possibilities. Suppose that within a
given computational budget, the best possible classical cal-
culation results in a classical energy estimate £, ;, the blue

line in Fig. 5. Suppose also that the state |1ﬁc,1> associ-
ated with that calculation is too expensive to prepare in the
quantum register, so we continue to use |y) with energy
distribution P(E) as the initial state. Looking at the energy
distribution, we find that there is quite a large probability
for QPE to sample energies lower than £, ;: not too many
iterations are needed, and thus the use of the quantum
algorithm is advantageous. The knowledge of E.; helps
decide whether or not the energy distribution of |y) is
good enough.

On the other hand, if the best obtainable classical energy
is E.» (red line in Fig. 5), then the energy distribution anal-
ysis shows that it is quite unlikely to sample an energy
with QPE from the initial state |y) that will be better than
the classical estimate. This situation can arise if either (a)
the system is simple enough that classical methods give
a very good solution, in which case quantum algorithms
are not needed, or (b) the initial state chosen for the prob-
lem is insufficient to improve on the best classical estimate,
meaning one should look for another state \W ) with a bet-
ter energy distribution. (There are two main ways to search
for a better state: one is to try different ansatze, as dis-
cussed in Sec. II, and/or optimize those ansatze further, for
example, increase the bond dimension of the MPS ansatz;
the other is to apply quantum filtering techniques, as will
be discussed in Sec. V.) In either case, the energy dis-
tribution allows this analysis to be performed, unlike the
ground-state overlap metric.

Generating a larger number of samples increases the
probability of observing more dramatic improvements,
with the ultimate goal of obtaining precisely the ground-
state energy. Employing quantum algorithms is advanta-
geous whenever there is a sizeable probability of obtaining
an energy estimate that is lower than any classical method,
including more powerful ones than those used for the ini-
tial state. This concept is illustrated in Fig. 5. The energy
distribution picture moves the framing away from ques-
tions like “what resources are required for obtaining the
ground state?” to ones like “with the given resources, how
much improvement in the ground state energy is possible?”

The energy distribution also shows why the energy is an
unreliable metric of initial state quality. Since the energy is
only the first moment of the energy distribution [Eq. (27)],
it only weakly constrains the distribution, leaving much
freedom for improving the distribution without changing
the energy—or even while making the energy worse. For
instance, in a distribution with multiple peaks, one can
increase the weight near the ground state while simulta-
neously shifting other peaks farther out to increase the
energy. An example of this in a realistic Cr, system is
shown in Sec. VID.

The energy distribution picture is useful beyond helping
reinterpret QPE. The QPE kernel discussed above has long
algebraic tails on the two sides of each energy level: as a
result, it is, in general, possible that an outcome indicating
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a false low energy is obtained, that was actually in the long
tail of much higher-energy levels. Note that this is con-
trary to the occurrence of an outcome due to the actual
weight in its vicinity; we call this phenomenon the QPE
leakage problem. In fact, in general, it is possible for the
observed outcome to lie below the ground-state energy of
the Hamiltonian, rendering it unphysical. We will discuss
the problem in detail along with ways it can be diagnosed
and avoided—by employing the energy distribution—in
Sec. VD.

C. Approximating energy distributions

As mentioned above, computing energy distributions
exactly is exceedingly difficult: however, approximating
them to a degree of accuracy within one’s computational
budget is always possible, and the information gained is
useful for choosing initial states and beyond. We provide
three different methods for approximating the energy dis-
tribution with respect to a Hamiltonian H for an initial
state |¢). Two of them are classical methods and one is
quantum.

1. Series expansion

This method employs moments of energy (expectation
values of powers of H) to obtain a series expansion for
the energy distribution. We consider the Edgeworth series
and the Gram-Charlier series, which both approximate a
distribution as a Gaussian multiplied by different orders
of the Hermite polynomials. The coefficients in the series
can be written in terms of the moments of the distribution,
i.e., the expectation values of powers of the Hamiltonian
(Y| H" |Yr) := (E™). The lowest-order approximation is a
Gaussian distribution with a variance proportional to that
of the initial state, namely (E?) — (E)2. The series expan-
sion method works best for distributions that are nearly
Gaussian.

The Edgeworth and Gram-Charlier series have identical
terms: the only difference is that the terms in an Edgeworth
series are arranged in a way that the series constitutes
a true asymptotic series [81]. The Gram-Charlier series
expansion for the energy distribution P(E) can be written
as

f— 2 >
_ ep(E/2) [1 + 31, Hen<E>} » (28)

n=3

where He, (E) is the Hermite polynomial in the probaba-
bilist’s notation defined as

d}’l

Hey(E) = (=1)" exp(E*/2) -

exp(—E?/2).  (29)

The expansion in the form in Eq. (28) is used for a dis-
tribution function with zero mean and unit variance; any

TABLE I. Coefficients defined in Eq. (30).
Order Gram-Charlier coefficient
3 1
—im
4 ! 3
m [pa — 3]
1
5 Al [—us + 10u3]
2
6 Al [we — 1514 + 30]
Lo
7 7 [—m7 4+ 21ps — 105u3]
7
8 Q[M8—28M6+210M4—315]

distribution can be cast in this form upon translating and
rescaling. The coefficients of the Gram-Charlier expansion
are given by

(=D"

n!

Cy =

/dE P(E) He,(E). (30)

The coefficients can be written in terms of the moments of
the distribution

Ly = /dE P(E)E" = (E™), (31)

once the Hermite polynomials are expanded. A list of the
coefficients is given in Table I.

The Edgeworth series is obtained by regrouping the
same terms from a Gram-Charlier:

exp(—x*/2)
V2m

K8 () + " Heo (B 32
+(ﬁ e4( )+7—2 e ( )>+ (32)

PE) = [1 n %H@ (E)

where k, is the nth cumulant of the distribution. For
the general prescription for obtaining the terms and also
explicit forms for more terms, see Appendix F.

In practice, the above series expansions may exhibit
negative distribution values or artificial rapid oscillations.
This happens mostly in cases where the energy distribu-
tion is far from Gaussian—for example, when large gaps
are present in the (true) energy distribution of the initial
state. Generally, the series will converge if the approxi-
mated distribution function falls faster than exp(—E?/4)
[81].

The convergence condition is satisfied for a bounded
energy spectrum, but the discreteness of the true energy
distribution, from which the moments are calculated, can
cause the series approximation to show rapid oscillations at
higher orders. Moreover, we have seen in our numerics that
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Gram-Charlier series is generally more well behaved than
Edgeworth series. In general, it is challenging to quantify
or bound the errors of the method precisely—the diffi-
culty being that the series-expansion method works with
an asymptotic series, and at present there are no reliable
techniques for estimating the error in such cases. Thus the
main way to judge the method’s accuracy is on empiri-
cal grounds. However, this method can still provide some
valuable information at an affordable computational cost.

Given the above discussion, to obtain a series approxi-
mation for the energy distribution, it suffices to calculate
the moments (£"). This can be done directly from knowl-
edge of the classical wavefunction |y) and the system
Hamiltonian H, although it can become computation-
ally intensive. In this work, we mainly employ an MPS
representation of the states and a matrix-product oper-
ator (MPO) expression for the Hamiltonian to compute
moments. We find that this does not impose a large compu-
tational overhead, as acting with the Hamiltonian MPO on
the solution MPS even multiple times is not a prohibitive
computational task. In principle, the series expansion can
work with any representation, the only requirement is
being able to calculate low-order moments (H") of the
Hamiltonian. We opted for the MPS-MPO representation
because we found it computationally more performant in
practice. In general, quantifying the computational com-
plexity of various ways of calculating (H") is difficult due
to the heuristic nature of the DMRG method, and also the
fact that it is not predetermined how many moments are
required and how costly they will be. However, we can
expect that for MPS-style methods, only a polynomial cost
is required.

2. The resolvent method
The energy distribution as defined in Eq. (25) can be
thought of as the imaginary part of a particular Green’s
function, P(E,n) = —Im G(E, n), with the Green’s func-
tion defined as

1

1
G(E,U)=;(‘/f|m|lﬁ)- (33)

Transforming to the Lehmann representation by inserting
the resolution of the identity, we find

1 1
P(E,n) = —;Z |(En|1/f>|2 Im <m) , (34)

and using the fact that

1 -1

Im — = ,
E,—E+in (E,—E?*+n?

(35)

we can see that computing —Im G(E, n) is equivalent to
Eq. (25) for a Lorentzian kernel with broadening 7. Thus

any method that can calculate G(E,n) can be used to
find the approximate energy distribution [52,53,59,82—84].
We refer to calculating the energy distribution through its
associated Green’s function as the resolvent method. Note
that the resolvent method works only with the Lorentzian
kernel.

One approach to calculate the Green’s function above is
through a DMRG-like variational method that was intro-
duced in Ref. [83] and then improved in Ref. [84]. The
MPS-based method uses the MPS wavefunction form, and
performs DMRG-like sweeps to evaluate the Green’s func-
tion. This means that to use this approach as a Green’s
function subroutine in the resolvent method to assess the
quality of a candidate wavefunction, the state must first be
transformed into MPS form. (Other methods for comput-
ing the Green’s function [52,53,59,82] could work directly
with the SOS form.)

The MPS-based method of Ref. [84] works as follows:
we define the state |@) that satisfies

1 1
Sxw—r+m "
= n(H —E+in)le) =1¥). (36)

lo)

The Green’s function can be written as the overlap
G(E,n) = (¥|¢). Now, defining |Y) as [83]

UH—EV+#ND=—£W% 37)

From this equation, we see that Im G = (y|Y). Finding
the overlap of the above equation with |Y), a DMRG-
like algorithm is used to minimize the resulting functional
[83,84]:

<nUH—Ef+#hn+£<mw. (38)

We rely on the package Block2 [85-87] to carry out
the calculation of the Green’s function in Eq. (33). Even
though the method is implemented in the MPS language, it
is general because we have methods for transforming other
forms of states into MPS (Appendix B). As discussed in
the previous section, we expect the cost of this MPS-based
method to scale at most polynomially.

3. Coarse QPE

Finally, we describe how using low-precision QPE,
which we refer to as coarse QPE, can be used to build
approximate energy distributions. QPE samples energies
from the energy distribution of a given state, and this
means that the sampled values can be used to reconstruct
the underlying distribution if a sufficient number of them
are obtained. We note that each of the energy levels is
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broadened according to the QPE kernel: the resolvent method. The use of other kernels is discussed
in more detail in Ref. [90].
1 sin®(w 2XE)
S(E) = P Gl (39) 4. Numerical example

Here, we consider a hydrogen chain with six hydrogen

in Eq. (25), for some integer k that is the number of digits ~ atoms at a bond length of 5 a.u. (see Sec. VIB for more

in the coarse QPE measurement. details on this class of systems). We calculate the exact
One possible way to obtain an energy distribution is Spectrum and also find the energy distribution of an initial

through performing QPE multiple times and obtaining the ~ state of our choice using the above method. The state that

statistics of the outcomes and then trying to reconstruct  is used has a form as a sum of Slater determinant as the

the energy distribution from that. As a refinement of this ~ following:

process and to diminish bias, for each QPE round, we add

a random constant to the Hamiltonian. The constant ¢ is [¥0) = 0.86]2,2,2,0,0,0)

chosen to lie in the interval [0,27%). After the measure- —-036(8,2,a,,0,8) + |a,2,8,8,0,a)),
ment is performed and an integer x,, is observed, we take (40)
the measured energy to have the value 2¥x,, — c. This

ensures that all real values can be sampled, making it possi-  in the basis of Hartree-Fock orbitals. The coefficients are

ble to approximate the energy distribution using smoothing  directly taken from the corresponding terms in the exact
methods such as kernel density estimation [88]. As is  ground state but the state is normalized.

well known, in kernel density estimation with a suitable The above three methods are used and energy distri-
choice of the broadening factor, the error scales as M %%, butions obtained are shown in Fig. 6 (see the caption for
where M is the number of samples (see Appendix G for  the details of implementation of the methods). All three
more details). There exist more advanced modern methods ~ methods for this particular example show that some useful
beyond kernel density estimation [89], and in practice they ~ information can be obtained. But among the two classical
would likely offer even better performance. However, here =~ methods we see that the resolvent method is more reli-
we have focused on establishing a baseline with kernel  able, especially because the series expansions can show
density estimation, as it is a mature and well-understood  uncontrolled oscillations for larger orders. However, we
technique. Finally, we note that the coarse QPE method can  note that the series expansion method could be a measure
work with any kernel, not only the Lorentzian one, unlike  of last resort for certain especially large problems due to its

Series expansion Resolvent Coarse QPE

8 — order 10 — =01 — k=4 1020
order 25 n=0.05 k=5 c
0.15 g
— order 40 o)
| @]
A /\ 0.10 S
i\ z
U\ f
/M 1 g
/ { L s l | \\X %
i o Al o p SR i o ARl not T W—— ) ) D’:

0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

FIG. 6. Energy distribution of an initial state, which is the sum of three Slater determinants for the Hamiltonian of a hydrogen chain
with six atoms within the STO-6G basis set. The bonds are uniformly stretched relative to equilibrium, to have the value of 5 a.u. The
exact overlap of the state with all of the eigenstates of the Hamiltonian is also calculated for reference. For each panel, two vertical
axes are used: the left vertical axis corresponds to the energy distribution and the right one corresponds to the probability (Joverlap|?)
of each Hamiltonian eigenstate in the expansion of the initial state. The horizontal axis energy is obtained from the actual energy in
Hartree, by rescaling by a factor of 1/3 and then translating by the value of +1, so that it lies between 0 and 1. Left: energy distributions
obtained through the Gram-Charlier series. As the order is increased, more features are captured but also for higher orders unphysical
oscillations also start to occur. Middle: energy distributions obtained through the resolvent method for two 1 values. A bond dimension
of 100 is used for the calculation of all the points of the two curves. For this particular system, the exact results with these 7 values
closely match these curves. Right: energy distributions obtained through the coarse QPE approach for four and five QPE qubits. A total
of 100 different realizations of the 50-measurement runs for both of the cases were considered and the mean and standard deviation
were calculated. Kernel density estimation with a Gaussian kernel was also used for smoothing the curve with the broadening factor
of 2%, The resulting mean and error are shown as the solid curve and the shaded area around it, respectively.
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relative lower cost compared to the other methods. Even
though the results from it are approximate and might show
oscillations and nonconverging asymptotic behavior, they
would still yield useful partial data to inform the choice of
the initial state.

D. Using the energy distribution for estimating
lowest-energy outcomes

Assuming we have access to the approximate energy
distribution of the initial state, we can use it to approxi-
mate the distribution of QPE outcomes. For a number of
k digits and an integer outcome x,,, it can be calculated as
follows:

20 Ak

P = [ dE P®) o ( _ Snr2 F) ) o

sin“ (7 [E — x,,/2F])

22k

Note that this is a discrete distribution function. We define
the variable E, = 2 %x,, with the distribution function
P(E,) = P(x,,)/27%. In the limit of k — oo, this distri-
bution approaches the underlying energy distribution and
henceforth we denote this by P(E) for notational simplic-
ity.

In the following, we formalize how the left tail of the
energy distribution can be related to the best outcome
obtained from QPE within a given number of runs. To this
end, we study the statistics of the best energy achievable
through repeated QPE measurements: we will see how the
statistics depends on the number of measurements and thus
the total budget for repeating the measurements.

Referring to K QPE outcomes as EV ..., E® we
focus on the distribution of the smallest observed energy,
Eming = min(ED, ..., EX)). We may calculate the cumu-
lative distribution function (CDF) of this variable at energy
E as follows. First, note that the probability for any one
measurement £ from the set to be below energy E,
denoted p_ (E), is the integral of the distribution up to that
energy

E
p<(E) =/ dE' P(E"). (42)

—00

Then the probability for a measurement £ to be above
energy E is 1 — p_(E). For all K measurements to be
above E, the probability is multiplicative, namely (1 —
p<(E)X. Finally, the probability that at least one of the
measurements £? is below E is 1 minus the probability of
all the measurements being above E, namely

Crink (E) = 1 = (1 = p_(E)¥. (43)

This is the probability that at least one outcome from K
rounds of QPE lies below E. Upon differentiating the CDF

with respect to £, we obtain the probability distribution
function of Emin x, Which reads

Px(E) = KP(E) (1 — p-(E)*". (44)
One simple measure of state quality is the mean value of
this distribution: [ dE P (E)E.

There are two useful ways of applying this metric. First,
we can use it to directly estimate how many times we need
to run QPE to get an improvement over a given classical
estimate, similarly to how we use the ground-state over-
lap to estimate the number of runs for sampling the ground
state. In this sense, the energy distribution is complemen-
tary to the ground-state overlap metric. And secondly and
more importantly, this weight can be compared between
different initial states, to determine which one has a better
chance of yielding improvements when used in QPE. This
forms an essential part of our state-preparation pipeline
(step 3), where we use the energy distribution to adjudi-
cate between different possible initial states on the basis of
the low-energy cumulative weight [ dEPk (E)E.

V. QUANTUM REFINING

After the classically optimized ansatz state has been ana-
lyzed with the energy distribution methods of Sec. IV and
is implemented on the quantum computer with the methods
of Sec. 111, there is a possibility for further quality improve-
ment by using a quantum algorithm to filter out some
of the remaining high-energy weights. This is beneficial
only if a cheap quantum refining procedure is possible. We
show that this is indeed the case in this section. Also, we
show that another subtlety with QPE, namely the leakage
problem, can be addressed through the quantum refining
process.

We focus on two main methods of filtering: coarse QPE
[91] and quantum eigenvalue transformation of unitary
matrices with real polynomials (QETU) [92]. The lat-
ter is chosen as a representative of the polynomial-based
algorithms’ family [15,17,92].

A. Coarse QPE with postselection

The idea behind coarse QPE filtering is to use QPE’s
ability to project an initial state with broad support across
the eigenspectrum onto an individual eigenstate. Using
QPE can already be viewed as a filtering procedure: one
feeds in a state |Y) =), ¢, |E,) with an energy distri-
bution Py (E) = Y, |cal*fy(E, — E), and after QPE, with
probability |c,|* one is left, roughly speaking, with an indi-
vidual eigenstate |E;) in the system register and a state
representing E; (in binary form) in the ancilla register.
Combining this with postselection, i.e., only continuing
with the rest of the algorithm when the state we get from
QPE filtering has our desired energy £; and discarding and
restarting otherwise, means we have a pipeline to reliably
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generate |E;). Thus we essentially filtered the initial state,
which had broad support across many eigenstates, into a
state with support only on |E}).

The only complication is if the probability |c,|* to pre-
pare a state with support in the desired energy range is
very small, it will require running QPE many times before
we encounter the desired state. This is where the “coarse”
part of coarse QPE filtering comes in. If we consider an
implementation of QPE with less digits of precision than
are ultimately needed (for example, to accuracy of 50 mHa
rather than the 1 mHa of chemical accuracy), this has the
effect of binning neighboring eigenstates, thus boosting
the probability of landing within a desired energy range
[E; — Ag, E; + Ag] while simultaneously being cheap to
execute as compared to the high-precision (1 mHa) QPE.
In each coarse QPE measurement, if the outcome lies
outside a set of predetermined low values, the state is dis-
carded and the algorithm is restarted. The assessment of
what QPE outcomes are considered small can be based on
the energy distribution of the implemented state. Note that
this method is based on the fact that after postselecting a
particular QPE outcome, weights of different energy levels
are suppressed based on the energy difference between a
level and the postselected outcome; the larger the energy
difference is, the higher the suppression (see below for
more details). This means that upon postselecting for low-
energy outcomes, the resulting state will have suppressed
weight along higher energies of the spectrum.

To see to what extent large energies are suppressed after
postselecting on low-energy QPE outcomes, consider a
setting in which we postselect an outcome x,, when QPE
with k digits is performed on a state [/) = ), ¢, |E,). The
probability for each component £, in the resulting state
will be

| 2

1 Sinz(ﬂzkEn)
P(n) = leal’ 53 ' 4
(n) = |cy 2ok (sinz(ﬂ[En _xm/zk])) (45)

If the standard deviation of the initial-state energy dis-
tribution is small compared to the span of the spectrum
of the Hamiltonian, we can approximate the denomina-
tor in the above factor by a Taylor expansion. The weight
after measurement then is suppressed as the inverse square
distance from the measurement outcome: approximately
|2KE — x,,| 2.

This shows that if the precision of the coarse QPE and
the postselection values are chosen appropriately, the high-
energy weight of the distribution can be well suppressed.

B. QETU filtering

QETU [92] or other polynomial-based methods [15,17]
aim to implement a function of the Hamiltonian that retains
low energies and filters high energies. In short, the method
consists of a quantum signal processing circuit [93,94] that

implements a unitary matrix that block encodes a func-
tion f (H) = P(cos(H/2)), where H is the Hamiltonian
of interest and P is an even polynomial of degree dp. We
need /' (H) to be designed in a way so that low energies are
retained and high energies are filtered, for instance, using
an approximate step function. Details of how this can be
done are discussed in Appendix H.

The cost of implementation is directly given by the
degree of P: more precisely, the number of times that one
queries the unitary U = e~ is exactly dp. In order for the
filtering to be successful, this degree should have a scal-
ing O(I''loge™"), where the error € in the polynomial
approximation is small enough, and I' is the energy scale
over which the transition in the function f(H) needs to
occur. Apart from the above asymptotic scaling, in prac-
tice, we choose the degree by examining how good of a
filtering function is achieved.

C. Cost of implementing quantum refining methods

A simple analysis of the asymptotic cost of the above
methods can be done by the following consideration: to
suppress a high degree of weight at unwanted high ener-
gies, and to keep low-energy weights mostly intact, we
need to differentiate energies separated by values of the
order of the standard deviation oz of the energy distribu-
tion of the initial state.

This means that in a coarse QPE setting, we need the res-
olution 2% to be of the order of o; on the other hand, in a
QETU setting, again we need a function f(H) that discerns
energies of the order of o, i.e., I' ~ og. Thus, both of the
methods require a number of queries to e~ (or related
unitary) that scales as O(1/0x). We expect the target pre-
cision € to be considerably smaller than o, so the cost
of filtering should, in principle, be much lower than for
the final energy estimation algorithm, which would have
a scaling O(1/¢). This shows that quantum refining for
further improvement of the state quality is viable through
these methods.

While the asymptotic costs are the same, by examining
simple concrete examples, we find that coarse QPE works
appreciably more efficiently. In particular, we consider the
case of a Gaussian energy distribution for the initial state,
and study the effect of quantum refining via coarse QPE
and QETU on it; even though this can be an artificial con-
struction, we can capture the essential factors of comparing
polynomial-based algorithms with coarse QPE in it. Plots
of energy distribution after quantum refining are presented
in Fig. 7, with coarse QPE on the left panel and QETU
on the right. We can see that the ultimate state obtained
through coarse QPE has a much higher quality when com-
pared with the one obtained through QETU. More details
on the processes are presented in Appendix 1. There, we
show that this performance of coarse QPE is achieved even
with a lower cost compared with QETU.
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FIG. 7. An initial state with a Gaussian energy distribution is
subject to quantum refining. The energy is expressed in dimen-
sionless units. Left: two rounds of coarse QPE are performed and
the resulting energy distributions are plotted. Right: QETU with
a steplike filtering function is performed and the resulting distri-
bution along with the filtering function are depicted. More details
of this procedure is presented in Appendix I.

Given this example and similar other constructions, we
come to the conclusion that QPE has generally a lower cost
in practice. This is mostly due to the fact that construct-
ing polynomials with sharp jumps for the QETU algorithm
requires high degrees, resulting in high costs. Thus we pick
coarse QPE as our method of choice for performing the
quantum refining stage of the algorithm.

We note here that there are other methods that dis-
cussed a similar quantum refining of the state [95,96]. Even
though we have not considered them here, it would be
interesting to compare their performance with the methods
discussed above in a future work.

D. Case study: the QPE leakage problem

In this section, we show how quantum refining can be
used to prevent a problem that often arises when apply-
ing QPE in practice—a problem we call the QPE leakage
problem. The consequence of QPE leakage is a significant
increase in the cost scaling of QPE with the ground-state
overlap py = |(Eo|¥)|?, going from 1/py to a 1/p} (see
e.g., Sec. LA of Ref. [16] and Appendix A of Ref. [15]).

At a high level, the QPE leakage problem arises because
the QPE kernel—the distribution of energies sampled by
QPE for a given eigenstate—is not a Dirac § but rather the
sinc(x) = sin(x)/x function (see Fig. 8). If an initial state
has overlap with several eigenstates in the spectrum, the
long tails of the sinc kernel can overlap, falsely enhanc-
ing the probability of observing a given eigenvalue—the
probability leaks from higher energies, potentially even
returning false results that lie below the true ground-state
value.

It is argued in Ref. [15] that in order to prevent this from
happening, longer evolution times that scale as (1/pg) in

Lor —— Dirac |
0.8 F sinc
0.6 b
0.4r ]
0.2 ]
0.0l \//\\//\vf\v ]
—02+F 4
—1 0 1
FIG. 8. The sinc kernel of QPE, as compared to (a finite

approximation to) the Dirac § kernel.

each QPE round should be used. Since a total of (1/po)
rounds are required to obtain precisely the ground state,
the overall cost in this argument scales as (1 /pé). Here
we analyze this problem based on our energy distribution
approach and discuss how it can be diagnosed. We also
show that the problem can be circumvented using quan-
tum refining of the initial state, without a need to resort to
large evolution time: the idea is that if refining removes
high-energy weights in the energy distribution, the long
tails associated with those weights are also removed and
the QPE leakage is significantly reduced.

We first consider the problem in the conventional set-
ting: starting with an initial state |) =), ¢, |E,), we
would like to perform QPE and estimate the ground-state
energy Ey with a tolerated error €. The question is how
many phase digits are required for this task. One require-
ment is to ensure that leakage is absent, meaning we need
to estimate the probability of contributing an outcome
below Ej — e from all of the energy levels except the
ground state:

sin® (7 8,)

sin’ (;—k[xn + 6, — xj]>

pleak:Z Z %

n#0 Xj <Xupper

B

(46)

where Xypper = [25(Eg — €)1, 2¥E, = x,, + 8, with x, an
integer satisfying 0 < x, < 2%, and 0 < §, < 1. For the
leakage to be improbable, pi.,x should be small enough
when compared with probability of the ground state in
the initial-state composition py = |co|*>. Note that for the
ground state itself to not leak beyond the threshold one can
add an O(1) number of more qubits to the phase register
and discard their outcome [11].

Up to an additive error of O (max 272, (x, — Xupper) 7).
the single-level leakage probability in Eq. (46) can be
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written as

)
sin“ (7w ;) 1
pleak(En) = ) .

. 47
Xp — Xupper T Sy “7

See Appendix J for more details. Having access to the
energy distribution of the initial state, the total leakage
probability in Eq. (46) can be approximated as

1 / dE P(E) sin® (7w 2FE)
Pleak =
n22k Ey+e E—

A simple criterion for leakage, based on the above inte-
gral, can be derived for multimodal distributions; we focus
on a unimodal distribution and the multimodal case is sim-
ilar. Assuming an O(1) probability is concentrated close
to the main peak of the distribution, and that this peak is
located at E,, from the above integral the probability of
leakage beyond the ground state can be approximated as
(1/(2722")(1/(E, — Ey)). We need this probability to be
smaller than the probability of the ground state: this means
that the number of phase digits should be chosen large

enough so that 2 = O ([po (E, — Eo)]_1>. In general, we

need to take the tolerated error € in QPE also into account
for &, and as a result we have

=0 (max ([po (Ep - Eo)]71 ,6_1)> .

Apart from the above setting, where higher-energy states
can contribute to QPE outcomes below the ground-state
energy value, there is also a possibility for leakage when
we are not aiming to necessarily obtain the ground-state
energy but striving to obtain better energy estimates using
QPE. In such a setting, if a small QPE outcome is obtained
in an energy region where there is actually not an appre-
ciable weight, it is more probable for the outcome to be
invalid as it likely happened due to leakage from higher
energies. Such an outcome should not be accepted as an
estimate of the energy since it can, in general, be smaller
than all the eigenvalues of H with which the initial state
has non-negligible overlap: it can actually be below the
ground-state energy of the system resulting in incorrect
estimates.

To quantify such a possibility, we first note that the dis-
tribution of the lowest outcomes of QPE was considered
in Eq. (41) through the use of the energy CDF: here, we
use the CDF of QPE outcomes to study the possibility of
leakage too. In particular, at an energy of interest, we can
compare the CDFs of energy and QPE outcomes (with the
desired number of digits k). If the QPE outcomes of CDF
is considerably larger than the energy CDF, this signifies a
high probability of leakage contamination of results around
or below that energy value. This is especially important for
the region in which the energy CDF is of the order 1/N

et ST
2k

(49)

for a QPE measurement with N repetitions as this is where
the smallest outcome is expected to appear. An ultraprecise
QPE will result in an energy close to this region but if the
QPE outcomes of CDF is large, lower precision QPE can
contribute smaller outcomes, and those can only be due to
unwanted leakage from higher energies and thus should be
avoided.

Given these two treatments of the possibility of leakage,
we see that knowledge of the energy distribution function
enables us to identify situations in which QPE leakage is
not insignificant. If leakage is present, in principle, in both
of the cases, with choosing QPE precision high enough,
the leakage probability is managed; however, this induces
extra cost for each QPE round, as with increasing the num-
ber of QPE digits &, the cost rises exponentially 2. In the
following, we show that quantum refining of the initial
state can be used to manage the leakage possibility without
a need to use higher precision.

1. Mitigating the leakage probability

The above analysis shows that if the spectral weight in
some region, that is responsible for the leakage, is sup-
pressed through some means, the leakage probability could
also be suppressed with it. We have seen in Sec. V C that
for a small cost compared with that of the most precise
QPE measurement, high-energy weights can be filtered
with quantum refining. Thus, QPE leakage can, in prin-
ciple, be mitigated through quantum refining, but it is a
matter to be studied on a case-by-case basis based on the
details of the energy distribution at hand. This will be very
helpful as it removes the need to perform time evolution for
times of the order p, ! for the ultimate QPE measurement.

As an example, consider an energy distribution
having a multimodal structure, one can identify the
peaks—accumulating O(1) spectral weight in their vicini-
ties—which are responsible for leakage through analyses
discussed above; one can then perform a quantum refining
in the form of coarse QPE, so that those peaks are close
to discarded outcomes, and thus will lose a substantial
weight after the process. This can substantially decrease
the leakage probability. Such a procedure is illustrated in a
concrete example in Appendix I (last paragraph).

Note that this means the quantum refining step of our
state-preparation algorithm is capable of reducing the cost
of the whole algorithm, not only by lowering the number of
required repetitions of the most precise QPE measurement,
but also by decreasing the cost of each single round by
mitigating the leakage problem when it is present.

VI. NUMERICAL DEMONSTRATIONS

In this section, we showcase our complete initial state
preparation algorithm for a variety of molecules. Through
the numerical examples, we explore how viable it is to pre-
pare good-enough initial states for complex molecules to
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be studied with a quantum algorithm. Of particular interest
are situations where, on the one hand, classical methods
struggle to give a good energy estimate, but at the same
time one can still prepare a good-enough initial state for
quantum energy estimation. We refer to such problems as
Goldilocks problems, a concept we formalize through the
energy distribution. All the numerical results shown in fig-
ures in subsequent sections are available in Tables ITI-V in
Appendix K.

A. Goldilocks molecules

As we argued in Sec. 1V, the energy distribution picture
can be used to estimate whether a quantum algorithm can
improve a given initial state’s classical energy estimate.
Using this concept, we can categorize energy estima-
tion problems based on the hardness of preparing a good
enough initial state for performing quantum energy estima-
tion routines (e.g., QPE). Such a classification is of course
tied to the available budget for initial state preparation:
here we take the budget to be unspecified for the sake of
generality. With a given budget for state preparation, one
can have easy, intermediate, and hard problems: an easy
problem is one in which a very high-quality initial state
with large accumulated weight over low-energy parts of
the spectrum of the Hamiltonian is possible to prepare on a
quantum computer; on the other hand, a hard problem will
be one in which with a given budget, it is only possible
to prepare a poor-quality state with negligible weight over
low energies of the Hamiltonian. Note that these depend
on the given budget for state preparation. In between, there
ought to be problems of intermediate hardness, where there
is some non-negligible, but also not too large weight over
low-energy parts of the spectrum.

We argue that in all likelihood, it is only possible
to obtain quantum advantage in quantum ground energy
estimation over classical computational methods in infer-
mediate problems. This is because for hard problems,
by definition one cannot perform quantum routines effec-
tively; and for easy problems, it is very likely to find a good

classical energy estimate, which is highly challenging to
beat using quantum algorithms. The question of whether
there is quantum advantage in an intermediate problem
remains open: the energy distribution allows this question
to be explored computationally.

To make this more concrete, on an energy axis, let us
mark the best classically achieved energy by E7. Assum-
ing we have access to the energy distribution of our initial
state, we can calculate its accumulated weight for energies
below E7 and call it p_, . If p_,  is large enough—that
is, large enough so that performing an accurate QPE mea-
surement a number O(p:ElT) times is within the available

QPE budget—there is the possibility for quantum advan-
tage. We call such a situation a Goldilocks problem—one
in which there is a possibility for improving the classical
ground energy estimate using QPE. Given our numerical
results for the Cr, and Fe4S; molecules in the follow-
ing sections, we expect that complexes including several
transition-metal centers, if studied within an appropri-
ate active space, could indeed present such Goldilocks
problems.

In the remainder of this section, we will study sev-
eral different quantum chemical systems numerically and
exhibit the ideas and discussions in the previous sections
concretely in those systems. For all calculations in this
section, we used the publicly available software library
Overlapper [70], which implements the HF, CISD, CCSD,
and CASCI methods by interfacing to PySCF [97], the HCI
method through an interface to Dice [98], and the DMRM
method through Block?2 [86].

B. Hydrogen chains

We begin by studying the hydrogen chain model sys-
tem in the minimal STO-6G basis (Fig. 9), varying the
bond length to increase correlations and evaluating the
overlaps and energies of different methods relative to the
exact solution from full configuration interaction (FCI).
Hydrogen chains are a well-established and thoroughly
studied benchmark system for electronic structure methods
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Percent recovered correlation energy relative to FCI (red) and overlaps (y|¥rcr) (blue) for the Hj, chain in the STO-6G

basis for (uniform) bond length (a) unstretched (0.71 A); (b) stretched by a factor of two (1.42 A) (c) stretched by a factor of 4 (2.84
A). CASCI/ MRPT are excluded because they give the exact solution. The final bond dimension used to obtain the DMRG state was

x = 1000, and the final HCI cut-off criterion used was €; = 1074,
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[99—-108], with the advantage of allowing one to uniformly
scale system size and also vary correlation by adjusting
bond length: this makes them good systems for the current
analysis. Throughout this section, we will use a uniform H
to H bond length of 0.71 A: we will stretch that bond length
to increase the amount of correlation in the system by a
scaling factor, mentioned explicitly in the relevant section.

All methods in Fig. 9 including DMRG are executed in
the S, symmetry mode, i.e., conserving the spin projec-
tion on the z axis. Here and in later figures, the overlap
(¥ |Wecr) 1s computed by first bringing the output of all
methods to the SOS form: in all cases (especially DMRG),
we make sure that the SOS form of the wavefunction
includes enough determinants to capture above 99% of the
weight of the original state. Near equilibrium, as in panel
(a), all methods perform equally well: but as the bonds get
stretched and static correlation increases [panels (b) and
(c)], HCI and DMRG clearly emerge as leaders in terms of
overlap, while the Hartree-Fock state performs poorly.

We discuss the case of the CCSD ansatz separately.
While in practice CCSD is able to recover a substantial
portion of the dynamic correlation energy of the system,
its energy estimates are not directly linked to the quality
of the wavefunction because the energy CCSD computes
is nonvariational. To place the CCSD energy estimates
on equal footing with the other methods, we instead plot
the variational energy of the associated CCSD ansatz that
we aim to implement on a quantum computer. The way
Overlapper currently prepares the CCSD ansatz and puts
it into the SOS form is by expanding the CCSD expo-

nential exp (f‘ "+ T 2) in a Taylor series and truncating

it to second order. We find that such a truncated CCSD
wavefunction is only marginally improved compared to
CISD, which is to be expected, as the higher-order com-
ponents are what makes a CCSD ansatz obtain a better
energy than CISD in many cases. To go beyond the sec-
ond order, we have attempted to instead implement the
CCSD ansatz via the MPS-MPO route and then convert the
MPS to the SOS form, but this was ultimately unsuccessful
within the code-implementation constraints, and we leave
it to future work to properly benchmark the CCSD ansatz
against other wavefunction forms. We note that ultimately
the CCSD ansatz is single reference, and so there is a limit,
even with the full expansion of the exponential, to the qual-
ity of the wavefunction that can be achieved—especially
since all higher-order, unlinked contributions like T %, T
rapidly decrease in magnitude, as their amplitudes approx-
imately t%,tz - t; are merely powers of #1,#, and are not
allowed to vary independently.

Still, despite this truncation, our results for the CCSD
wavefunction in intermediate bond-length hydrogen chains
[Fig. 9(b)] appear in rough agreement with earlier
work [41], where the authors also find that the CCSD
wavefunction gives a fairly good initial state (when the

Cost, Toffoli gates
S
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FIG. 10. Comparing the cost of implementation, in terms of
Toffoli gates, of the DMRG solution in SOS form (solid lines)
and MPS form (dashed lines), for the hydrogen chain with dif-
ferent numbers of atoms (as shown in the legend), as a function
of the prepared wavefunction overlap with the ground state. The
bond length is taken to be uniform along the chain and has been
stretched to 4 times the original length (2.84 A). As the system
gets larger, the MPS form continues to allow the preparation of
wavefunctions with high quality. The finite steps in the SOS cost
curve are due to rounding of log(D) factors to the nearest integer.

CCSD excitation amplitudes are used to instantiate a UCC
ansatz). It would be interesting to compare our results to
the UCC ansatz for the more extreme bond lengths in
Fig. 9(c), as well as for the N, molecule (see the following
section), a task we leave for future work.

Hydrogen chains are also convenient for comparing
the SOS and MPS forms of the initial state in terms of
their quality versus implementation Toffoli cost curves.
For this comparison, we first obtain the exact system
ground state as an MPS with DMRG, then process it in
two ways. First, to compute the cost of implementing the
SOS form, we do reconstruction on the ground-state MPS
we obtained—meaning we unpack the MPS wavefunction
into its constituent Slater determinants (see Appendix A
and Ref. [109])—and then truncate the number of Slater
determinants to generate wavefunctions of varying qual-
ity (the x axis of Fig. 10). Second, to compute the cost of
implementing the MPS form of varying quality directly,
we compress the MPS to smaller and smaller bond dimen-
sions. This gives a sequence of states with decreasing
wavefunction quality: we evaluate the quality by com-
puting overlaps with the original ground-state MPS. For
implementation cost, we use the expressions derived in
Sec. III: the cost is mainly set by the number of determi-
nants D for SOS and by the bond dimension x for MPS.
The results for hydrogen chains of varying sizes are shown
in Fig. 10.
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The MPS form appears to be more expensive relative to
the SOS form for the cases shown even though the sys-
tem is one dimensional, which means that MPSs should
perform very well in representing the ground state. This
signifies the efficiency of the SOS method developed in
this work. Notice that DMRG can still be used as the
method of choice for the classical ground-state search in
such cases, however, it might be beneficial to transform the
result into the SOS form and then implement on a quan-
tum computer. Furthermore, we should also note that the
SOS cost is seen to increase exponentially with wavefunc-
tion quality, especially in larger chains, as more and more
determinants are needed to accurately represent the ground
state. In fact, the reason why the SOS curve does not reach
perfect wavefunction overlap for larger chains is because
of the extreme memory requirements for storing all the
determinants arising in reconstruction beyond a certain
cutoff. Thus there could be advantages to implementing the
state in the MPS form in large, strongly correlated systems.
This needs to be explored more in future works.

We next study energy distributions for all of the states
analyzed in Fig. 9. We compute the distributions using the
resolvent method: for all non-MPS-based states, we first
convert them to MPS form using subroutines from Over-
lapper [70]. Near equilibrium, all energy distributions are
sharply peaked around the ground state (not shown). How-
ever, when bonds are stretched, the DMRG and HCI states
have significantly more weight in the lower-energy portion
of the spectrum, as seen in Fig. 11. The classical energies
of the states are shown with vertical dashed lines of the
same color. Given that we are implementing the SOS forms
of'the states, we report the associated SOS state energy, not
the energy reported by the classical computational method.
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5 i i
1
1
1
1 1
1 1
! P -
() - n - L L n n i L
—48  —46 —44 42 40 38 36 —34
E, Ha
FIG. 11. Energy distributions for the initial states from the

methods studied in Fig. 9, for the hydrogen chain with ten atoms
with bonds stretched by a factor of 4 (2.84 A). For CCSD, the
energy reported is that of the truncated SOS state rather than the
nonvariational energy evaluated by the CCSD method. The cal-
culations are done with the resolvent method with . = 200
and n = 0.02. The DMRG and HCI parameters are as in Fig. 9.
Here and in all later energy distribution plots, vertical dashed
lines give the classical energy of the state of the same color. The
DMRG and HCI energies coincide.

This applies most importantly to CCSD: because of this
consideration, the CCSD energy shown is actually higher
than the CISD energy. While the CCSD state redistributes
some of the weight towards lower-energy states relative
to CISD, this is marginal. At the same time, the Hartree-
Fock state has very little weight in the low-energy parts of
the spectrum, including the ground-state peak. Overall, we
see that even though these energy distributions are approx-
imate, by direct visual inspection the high-quality states
can be identified—without any need for a reference state,
as with the overlap metric. Beyond this, we also get a much
richer picture of how the weight is distributed across the
energy range.

C. The N; molecule

Next we turn to molecules, starting directly with a
system with an intermediate degree of correlations—the
N, molecule with its bond stretched beyond equilibrium
(r=2.517 A) in the cc-pVDZ basis with the effective
core potential ccECP [110], which is used to reduce the
number of electrons in the problem. Since this system of
26 orbitals (28 orbitals without ccECP) and 10 electrons
(14 electrons with ccECP) is now beyond our capability
for FCI, we use a highly converged DMRG wavefunc-
tion (x = 2000) as the reference state, although the HCI
wavefunction is also exact with the cutoff €; = 107> (the
HCI and DMRG solutions are less than a mHa apart). The
CASCI and MRPT methods are carried out in an active
space of CAS(10e, 120).

The energy-overlap bar chart in Fig. 12 shows that
most methods, while they struggle to generate an excel-
lent wavefunction, still provide good-enough overlap to
the reference state. Notice that while MRPT significantly
improves the energy estimate, it does not improve the

1.0 =p---- {100 2
=

a

0.8 180 o
Y ®
£ 0.6F 160 -,
= =70}
DQ g
=04 40 2
02t | 20 E
0.0 0o =

HF CISD  CCSD CASCI MRPT  HCI

DMRG

FIG. 12. Percent recovered correlation energy and overlaps for
the N, molecule in the cc-pVDZ basis using the ccECP effective
core potential from Ref. [110] as downloaded from Ref. [111],
with its bond stretched beyond equilibrium (» = 2.517 A), rela-
tive to the DMRG solution, which obtained the lowest energy.
The CASCI and MRPT methods are performed with the active
space CAS(120,10e), chosen directly from molecular orbitals
around the Fermi level.
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FIG. 13. Energy distributions for DMRG-generated states for

the N, molecule, with the bond length as in Fig. 12 The cal-
culations are done with the resolvent method with the reduced
parameters xcaec = 50 and n = 0.1 to speed up the calculations.

CASCI wavefunction quality. All of these observations
reinforce the idea that energy is not a very reliable proxy
for wavefunction quality.

For the energy distributions for this molecule, we choose
to compare the states obtained from DMRG (see Fig. 13).
Namely, we compare the Hartree-Fock state (x = 1); an
intermediate-quality state with bond dimensions y = 25
obtained through an increasing bond-dimension schedule
without compression; and finally x.,, = 12, a state, which
was obtained initially at x = 250 and then subsequently
compressed to x.,s = 12 before the energy distribution
was computed. Once again, at a glance we notice that the
Hartree-Fock state is of significantly worse quality than
the other two states. Another interesting observation is that
going to large bond dimensions and then compressing, as
in the x.,, = 12 state, gives results nearly as good as the
x = 25 state but with lower implementation cost. Beyond
the details, this example shows that the energy distribution
method allows us to characterize and compare the quality
of initial states for physical molecules.

D. The Cr; dimer

We next turn to the Cr, molecule, which is an example
of a strongly multireference system. To increase correla-
tions even further, we stretch the dimer bond length from
its approximate equilibrium length [66] to 3.024 A. To
study such a many-electron molecule with a limited com-
putational budget, we focus on active spaces built around
a limited set of orbitals, namely the 3d orbitals in Cry. We
employ the atomic valence active space (AVAS) approach
[50], where molecular orbitals with the largest d-orbital
overlap above a given threshold are selected for the active
space.

The active space for Cr, focused on 3d orbitals can
be as small as ten active electrons in ten active orbitals,
written CAS(10e,100). In an active space this small, a ref-
erence FCI solution can be obtained. For concreteness we
specifically targeted the total spin zero sector, searching
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FIG. 14. Percent recovered correlation energy and overlaps for
the Cr, molecule with its approximate equilibrium bond length
of 1.68 A [66] stretched to 3.024 A, in the cc-pVDZ basis in an
active space of only d-type orbitals, relative to the FCI solution
in the S? = S. = 0 spin sector. The final DMRG bond dimension
used was x = 1000, and the final HCT cutoffused was e; = 1077,

for the lowest-energy solution within that subspace. As
seen in Fig. 14, both the HCI and DMRG methods recover
the entirety of the correlation energy and, more impor-
tantly, produce wavefunctions with perfect ground-state
overlap, whereas both CISD and CCSD clearly struggle in
this multireference situation. Note that the DMRG calcula-
tions are now being carried out in SU(2) mode, conserving
total spin S, instead of only the projection S,. Similar to
before, the CCSD ansatz, as implemented in Overlapper,
appears to recover most of the correlation energy whilst
having a worse overlap than the CISD solution. Note that
the implementation of HCI we had access to is nonspin
adapted, meaning it finds wavefunctions that conserve the
spin projection S. but not the total spin S2. It was thus nec-
essary to tighten convergence thresholds and also compute
several of the low-energy eigenstates before a solution was
found in the total spin zero sector that could be meaning-
fully compared with the S? = 0 solutions identified with
the DMRG and CASCI approaches. Spin-adapted selec-
tive CI techniques, some of which have been implemented
in the literature [52,59,112], could provide additional flex-
ibility in initial state preparation: however, at the moment,
there is no open-source implementation publicly available
to the community.

For the energy distributions (Fig. 15), we again focus
on the DMRG exact solution and its compressed versions
with lower bond dimensions. The energy distribution gives
an excellent account of the quality of the state during com-
pression: not only are the different quality states easily
distinguishable, it is also clear that even the poor-quality,
highly compressed x,s = 4 state still has a wide range
of energies covered in its distribution, showing weight
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FIG. 15. Energy distributions for the Cr, molecule within an
active space, for different states of compression of the DMRG-
generated ground state: starting with a well-converged state
with x = 500, the state was slowly compressed to x.,s = 250
(orange) and then further to x.,s = 100,50,15,4 (red, blue,
green, and black respectively). As before, the calculator bond
dimension used is xcac = 200, with broadening n = 0.02. While
this is a relatively large calculator bond dimension, the energy
distribution seen here is still approximate and not fully con-
verged with xc... However, even an approximate distribution
already allows the evaluation of state quality, whilst having the
advantage of being computable with reasonable resources. A key
observation here is that compression, while reducing resources
necessary for preparation, trades that off against the quality of
the initial state—but only partially.

well below its mean (classical) energy. These energy
distributions are an illustration of the Goldilocks state con-
cept described in more detail in Sec. VI A: while the x = 4
state is clearly too poor to do QPE with, and the x = 250
state already has a good classical energy, the intermedi-
ate quality states with y = 50 — 100 would allow QPE to
improve on their associated best classical estimate with
only a small number of iterations. Any molecule where
states with quality like the y = 50 — 100 above are the
best we could get would likely represent a Goldilocks case.
Notice also that while the quality of the x = 100 state is
greater than that of the y = 50 state, their energies are
nearly equal: this shows that it is possible to find initial
states with improved quality without this corresponding
to an improvement in the classical energy estimate, once
again emphasizing that energy would be a poor metric to
judge initial state quality.

E. [Fe4S4] core

Finally, we consider the [FesS4] molecule core—an
8-atom center extracted from the associated molecular
iron-sulfur complex. The active space for this system is
built around the Fe 3d and S 3p orbitals: we follow the pro-
cedure outlined in Refs. [25,64]. Instead of Pipek-Mezey,
we use the Cholesky method to split-localize the & molec-
ular orbitals from a high-spin (S, = 5/2 per Fe atom)
restricted open-shell Hartree-Fock calculation in the cc-
pVDZ basis, then select orbitals with Fe 3d and S 3p
character by visual inspection.

For this system, we consider four different states
obtained with DMRG: three states obtained by converging
DMRG at bond dimensions y = 20, 50, 100, respectively,
and another obtained by converging a calculation at a high
bond dimension of x = 1000 and then compressing that
wavefunction down to x.,s = 7. While the highly com-
pressed state is the most high-quality of the four, it has
the worst classical energy estimate—higher-energy admix-
tures balance out the weight at the lower energies. On
the other hand, while the x = 50 state has a significantly
improved energy relative to x = 20, its energy distribu-
tion is mostly unchanged, and its quality not significantly
improved. Finally, the states ., =7 and x =20 have
nearly the same energies, but the former has much more
weight in the low-energy part of the spectrum, making it
much higher quality. At the same time, all these states for
the Fe4S4 core are built up from tens or hundreds of Slater
determinants, with the coefficients of the largest contribut-
ing determinants being on the order of 1072, This strongly
suggests a single product state would be an exceedingly
poor initial state in this situation. More specifically, the
Xeps = 7 state has an overlap of 0.69 with the ground
state (obtained at y = 1000), while the largest contribut-
ing determinant in the y = 1000 state has weight 0.04.
Then in terms of probabilities to project on the low-energy
x = 1000 state, the x., = 7 state gives 0.47 while the
best single product state gives 0.002. Thus at least 300
times fewer iterations of QPE will be needed to project
on this state with the only marginally more complicated
initial state—which translates into direct cost and run-
time savings of more than 2 orders of magnitude. At the
same time, the compression to x.,s = 7 ensures that the
cost of implementing the improved initial state continues
to be negligible compared to the main costs of energy
estimation [8].

The main conclusion to be drawn from Fig. 16 is that
even though simple product states have low overlap with
the low-energy subspace, it is generally possible to pre-
pare a relatively cheap, relatively high-quality initial state
(e.g., the x.ps = 7 state) for this system with only moderate
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FIG. 16. Energy distributions for MPS states at different bond
dimensions for the Fe4S4 core in the active space. Energy appears
to be a misleading guide for state quality.
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additional effort. While this particular state is generated
from an expensive classical calculation, it retains a consid-
erable weight in the low-energy sectors postcompression,
further suggesting that an expensive classical calculation
followed by compression could be a good method to obtain
a cheap-to-implement high-quality state.

These last two example molecules together suggest that
preparing an inexpensive, good-quality state is possible for
molecules with transition-metal centers. At the same time,
such systems are known to be challenging cases for clas-
sical computational methods [25,66]. The combination of
these facts implies that these systems are good candidates
for Goldilocks systems, and motivates their further study
for quantum computing applications. This conclusion is
uniquely enabled by the energy distribution picture and
data: the overlap metric would not give much insight into
the relative quality of the states we considered here.

VII. CONCLUSIONS

We have introduced a complete workflow for preparing
initial states for quantum chemistry. Our results target a
critical component of quantum algorithms for simulating
chemical systems, which is essential to elucidate the poten-
tial for quantum advantage. Key technical contributions of
this work include a state-of-the-art quantum algorithm for
preparing states expressed as sums of Slater determinants,
methods to construct approximate energy distributions for
assessing state quality, and identification of coarse quan-
tum phase estimation (QPE) as a leading technique for
refining initial states and addressing the leakage problem.
All calculations were carried out with the publicly avail-
able software library Overlapper [70]. We demonstrate
the applicability and usefulness of our initial state prepa-
ration procedure with several numerical experiments on
challenging molecules.

Our work indicates that it is worthwhile to employ
advanced techniques for state preparation beyond simplis-
tic approximations like the Hartree-Fock state. Quantum
energy estimation algorithms such as QPE already incur
a considerable cost, thus in effect leaving a large budget
available for spending computational resources to prepare
better initial states. This budget should be utilized as much
as possible: improved initial states lead to higher probabil-
ities of observing low-energy estimates, resulting in fewer
repetitions of the energy estimation algorithm and an over-
all reduced cost. Our optimized technique for implement-
ing sums of Slater determinants was designed precisely to
enable the use of sophisticated approximate ground states
such as those obtained from heat-bath configuration inter-
action (HCI) and the density matrix renormalization group
(DMRG) methods, which we identify as leading strategies
for initial state preparation.

The energy distribution approach that we propose sug-
gests a rethinking of initial state preparation for quantum

chemistry. It provides a computationally tractable method
for assessing and comparing the quality of initial states
in a reference-free way: by contrast, this is usually out
of reach when computing overlaps with the true ground
state, because the latter is typically unknown. Energy dis-
tributions also help to shape our understanding of the
prospects for quantum advantage: since the goal of QPE
is to improve the energy estimates associated to the initial
state, we can use approximate energy distributions to rea-
son about the extent to which this is possible. We employ
this perspective to formalize the concept of Goldilocks sys-
tems: molecules where the quality of the initial state is
neither too high nor too low. This means that two condi-
tions are met: (i) the difference between the best classical
estimate and the true ground-state energy is large enough
to leave room for improvements, and (ii) the quality of the
initial state is sufficiently high to support a considerable
probability of observing such improvements.

Numerical experiments support these findings. We
observe that it is possible in practice to use even approx-
imate, broadened energy distributions to infer quality of
different initial states, meaningfully compare them and
pick the highest-quality candidate. This is especially valu-
able in cases where the expectation values of the energy
are very similar. The same evidence then also suggests that
the average energy of an initial state can be a problem-
atic proxy for state quality. Our studies hint that molecules
with transition metals in nonequilibrium geometries are
potentially Goldilocks systems, and therefore a quantum
advantage in ground-state energy estimation could be pos-
sible.

Future work may focus on further optimizing quan-
tum algorithms for implementing classical wavefunctions,
and more generally, on further improving the proposed
workflow. Of particular interest are quantum algorithms
for refining initial states obtained from classical meth-
ods, which have not received much direct attention. It is
possible that better methods than coarse QPE, equipped
also with performance guarantees, could be discovered.
Another direction that can be pursued is to extend our
methodology to periodic systems. This is needed for sim-
ulating materials, which have many industrial use cases.
It would also be of interest to explicitly compare the
performance of state-preparation methods analyzed here
with some of the leading variational contenders such as
UCC and ADAPT-VQE. Finally, it is important to under-
stand how to prepare initial states in circumstances where
quantum hardware places restrictions in terms of available
qubits and circuit depth, in preparation for the emergence
of early fault-tolerant quantum computers.
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APPENDIX A: CONVERSION TO SUM OF
SLATER FORMATS FOR ALL WAVEFUNCTION
METHODS

Converting all wavefunction-based methods explored in
this paper to a sum of Slater format requires a number of
specialized steps particular to each method.

The CISD wavefunction already comes in the sum of
Slater format, so no conversion is required.

The CCSD ansatz is more challenging to convert to the
unified sum of Slater format due to the fact that, in princi-
ple, excitations to all orders are being generated. However,
since these decay quickly, in practice, going up to sec-
ond or fourth order in excitations already captures most of
the CCSD wavefunction. These can be obtained by Tay-
lor expanding the exponential to the appropriate order and
collecting like terms for excitations: in this way, coupled
cluster amplitudes combine in various ways to become CI
coefficients.

CASCI wavefunctions merely need to be padded to the
full space with the occupied orbitals, which makes the
conversion of these wavefunctions to the sum of Slater
format almost immediate. The same applies to MRPT
wavefunctions.

Being one of our standard formats, the MPS does not
require form conversion. However, for the purpose of
comparison with the other methods, it is also possible
to start from an MPS and compute the equivalent Slater
determinant representation of the wavefunction up to a
specified tolerance—a process called reconstruction. A

deterministic approach to this involves partial resumma-
tion of the matrix products: the details can be found in
Ref. [109]. On top of that, to switch to chemist convention
of keeping all spin-up operators on the left, we evaluate the
required parity conversion factor for each determinant.

The HCI method naturally returns the wavefunction as
a sum of Slaters, so little conversion is required beyond
postprocessing the results of the particular package we are
employing.

APPENDIX B: SOS «& MPS TRANSFORMATION

In this Appendix, we discuss how the two standardized
formats, i.e., SOS and MPS are transformed to each other.

MPS to SOS:

The goal is to calculate the largest coefficients
ey snn) =g v Aty AN gy, 0 @ SOS
expansion. Based on Appendix A of Ref. [109], we
start from a left canonical form and set a thresh-
old for keeping terms in the SOS. Partial coefficients

®) n Mp
such as cq, (n1,...,my) = Zal...ap_l Ay g Ay ey e

are formed and whenever a norm of the partial coefficient
Zap |c[(,f;,) (ny,... ,np)|2 goes below a threshold, all Slater
determinants with the prefix (ni,...,n,), i.e., of the form
|n1, N P .), are dropped from the SOS. This way
owing to the left canonical form of the MPS, it is ensured
that all the terms with coefficients above the threshold are
recovered in the SOS.

SOS to MPS:

For this task, we start with a bond dimension 1 MPS that
corresponds to the largest coefficient Slater determinant in
the SOS (could be the Hartree-Fock state or not); we make
an auxiliary copy of it also. Using MPOs consisting of a
number of ¢ and ¢ operators, the auxiliary bond dimen-
sion 1 MPS is transformed to the Slater determinant with
the second largest coefficient. The new auxiliary MPS is
added to the main MPS and the procedure goes on until all
coefficients are added. Note that the auxiliary MPS remains
bond dimension 1, while the bond dimension of the main
MPS grows, one can compress the main MPS as more and
more terms are added to it.

APPENDIX C: PROOF OF LEMMA 1

We prove Lemma 1 by induction. To avoid cluttering,
we shall replace v; with v;. From here onwards, the vectors
v; have length ». We recall the statement and notations of
the lemma: in Eq. (8), one needs to prove the existence
of 2logD — 1 vectors u; of length r, forming a matrix
called U, that helps to distinguish the D distinct vectors
v; of length » by mapping them to vectors b; of length
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2log D — 1. Notice U is supposed to be found offline on
the classical computer.

We can interpret U as a linear map acting on each v;.
We need to find a U: F;) — FglogD_l such that U(v;) #
U() < vi —v; gkerU,Vi#j . We will efficiently con-
struct such a linear map with the additional property that
v; & ker U, Vi unless v; = 0; this additional property will
help us in proving the next inductive step from the induc-
tion hypothesis. In summary, U has to satisfy the following
properties:

vi—v; €kerUVi#j, v &kerU,Vi, unless v; = 0.

(CD)
Proof. Since logD — 1 < log(D) = dimIF'lzogD_1 =
2l0eD=1 — D there are at least log D many linearly inde-
pendent vectors among the v;’s. Therefore, » > log D. First
assume log D < r < 2logD — 1. Without loss of general-
ity, assume vy, ..., v, are linearly independent and gener-
ate all the v;’s. Note that finding these linearly independent
generators is an efficient classical algorithm in linear alge-
bra. In this case, we can distinguish the v;’s using r <
2log D — 1 many u;’s; we simply choose U to be the 7 x
identity matrix. This choice yields b; = v;, with length
r < 2log D — 1, fulfilling the same purpose.

When r > 21log D — 1, we perform induction on ¢ € N
where r = 2log D — 1 + ¢. According to the rank theorem,
dimIm U+ dimker U= dimF, =r=2logD — 141t We
find U by first constructing a subspace VW of dimen-
sion ¢, satisfying the same properties in Eq. (Cl), fol-
lowed by building a U with kernel equal to VW. More
precisely, we will find # many linearly independent vec-
tors wy,...,w, € V, := span{vy,...,v,) that would define
such a W. Then, by basic linear algebra, there is an
efficient classical algorithm that finds linearly indepen-
dent vectors uy,...,uz10gp—1 € V, that satisfy u; -w; =
0,Vi,j. Because of their linear independence, a matrix
U defined by such u;’s would have rank 2logD — 1,
so dimIm U= 2logD —1 = dimker U = t. Finally,
since Vi : w; € ker U and dimker U = dim W, it follows
ker U = W. Therefore, ker U satisfies Eq. (C1), as desired.

Note. Going forward, as operations are over the field IF5,
we may play loose with subtraction and addition, as v; —
Vi =V + V.

Let us start by proving the base of inductiont =1 —
r=2logD. We need to find a single vector w; such
that v; # w and v; — v; # w. The number of distinct vec-
tors in the set {v;, v; — v;};; is at most D + (12)) = (D*+
D)/2 < 22logD—1 + 2logD—-1 _ |F£| —r — 2210gD. There-
fore, there exists w € I, — {v;, v; —v;};;, and this vector
can be found after a search over (D? + D)/2 + 1 vectors
picked from [F;. Thus, w; for the base of induction can be
found efficiently.

For the induction step, without loss of generality assume
Vi, ..., V2log D—14 are all linearly independent and generate

the rest of the v;’s (we note again that finding these gen-
erators can be done efficiently). By induction hypothesis
Wi, ..., Wr_1 € V,_| = span{vy,...,v,_1) form a desired
subspace W,_; for the previous induction step. Note that
clearly V,_; C V, = span{vy, ..., V).

We can partition the set of all vectors {v,-}fj: , into three
subsets: (1) M := {v; | v; € V,_1}, which elements will be
referred to as m;, (2) the single-element subset {v,}, and
Q)N = {v;i | vi € V. — V,_1}. The latter will have vectors
that look like v; = m} + v, where 0 # m; € V,_;. Because
of the partitioning, |M| + 1 + |N| = D. Note any future
use of m;, m; will refer to a v; inside M, N\, respectively.
We emphasize that M, N are sets and not necessarily a
linear subspace.

We would like to invent a new set of D vectors with rank
r — 1, so that we can apply the induction hypothesis. To
do so, let us replace v, with some [ € V,_;, and similarly
substitute every v, in the linear expansion of any v; = m; +
v, € N, meaning v; becomes / + m,. This vector / needs to
satisfy some properties:

14 0,m 4140,
l;ém],m;—l-l;ém]

(€2)
(©3)

The first two conditions ensure that after replace-
ment, we do not obtain any zero vector. The second
line ensures that we do not obtain any repeated vec-
tor. All these conditions amount to [ ¢ {0, m], m;, m; 4
m(}, the size of this set being (at most) 1+ |N|+
IM]| + |M] - |N]|. We recall 1 + |N|+ |M]| =D, so the
size is <D+ (D —1— [N)IN| <D+ D?/4 < 2logb 1
22logD=2 _ pr=1 — 92logD—1=2 35+ > 1. Hence, there exists
[ € V,_ that satisfies Egs. (C2) and (C3).

Now the induction hypothesis for the new set of D
vectors apply, since the rank has clearly been decreased
by one to »r — 1 =2logD — 1+ ¢— 1. Therefore, there
exists a subspace W = span{wy,...,w,_) C V,_; satis-
fying Eq. (C1) for this new set of vectors. Now let us
bring back v, by undoing the replacement by /. After this
change, we need to verify that WV still satisfies Eq. (C1),
and then, in order to finish the proof, extend WV by a vector
w; while satisfying said properties. We verify the properties
as follows:

e We first check that v;, v; +v; & W. Note that v; &
W needs to be checked only for v, and v; € N
(as they are the only ones impacted by bring-
ing back v,). For both, this is in fact obvi-
ousas ({(vJUN)CV, =V, = ({v,JUN)N
V.1 =@ while W C V,_.

e For the property v; +v; & W, this needs to be
checked only when at least one of v;,v; is inside

({v} UN).
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— Assume that v; € ({v,} UN) and v =m; €
M. If v; = v,, we need to show v, +m; & W
and for v; € N/, we need to prove m; + v, +
m; & VV. Both these cases, due to v,, are outside
of V._iand W C V,_;.

— Assume that v;,v; € ({v,} UN). Then we need
to check v, + mj’ + v, = mj’ gV, and also
m;+ v, +m; + v, =m;+m; ¢VV. However,
by induction hypothesis, we already know that
I+m, +1=m ¢W and [+m;+1+m =
m; +m; & W, so this is also guaranteed.

Finally, we need to find a new w;, to add to WV while pre-
serving its properties. Let us define w, = v, + 1 and let
W=W&w, CV,=V,_1®v,. To prove that W sat-
isfies Eq. (C1), one needs to verify that v; ¢ W — W or
vi —v; € W — W, as W has already been shown to sat-
isfy said properties. If v; e W — Worv, —v; e W =W
then w, must be “involved”:

e For vy e W — W, we must have vi=w, +w =
v, + 1+ w for some we VW, in which case v; —
[ = v, + w. However, the latter is inside V, — V,_.
Therefore, since / € V,_;, we have v; € V, — V,_1.
So vie ({v,}JUN). If v;=v, then I=we WV,
which violates our induction hypothesis. If v; =
m;+ v, € N then m;+[=w e )V, which again
violates the construction of W.

e For v; —v; = v, + 1+ w for some w € W, exactly
one of v; or v; must be inside ({v,} UN). Without
loss of generality assume v; = v, or v; = m] + v,.
Then this simplifiesto / —v; =we Worm, + 1 —
v; = w € W, both violating the induction hypothe-
sis for W.

This shows W’ satisfies Eq. (C1) and finishes the induc-
tion. The significant cost in each inductive step is the
search to find /, taking O(D?/2 + D) steps.

Resource estimation. The total complexity is found by
applying this for each induction step, thus O(tD?). Note
that r < min(2N, D) — 2log D + 1, with equality when all
the vectors v; are linearly independent; so the total cost
of the classical algorithm used to find U is at most
O(D?*(min(2N, D) — 21log D + 1)). It should be noted that
the search process can be fully parallelized, using all cores
on an available machine, and given the nature of this
search, the expected runtime could be much less. |

APPENDIX D: TRADING OFF TOFFOLIS WITH
QUBITS IN THE SOS ALGORITHM

As explained in the main text, trading off Toffolis with
qubits can be done by using an alternative version of
QROM. This variant, which we shall call SELSWAPDIRTY
[71, Fig. 1(d)], has a parameter A that allows for trading

off qubits with Toffolis. For a QROM loading L many data
points |x;), indexed by i = 1, ..., L and of size c, the trade
off 1 € [1,L] can be applied to change the Toffoli com-
plexity from O(L) to O(L/A + Ac) while increasing the
uninitialized (so-called dirty) qubit cost to O(Ac). Notice
that the volume cost stays as O(Lc), although technically,
as we traded gates with dirty qubits, this volume is not a
clean volume, so it is an overall improvement. To keep
our discussion focused on the novelties and following the
convention in previous resource estimations [72], we will
select A = /L/c in our applications. This strikes a balance
in the trade off, using “equally” many (O(~/Lc)) Toffolis as
dirty qubits.

The first expensive QROM is employed when out-
putting the system register in Eq. (10). Using the SEL-
SWAPDIRTY variant with Toffoli cost 2D /A + 8(2N)A with
L = /2D/16N, this QROM Toffoli cost can be lowered to
2+/32ND while also using +/32ND dirty qubits.

We also could have chosen to use SELSWAPDIRTY
QROM to flip the register |i) using |b;) in

D
Zai 2) [vi)y [Di)s 5 (D)
i=1

where we have denoted the registers by subscripts. We
need to employ the inverse O' of the SELSWAPDIRTY oper-
ator O |b;), |0)21°¢P = |b,), |i). The naive implementation
of O would read 2logD — 1 qubits of b;, therefore its
optimized Toffoli cost would scale as O(y/D? - log D) =
O(D,/log D). However, know that we only have D ~
2'°¢D many b;’s and we would like to exploit this fact,
achieving a Toffoli cost that is sublinear in D.

First we note that we have knowledge of the value of b;
as we computed them classically. Let A = [+/D]. Let us
now order b;, < --- < by,. We compute

|0;)10) 218221 — b ) If ) , (D2)
where f°(j) is the unique index such that by, , ., | < b; <
by, ;> where for Af (j) > D, we set iy ;) = D. This com-
putation requires comparing b; to [D/A] many other b;’s.
This means a Toffoli cost of (2logD —1+2logD — 1)
(the comparator cost of two 2 log D — 1 bits integers) mul-
tiplied by the [(D/)\)] comparisons that we have to make.
More precisely, starting from b, for g =1, we com-
pare b; with b, stored in an auxiliary register, and if
b; > by, we store [1) in another auxiliary register and
otherwise |0). Then we add the value of that register to
another register holding |g), which will eventually become
I G)). This summation itself costs [logD/2] 4+ 1 Tof-
folis as the size of the register holding ¢ is [logD/2]
(the qubit cost is effectively zero, as any ancilla used
is immediately liberated without Toffolis). As this sum-
mation must be performed for all ¢ € {1,...,[(D/A)]},
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we have an additional [log D/27 - [(D/A)] to account for.
In total, the cost for this computation is (4logD —2 +
[og D/21)[(D/A)] ~ ((9log DN/D)/2), and we note that
its (later) uncomputation can be done with Clifford gates.
After this, our state becomes

D
D aili) i)y by If () (D3)
i=1

Next, we read the register f (i) using a SELECT QROM with
cost 21°¢2/2 and output the A block of b;’s in which we

know b, lives in, i.e.,

biy g1y - ’blem)'

D
D i i) i)y 1Ba)y I ) |Bryy 1o - ,bzvm>- (D4)
i=1

Notice the significant clean qubit cost (2logD — 1)A ~
(2log D — 1)+/D. The uncomputation of this step is later
done with Clifford gates. CNOT-ing the register b; into the
block yields

D
D aili) i)y 1By If () ®

i=1

bl)t(/‘([)_l)-&-l @ bi5 ) blkf(i) @ bl> . (DS)

By using A many (2 log D — 1)-MCCNOTs, with total Tof-
foli cost (2log D — 1)), we compute the index 1 < g(i) <
A for which b’w‘ - igh = b;. More precisely, we hold in
an auxiliary register the index |k) at which we are imple-
menting the MCCNOT, and using Toffolis, bit by bit for
every [(log D/2)7 bits, add that to the register designed for
holding g(7) controlled on the result of the (2logD — 1)-
MCCNOT. This requires an additional [log D/27 Toffolis
and ensures that only the true & = g(i) is added to the
register designed for holding g(i). Therefore, the total
Toffoli cost of this step is (2logD + [logD/2] — 1) ~
((Slog D+/D) /2). We now have the following state:

D
D aili) i)y by If (1)) ®

i=1

Bl iyt @ bis- by, @ b)) (D6)

Notice the register |f (i), g(i)) has 2[(logD/2)] ~ log D
qubits, and determines i uniquely. Tracing this back to
our original goal of distinguishing the D many v;’s, this
is the ideal we can hope for, as we have computed D

many log(D)-bits integers |f (i), g (7)) that are distinct. The
rest can be done using the inverse O' of a SELSWAPDIRTY

QROM which computes

O (i),g()) 10)*1°8P = | (i), g(@)) i) (D7)
Notice that we have access to where b; is in the list b;, <

. < by, and therefore can classically compute the val-
ues f (i), g(i). Hence the QROM has the required classical
lookup data. This SELSWAPDIRTY QROM has Toffoli cost
2\/161og(D)2"eD < 2,/321og(D)D with dirty qubit cost
<4/321log(D)D. Note that these dirty qubits are already

available using the A block, which has (2logD — 1)v/D
qubits.

Resource estimation. Overall, the clean qubit cost
increases to (2 log D — 1)+/D, and an additional dirty qubit
cost /32ND. The clean qubit cost may be improved if
one can find a way to compute g(i) without outputting
the entire A block. While the dirty qubit cost can be
avoided if we do not apply SELSWAPDIRTY QROM in
Eq. (10). In practice, the dirty qubit cost, though signif-
icantly larger than the clean (5log D) qubit cost in our
previous method, may be actually available if a future com-
putation (such as qubitization) to simulate the evolution
of the Hamiltonian requires that much qubit. The Tof-
foli cost changes to min(2+/32ND, D) + ((9 1ogD«/5) /
2) + ((5log Dv/D)/2) + 2'°2P/2 4 2. /32]0g(D)D ~ min
(2+/32ND, D) + (7log D + 2,/321og D)+/D. In case D is
chosen from the minimum, the dirty qubit cost +/32ND is
lifted.

Is the algorithm optimal? Our algorithm is general
in the sense that it simply assumes a given set of ampli-
tudes {o;} and bitstrings {v;}, with no assumption on the
nature of either of the two sets. Furthermore, a dimen-
sionality argument can show that the compression in
Lemma 1 of v; to 2logD — 1 bits is very likely to be
tight, and we conjecture that the volume cost cannot
be asymptotically lower than O(D), and more strongly,
O((log D)>D). We remark that this conjecture is for cre-
ating the superposition Z?:l a; |v;), without any junk reg-
ister, i.e., Z,D: Lo |vi) |junki) is not acceptable. The only
“approximation” allowed is in the amplitudes, and the
distance to the state should be on the order of chemi-
cal accuracy. Both these restrictions are necessary as this
preparation problem concerns the system register, and not,
say, a PREP state in a qubitization protocol derived from
an LCU, which can include a junk register, and hence why
preparation methods such as coherent alias sampling [72]
can be employed in that instance.

One wonders if the approach in Ref. [18] in iteratively
generating the superposition can be combined with ours.
This would involve ordering the states v; and compress-
ing vy,...,v for each 1 </ < D. Assuming that for each
[/, a compression of the bitstrings vy,...,v; to a length
k; is possible (and we know &; < 2[log/] — 1), then the
Toffoli cost of generating the superposition is Zle(k; —
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1). This is upper bounded by Ziﬂ:olgm_Z Qi— 12 —
1) + (2[log D] — 1)(D — 2M¢P1-1) and can be seen to be
smaller than our own cost (2[log D] + 3)D. However, this
method also involves a rotation at each step for 1 <1 < D,
and even assuming access to a gradient state, the over-
all cost of these rotations is (¢ — 3)D Toffolis, where c is
the required bit precision. Note that we also have to take
into account the accuracy c for our rotations in generating
the superposition in Eq. (9), however the associated cost
is simply (¢ — 3)log D, and according to Lemma E.1 in
Ref. [73], ¢ must satisfy ¢ > log(log(D)r/€), where € is
chemical accuracy. Crucially, ¢ is double logarithmic in
terms of D, because there are only log D rotations per-
formed in generating Eq. (9). This is not the case when
using the approach in Ref. [18], and for the overall error
to be under chemical accuracy, we need ¢ > log(Dm/¢),
therefore making ¢ logarithmic in D. Still, one could see
the total cost Z!flgm*z(% — DR — 1)+ (2[log D] —
1)(D — 2MeP1=1y 4 (log(Dr/€) — 3)D to be competitive
within a constant factor of two with (2[log D + 3)D, but
clearly, it does not lead to a significant constant-factor cost
reduction. Nevertheless, this is a worst-case complexity
analysis, and if k;’s are significantly smaller, one might
see benefits of this combination of the two methods. This
could potentially be the case for a particular range of D and
bitstrings v;’s which have some common structure, such as
being an excitation or two away from a reference state, and
we leave that for future works.

APPENDIX E: DETAILS OF RESOURCE
ESTIMATION FOR MPS IMPLEMENTATION

In this Appendix we discuss the details of the MPS cost
estimation presented in Sec. III B. In particular, we focus
on the ancilla qubit and Toffoli costs of implementing G[; ]
defined in Eq. (23).

We represent the G operations as

Gl =Y (| o)y 1,00) + ..o ED)
%1
with
”‘1./—1> - ZA;{Qf—laj o2 5). E2)

aj,nj

In the states |aj,nj) the first and second arguments show
the ancillae and system qudit indices, respectively. Note
that the form of Eq. (E1) follows from the definition of
G in Eq. (23). Each unitary is synthesized using a series
of Householder reflections with the addition of a single

ancilla qubit as follows:

Xj—1

0) (1l ® G+ 1) (0| @ G 1= [] (1—2P,,_)),

0lj_1:1

(E3)

where a total of x;_; reflections are used, whose projectors

are defined through an auxiliary state \wy, _, >:
Paj,l = Waj,1><waj,1 > (E4)
with
Wy ) =11 @ o100~ 10) ® fug, )
=Wy, 10) ®10,0). (E5)

On the second row, we have defined the operator Wo,

waj71>, also in the state |0) ® |0,0) the 0’s
correspond to the reflection ancilla, MPS ancillae and the
system qudit, respectively.

With the operator W,
Eq. (E3) can be written as

that prepares

_,» each of the reflections in

1=2Py, | =W, _, [1-2]0,0,0) (0,0,0]] Wl,,p (Eo6)
and thus the cost of implementing each reflection is twice
the cost of W,, | plus the cost of the simple reflection

[1—=2]0,0,0)(0,0,0l]. As a result, we need to also evalu-
ate the cost of W“H , which we synthesize as follows: we

first define an operator that prepares the state

(ET)

oy 1) = Vg 110,0)

It can be seen that ¥, | as below can serve to satisfy the

definition of Wa_,_1> in Eq. (ES):

W = (o) (G ) (@ @D, (E8)
where ZH (a Pauli Z and a Hadamard) acts on the
reflection ancilla, Caj_] is a product of CNOTs con-
trolled on the reflection ancilla to prepare the state
(1/5/2)[10,0,0) — |1,a;,0)]. With CV,,_, controlled neg-

atively on the reflection ancilla, one can check that ‘wa/.71>

is prepared up to a phase.
We are interested in the Toffoli cost of implementation
and list all sources of Toffoli cost below:

e Simple reflections [1 —210,0,0) (0,0,0[]: a num-
ber of x;_; of them is required for G[/ ].
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e Operations CVD[/._I: these are required for creating
W, _, and are the only source of non-Clifford gates
in their synthesis. A total of 2x;_; of such operators
is required for G[j .

First we note that the reflection [1 —2[0)®" (0/®"] can
essentially be thought of as a multicontrolled Z operation,
and thus can be implemented using a circuit such as the
one shown in Fig. 4.10 of Ref. [11]. However, the second
half of the circuit, i.e., the uncomputing part can be done
without Toffolis and in fact using measurements and Clif-
ford gates as shown in Fig. 3 of Ref. [113]. This makes the
total number of Toffoli gates and ancillae equal to v — 1.
Next, we discuss how C ijfl can be implemented and
estimate the required resources. For this we first discuss

the implementation of Vo,jfl. V%.f1 prepares the state

(E9)

tay 1) = Vg1 10,0),

which is defined as

— nj |, ;)
uaj71>_ E Aj;aj,laj a;,n;).

o 5"y

(E10)

First, we take the above subspace of interest to consist of v
qubits. The preparation of a generic state as )“”/—1> can be

done using the methods discussed in Ref. [71]; the state is
carved qubit by qubit in v steps; in each step a single-qubit
rotations on one qubit being controlled on all the previ-
ous entries is performed and with consecutive application
of this procedure all the correct probabilities for bitstrings
are reproduced at the end; one last multicontrolled single-
qubit rotation is required to recover the complex phases
corresponding to the components of the state in question
(see p. 3 of Ref. [71] for details). Thus a total of v + 1 of
such single-qubit rotations are required for reproducing the
state.

The rotation will be performed with the method given
in Ref. [113], where access to a phase gradient state
27012 Zib:f)l e27/2" |1y is assumed. b = log(1/8,) is the
number of digits in the binary representation of the rotation
angle and thus §, is the error in rotation. The Toffoli cost
of each single-qubit rotation is given by b + O(1) [113];
note that this also means we need an additional log(1/6,)
additional qubits to store the phase of each single-qubit
rotation.

Considering first the SELECT variant of implementation
in Ref. [71], we now discuss the cost of control operations
for the above single-qubit rotations. Since multicontrol-
ling over a sequence of 0,1,2,...,v qubits is required
to store the respective rotation angles, we will, respec-
tively, have a sequence of Toffoli costs of 20 — 1,2 —
1,22 —1,...,2" — 1 according to Ref. [114] (see e.g., Fig.
7 therein). Note that we are interested in implementing

CVQ/_I, and Ref. [114] also considers a controlled oper-
ation for the above cost. After each single-qubit rotation,
the qubits storing the rotation angle should be uncomputed
and this adds a multiplicative factor of 2. As a result, for
the SELECT variant we have a total Toffoli cost equal to

2"+2 4 vb, (E11)
where we have dropped an additive —v term in the sum as
it is subdominant.

In our particular case of interest, i.e., synthesis of G[j ],
we have a number of reflections shown in Eq. (E3), equal
to x;j—1. On the other hand, the Hilbert space over which
each of the reflections acts is x;d and as a result, N in the
above trwatments should be 2" = y;d. This means that in
the SELECT variant, the total Toffoli cost reads:

Xi-1 [8xd + blog(yd) + log(yd)],  (E12)
Next turning to the other variant SELSWAPDIRTY of
Ref. [71], which is capable of reducing the Toffoli cost if
dirty qubits are available; we saw above that a number b
qubits is required for storing the rotation angles, however
with the addition of a number Ab dirty qubits, we can use
this variant of the algorithm. A total of v + b extra clean
qubits are also required (excluding the ancillae required
for performing single-qubit rotations like the phase gradi-
ent state); note that this is the same number as the SELECT
variant. Moreover, for SELSWAPDIRTY, one needs to per-
form swaps also which will add to the total Toffoli cost. It
is straightforward to see that the Toffoli gate cost in this
case reads

V42

2 . +4.2Avb + vb.

(E13)

The first term corresponds to multiqubit controls, the sec-
ond term swaps and the third-term single-qubit rotations.
The factors 2 and 4 in the first and the second terms appear
because SELECT and SWAP need to be done twice and four
times in SELSWAPDIRTY (see Fig. 1(d) of [71]). The fac-
tor of 2 in the second term comes from uncomputing the
rotation angles.

As is discussed in Ref. [71], it is best for Toffoli gate
count to be A = O(v/2"), but we will keep it unspecified
for the rest of the discussion.

Gathering all the above costs together for synthesizing
Gl[j] in Eq. (E1), we see that the Toffoli cost reads using
the SELSWAPDIRTY variant:

d
Xji—1 [SXJT + 8Ablog(x;d) + blog(x;d) + log()(jd)] .
(E14)

In total, assuming a number N of qudits in the physi-
cal system, the total cost will be the sum of the above;
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TABLE II.

Edgeworth series terms.

2}

Edgeworth term

[ T N O R S

(k3/6) Hes (x)

(k4 /24) Heq(x) + (13 /72) Heg(x)
(5/120) Hes(x) + (kak3/144) He7(x) + (K§/1296) Hey(x)
(k6/720) Heg(x) + (x5k3/720 + /c42/1 152) Heg(x) + (K4K32/1728) Heyo(x) + (K§/31 104) He, (x)
(k7/5040) He7(x) + (kek3 /4320 4 K564 /2880) Heg(x) + (K5K32/864O + Kf/(3/6912) Hej(x) + (/<4K32/3l 104) Hey3(x)

+(x3/933120) Heys(x)

asymptotically and with using x selectively for all bond
dimensions, the dominant Toffoli cost can be written as
O(N x*7?).

APPENDIX F: EDGEWORTH SERIES TERMS

In general, the Edgeworth series terms can be written
as [81]

e—x2/2
(x) = 1+
PE NGz
iZHe (x)ﬁ L Kmia " (F1)
L i T L, \om+ 21 ’

where the summation over {k,} in the above denotes
summation over all non-negative integer solutions of the
Diophantine equation

ki +2ky + ...+ sk =3, (F2)
and r is the sum of these integers for each solution: » =

> k. The explicit forms for a few of the orders of the
Edgeworth expansion can be found in Table II.

APPENDIX G: KERNEL DENSITY
APPROXIMATION

Here, we give a quick overview of the kernel density
approximation method. Supposing we have access to a
finite number of samples drawn from a distribution func-
tion, the goal is to approximate the distribution function.
To this end, a broadening kernel is placed at the position of
each of the outcomes and a normalized sum approximates
the underlying distribution:

. I o (X=X
P(X)—m§K< A >,

where K is a kernel (e.g., Gaussian, Lorentzian, etc.) with
mean of 0 and variance of 1, X;,i=1,...,M are the
outcomes of sampling and # is the broadening factor.

(G1)

The analysis of error in reconstructing the above QPE-
kernel energy distribution with kernel density estimation
follows a standard approach [88]. First, the error is quanti-
fied by the quantity mean integrated square error (Ruisg):

Rvise = E </ dx (p(x) —P(X))2> ) (G2)

where p (x) is the approximated distribution for the under-
lying distribution p (x). When a sample of size M is used,
it is well known that with an appropriate choice of 4, i.e.,
hopt ~ 1/M'/3, the error also shows the behavior Rysg ~
1/ M43,

APPENDIX H: DETAILS OF THE QUANTUM
EIGENVALUE TRANSFORMATION OF UNITARY
MATRICES METHOD

The method consists of a quantum signal-processing cir-
cuit [93,94] that implements a unitary matrix that block
encodes a polynomial function f(H) = P(cos(H/2)),
where H is the Hamiltonian of interest and P is an even
polynomial of degree d. A schematic of the quantum
circuit is shown in Fig. 17. The circuit works by imple-
menting U = e~ and its Hermitian conjugate controlled
on a single ancilla, a total number of d times. The param-
eters @o, ¢1,...,9q are determined based on the poly-
nomial of interest. Upon measuring the ancilla qubit at
the end and obtaining the outcome 0, the implementation
has been successful, the probability of success is given by
IP(cos(H /2)) ) II.

A scheme of the quantum circuit is shown in Fig. 17.
The circuit works by implementing U = e~ and its Her-
mitian conjugate controlled on a single ancilla, a total
number of d times. The parameters ¢g, ¢i,...,@qn are
determined based on the polynomial of interest. Upon
measuring the ancilla qubit at the end and obtaining the

» - 1 FUD[)
[4) 1LY 1 Ut U LU TR

FIG. 17. THE QETU circuit, see the main text for explanation.
The figure is taken from Ref. [92].
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outcome 0, the implementation has been successful, the
probability of success is given by ||P(cos(H /2)) |v) ||
The polynomial that needs to be implemented for our
energy-filtering task should be a symmetric function that
retains low energies and filters high energies. We take
the spectrum of the Hamiltonian to lie within the interval
[—7 4+ 1,0 — n], if necessary this can be done by adding
a constant to and/or rescaling the Hamiltonian before per-
forming QETU. Note that this is contrary to the original
setting of Ref. [92] (the spectrum is contained in [n, 7 —
n]) and coarse QPE mentioned above; the reason for this
change is better performance. We need a polynomial P,
which when expressed as P(cos(H /2)) can filter high ener-
gies; it is straightforward to see that using the following
combination of error functions, which we will try to imitate
using the polynomial P, it is possible to filter high energies:

1
Skn(¥) = 5 [erf(—k(x — p)) + erf(k(x + 1)1, (HI)

with 0 < k and 0 < i < 1 determining the steepness and
position of the transitions, i.e., position of energy filtering
in the function. We use the prescription in Appendix A of
Ref. [115] to reconstruct the error function erf(kx) in terms
of Chebyshev polynomials as follows:

ke K12
Derfin = T Ih(K/2)
(n—1)/2
- j(x)  Ty—1(x)
+ (—M(kz/z)[ . - ] :
JZ_; / 2 +1 2 —1

(H2)

where 7; is the degree j Chebyshev polynomial, /; is the
modified Bessel function of the first kind. Note that pers s,
is an odd polynomial of degree #; it is the degree n that con-
trols the error in approximating erf(kx) and thus ensuring
that low energies are retained and high energies filtered,
and therefore it should be chosen large enough (see below).
An example constructing polynomials like this is shown in
Fig. 18.

Applying a successful round of QETU filtering to a
state |¢) = >, ¢r |E), we end up with the following
unnormalized state:

> @r P(cos(E/2)) |E) 10). (H3)
E

This shows that supposing we want to keep energies
below E; and filter energies above E,, we can choose
a filtering function in Eq. (H1) (to be approximated by
P) with u = ((cos(E,/2) + cos(£;/2))/2) and (1/k) =
¢ ((cos(E,/2) — cos(E;/2))/2). The factor ¢ is added so

1.0 - —
0.8
0.61
0.4 1 :
i \

0.21 /‘I - deg. 20 poly. \»\

/ deg. 50 poly. A\
0.01 N_/ —— deg. 100 poly. ~_"

—1.0 —0.5 0.0 0.5 1.0
T

FIG. 18. The even filtering functions required for QETU.
Polynomial approximations of the same function are also shown.

that it is possible to control the intensity of filtering while
keeping the degree of the polynomial and the cost down.

The degree of a polynomial that needs to be used for
this task will have a scaling O(I' ! log e ~!), where € is the
error in the polynomial approximation and I' is the energy
scale over which the transition in the error functions in
Eq. (H1) happens, and thus should scale as 1/k. Apart form
the above asymptotic scaling, in practice, we choose n by
examining how good of an approximation is achieved for
degree n.

APPENDIX I: SIMPLIFIED NUMERICAL
EXAMPLE FOR THE QUANTUM REFINING STEP

Here, as a simple concrete model, we consider a Gaus-
sian energy distribution for our initial state. This Gaussian
distribution can be characterized by a mean value £ and a
width og:

1 _(E—Ig)z
A(E) = e b I1)
VZ?TO’E (

Even though the energy distribution of an initial state
might not actually be close to Gaussian in general, but we
expect at least some variational states to show qualitatively
similar behavior.

We work with following concrete example of a Gaus-
sian distribution: £ = 0.06, 0 = 0.02. We would like to
estimate the resources required to obtain a result close to
0 using QPE. With the above choice of parameters for
the energy distribution, the accumulated weight below 0 is
p<(0) = 0.0013. This means that we need roughly 1/p_(0)
measurements to obtain a value around 0. We can per-
form quantum refining to decrease the number of times
the most expensive quantum energy estimation routine is
performed. We take this most precise routine to be a QPE
with & = 10 digits for this example, however, we tolerate
an error of 278, discarding the last two digits in any QPE
outcome. The number of digits £ furthermore determines
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the total evolution time required as T ~ 2¥. We character-
ize the cost of different operations by the number of queries
they require to the unitary e/, which for a k-digit QPE
measurement becomes 2¢. This means that each round of
the ultimate QPE measurement brings in a cost of 2'0.

We first consider coarse QPE for energy filtering in this
setting. Concretely, we do a coarse QPE measurement with
4 digits and only keep the results that show outcome 0 in
the measured phase register, we can filter out some part
of the weight as shown in Fig. 7 (left). This outcome
happens with a probability of W;_s = 0.10. In this new
energy distribution the total weight below zero now reads
Papg,<(0) = 0.012. This means that, after such measure-
ment, roughly ten times less rounds of the precision QPE
will be required compared to the initial state.

One can do this procedure one more time with a coarse
QPE with 5 digits now and postselecting on the outcome
0 again; the resulting weight distribution can be seen in
Fig. 7 (left). The probability of such outcome (given the
previous outcome of 0 with 4 digits) is now Wj_45 =
0.13 (this means that the probability of obtaining 0 in
the 4-digit measurement and then also 0 in the 5-digit
measurement is Wi_4Wj—_4.s = 0.013). Remarkably with
this measurement, the total weight below zero becomes
ngE’<(O) = 0.083; this results in close to 2 orders of
magnitude decrease in the number of precision QPE mea-
surement required for obtaining outcomes close to 0. This
is achieved for a cost of 24 + 23, which is an insignificant
overhead compared with the cost of the most precise QPE
measurement.

For QETU, we shift the energies so that low energies are
located close to —mr as discussed in Appendix H. We use
a degree 200 polynomial to approximate a step function as
shown in Fig. 7. The normalized distribution after QETU
has been performed moves to the left and thus some of the
higher energies are filtered. Probability of success in this
case is Woery = 0.21 and the total weight below 0 after
the procedure can also be calculated as pogr; - = 0.0056.
This means decreasing the number of repetitions roughly
by a factor of 4. As the polynomial that is used is order
200, the number of required queries to e~ is also 200.

We see that both coarse QPE and QETU refining
methods can be helpful for a cost that is an insignificant
fraction of the ultimate QPE cost, but coarse QPE acts
considerably better for a lower cost. As creating steep
polynomials like the one used here is generally a hard task,
we believe this result should hold generically even though
we tested it here for a simple model.

a. Mitigating the leakage

Another thing that can be studied in this simple model
is the probability of leakage before and after the refining is
performed. We consider only coarse QPE for this. Before

any of the measurements are performed the total proba-
bility of leakage is equal to pieax = 0.00097 which close
to p~(0) = 0.0013 and this can be problematic by con-
tributing outcomes below the actual energy levels of th
system. Upon performing 4-digit and 5-digit QPE mea-
surements discussed above, the probability of leakage
becomes py,,, = 0.0019 and, respectively, p;., = 0.0036.
These two values when compared with pgp _(0) = 0.012
and pepg, - (0) = 0.083 show that the probability of leak-
age has decreased substantially enough compared to the
probability of obtaining results of interest, so that its occur-
rence has become improbable, and thus quantum refining
has suppressed the possibility of leakage also.

APPENDIX J: ERROR ANALYSIS OF THE QPE
LEAKAGE APPROXIMATE FORM

In this Appendix, we analyze Eq. (46) and in particular
how the approximation in Eq. (47) can be performed.

1 sin®(78,)
pleak(En) = Z ﬁ . 5 -
sin (;—k[x,, + 8, — xj]>

Xj <Xupper

an

we take the lower bound in the summation over x; to be
—2%=1 and we are using the periodicity of the QPE results.
A lower bound and an upper bound for the above sum can
be found by using the following integral form:

sin?(78,) [0 dx
I(xo) = x|, o -
—2k=1 8" (3¢ (X + 8, — X))

: 2 k X0
3n) | 2
b4 2k k-1

22k
(J2)

It is easy to check that
I (xXupper — 1) < preak(En) < I (Xupper)- (J3)

This readily results in Eq. (47), and the error can also be
shown to have the form O (max [27%, (x, — xupper) 2]) by
evaluating I (Xypper) — I (Xupper — 1).

APPENDIX K: ENERGY AND OVERLAP TABLES

In this Appendix, we provide the energy and overlap
numbers from the numerical studies section (specifically
Figs. 9, 12, and 14) for general reference.
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TABLE IIl. Energies (Ha) and overlaps for the H;, hydrogen chains shown originally in Fig. 9. The CCSD energy reported is that
returned by the CCSD method in PySCF.

Quantity Bond length (A) HF CISD CCSD HCI DMRG FCI
E,Ha 0.71 —5.9836 —6.0994 —6.0991 —6.1057 —6.1059 —6.1059
1.42 —5.6987 —5.9992 —5.9573 —6.1158 —6.1188 —6.1203
2.84 —4.0757 —4.7544 —4.5582 —5.6572 —5.6577 —5.6578
(¥ [¥rcr) 0.71 0.960 0.999 0.999 1.000 1.000
1.42 0.669 0.899 0.921 0.987 0.999
2.84 0.133 0.314 0.333 0.747 0.966

TABLE IV. Energies (Ha) and overlaps for the N, nitrogen molecules with stretched bond lengths shown originally in Fig. 12. The
CCSD energy reported is that returned by the CCSD method in PySCF.

Quantity Bond length (A) HF CISD CCSD CASCI MRPT HCI DMRG
E, Ha 2.517 —18.6047  —19.1193  —19.1628  —19.2749  —19.4169  —19.4473  —19.4467
(¥ |¥pMRG) 2.517 0.336 0.363 0.197 0.345 0.345 0.992 1.000

TABLE V. Energies (Ha) and overlaps for the Cr, dimer within the active space of the 10 3d orbitals, with stretched bond lengths,
shown originally in Fig. 14. The CCSD energy reported is that returned by the CCSD method in PySCF.

Quantity Bond length (A) HF CCSD HCI DMRG
E, Ha 3.024 —2085.2675 —2085.9015 —2086.4395 —2086.6067 —2086.6067
(V| ¥DMRG) 3.024 0.110 0.205 1.000 1.000
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