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Quantum computers offer an intriguing path for a paradigmatic change of computing in the natural
sciences and beyond, with the potential for achieving a so-called quantum advantage—namely, a signif-
icant (in some cases exponential) speedup of numerical simulations. The rapid development of hardware
devices with various realizations of qubits enables the execution of small-scale but representative appli-
cations on quantum computers. In particular, the high-energy physics community plays a pivotal role in
accessing the power of quantum computing, since the field is a driving source for challenging computa-
tional problems. This concerns, on the theoretical side, the exploration of models that are very hard or even
impossible to address with classical techniques and, on the experimental side, the enormous data challenge
of newly emerging experiments, such as the upgrade of the Large Hadron Collider. In this Roadmap paper,
led by CERN, DESY, and IBM, we provide the status of high-energy physics quantum computations and
give examples of theoretical and experimental target benchmark applications, which can be addressed in
the near future. Having in mind hardware with about 100 qubits capable of executing several thousand
two-qubit gates, where possible, we also provide resource estimates for the examples given using error-
mitigated quantum computing. The ultimate declared goal of this task force is therefore to trigger further
research in the high-energy physics community to develop interesting use cases for demonstrations on
near-term quantum computers.

DOI: 10.1103/PRXQuantum.5.037001

I. INTRODUCTION

This article reports on scientific discussions and con-
clusions elaborated at a workshop on high-energy physics
(HEP) held in November 2022 at CERN in Geneva. This
first event of the Quantum Computing for HEP (QC4HEP)
Working Group gathered experts on HEP from different
academic and research institutions and countries from four

continents, who besides being world experts in theoreti-
cal and experimental aspects of HEP also share a common
interest in quantum computing (QC) and its potential as a
game changer in the field. The main goal of the workshop,
and of this article, is to set a common Roadmap for selected
topics of interest to this community, in which we believe
that QC can have a significant impact in the near future.
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To this end, we have investigated classes of problems and
corresponding quantum algorithms that can lead to poten-
tial quantum advantage with near-term, noisy, quantum
devices. We aim to provide a set of physically relevant use
cases that could be interesting to execute on utility-scale
quantum hardware, i.e., hardware with about 100 qubits
capable of reliably executing several thousand two-qubit
gates with error mitigation [1]. By “utility-scale quan-
tum calculations” [2] we mean hardware experiments that
can deliver meaningful (albeit noisy) results for quantum
circuits and related problems for which no exact classi-
cal solution is available, but only approximate ones are
available. Therefore, while quantum advantage remains
the main target for quantum computing, this study focuses
on intermediate “utility-scale” experiments of relevance
for the HEP community. The most characteristic feature
of our work is thus the identification of realistic problems
of interest addressable with near-term quantum algorithms,
running on state-of-the-art noisy quantum devices, rather
than extensions into the fault-tolerant regime.

Crucially, all developments proposed in the Roadmap
are fully platform agnostic. This means that any quantum
computing platform can take inspiration from our work
and participate in designing near-term experiments, which
can then be confronted—in a constructive manner—with
the results from other classical and quantum platforms.
We believe that by following this path, we will succeed
in exploring thoroughly the most promising problems in
HEP that may lead to the demonstration of quantum util-
ity in the short term and quantum advantage in the medium
term (i.e., before the advent of fault-tolerant quantum com-
puting). Importantly, most algorithmic developments for
near-term quantum computers are transferable to the fault-
tolerant regime, as, for instance, algorithms for quantum
state preparation and time propagation.

The problems proposed in this study were selected
on the basis of two main aspects: (1) their physi-
cal significance as models of relevant phenomena [e.g.,
low-dimensional lattice gauge theory (LGT)] or as promis-
ing alternative solution strategies for data analysis (e.g.,
anomaly detection in collider experiments), and (2) the
level of “hardness” of the corresponding classical solu-
tions due to particular unfavorable scaling or resource and
accuracy limitations. The authors were careful in selecting
the physically relevant systems, which can already benefit
from near-term (before fault-tolerant) quantum computing
because of their particular “hardness” for classical calcu-
lations. The scientific value of this work lies mostly in the
characterization of problems compatible with utility-scale
experiments, proposing the algorithms and error mitigation
schemes required for their hardware execution.

For practical purposes, we have organized this arti-
cle into two main domain areas: theoretical methods and
algorithms for modeling HEP problems, and numerical
methods for the interpretation and analysis of experimental

results as well as detector simulation and event generation.
We strongly believe that there are important connections
between the two research domains, where many of the
quantum algorithms designed for the solution of problems
in one field can be transferred to the other.

We therefore start with a short summary of the main
HEP domains in theoretical modeling and experimental
physics, for which we believe there is the potential for
quantum computing to play a significant role in the near
term.

A. Quantum computing for theoretical modeling in
HEP

Despite the great success of classical lattice field
theory [e.g., for quantum electrodynamics (QED) and
quantum chromodynamics (QCD) simulations [3,4] ], out-
of-equilibrium and real-time dynamics (e.g., of parti-
cle collisions, thermalization phenomena, or dynamics
after a quench) remain out of reach for Euclidean path-
integral Monte Carlo simulations. Furthermore, properties
of nuclear matter at high fermionic densities, as arise in
neutron stars or in the very early universe, for exam-
ple, cannot be accessed through these classical simulation
techniques [5]. The same holds true for theories with topo-
logical terms, which are relevant, for example, in QCD for
understanding the amount of CP violation or, in the elec-
troweak sector, the sphaleron rate in the early universe.
These severe limitations are rooted in the notorious sign
problem: the highly oscillatory behavior of the path inte-
grals arising in real-time phenomena, in systems with a
high fermionic particle density, or in the presence of topo-
logical terms implies an exponentially growing sampling
runtime complexity with an increasing number of lattice
sites [6].

An alternative approach to circumvent the sign prob-
lem might be to describe lattice field theories in the
equivalent Hamiltonian formalism, instead of the path-
integral description based on the Lagrangian formalism
[7,8]. In the Hamiltonian approach, however, the total
many-particle wave function that describes a general par-
ticle state on the whole lattice must be stored throughout
the simulation. But since the total discretized Hilbert space
H containing such general states corresponds to a tensor
product of Hilbert spaces Hj on a single lattice site, the
required memory to store a full wave function on the lattice
scales exponentially with the number of lattice sites.

In recent years, novel tensor network (TN)–based meth-
ods have been introduced to alleviate these limitations by
allowing a more compact representation of general quan-
tum states on the lattice [9–13]. The underlying mechanism
that allows Hamiltonian simulations to be performed is
that only a small subspace of the complete Hilbert space
describes the low-energy physics of quantum field theo-
ries, and TN methods identify and focus exactly on these
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physically relevant subspaces. Hence, with tensor network
techniques, various phenomena, such as string breaking
and real-time dynamics [14–19], or phase diagrams of both
Abelian and non-Abelian gauge theories at finite fermionic
densities [20–23] have been studied on a few hundred
lattice sites at least in one space dimensional model.

A very promising alternative to TNs is simulations on
quantum computers that can represent large Hilbert spaces
using qubits, its basic unit of information, where the num-
ber of required qubits merely grows linearly with the num-
ber of lattice sites. Moreover, quantum algorithms have
been proposed that implement real-time dynamics with
polynomial time complexity for scalar quantum field theo-
ries and QED [24–26]. In addition, by sharing with tensor
networks the Hamiltonian formulation, quantum computa-
tions completely avoid the sign problem. Thus, quantum
computers offer a potential framework to fully overcome
the limitations outlined above for the simulation of lat-
tice gauge theories and especially their real-time dynamics
[27].

Indeed, various proposals for the implementation of
general Abelian and non-Abelian LGT on different types of
quantum hardware have accumulated in the past few years,
and simulations of small LGT systems on real quantum
devices have been demonstrated [11,12,28–31]. Examples
include proposals for implementing lattice gauge theories
using optical lattices [32–34] and atomic and ultracold
quantum matter [35–46], further proof-of-principle imple-
mentations on a real superconducting architecture [28–30,
47,48], and, ultimately, (1+1)-dimensional ([1+1]D) real-
time and variational simulations of quantum electrody-
namics on a trapped-ion system [49,50]. A broad overview
of recently proposed quantum simulators and implementa-
tion techniques for LGT can be found in Refs. [10–12]. It
is noteworthy that lattice gauge theories can be approached
by many different physical systems and methods, each
featuring its own advantages and disadvantages.

The understanding of the static and dynamical properties
of (3+1)-dimensional ([3+1]D) LGT, including QED and
QCD, is not the only target of today’s theoretical particle
physics. One has to consider an exciting but also demand-
ing Roadmap to reach eventually the goal of performing
quantum simulations of (3+1)D systems as relevant for
HEP. This Roadmap starts with (1+1)D systems, which
are under active research nowadays, moving to (2+1)-
dimensional ([2+1]D) systems, which are under considera-
tion now by various groups, and reaching (3+1)D systems
in the future.

Lower-dimensional systems in 1 + 1 and 2 + 1 dimen-
sions are already very interesting. They share important
and challenging problems with their higher-dimensional
counterparts. One important example is the study of
(2+1)D QED, which shows the phenomena of asymp-
totic freedom and confinement. Asymptotic freedom is
a feature of QCD, i.e., the quantum field theory of the

strong interaction between quarks and gluons. In the limit
of high energies (small distances when natural units are
used) the quarks become weakly interacting, making per-
turbation theory well suited for theoretical predictions. In
contrast, at low energies the interaction becomes strong,
leading to particle confinement. Interestingly, there are also
low-dimensional LGTs for which the phenomena of con-
finement is known, which can help shed new light on the
theoretically harder QCD confining mechanism (because
of the large dimensionality and the high number of degrees
of freedom). As said above, one such model is (2+1)D
QED, which is a compact U(1) LGT. As outlined in
Sec. II A 2, we therefore propose this model in a lower
dimension as a benchmark for exploring the potential of
quantum computing in the near-term, noisy, regime.

B. Quantum computing in HEP experiments

HEP experiments are characterized by the ability to
probe the intricacies of particle physics in the Standard
Model and beyond it, through performing measurements
and analyses at the frontier between quantum theory
and precision experimentation. The statistical precision
of experiments performed at the Large Hadron Collider
(LHC) is evaluated on three classes of algorithms:

(1) Detector operation algorithms allow detectors to
efficiently obtain data that cleanly represent the
fundamental interactions of matter. These detectors
might feature very large amounts of very-high-
dimensional data such as those found inside hadron
colliders. These detectors require algorithms to sort
significant signals from noise. Detector-based algo-
rithms are also used to aid in inferring enhanced
features of a given measurement of very rare pro-
cesses such as neutrino or expected new physics
interactions.

(2) Identification and reconstruction algorithms are an
essential part of mapping the vast collection of pixel
intensities, timings, and event counts to a coherent
underlying physics structure in the data. These algo-
rithms allow the segmentation of datasets into those
that feature particular processes or states that are rel-
evant to a given physics goal and therefore must be
robust, efficient, and unbiased.

(3) Robust simulation and inference tools allow particle
physics experiments to compare large amounts of
complex, highly structured data with parameterized
theoretical predictions. These algorithms include the
creation of simulated datasets that are used as tem-
plates in parametric statistical models, classification
tools to increase the sensitivity of a given mea-
surement to some process, or the identification of
statistically anomalous signals that might hint at
sources of new physics.

037001-4



QUANTUM COMPUTING FOR HIGH-ENERGY PHYSICS. . . PRX QUANTUM 5, 037001 (2024)

QC encompasses several defining characteristics that are
of particular interest to experimental HEP: the potential for
quantum speedup in processing time, sensitivity to sources
of correlations in data, and increased expressivity of quan-
tum systems. Each of the three classes of algorithms men-
tioned above benefits from all three of these characteristics.
Experiments running on high-luminosity accelerators need
faster algorithms; identification and reconstruction algo-
rithms need to capture correlations in signals; simulation
and inference tools need to express and calculate functions
that are classically intractable.

Within the existing data reconstruction and analy-
sis paradigm, access to algorithms that exhibit quantum
speedups would revolutionize the simulation of large-scale
quantum systems and the processing of data from complex
experimental setups. This would enable a new genera-
tion of precision measurements to probe deeper into the
nature of the universe. Existing measurements may con-
tain the signatures of underlying quantum correlations or
other sources of new physics that are inaccessible to classi-
cal analysis techniques. Quantum algorithms that leverage
these properties could potentially extract more informa-
tion from a given dataset than classical algorithms. Finally,
algorithms that can capture more complex aspects of
HEP theory and simulation could provide estimators that
are more natively aligned with the quantum mechanical
nature of the Standard Model or indeed potentially uncover
new physics beyond what can be explained by classical
models.

Quantum computing for HEP is of particular interest
due to the prospect of algorithms that can leverage the
unique properties of quantum systems to achieve com-
putational advantages. Most quantum algorithms with a
promise of a superpolynomial advantage exploit the capac-
ity of quantum computers to efficiently simulate quantum
many-body systems. The search for potential quantum
utility and/or advantage would be accelerated by the iden-
tification of computational problems with the right kind
of underlying structure that can be leveraged by quantum
algorithms. Applications in the HEP domain can clearly
offer a controlled experimental benchmark for such test
cases. Through the analysis of the data from HEP exper-
iments using quantum algorithms, researchers may be
able to gain insights into the behavior of quantum sys-
tems and potentially identify new avenues for quantum
advantage.

HEP experimental data are typically organized as col-
lections of associated detector signals that can be recon-
structed into measured particles. The distributions of these
particle measurements are calculable under specific param-
eterization of the underlying theory such that the dis-
tribution of experimental data can be directly compared
with theoretical predictions through the use of simulated
data. These parameterizations are such that a characteri-
zation of any given process as defined in quantum field

theory is maximally described by the data. This method
of parameterization allows the accuracy of the estimator
to scale consistently and efficiently with repeated mea-
surements. Therefore, although the data recorded in high-
energy physics experiments provide information about the
behavior of fundamental particles and their interactions,
which in turn are described by quantum fields and their
dynamics governed by the principles of quantum mechan-
ics, it is important to note that typically the data and their
descriptions are classical in nature and therefore may not
trivially exhibit the quantum mechanical properties neces-
sary for quantum utility experiments and, later, quantum
advantage. In summary, by analyzing experimental data
using tools and techniques from both quantum informa-
tion theory and particle physics, we can gain insights into
the fundamental nature of the universe and potentially dis-
cover new phenomena that are not described by current
theoretical models.

It is worth mentioning that another collective article on
quantum simulations for HEP appeared recently in the lit-
erature [51]. Despite the broadly similar target, our work
differs in several essential aspects: First, our focus is on
the identification and detailed characterization of projects
that—while approachable with near-term, noisy quantum
devices (about 100 qubits and a few thousand two-qubit
gates)—can already address problems of interest in the
HEP community. Second, our investigation comprises both
theoretical models and computational aspects related to
particle collision experiments.

This article is organized as follows. In Sec. II, we
describe the challenges in the field and goals that one hopes
to achieve with quantum hardware. Section III contains
a description of various algorithms that we consider as
key candidates for achieving the goals outlined in Sec. II.
Finally, we present conclusions in Sec. IV. In Appendix A,
we outline IBM’s Roadmap for future quantum devices
and explain why digital quantum computers are suitable
for addressing open challenges in HEP. In Appendix B, we
give a short summary of how a problem is executed on a
digital quantum computer. In Appendix C, we explicitly
show how the Schwinger model is executed on a quantum
computer. In Appendix D, we provide a detailed estima-
tion of the required resources for encoding lattice gauge
theories in a digital, qubit-based quantum computer, while
Appendix E contains information on selected quantum and
classical algorithms.

II. CHALLENGES AND GOALS

The list of identified topics is, of course, not exhaustive.
The choice is mainly motivated by the research interests
of the authors of this paper. However, we hope that the
solutions proposed for this selection of problems, and the
corresponding algorithms, can be of inspiration in other
domains not contemplated here.
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A. Selected applications in the theory domain

In this section, we introduce a series of interesting theo-
retical challenges in different theoretical domains, includ-
ing many-particle physics, different flavors of lattice gauge
theories, and neutrino physics. The applications deal with
relatively low-dimensional systems, which, however, pre-
serve some of the key aspects and criticality, that char-
acterize the systems at the full scale. An overview of the
proposed applications in the theory domain together with
the associated quantum algorithms is given in the upper
panel in Fig. 1.

We further stress that the selection of the problems and
their sizes was made to ensure both their physical rele-
vance and a level of hardness that would prevent exact
solutions with classical computers, in the spirit of the
quantum utility concept. Again, here we do not claim any
quantum advantage yet (which would imply the impossi-
bility to determine a classical solution because of scaling
issues), but claim the possibility to provide a quantum
computing solution to a problem that has no exact classi-
cal solution or—as in the case of quantum dynamics—that
displays an exponential entanglement growth with time,
causing most classical approaches (e.g., TN approaches)
to fail in the long run.

Since most applications will deal with the dynami-
cal aspects of the different model Hamiltonians, we start
this section with an introduction to methods for real-time
simulations.

1. Simulations of real-time phenomena

Experimental results from high-energy physics labora-
tories, such as the Large Hadron Collider, come in the
form of data on collision products. It is through scat-
tering processes that we experimentally acquire a deep
understanding of the fundamental physics, typically by
reconstructing which composite quasiparticles are assem-
bled during intermediate stages of the scattering event, and
comparing their properties with the theoretical predictions
from the Standard Model (and beyond).

It is clear, however, that this type of prediction has sev-
eral limitations. First of all, it is indirect, in the sense
that the observed composite quasiparticle properties are
compared, and not the scattering event distribution per se.
Moreover, the analytic calculations of such quasiparticles
are limited to those accessible via perturbation theory, in
the form of Feynman diagrams, and thus no accurate pre-
dictions are expected for the QCD sector, which is far
from perturbative. A substantial obstacle towards accurate
model predictions of scattering phenomena is that Monte
Carlo methods, which excel at capturing equilibrium prop-
erties, are hindered when tackling out-of-equilibrium real-
time dynamics, again due to the sign problem and complex
actions to numerically integrate.

p

Hybrid
quantum-classical

Parton 
shower

Quantum
kernels

QAOA

Quantum
annealing

QNNs

QBMs

QCBMs

QGANs

Rare signal
extraction

Regression

Experiment
simulation

HHL 
algorithm

Jet/track
reconstruction

Classification

Optimisation

Generation

For and beyond 
Standard Model

FIG. 1. Upper panel: Proposed theoretical physical model
systems (orange) with corresponding approaches (green) and
quantum algorithms (blue). For more information on the iden-
tified areas of interest, see Sec. II A. Lower panel: Proposed
experimental challenges (orange) with corresponding approaches
(green) and quantum algorithms (blue). For more information on
the identified areas of interest, see Sec. II B. See Appendix E
for an overview of a selection of the methods. HHL, Harrow-
Hassidim-Lloyd; QBM, quantum Boltzman machine; QCBM,
quantum circuit Born machine; QNN, quantum neural network;
QTN, quantum tensor network; VQITE, variational imaginary
time evolution; VQTE, variational quantum time evolution.

From this perspective, gaining access to direct data from
nonperturbative many-body real-time simulations of gauge
theories would enable a complete paradigm shift. The sim-
ulation could immediately provide the statistics of products
so that we could immediately compare them with the
observed statistics of collected events from high-energy
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laboratories. Lattice gauge theories in the Hamiltonian for-
mulation are perfectly suited for this task: while space
dimensions are discretized (typically into a cubic lat-
tice), time is kept as a continuous variable, and thus the
many-body real-time evolution operator is formally well
defined for any arbitrary time interval. In this framework,
the continuum limit can be systematically approached by
one taking into account proper nonperturbative renormal-
ization, when necessary. Numerically computing such an
evolution operator, and its action onto an arbitrary input
state (e.g., converging quasiparticle wave packets), is,
however, an exponentially hard problem in the lattice sys-
tem size and requires the aid of quantum simulators or
quantum-inspired numerical algorithms to be done to a
good approximation.

Analog and digital quantum simulator strategies can
both be used to progress towards this goal. In either case,
the real-time evolution operator is applied to a set of qubits
(or, more generally, qudits) that encode the many-body
quantum field state. An analog quantum simulator approx-
imates the target model Hamiltonian by implementing an
instantaneous controllable Hamiltonian that is equivalent
to the target at a chosen energy scale, and then lets the
system evolve with time-independent controls [41]. This
approach is inherently scalable, but it is limited by what
types of interaction can be engineered. Conversely, digi-
tal quantum simulators aim at decomposing the action of
the time evolution into a circuit of programmable quantum
operations (e.g., gates) [49]. This approach is more gen-
eral, especially if the quantum resources form a universal
set of gates, but it can be demanding in terms of scal-
ability and coherence. Indeed, the number of qubits and
the circuit depth required to perform such simulations are
largely beyond the capabilities of current near-term, noisy
quantum devices [25,52].

Alongside methods based on quantum hardware, we
highlight the potential of tensor networks as a numer-
ical strategy working on the same lattice Hamiltonian
framework (discrete space, continuous time) as quantum
simulators [53–56]. TNs excel in describing lattice quan-
tum states at equilibrium, even in multiple spatial dimen-
sions, and even at finite densities [10,13,22,57]. Moreover,
they can accurately capture out-of-equilibrium dynamics
as long as the entanglement production is low (i.e., the area
laws of entanglement are not violated). While seemingly
a strict requirement, it is actually a ubiquitous occur-
rence, from many-body localization, to slow quenches
across phase transitions (Kibble-Zurek mechanism), to
short-timescale transient phenomena under Lieb-Robinson
bounds. Thus, there are many physical systems whose
dynamics are accurately captured by TNs (especially
in one dimension). Indeed, the first proof-of-principle
demonstration of a scattering event in a lattice gauge the-
ory in one dimension was shown in Ref. [16], where
two-wave-packet collisions and subsequent time evolution

of the created entanglement were studied. A more refined
study of the process was presented in Ref. [19].

When one is specifically addressing scattering prob-
lems with either classical or quantum simulations, there
is an additional conceptual complexity that gets added to
the already-serious problem of executing the many-body
dynamics: namely, preparing the input state. Initial quan-
tum states in particle collider experiments typically involve
localized wave packets of composite quasiparticles (e.g.,
hadrons). Written in the elementary quantum fields, these
wave packets have a well-defined center-of-mass momen-
tum and overall number density (usually one quasiparti-
cle), but their internal wave function can be very complex.
Clearly, the scattering simulation must include strategies
to build these states (and control their momentum) by care-
fully manipulating the elementary quantum fields encoded
as qudits, starting from the (entangled) dressed vacuum.
Proposals to achieve such input-state preparation have
been put forward, for instance, by tailoring variational ten-
sor networks directly onto the experimental platform, also
known as quantum tensor networks [58–60], but the opti-
mal general strategy has yet to be identified, and requires
further investigation. Notice that this problem will remain
when it becomes possible to study scattering processes
in future quantum processors. Thus, any partial or final
solution developed for TNs will be highly valuable also
for future quantum computations and the simulation of
scattering processes. We mention in passing that other real-
time phenomena, such as quenching—see, for example,
Refs. [18,61]—have also been studied with quantum tensor
network techniques.

2. (2 + 1)D QED

As mentioned in Sec. I, (2+1)D QED is one of the sim-
plest quantum field theories that nevertheless retain inter-
esting physics: for example, it shares with QCD important
properties such as asymptotic freedom and confinement,
and it is an excellent starting point for future analysis of
more intricate theories. We therefore propose (2+1)D QED
as a very suitable benchmark and test-bed model to explore
the potential of quantum computing and, in particular, to
compare it with TN calculations.

The most used classical method to study lattice gauge
theories numerically nowadays is the Markov chain Monte
Carlo (MCMC) approach; see the recent FLAG review
[62]. While the MCMC approach can reach lattice sizes on
the order of 1003 × 200, which are currently unthinkable
for QC and TN techniques, the Hamiltonian formulation
used for the latter methods has several advantages. For
example, the MCMC approach suffers from very long
autocorrelation times towards the continuum limit [63].
In the regime of small to very small lattice spacing,
we can take advantage of quantum computing or tensor
network approaches, which do not have this drawback.
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Furthermore, the Euclidean path integral used in the
MCMC approach is afflicted by the infamous sign prob-
lem [6], which limits studies to small values of fermion
densities, rendering many physically interesting scenarios
inaccessible. More specifically for lattice QCD, this pre-
vents the exploration and characterization of regions of the
phase diagram at nonzero baryon density, which are rel-
evant to understand the early universe, neutron stars, or
the transition to a quark-gluon plasma. Another important
aspect is the limitation for classical MCMC techniques in
the presence of a topological θ term that, in stark contrast,
can be treated straightforwardly in the Hamiltonian for-
mulation, i.e., with QC or TN. In particular, since direct
MCMC methods are extremely difficult in the presence of
the θ term, this term is considered in the valence sector
as part of the observable, for example, through an expan-
sion in the θ parameter [64] or with use of the gradient
flow [65]. Finally, a Hamiltonian approach will enable the
study of real-time phenomena such as scattering processes,
thermalization, or the dynamics of physical systems after
quenching; see the discussion in Sec. I and below.

Although we are fully aware of the advancements of
TNs [11], in the spirit of this paper, we focus on the quan-
tum computing approach to study quantum field theories
and, in particular, on the example of (2+1)D QED.

Another pillar of quantum information science and tech-
nology is analog quantum simulators [38,66,67], which
allow direct experimental access to various quantum
many-body phenomena. Given recent advancements in
quantum-simulator technology, such as single-atom reso-
lution through gas microscopes [68–70] and overall high
levels of precision and control [71], quantum simulators
have become an attractive means by which to probe high-
energy phenomena [10,42,72–74], affording the precious
advantage of accessible temporal snapshots at any stage
of the system dynamics. The modus operandi of quan-
tum simulators is to map a target model described by a
Hamiltonian Ĥ 0 onto another quantum model amenable for
realization in an experimental platform; see Appendix C
for a simple example. This mapping is almost never exact
but will lead to an effective model where Ĥ 0 occurs up
to leading order in perturbation theory, along with (unde-
sired) subleading terms λĤ 1, with strength λ < 1. In the
context of gauge theories, the model Ĥ 0 hosts a gauge sym-
metry generated by local operators Ĝj , while Ĥ 1 explicitly
breaks it.

Initially, quantum simulators of gauge theories with both
matter and gauge degrees of freedom were restricted to
cold-atom realizations of building blocks for the Z2 [75]
and U(1) [76] gauge groups. The experiment reported
in Ref. [75] used two species of bosonic cold atoms
in a double-well potential. Periodic driving resonant at
the on-site interaction strength and with the appropriate
fine-tuning of the modulation parameters resulted in an

effective Floquet Hamiltonian with the desired Z2 gauge
symmetry. On the other hand, the experiment reported
in Ref. [76] used interspecies spin-changing collisions to
model the gauge-invariant coupling between matter and
gauge fields. Although groundbreaking in their own right,
these experiments were restricted to building blocks and
suffered from uncontrolled subleading gauge-noninvariant
processes that limited useful coherent times [77].

To probe gauge-theory physics relevant to high-energy
phenomena, it became essential to devise experimentally
feasible methods that could enable large-scale implemen-
tations on quantum simulators involving both matter and
gauge degrees of freedom. A first step was achieved in
this direction by the mapping of a spin-1/2 U(1) quantum
link model (QLM), with both matter and gauge degrees of
freedom, onto a 71-site tilted Bose-Hubbard optical super-
lattice quantum simulator [78]. Stabilized gauge invariance
was certified by adiabatic sweeping through Coleman’s
phase transition and observation of a gauge violation of
less than 10% throughout the entire dynamics. This setup
was then used to study thermalization in the U(1) quan-
tum link model [79,80], and was further extended to probe
rich quantum many-body scarring regimes in this gauge
theory [81]. Extensions of this large-scale platform with
linear gauge protection have been proposed for higher spa-
tial dimensions [82] and for larger spin representations of
the gauge field [83].

It is also worth mentioning another method that has
enabled quantum simulators of gauge theories beyond
building blocks, which is to use Gauss’s law to integrate
out either the matter fields or the gauge fields [49,84,85].

To be more concrete, in what follows we consider the
formulation of QED on a two-dimensional space lattice
with lattice spacing a. Note that moving directly to the
paragraph following Eq. (7) will not hinder the compre-
hension of the rest of this section. Since the Hamiltonian
formalism is to be considered for its eventual application
on quantum devices, an encoding needs to be applied to
represent the fermionic and gauge degrees of freedom,
which cannot be fully eliminated in 2 + 1 dimensions. To
deal with the fermionic doubling problem [86–88], i.e.,
the existence in d dimensions of 2d flavors (or tastes)
for each physical particle, many different discretizations
have been considered. One of the most used is the Kogut-
Susskind formulation [7], which separates fermionic and
antifermionic degrees of freedom and assigns them to
alternate sites of the lattice. Therefore, the fermions and
antifermions are associated with a single component field
operator φ̂�n, with �n = (nx, ny) as the coordinates of the
lattice sites. The parity of the coordinate nx + ny deter-
mines the type of matter associated with the site (i.e., with
particles (antiparticles) placed on even (odd) sites).

The links of the lattice are identified by a site �n and a
direction μ = x, y emanating from that site. The electric
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field operators for each link Ê�n,μ have integer eigenval-
ues, Ê�n,μ

∣
∣e�n,μ

〉 = e�n,μ
∣
∣e�n,μ

〉

, with e�n,μ ∈ Z. On the links,
we also define the unitary link operators

Û�n,μ = eiagÂ�n,μ , (1)

where Â�n,μ is one of the spatial components of the vec-
tor field residing on the link emanating from vertex �n in
direction μ, and g is the coupling constant. The opera-
tors Â�n,μ and Ê�n,μ are canonical conjugates, resulting in the
commutation relation

[Ê�n,μ, Û�n′,ν] = δ�n,�n′δμ,νÛ�n,μ. (2)

Therefore, Û�n,μ acts as a raising operator on the electric
field eigenstates—namely, Û�n,μ

∣
∣e�n,μ

〉 = ∣
∣e�n,μ + 1

〉

. Physi-
cally, Û�n,μ measures the phase proportional to the coupling
acquired by a unit charge moved along a link. The com-
mutation relation in Eq. (2) together with the unitarity of
Û�n,μ implies that the Hilbert spaces for the links are infinite
dimensional. For practical simulations it is thus necessary
to truncate the link Hilbert spaces to a finite dimension.
After introduction of a proper discretization of the U(1)
group, it is possible to represent the gauge fields with a
finite number of qubits. The truncation has to be chosen
large enough to avoid noticeable effects for the parameter
regime one intends to study.

The Hamiltonian can thus be written as [87]

Ĥ tot = Ĥ E + Ĥ B + Ĥ m + Ĥ kin, (3)

where for the rest of the section we set the lattice spacing
a = 1 without loss of generality. The first term in Eq. (3)
is related to the electric interaction,

Ĥ E = g2

2

∑

�n,μ

Ê2
�n,μ, (4)

where the first sum is over all lattice sites and the sec-
ond sum is over the different directions of μ = x, y of the
two-dimensional spatial lattice. The second term in Eq. (3)
defines the magnetic interaction,

Ĥ B = − 1
2g2

∑

�n

(

P̂�n + P̂†
�n
)

, (5)

where P̂�n = Û�n,xÛ�n+x,yÛ†
�n+y,xÛ†

�n,y , and �n + x and �n + y are
shorthand notation for (nx + 1, ny) and (nx, ny + 1). The
operator P̂�n is called the “plaquette operator” as it involves
the product of link operators along a plaquette of the lat-
tice. The third term corresponds to the fermionic mass

term,

Ĥ m = m
∑

�n
(−1)nx+ny φ̂

†
�n φ̂�n, (6)

with m the bare fermion mass, and we have the sign fac-
tor taking into account the parity of the site, as in the
Kogut-Susskind formulation the particles (antiparticles)
are separated to even (odd) sites. The final term in Eq. (3)
represents the kinetic energy of the fermions given by

Ĥ kin =
∑

�n,μ

(−1)nxy

2

(

φ̂
†
�nÛ�n,μφ̂�n+x + H.c.

)

, (7)

where for the links in the x direction nxy = 1 and for those
in the y direction nxy = (−1)nx . The kinetic term corre-
sponds to a fermionic hopping between neighboring sites
while the gauge field is simultaneously changed on the link
between the two sites.

In addition, the physical states |ψ〉 of the Hamiltonian
in Eq. (3) have to fulfill Gauss’s law, for all �n, Ĝ�n |ψ〉 =
q�n |ψ〉, where

Ĝ�n = Ê�n−x,x − Ê�n,x + Ê�n−y,y − Ê�n,y − Q̂�n (8)

are the generators of time-independent gauge transforma-
tions, Q̂�n = φ̂

†
�n φ̂�n − (1 − (−1)nx+ny )/2 corresponds to the

staggered charge operator, and q�n ∈ Z represents static
charges. Equation (8) corresponds to the lattice version of
the divergence of the electric field being equal to the charge
density.

An alternative to the Kogut-Susskind formulation is
the Wilson approach [89,90]. It introduces a second-order
derivative term in the Hamiltonian that vanishes linearly
with the lattice spacing in the continuum limit. Compared
with the Kogut-Susskind formulation, the Dirac spinor
components of fermionic matter are not distributed to dif-
ferent sites, thus leading to a larger number of fermionic
degrees of freedom on each vertex of the lattice. The main
advantage of this approach is that the number of qubits
needed to represent the gauge fields is lower than the num-
ber used in the Kogut-Susskind approach, and therefore it
has a lower resource requirement [26].

One of the challenges of simulating the gauge theory
with quantum computers is to find a resource-efficient
mapping of all its degrees of freedom to qubits and gates.
This holds, in particular, for the bosonic gauge degrees
of freedom. Here several ansatzes exist in the literature
[31,91–93] and it is important to test these approaches
against each other, evaluate their advantages and short-
comings, and identify the most resource efficient dis-
cretization and truncation scheme.

Once we have developed the most suitable encoding,
we must choose the most appropriate simulation tech-
nique depending on our goal. For example, to compute
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the ground state energy (the low-lying spectrum) of our
Hamiltonian, we can apply the variational quantum eigen-
solver (VQE) [94], variational quantum deflation [95], or
the subspace-search variational quantum eigensolver [96]).
Other approaches could be imaginary time evolution [97]
or the creation of a suitable operator basis [98].

3. (2 + 1)D SU(2)

With the long-term goal of QCD in mind, it is impor-
tant to consider non-Abelian gauge theories. A first step
towards that direction can be taken by our studying the
generalization of the previous lattice gauge model to the
case of an SU(2) gauge group.

Below we present a brief summary of the Kogut-
Susskind formulation for the case of an SU(2) LGT for
the interested reader, in analogy to the discussion for the
U(1) group in the previous subsection. However, skipping
the upcoming paragraph will not hinder the comprehen-
sion of the remainder of this section. For a more detailed
discussion, we refer the reader to Refs. [7,8]. The Kogut-
Susskind Hamiltonian for the SU(2) LGT in 2 + 1 dimen-
sions has the same structure as in the U(1) case shown
in Eq. (3). Different from the case of U(1), for SU(2) we
have two fermionic degrees of freedom φ̂�n,α on each ver-
tex �n, representing the two “colors” of fermions, with the
index α = 1, 2 labeling the basis states of the fundamental
representation of SU(2). Because of the non-Abelian struc-
ture of the group SU(2), the link operators Ûαβ

�n,μ acting on
the link emanating from vertex �n in direction μ carry now
additional color indices α,β. With this notation, the kinetic
term reads

Ĥ kin =
∑

�n,μ

(−1)nxy

2

∑

α,β

(

φ̂
†
�n,αÛαβ

�n,μφ̂�n+μ̂,β + H.c.
)

. (9)

Compared with the U(1) case, we now have an additional
sum over the color components α,β = 1, 2. The mass term
is given by

Ĥ m = m
∑

�n

∑

α

(−1)nx+ny φ̂
†
�n,αφ̂�n,α , (10)

where we again made the color indices explicit. The color-
electric energy for the SU(2) LGT reads

Ĥ E = g2

2

∑

�n,μ

∑

b

(

Êb
�n,μ

)2
, (11)

where Êb
�n,μ is the color-electric field operator acting on the

link emanating from vertex �n in direction μ. Note that Êb
�n,μ

is given in the adjoint representation of SU(2), and the
indices b = 1, 2, 3 label the different components of the

color-electric field. In the above expression
∑

b

(

Êb
�n,μ

)2
is

the Casimir operator of the group SU(2). Finally, the color-
magnetic contribution to the energy is again given by the
plaquette term

Ĥ B = − 1
2g2

∑

�n

(

P̂�n + P̂†
�n
)

= − 1
2g2

∑

�n

∑

α,β,γ ,δ

(

Ûαβ

�n,xÛβγ

�n+x,yÛδγ †
�n+y,xÛαδ†

�n,y + H.c.
)

,

(12)

where from the first line to the second line we made the
plaquette operator explicit, Pn = ∑

α,β,γ ,δ Ûαβ

�n,xÛβγ

�n+x,yÛδγ †
�n+y,x

Ûαδ†
�n,y . Note that in all the Hamiltonian terms, the color

indices are contracted, and thus the Hamiltonian is a color-
neutral object and the physically relevant states have to be
color singlets.

Again, the physical states have to fulfill Gauss’s law. In
contrast to the case of U(1), for SU(2) Gauss’s law has
three different components, Ĝb

�n, b = 1, 2, 3, which do not
commute among themselves, but each of them commutes
with the Hamiltonian. The explicit form of Gauss’s law can
be found, for example, in Refs. [29,42,48].

Compared with the case of U(1), the SU(2) LGT has
a much richer structure: for example, there exist baryons,
color-neutral bound states of the individual fermionic com-
ponents within a single site that have no counterpart in the
Abelian case [29]. Thus, the (2 + 1)D SU(2) LGT pro-
vides an ideal stepping stone towards more complicated
non-Abelian theories.

The problem of simulating lattice gauge theories on
a universal quantum computer using qubits as the basic
degrees of freedom was defined in general terms in
Ref. [24]. It was shown in Ref. [99] that, on quantum com-
puters, lattice gauge theories in any spatial dimension scale
polynomially with the number of lattice sites, the bosonic
gauge field truncation threshold, and the total simulation
time (i.e., number of time steps).

Other approaches use quantum simulators to emulate
the physics of non-Abelian gauge theories. In these imple-
mentations, gauge invariance is a direct consequence of
some underlying symmetry of the quantum simulator. For
instance, angular momentum conservation is used to real-
ize the SU(2) Yang-Mills model [39], and nuclear spin
conservation in alkaline-earth atoms is used to mimic
SU(N ) models within the quantum link formulation [41].
In this respect, the quantum link formulation appears as
a natural formulation for the quantum simulation of the
non-Abelian model that was proposed within a Rydberg-
based architecture [34] and within superconducting circuits
[100].

The first quantum simulation of an SU(2) lattice
gauge theory on IBM superconducting hardware was done
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reported in Ref. [28]. Subsequently, exploratory compu-
tations were conducted for one-dimensional SU(2) on
an IBM superconducting platform [29]. This implemen-
tation combined the fact that a one-dimensional theory
with open boundary conditions allows one to rewrite all
gauge field degrees of freedom as long-range interactions
among fermions with the VQE to study both meson and
baryon states. There have further been one-dimensional
SU(3) quantum simulations [101–103], and error mitiga-
tion methods have been applied to study the time evolution
of non-Abelian models [104].

In contrast to the one-dimensional case, studies of two-
dimensional SU(2) gauge theory require both fermion and
gauge field degrees of freedom. Several formulations have
been proposed [105,106], and practical studies of each
will provide valuable information for understanding their
advantages and disadvantages.

The choice of basis for the local degrees of freedom
in the implementation of a non-Abelian gauge model is
important [107,108]. Usually, one needs to study the effect
of discretization or truncation on the physical results of the
models [109,110]. One option to discretize non-Abelian
theories is to use finite-dimensional subgroups [111–113],
which can be efficiently implemented within a Rydberg
base architecture [114–117]. Early computations of SU(2)
gauge fields on quantum hardware have used lattices with
up to six plaquettes in total [28,118]. An initial study was
also performed for SU(3) in Ref. [30].

Upcoming computations can build upon the lessons
learned from these first steps, and grow in scale and scope
alongside the continuing progress in quantum hardware
deployment in the noisy intermediate-scale quantum era.

4. Quantum link models and D-theory

D-theory is an alternative formulation of lattice field
theory in which continuous, classical fields are replaced
by discrete, quantum degrees of freedom, which undergo
dimensional reduction from an extra dimension of short
extent [119]. In the D-theory approach, lattice gauge the-
ories are realized via quantum link models [120–125].
Quantum links are generalized quantum spins endowed
with an exact gauge symmetry, which is located on the
links of a spatial lattice.

Quantum links reside in finite-dimensional irreducible
representations of an embedding algebra. This is in con-
trast to the standard Wilson-type lattice gauge theory,
which is based on an infinite-dimensional representation
on each link. Quantum links with a U(N ) or an SU(N )
gauge group reside in the embedding algebra SU(2N ). In
particular, U(1) quantum link models are formulated with
ordinary SU(2) quantum spins. SO(N ) and Sp(N ) quan-
tum link models are realized with an SO(2N ) and Sp(2N )
embedding algebra, respectively. Since SU(2) = Sp(1), an

SU(2) quantum link model can be realized with a simple
Sp(2) = SO(5) embedding algebra.

The simplest Abelian U(1) quantum link model is real-
ized with ordinary quantum spins of 1/2, which can
be embodied by individual qubits. These dynamics have
already been represented by quantum circuits in a resource-
efficient manner [126]. The implementation of the U(1)
quantum link model on a triangular lattice is particularly
simple, because it takes advantage, for instance, of the
heavy hexagonal lattice topology underlying the 127-qubit
IBM Eagle chip [127]. By use of manifestly gauge invari-
ant height variables, which are embodied by qubits resid-
ing on a dual hexagonal lattice, the dynamics is realized
with a rather short quantum circuit.

The simplest non-Abelian SU(2) quantum link model
uses the embedding algebra Sp(2) = SO(5), which has
a four-dimensional fundamental representation that can
be embodied by a pair of qubits residing on each lattice
link. By an exact duality transformation, this SU(2) quan-
tum link model can be expressed in terms of Z(2)-valued
height variables, which can even be embodied by indi-
vidual qubits [128]. This model is also interesting from a
condensed matter perspective, because it is closely related
to the quantum dimer model on the kagome lattice, which
has a rich, nontrivial phase structure. It would be very
interesting to construct a quantum circuit, similar to the one
for the U(1) quantum link model on the triangular lattice,
to perform quantum computations of the real-time dynam-
ics of SU(2) gauge theories. It is worth mentioning that
while the proposed QED calculations will remain far from
the continuum limit, they will nevertheless provide impor-
tant feedback on how to efficiently tackle larger-scale
simulations.

5. (1 + 1)D CP(N − 1) models from (2 + 1)D SU(N )

quantum spin ladders

(1+1)D CP(N − 1) quantum field theories are toy mod-
els that share many important features with (3+1)D QCD:
they are asymptotically free, have a nonperturbatively gen-
erated mass gap, and θ -vacua [129,130]. In addition, they
have nontrivial phase structure at nonzero chemical poten-
tial, including Bose-Einstein condensates with and without
ferromagnetism [131].

The standard lattice formulation of CP(N − 1) models
at nonzero vacuum angle or at nonzero chemical poten-
tial suffers from similar sign and complex action problems
as QCD itself. D-theory offers an alternative approach
to standard lattice field theory, and uses discrete quan-
tum (rather than continuous classical) degrees of free-
dom without compromising exact continuous symmetries,
including gauge symmetry. In asymptotically free theo-
ries [including (1+1)D CP(N − 1) models and (3+1)D
QCD], the continuum limit is reached naturally (i.e., with-
out any fine-tuning) via dimensional reduction from a
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higher-dimensional space-time, with a short extent of the
extra dimension. Interestingly, the finite-density and θ -
vacuum sign problems of the standard formulation have
already been overcome by the alternative D-theory formu-
lation, in which CP(N − 1) models are regularized with
use of SU(N ) quantum spin degrees of freedom [132] This
formulation is also amenable to analog quantum simula-
tions with ultracold alkaline-earth atoms in optical lattices,
which holds the promise to facilitate real-time simulations
of their dynamics [133] CP(N − 1)models in the D-theory
formulation are ideally suited as a testing ground for quan-
tum computation, because, on the one hand, at least in
some cases, advanced classical computational techniques
are available for validation, and, on the other hand, sim-
ilar methods can be developed for lattice gauge theories,
ultimately aiming at QCD, in particular in the quantum
link formulation. The strategy behind D-theory—namely,
to formulate quantum field theory directly in terms of
quantum degrees of freedom—is ideally suited for both
quantum simulation and quantum computation.

The standard formulation of CP(N − 1) models uses
classical, Hermitean, idempotent N × N matrix fields
P(x),

P(x)†=P(x), P(x)2 = P(x), TrP(x) = 1, (13)

with the Euclidean action

S[P] =
∫

d2x
1
g2 Tr

[

∂μP∂μP
] + iθQ[P] (14)

and the integer-valued topological charge

Q[P] = 1
π i

∫

d2x εμνTr
[

P∂μP∂νP
]

∈ �2[CP(N − 1)] = Z. (15)

The model is invariant under a global SU(N ) symmetry,
P(x)′ = �P(x)�†, � ∈ SU(N ).

The alternative D-theory formulation replaces the clas-
sical field P(x) by SU(N ) quantum spins Ta

x (a ∈
{1, 2, . . . , N 2 − 1}) that obey the commutation relation

[Ta
x , Tb

x′] = iδxx′ fabcTc
x (16)

and reside on a two-dimensional spatial square lattice (of
spacing a) with a long x1 direction (of extent L with peri-
odic boundary conditions) and a short x2-direction (of
extent L′ with open boundary conditions). The even-parity
sites x ∈ A (with even x1 + x2) carry the fundamental rep-
resentation {N }, Ta

x = λa/2 (where the λa are Gell-Mann
matrices), while the odd-parity sites y ∈ B carry the anti-
fundamental representation {N }, T

a
y = −λa∗/2. An antifer-

romagnetic SU(N ) quantum spin ladder (with J > 0) is

then described by the nearest-neighbor Hamiltonian

H = J
∑

〈xy〉
Ta

x ⊗ T
a
y , (17)

which commutes with the total SU(N ) spin Ta =
∑

x∈A Ta
x + ∑

y∈B T
a
y . In the presence of chemical poten-

tials μa at inverse temperature β, the grand canonical
partition function then takes the form

Z = Tr exp
(−β(H − μaTa)

)

. (18)

Remarkably, this antiferromagnetic quantum spin ladder is
a proper regularization for the (1+1)D CP(N − 1) quantum
field theory. An even extent L′/a of the short dimen-
sion corresponds to vacuum angle θ = 0, while an odd
extent implies θ = π . For L = L′ = β = ∞, the quan-
tum antiferromagnet breaks the global SU(N ) symmetry
down to U(N − 1) (at least for N ≤ 4). This gives rise
to dynamically generated, effective Goldstone boson fields
P(x) that reside in the coset space SU(N )/U(N − 1) =
CP(N − 1). Once L′ is made finite, the Mermin-Wagner
theorem implies that SU(N ) can no longer break sponta-
neously. As a result, the previously massless Goldstone
bosons pick up an exponentially small mass proportional to
exp

(−4πL′ρs/cN
)

, where ρs is the spin stiffness and c is
the spin-wave velocity. For moderately large L′/a � 4, the
corresponding correlation length exp

(

4πL′ρs/cN
) � L′

exceeds the extent of the short dimension and the system
dimensionally reduces to the (1+1)D CP(N − 1) model.
These dynamics, which may seem complicated at first
glance, have been verified in great detail in quantum Monte
Carlo simulations using classical computers. Already at
the level of classical computation, the use of discrete
quantum, rather than continuous classical, fundamental
degrees of freedom has led to numerous algorithmic advan-
tages, which facilitated efficient numerical simulations of
θ -vacua and dense matter systems [131,132]

Analog quantum simulators for the SU(N ) quantum
antiferromagnet have already been designed, with use of
ultracold alkaline-earth atoms in an optical lattice, and
are ready to be realized in the laboratory today [133].
This holds the promise to address the real-time dynamics,
which remains inaccessible to classical simulation tech-
niques. This would be the first time that an asymptotically
free quantum field theory is studied with quantum sim-
ulation. The simple nature of the quantum spin degrees
of freedom and the ultralocal form of their Hamiltonian
strongly suggest one could also explore CP(N − 1) mod-
els using digital quantum computation. In particular, in
D-theory the CP(1) model with a global SU(2) symme-
try is regularized with ordinary SU(2) quantum spins that
can be embodied directly by individual qubits. Similarly,
the SU(3) quantum spins in the D-theory formulation of
the CP(2) model are nothing but qutrits. The correspond-
ing Hamiltonian dynamics can be realized with sequences
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of single-qubit and two-qubit (or single-qutrit and two-
qutrit) quantum gates. It is possible—and already quite
interesting—to work with quantum spin chains (i.e., with
L′/a = 1) rather than with quantum spin ladders (L′/a >
1). In particular, for L′/a = 1 the antiferromagnetic SU(2)
quantum spin chain corresponds to the (1+1)D Wess-
Zumino-Novikov-Witten conformal quantum field theory
in the continuum limit. The corresponding SU(3) quan-
tum spin system, although it is not in the continuum limit,
describes a strongly coupled CP(2) model at a first-order
phase transition with spontaneously broken charge conju-
gation symmetry. This would allow, for example, real-time
studies of false vacuum decay.

6. Collective neutrino oscillations

Neutrinos play a central role in extreme astrophysical
events such as core-collapse supernovae and neutron star
binary mergers as they dominate the transport of energy,
entropy, and lepton number. Because neutrinos have mass
and because the mass basis, denoted by {|νi〉}i=1,3, is differ-
ent from the flavor basis, neutrinos will experience oscilla-
tions in the population of the different flavors components
(νe, νμ, ντ ).

Given the importance of charge-current reactions, a
detailed understanding of flavor oscillations in these set-
tings is critical to predict their dynamical evolution. Given
the high density of neutrinos in these environments, flavor
oscillations are strongly affected by two-body neutrino-
neutrino interactions, which render the neutrino cloud a
strongly coupled many-body system. Direct solution of the
evolution equations for general initial conditions can be
exponentially hard with classical simulations, and the con-
ventional approach is to rely on mean-field approximations
[134–136], which, however, do not include direct scatter-
ing between neutrinos. Efforts to go beyond mean-field
approximations with classical computers were recently
reviewed in Ref. [137].

The complexity of neutrino physics persists even with
the simplifying assumption that only two flavors (the elec-
tron flavor νe and one heavy flavor νx) participate in the
oscillation. With this assumption, one can model each neu-
trino as a single two-level system and obtain the following
Hamiltonian [138]:

H =
N

∑

i=1

bi · σ i + λe

N
∑

i=1

σ z
i

+ μ

2N

N
∑

i<j

(

1 − cos
(

θij
))

σ i · σ j , (19)

where σ i = (σ x
i , σ y

i , σ z
i ) is a vector of Pauli matrices

acting on the ith neutrino. The first term in Eq. (19)
describes vacuum oscillations around the mass basis

with bi = δm2/4Ei(sin(2θν), 0, − cos(2θν)), where δm2 =
m2

2 − m2
1 is the square mass difference between mass eigen-

states, θν is the mixing angle, and Ei is the energy of the
ith neutrino. The second term in Eq. (19) is generated
by charge-current scattering with a background of elec-
trons with coupling constant λe = √

2GFne, with GF the
Fermi constant and ne the electron density. This is the
term responsible for the Mikheyev-Smirnov-Wolfenstein
(MSW) effect due to the interaction of electrons with neu-
trinos experienced by neutrinos traveling in dense matter.
Finally, the third term in Eq. (19) is the neutrino-neutrino
interaction generated by neutral-current weak reactions. Its
coupling constant μ = √

2GFnν is directly proportional
to the local neutrino density nν , while the angular factor
inside the sum encodes the spatial geometry of the problem
through its dependence on the relative angle of propagation
cos

(

θij
) = pi · pj /(‖pi‖‖pj ‖), where pi is the momentum

of the ith neutrino. This term prevents collinear neutrinos
from interacting.

The Hamiltonian in Eq. (19) can be used to describe
the flavor evolution of a homogeneous gas of neutrinos at
fixed density. Most neutrinos, however, leave the explo-
sion region of the emitter (neutron stars, etc.) where they
were generated and thus experience different local condi-
tions as they move out. This can be incorporated by one
allowing the coupling constants λe and μ to change with
the distance r from their emission, or equivalently with
the time t since they left the neutrino sphere (neutrinos are
considered as ultrarelativistic particles moving at approx-
imately the speed of light). With this, we are left with
describing the nonequilibrium evolution of a large number
of fermions interacting through an eventually nonadiabatic
two-body Hamiltonian. Several extensions are possible to
account, for example, for the full three-flavor structure
[139] or the presence of inhomogeneities [140] but are
likely beyond the scope of hardware with about 100 qubits
capable of executing several thousand two-qubit gates.

Current efforts to study the full many-body flavor
dynamics generated by the Hamiltonian in Eq. (19) beyond
the mean-field approximation have been made under a
number of additional simplifying assumptions. A popular
one is to consider an average interaction strength, effec-
tively removing the angular dependence in the two-body
interaction, turning it into a term proportional to the square
of the total angular momentum. This has the effect that the
system becomes integrable with use of the Bethe ansatz
[138], and classical simulations were performed in the
past exploiting directly this property up to N = 9 [141].
Use of more direct integration approaches allowed N = 16
to be reached [142], while with use of matrix product
states together with the time-dependent variational princi-
ple systems up to N = 20 were studied while maintaining
good convergence with the bond dimension [143]. The lat-
ter simulations used around 105 time steps for the entire
calculation, and this leaves a direct comparison possibly
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out of range of hardware with around 100 qubits that can
run a few thousand two-qubit gates.

Another common assumption is to ignore the MSW term
proportional to the electron density using the argument
that this coupling constant greatly dominates in the inte-
rior regions, where many-body effects are expected to be
important. The MSW term can be eliminated with use of
a rotating-wave approximation that ultimately produces a
lower effective mixing angle. In general, this is not neces-
sary as this one-body term can be trivially fast-forwarded
and included correctly, and efficiently, in the simulation by
one resorting to interaction picture schemes such as the
one proposed in Ref. [144]. In the absence of this term,
the Hamiltonian enjoys a global U(1) symmetry gener-
ated by rotations around the mass basis that can be used to
reduce the implementation cost. This strategy was used in
Ref. [145], together with the use of IBM QISKIT’s isometry
function to implement evolution in each sub-block to study
flavor oscillations in systems of up to N = 4 neutrinos. The
approach has the advantage that the circuit depth does not
increase as a function of the time step, but for large sys-
tem sizes it would require an exponentially large number
of gates. Part of the difficulty in including the two-body
interaction is its all-to-all nature, which naively does not
fit well on devices with reduced connectivity. The problem
can, however, be circumvented by the use of an appropriate
SWAP network scheme producing a circuit with N layers of
N/2 nearest-neighbor two-qubit gates each. This approach
was proposed in Ref. [146], where a simulation with N = 4
neutrinos with a single Trotter step was performed on IBM
devices and has been shown to be advantageous to allow
classical simulations using matrix product states [147].
Platforms that allow all-to-all connectivity, such as trapped
ions, allow more flexibility but require a similar number
of two-qubit operations. Because of their current higher
fidelity, simulations have been reported for up to ten time
steps with N = 4 neutrinos and for one time step for up to
N = 12 neutrinos [148,149]. Approaches using quantum
annealers have also been proposed and applied for systems
up to N = 4 [150].

The simplified neutrino oscillation problem described
by Eq. (19) is encoded quite naturally on a digital quantum
computer with one qubit per neutrino. Current attempts to
describe neutrinos on these platforms are still restricted
to small N values with rather simple initial conditions,
usually wave functions describing noncorrelated neutri-
nos. Besides the description of larger neutrino number,
challenges for future applications include the extension
to more realistic initial conditions such as initially ther-
malized neutrinos, or the evolution of these correlated
systems over longer time to extract, for instance, asymp-
totic entanglement between neutrinos or characterize the
relaxation dynamics to thermal states [151]. Time evolu-
tion requires efficient algorithms to simulate the dynamics
(see Sec. III A). A first-order product formula (PF) step

for N neutrinos costs 3N (N − 1)/2 controlled NOT (CNOT)
gate operations, while a second-order step will cost 3(N 2 −
3N/2 + 1) CNOT gates [148]. The depths are instead 3N
and 6N − 3, respectively (see also Table I).

The implementation can be performed in a more hard-
ware efficient way by use of cross-resonance gates instead
at the price of increasing the decomposition error. Fur-
thermore, a hardware-friendly approach to multi-product-
formulas can further reduce circuit depth and increase
simulation accuracy [152]. An additional possibility worth
pursuing in the short term is the use of approaches based on
variational time evolution (VTE), which allow for a circuit
depth independent of the evolution time.

B. Selected applications for experiments

High-energy physics experiments are characterized by
the need to process a large amount of complex, highly
structured data. Historically, large collaborations have
relied on massively parallel computing infrastructure and
pioneered the field of distributed computing with the LHC
Computing Grid. The need to search for processes with
a small production cross section together with the use of
next-generation detectors generates datasets of large size to
analyze, which requires a new computing model, more effi-
cient algorithms—including data-driven techniques such
as artificial intelligence—and the integration of new hard-
ware beyond the von Neumann architectures. It is in this
context that investigations into the introduction of quantum
computing in HEP experiments is framed: the community
is looking into accelerating or improving the different steps
of the data analysis and data processing chains. Currently
most of the work is focused on the development and opti-
mization of quantum machine learning (QML) algorithms
implemented either as quantum neural networks (varia-
tional algorithms) or as kernel methods [153,154]. See
Appendix E for a summary of these methods. The next
section provides an overview of the range of algorithms
under study as applied to HEP and their present limitations.

It is important to notice, however, that evaluation of
the performance of QML algorithms on HEP data requires
care: realistic applications have requirements that cannot
be easily accommodated on quantum devices today. The
most critical issue is related to the size of the data sam-
ples, together with their complexity. Indeed, studies on the
introduction of quantum algorithms (and QML in partic-
ular) need to take into account both the total number of
events that need to be analyzed (which can easily reach
hundreds of thousands) and the large number of input fea-
tures in each single event (typically on the order of tens
or hundreds). The preferred approach today is a hybrid
approach: A classical feature extraction and/or dimension-
ality reduction step is used to bring the classical input to
a size that can be realistically embedded on noisy, near-
term quantum hardware. Depending on the complexity of
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both the dataset and the task, different methods are used,
ranging from linear principal component analysis (PCA)
to nonlinear trainable embedding or compression methods
(autoencoders or other artificial intelligence–based tech-
niques) [155]. The advantage of the latter is clearly their
versatility and the possibility to train them together with
the quantum algorithms for the specific task at hand.

In particular, trainable techniques allow an end-to-end
optimization of the reduced data representation (often
referred to as “latent representation”), their embedding in
quantum states, and the quantum algorithm itself. A binary
classification problem, such as the separation of signal
versus uninteresting background, is a common example:
simultaneously training an autoencoder for data compres-
sion together with the corresponding classifier ensures that
the resulting latent representation exhibits maximal sepa-
ration between the two classes. Multiple examples have
already proven the advantage of this approach in both the
classical domain and the quantum domain [156–161]. In
addition, a critical part of the quantum algorithm design
and optimization process is aimed at reducing the num-
ber of input features needed by the quantum algorithm in
order to perform its task, together with the definition of a
minimal training set, which still ensures convergence and
generalization capabilities.

Finally, the compressed classical data are embedded, or
loaded, onto quantum states for processing by the QML
algorithm. This step is commonly referred to as the “state
preparation step.” Different techniques have been studied
[162] that are a compromise between an optimal use of
qubit states, exploiting in full the potential exponential
advantage, and the need to efficiently map state preparation
circuits on noisy devices. In general, the choice of the data-
embedding strategy has an effect both on the performance
of the overall algorithm and on its interpretation (as, for
example, in the kernel formalism) as mentioned in Sec. III.

Taken together, these steps have made possible the
design and implementation of quantum algorithms for
most of the tasks in the typical data processing chain, albeit
at a reduced scale. Access to the 100 ⊗ 100 quantum hard-
ware, combined with data reduction techniques, is likely
to bring current prototypes to a much more realistic size.
An overview of the proposed applications for data analysis
in HEP experiments together with the associated quantum
algorithms is given in the lower panel in Fig. 1.

1. Rare signal extraction

Extracting rare signals from background events is an
essential part of data analysis in the search for new phe-
nomena in HEP experiments. In this section we cover algo-
rithms, methods, and limitations of this area of research,
giving some references, which, for sure, do not represent a
complete picture of the state of the art.

Posed as a classification task, rare signal extraction
faces an imbalance problem in the number of samples
belonging to the signal class versus the number of sam-
ples from the background class. Entry-level cases are the
ones where a single feature is powerful enough to discrim-
inate the process of interest, while more complicated cases
rely on multivariate analysis of many features to get to a
reasonable level of discrimination power.

In the machine learning community, techniques for
learning from imbalanced data are well established, and for
the HEP case, analysis methods developed in Refs. [163,
164] have been effectively implemented. An alternative
approach to classification with imbalance techniques is
anomaly detection [165,166]. In the following we touch
upon some modern class imbalance techniques adopted in
the community, focusing on novel loss functions and data
resampling techniques. However, the main goal here is not
merely the classification task but also the generation of pre-
dictions with their corresponding uncertainties. In particle
physics, as in other scientific domains, if uncertainties are
not presented, the picture is almost incomplete.

Use of the accuracy of a classifier as a metric for rare
events can be misleading as it says nothing about the sig-
nal, in terms of distribution and feature importance. The
receiver operating characteristic curve is a good general-
purpose metric, providing information about the true and
false positive rates across a range of thresholds, and the
area under the receiver operating characteristic curve is a
good general-purpose single-number metric. Nevertheless,
when one is dealing with imbalanced data, the precision-
recall curve is the preferred metric, where the recall rep-
resents a measure of how many true signal events have
actually been identified as a signal and precision quanti-
fies how likely an event is to truly be a signal and depends
on how rare the signal is. Different strategies can be used,
such as undersampling the majority class or oversampling
the minority class, where the former is preferred because of
the potential overfitting resulting from oversampling [167].
Moreover, the standard algorithm can be modified by one
adjusting the hyperparameters of the loss and by adding an
additional penalty for misclassification. For instance, fol-
lowing Ref. [168], a modified version of the cross-entropy
loss function used for binary classification to differenti-
ate between easy-to-classify and hard-to-classify samples
is the focal loss function (LF):

L = −(1 − pt)
γ log10(pt), (20)

where pt is the model’s estimated probability that a given
event belongs to the signal class and γ is the modulating
parameter. As γ is increased, the rate at which easy-to-
classify samples are down-weighted also increases. As
pointed out previously, not only should the classification
be efficient but also predict outcomes with low uncer-
tainty. Current approaches for this include dropout training
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in deep neural networks as approximate Bayesian infer-
ence, variance estimation across an ensemble of trained
deep neural networks, and the probabilistic random for-
est algorithm [169]. For example, such techniques have
been used in the measurement of the longitudinal polar-
ization fraction in same-sign WW scattering [170] and for
the decay of the Higgs boson to charm-quark pairs [171].

Same-sign WW production at the LHC is the vec-
tor boson scattering process with the largest ratio of
electroweak-to-QCD production. As such it provides a
great opportunity to study whether the discovered Higgs
boson leads to unitary longitudinal vector boson scatter-
ing, and to search for physics beyond the Standard Model
(BSM). Confirming or refuting the unitarity of vector
boson scattering requires not just a measurement of pp →
jjW ± W± but also of the fraction of these events where
both W bosons are longitudinally polarized (LL fraction).
The fraction of longitudinally polarized events is predicted
to be only a fraction (0.07) of the total number of events
in the Standard Model at large dijet invariant mass (mjj )

[170], making this a challenging measurement. Common
techniques for this kind of use case include a random for-
est with imbalanced implementation, a gradient-boosted
decision tree, and deep learning models with a standard
or focal loss function. Overall, all of the machine learning
models significantly outperform the kinematic variables
approach [172].

The second application of class imbalance techniques is
the measurement of Higgs boson decays to charm-quark
pairs. Searches for the decay of the Higgs boson to charm-
quark pairs have produced only weak limits to date. Again,
one of the reasons for this poor performance is that in
the Standard Model the rate for h → bb̄ is about 20 times
larger than the rate for h → cc̄. The standard approach
relies on tagging the flavor of the jets, which involves dis-
criminating charm-initiated jets from bottom jets, or vice
versa. The primary technique used currently in this case is
boosted decision trees, mainly structured as binary classi-
fication problem, where the community effort is devoted to
the definition of ad hoc flavor tagging through the use of
the class imbalance techniques instead of general-purpose
ones [171].

It is natural to ask whether quantum computing algo-
rithms could be used to support these complicated tasks.
However, it is not evident where a quantum algorithm
could provide a systematic advantage with respect to
these classical approaches. Possible directions of research
should answer the following questions: Can we overcome
the problem of lack of density or insufficiency of informa-
tion for these problems? Can we better explore and analyze
the feature space that describes those problems? Could
QML methods, which use quantum models to encode input
data into a high-dimensional Hilbert space and extract
physical properties of interest from the quantum state, be
an alternative approach to signal detection? A particularly

intriguing direction for quantum approaches here could be
the possibility of performing training directly on experi-
mental data [173] that can be directly analyzed as quantum
data.

Overall, in the absence of a clear hint of new physics
in HEP experiments, a data-driven, model-agnostic search
for rare signals has gained considerable interest. Anomaly
detection, realized with use of unsupervised machine
learning, is the most commonly used technique and will
continuously become important in HEP analysis workflow.
The feasibility of anomaly detection was investigated in
Ref. [174] with a variational quantum algorithm (VQA)-
based quantum autoencoder (QAE). With the benchmark
process of pp → H → tt̄ for the signal, the QAE perfor-
mance for anomaly detection was compared with that from
a classical autoencoder, showing faster convergence in the
quantum case. Recently, Schuhmacher et al. [175] found
that with the use of a quantum support vector classifier
trained to identify the artificial anomalies, it is possi-
ble to identify realistic BSM events with high accuracy.
In parallel, they also explored the potential of quantum
algorithms for increasing the classification accuracy and
provided plausible conditions for the best exploitation of
this novel computational paradigm. Additionally, Wozniak
et al. [159] found evidence that quantum anomaly detec-
tion with a a quantum-enhanced support vector machine
(QSVM) could outperform the best classical counterpart.
In Ref. [176] an anomaly quantum generative adversar-
ial network (QGAN) was introduced to identify anoma-
lous events (BSM particles). Interestingly, this model
can achieve the same anomaly detection accuracy as its
classical counterpart using 10 times fewer training data
points.

Overall, current quantum-classical hybrid QML for rare
signal extraction is largely based on two algorithms: VQA
[177] and QSVM with the kernel method [178,179]. The
quantum kernel-based QSVM has the potential for good
trainability due to a convex cost-function landscape, and
this property could be beneficial for noisy quantum hard-
ware. However, the kernel function would exponentially
concentrate to a fixed value with the number of qubits
unless the quantum feature map is properly designed [180],
analogously to the barren plateau in the VQA.

VQA-based QML methods are generally known to be
affected by the infamous barren plateau problem, where a
nonconvex landscape of the cost function causes the gra-
dients to vanish exponentially in the number of qubits,
as detailed in Sec. III B 2. On current noisy hardware,
overcoming barren plateaus may be critical for QML
applications to signal extraction. The approach based on
so-called geometrical quantum machine learning, which
exploits prior knowledge of the problem, such as symme-
try presented in the data at hand, will be promising for
applications to HEP data analysis. However, experimen-
tal data are the result of a complex convoluted effect given
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by different layers of interaction, from parton showers to
detector effects. This would eventually destroy any desir-
able symmetry of the data. Alternatively, quantum models
in an overparameterized regime may have a desirable cost
landscape. This provides motivation for exploring geomet-
rical quantum machine learning models and/or overparam-
eterization in a realistic HEP data analysis flow. We should
also pursue how efficiently a QML model can general-
ize to unseen test data with fewer trainable parameters
or fewer training data, and also consider the possibility
of reusing well-known techniques from classic machine
learning, such as an ensemble, where, for instance, the
effect of noise could be mediated by the structure of the
algorithm [181].

2. Pattern recognition tasks: Reconstructing particle
trajectories and particle jets

Multiple steps in experimental data processing can be
categorized under pattern recognition. This involves asso-
ciating a given set of measurements of an object (such
as the raw energy measured by sensors in a detector or
its spatial coordinates) with a specific instance. Examples
include identifying a particle trajectory, determining a par-
ticle type, or linking a particle jet to the hadronization of a
specific parton (jet). In HEP, this problem has high dimen-
sionality, since the detector sensors are arranged in highly
granular structures, the objects represent physics proper-
ties, and the object classes are typically exclusives (an
energy deposition belongs to one and only one trajectory).
Two examples are indeed represented by the reconstruc-
tion of charged particles and the reconstruction of jets,
together with the identification of their properties.

The reconstruction of charged particle trajectories,
tracking, is an essential ingredient in event reconstruction
for HEP. Particle track candidates are built from space
points corresponding to energy deposits left by charged
particles—or hits—as they traverse the sensitive detector
material. The track parameters (e.g., position and curva-
ture) computed hereafter are used in subsequent processing
steps throughout the reconstruction and analysis of data to
compute physics observables.

In collider particle physics, a jet is a collection of sta-
ble particles collimated into a roughly cone-shaped region.
Jets arise from the fragmentation of quarks and gluons pro-
duced in high-energy collisions. During the collision, the
QCD confinement the quarks and gluons are subjected to
is broken, yielding a spray of color-neutral particles that
can be experimentally measured in particle detectors. Jets
have played and are playing a fundamental role in collider
physics. Events with three jets in e+e− collisions demon-
strated the existence of the gluon. Nowadays jets produced
by the fragmentation of heavy quarks—namely, b and c
quarks—are crucial for several studies, in particular, to

determine the Higgs boson couplings. In recent years, tools
have been developed to disentangle different kinds of jet.

a. Track reconstruction. Several current HEP experi-
ments are exploring and several future HEP experiments
will explore high-intensity scenarios going to extreme
regimes with thousands of charged particles crossing a
square centimeter of a sensitive detector. Furthermore,
depending on the process under study and the detector
layout, each track can consist of a variable number of mea-
surements. The multiplicity of possible track candidates
from the input space points scales quadratically or cubi-
cally with the number of hits. Therefore, tight selections
on the input space points are required to narrow down the
search space. Nevertheless, track reconstruction is one of
the largest users of CPU time in HEP experiments, provid-
ing strong motivation for the research and development of
novel approaches.

Several approaches have been proposed to address the
tracking problem and can be roughly divided into global
and local approaches. Global tracking methods approach
track reconstruction as a clustering problem, thus consid-
ering all the space points at once, whereas local tracking
methods generally consist of a series of steps executed
sequentially. Several studies have been performed for the
global [182,183] and the local [184] methods, finding a
potential reduction of computational complexity for the
latter.

The first proposals to solve the particle track recon-
struction problem on a quantum computer focused on
converting the problem to a quantum unconstrained binary
optimization (QUBO) problem [185,186]. In this way, one
can group two hits (doublets) or three hits (triplets) from
consecutive detector layers, and binary values represent if
a given doublet or triplet corresponds to a particle track.
There have been several proposals in the literature on how
to determine the coefficients of the QUBO based on either
the geometry or the impact on the overall energy of the
QUBO [182,183,187]. In its most general form, one can
write such a QUBO Hamiltonian as

Ĥ =
N

∑

i<j

Ji,j T̂iT̂j +
N

∑

i=1

hiT̂i

where in the case of triplets, T̂i represents the ith triplet
and T̂i can be mapped to the Pauli Ẑ operator on the ith
qubit. Jij is the coupling coefficient between the ith and j th
triplets, and hi determines the strength of the field on the
ith triplet. Then it is possible to use algorithms such as the
quantum approximate optimization algorithm (QAOA),
the VQE, or the Harrow-Hassidim-Lloyd algorithm find
the ground state of the Hamiltonian, which corresponds to
the desired solution. Although such a QUBO Hamiltonian
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is sparse in general, it consists of at least 10′000 sites for
a real-world problem, or about 500 in more favorable sce-
narios with smaller occupancies such as the LHCb Vertex
Locator [188]. The limited number of qubits available cur-
rently restricts the Hamiltonian to a few tens of sites and
therefore strategies to partition the Hamiltonian to many
smaller pieces are needed.

Recently, Ducket et al. [189] proposed a method to solve
the triplet classification using a QSVM-based approach . In
this method, spatial coordinates of each hit from the triplet
are encoded to quantum states, which results in a nine-
qubit circuit. Quantum kernel methods promise an advan-
tage for datasets with many features; therefore, a triplet-
based approach might not provide a benefit. However, this
method may outperform a classical kernel method in cases
where considering a higher number of hits is useful.

Classical graph neural network (GNN) methods were
shown to have linear scaling with respect to the number of
input space points, which makes them a strong candidate
for future implementations of particle track reconstruction
algorithms [190]. Although there is no formal proof that
this scaling is linear, the empirical evidence suggests it
is so. It is likely that this improvement comes from the
parallelization capacity of graphics processing units. This
means that there is still a need for large graphics process-
ing unit clusters. In a not too distant future, a quantum
advantage could be achieved if GNNs with similar char-
acteristics can be implemented on quantum computers.
Recently, it was shown that a quantum-classical hybrid
GNN approach is possible, and that it can perform simi-
larly to the classical equivalent for up-to 16 qubits [191,
192]. However, understanding if this can be realized at
large scale requires a larger number of qubits.

The availability of utility-scale devices would enable
the study of larger local Hamiltonians with 100 sites
and give researchers a tool to investigate if QUBO-based
approaches are viable. Similarly, such a device would
allow us to implement quantum-classical hybrid GNNs of
sizes comparable to sizes of the classical state-of-the-art
models.

Regarding local methods, although a full analysis chain
is presently unreachable due to hardware limitations, we
can nevertheless consider a complexity analysis to illus-
trate the general evolution of the classical and quantum
approaches to the problem. It is not clear, in particu-
lar, whether all steps in the track or, in general, object
reconstruction may benefit from a quantum algorithmic
approach. This is the procedure originally followed, for
instance, by Wei et al. [193], who estimated the classi-
cal and quantum computational scaling of a well-known
(albeit unused) jet clustering algorithm. However, since
this algorithm is not the current standard used at the LHC,
it is much more informative to estimate the complexity of
a current choice—namely, the combinatorial track finder
algorithm [194], which is the tracking algorithm used by

the CMS collaboration [195]. The underlying structure of
the combinatorial track finder algorithm, the combinato-
rial Kalman filter [196], is used by several current track
reconstruction algorithms [197–199] and the analysis can
easily generalized to most presently available algorithms.
This strategy has been followed by Magano et al. [184]
using the algorithm as it is described in Ref. [194]. The
conclusion is that it is possible to reconstruct the same
tracks (up to bounded-error probability) with lower quan-
tum complexity by an adequate use of quantum search
routines.

A 100 ⊗ 100 machine may allow there to be some
progress along the lines defined in Ref. [184], although
it is necessary to investigate the number of qubits that
can effectively be used for the implementation of the
program. Moreover, since the approach of Ref. [184] is
applicable to a hybrid quantum-classical approach it is pos-
sible to implement the program according to the available
resources. In any case, it is important to bear in mind that in
the short term track reconstruction algorithms will be quite
limited by the input size, and investment in the QAOA or
in jet clustering may be more rewarding.

b. Jet reconstruction and identification. Jet clustering
algorithms aim at estimating the kinematics of the particle
that initiated the jet. Usually, these algorithms are based on
clustering schemes, which combine the observed particles
into a jet for further study.

Clustering algorithms have different properties and char-
acteristics that can make them more appropriate for a
particular task, such as the extraction of observables or as
a tool to extract specific properties of the final state. An
essential property of an optimal jet clustering algorithm is
infrared and collinear (IRC) safety. An observable is IRC
safe if it remains unchanged in the limit of a collinear split-
ting or the emission of an infinitely soft (low momentum)
particle.

Two main approaches have been pursued in cluster-
ing particles into a jet: cone and sequential recombination
schemes. The first approach aims to find regions with
a high-energy flow and thus define rigid conic bound-
aries. In sequential recombination algorithms, particles are
clustered locally with use of a distance metric.

Jet clustering algorithms can be computationally expen-
sive, as the execution time scales polynomially with
the number of particles to be clustered. Speedups can
be achieved by one considering the clustering problem
from a geometrical point of view instead of combinato-
rially. In this way, sequential recombination algorithms
can be executed in O(N 2) or even O(N ln N ) complexity
rather than O(N 3) complexity. Cone algorithms could be
implemented exactly (and therefore made IRC safe) with
O(N 2 ln N ) complexity rather than the expected O(N2N )
complexity.
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Quantum-assisted algorithms have been explored to
reduce the computational overhead of these clustering rou-
tines. The first application of quantum-assisted algorithms
to the task of clustering particles into a jet was introduced
in Ref. [193]. Two clustering techniques were used for the
particular case of electron-positron collisions and inspired
by the calculation of thrust [200,201], an event shape quan-
tity that allows the partition of event particles into two
hemisphere jets. The first approach targeted the universal
quantum computing setting based on Grover’s algorithm.
In addition, a QUBO formulation for thrust was developed,
suitable for quantum annealing. Classically, the calcula-
tion of thrust can be costly, scaling as O(N 3) [202] for
an event with N particles, or with the improved method
introduced in Ref. [203], as O(N 2 log10 N ). The thrust-
based QUBO formulation was benchmarked in Ref. [204],
with use of the D-Wave Advantage 1.1 quantum pro-
cessing unit, and compared with classical QUBO-solving
techniques such as simulated annealing and annealing opti-
mization subroutines such as reverse annealing. Results
from these studies revealed the limitations of current quan-
tum annealing devices in terms of connectivity. QUBO
formulations involving many spin variables and all-to-all
connectivity, such as the thrust problem, perform poorly on
currently available quantum annealers. An extension to the
QUBO formulation for thrust calculation was presented in
Ref. [205], and was based on the angular distance between
two particles in a given event and penalizing the assign-
ment of two particles located on the same hemisphere of
the partition. Results from the hardware deployment in
these studies were limited to a low number of annealing
runs due to limited access to the quantum processing unit.

Algorithms based on digital quantum computing have
also been proposed; however, the algorithms in Refs. [193,
206] are not suitable for implementation on noisy devices
due to the need for a quantum-RAM-like architecture to
access particle information in parallel. Another promis-
ing study [207] deals with the quantum version of three
clustering algorithms found in the classical literature:
the k-means algorithm [208] (a quantum version of this
algorithm is used in Ref. [206]), affinity propagation
[209], and the kT jet clustering algorithm [210]. Two
quantum subroutines are introduced: the first computes
the Minkowski distance between particles, and the sec-
ond tracks the maximum in a long-tailed distribution. For
both subroutines, the authors prove polynomial speedups
as compared with well-known classical algorithms. The
quantum algorithms were applied to simulated data for
a typical LHC collision setting and achieved efficiencies
comparable to those of their classical counterparts. In par-
ticular, the quantum-kT version is a conceptually more
straightforward algorithm with a similar execution time
compared with subroutines in the FastJet library [211].

Jet tagging, the identification of the flavor of the quark
that originated the jet, is another aspect of jet physics that

experimental physicists are continuously improving. For
example, in the determination of the Higgs boson cou-
plings to b and c quarks, the jet tagging efficiency and
purity determine the actual size of the dataset useful for the
measurements and, therefore, their accuracy. Jet tagging is
based on global jet characteristics and on each jet’s particle
properties. In principle, it therefore requires a large number
of features, which means a high-dimension dataset. The
study reported in Ref. [212] limited the data representation
to a few properties to cope with the low number of qubits
available and short circuit depth. As already mentioned
in the introduction to this section, this is the approach
often used in experimental HEP, and therefore the per-
formance of the QC algorithms is by definition limited
and the comparison with classical methods is performed
with use of the same dataset dimension. Two different fea-
ture encodings have been tested: angle encoding is used
when a two-feature dataset is used, while for 16 features,
amplitude encoding is used. Even though the exercise is
quite simple, it showed that in the training phase, the QML
method reaches optimal performance with a lower num-
ber of events with respect to the ML ones. The limited
access to the hardware resources did not allow an extensive
study of the noise impact, which was evaluated only for
the two-qubit case. This study could largely benefit from
much more powerful hardware, in particular the 100 ⊗ 100
IBM hardware. Instead of reproposing the same exercise, it
would be possible to design a new circuit where the entan-
glement entropy can play an important role. Jet tagging
feature correlation is considered as classical correlation,
while in QML this can be understood and included in the
circuit optimization, improving the classification perfor-
mance. A further step forward could be to perform the jet
classification study on data obtained in proton-proton colli-
sions and in Monte Carlo–simulated events. Collider data
may exhibit quantum characteristics not visible in simu-
lations. That could happen due to the limited knowledge
of jet formation and evolution, which is regulated by the
nonperturbative QCD and described only by models in the
simulation. Such effects, if present, are currently absorbed
by the systematic errors in the jet reconstruction quantities.

3. Interpretable models and inference

In this section we review the use of quantum models
as inference tools to extract the characteristic properties
of a dataset in HEP. We give two examples of such mod-
els: characterizing the nonperturbative structure of hadrons
through parton distribution functions (PDFs), and esti-
mating the Wilson coefficients of effective field theories
(EFTs) and their correlations. We emphasize the poten-
tial of these tools to enable precision modeling of physical
phenomena and provide a first step towards being able
to bridge the fields of quantum computing and quantum
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information in extracting quantum descriptors of HEP
processes from models learned from data.

In high-energy physics, perturbation theory is used to
calculate particle interactions at high energies [213]. These
perturbative methods allow the calculation of scattering
amplitudes as a series expansion in powers of the cou-
pling constant. However, as the energy of the interaction
decreases, the coupling constant becomes large and the
perturbative expansion breaks down [214]. This results in
a nonperturbative regime where the underlying physical
processes are not easily calculable, and must instead be
obtained through experimental measurements or numeri-
cal simulations [215]. Characteristic functions that capture
the essential features of the underlying physical process
can be used to represent the relative probability of a partic-
ular physical process as a sum of simpler, more tractable
functions. The choice of basis functions and coefficients
is critical in constructing an accurate representation of
the underlying physical process as they must be able to
accurately characterize the process in both the perturba-
tive regime and the nonperturbative regime, as well as any
additional physical constraints that may be present.

PDFs are an example of nonperturbative effects that
are necessarily characterized by such approximations from
data [216]. PDFs describe the probability distribution of
the momentum fraction carried by the quarks and glu-
ons inside a proton. The need for PDFs arises from the
fact that the proton is a composite particle made up of
quarks and gluons that are constantly interacting, which
makes it impossible to calculate the momentum distribu-
tion of these partons with use of perturbative methods
alone. Nonetheless, there are known constraints on the
form of PDFs that can be derived from the fundamen-
tal principles of QCD, and their predictions are highly
constrained by experiments.

The accurate estimate of PDFs is vital to all measure-
ments in experimental collider physics, as they are used
to predict the rates and distributions of processes [217].
Uncertainties arise from the limited precision of how
experimental data are used to constrain the PDFs, as well
as from theoretical uncertainties in how to extract pertur-
bative estimates from the fitted PDFs. Quantum computing
affords us new avenues to address both shortcomings by
providing characteristic functions that may better represent
the nature of the process they are used to represent.

A recent study investigating an approach based on
the use of a parameterized quantum circuit (PQC) was
explored for estimating the functional form of PDFs [218]
from data. The PQC approach aims to find an ansatz
for representing the PDFs as a PQC, the parameters of
which are estimated with use of a classical optimization
algorithm to minimize the difference between the predicted
data and the experimental data. This is a promising avenue
for leveraging the expressive power of PQCs to effi-
ciently learn solutions to classically intractable problems.

Preliminary results obtained with the PQC approach are
encouraging, showing good agreement with existing PDF
fits obtained through classical optimization techniques.
This represents an exciting first step towards using quan-
tum algorithms for PDF estimation and highlights the
potential of quantum computing for solving problems in
high-energy physics. However significant work is still
needed to leverage the quantum nature of the problem.
In this construction, the PDFs being estimated are still
classical approximations to an inherently quantum system
and therefore the possible advantages of such a method
are purely computational. It is foreseeable that quantum
functions that characterize classically intractable processes
such as these are possible in a way that, although simplified
with respect to a fully numerical model (e.g., from lattice
QCD), would give a notable improvement over classical
models when compared with data.

In contrast to experimental measurements in which the
exact prediction of a given Standard Model process is com-
puted, EFTs provide a framework for modeling complex
physical processes in terms of a hierarchy of simplified
interactions, characterized by a set of Wilson coefficients
[219]. These coefficients represent the coupling strengths
of various operators that encode the effects of high-energy
physics and can be determined through a process of match-
ing with experimentally measured observables. While the
precise values of the Wilson coefficients cannot be com-
puted exactly, they can be approximated through a process
of functional approximation, in which an ansatz is made
for the form of the EFT such that the coefficients can be
estimated from experimental data. This EFT approach is
similar in nature to the fitting of PDFs, as both involve
characterizing complex physical phenomena in terms of a
simplified set of paremeterized functions. In a recent study,
Criado et al. [220] proposed a new method for estimat-
ing Wilson coefficients using a quantum computer. The
method involves the use of a quantum computer to encode
the EFT predictions and experimental data into a QUBO
[221] optimization problem, with coefficients of the cost
function determined by a Hamiltonian representation of
a set of given coefficients. The QUBO problem is then
solved on a quantum annealer to obtain the best-fit values
of the Wilson coefficients. A primary goal of this method
is that the optimization of the problem on a quantum com-
puter can provide a more efficient and more accurate way
of estimating the Wilson coefficients than is possible with
classical methods. The Hamiltonian is constructed using
the parameterization of an effective field theory approach,
which allows a systematic expansion in powers of the
inverse of the mass scale of the new physics being probed.
The Standard Model effective field theory framework [222]
used in this example contains a large number of param-
eters, making it challenging to extract information about
the underlying physics. In this case the predictions for a
reduced set of parameters are computed classically, and
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only the relationship between the coefficients and the mea-
surements is modeled in the Hamiltonian, not the dynamics
of the EFT operators themselves. Through a careful under-
standing of the Hamiltonian representation of this process
and its solution using QML, it might be possible to reduce
the number of parameters needed to describe the system
by identifying a smaller set of effective parameters that
capture the essential physics and to identify correlations
between different observables and effective couplings.

While much of the development of quantum algorithms
and in particular QML is focused on identifying and
solving computational bottlenecks present in traditional
methods, the goals identified in these selected benchmark
applications are those that leverage properties of QML
models to better interpret data from experimental high-
energy physics in new ways. Several studies have begun
towards this goal; however, these initial steps provide
only hints at how a complete understanding of how QML
can be used to leverage a quantum interpretation of the
information contained in data from experimental particle
physics.

4. Generative models for simulation

Other natural applications of generative modeling
include detector simulation and event generation. Monte
Carlo simulation of collider detector events is one of the
most computationally expensive tasks within the exper-
imental data processing chain. Recent estimates suggest
that more than 50% of the LHC computing grid (World-
wide LHC Computing Grid) is spent on simulation tasks
directly or on the reconstruction of simulated data, i.e.,
the extraction of high-level features from simulated data
[223]. The next-generation detectors for the High Lumi-
nosity Large Hadron Collider and future colliders, with
their larger sizes, higher sensor granularity, and increased
complexity, will be even more demanding in terms of
computing resources for data simulation and reconstruc-
tion [224]. This fact has sparked, over the years, intense
research on alternative approaches, generally designated
as fast simulation strategies, in contrast to highly accurate
Monte Carlo–based simulation.

Fast simulation, typically trading some level of accuracy
for speed, relies on parametric modeling of the detec-
tor response [225] or, more recently, on deep generative
models [226–228] that learn multidimensional, conditional
probability distributions. In most cases, the focus is on
the detector response itself: the deep generative models
are trained to reproduce the detector output, which is then
processed in the same fashion as Monte Carlo–simulated
data. This approach can produce very realistic output, both
in terms of the quality of the individual events and in
terms of sample diversity. In other cases, direct genera-
tion of high-level features, typically used at the analysis
level, is preferred, thus skipping the entire reconstruction
process [229]. This approach has the advantage of being

computationally lightweight and flexible since the deep
learning models learn directly the particle features and cor-
relations in the final state of interest, taking into account all
experimental effects. Its main limitation is the fact that the
output is inherently analysis specific, and it cannot be used
outside the scope it was initially designed for.

At the same time, several studies have started investi-
gating quantum (or hybrid quantum-classical) implementa-
tions of generative models. A few examples are described
in Ref. [230]. In most cases quantum architectures inspired
by classical models have been studied: for example, imple-
mentations of a QGAN or a QAE. Particularly interesting
is the case of quantum circuit Born machines [231], which
instead are quantum generative models that do not have
a classical counterpart and leverage the Born measure-
ment rule during the sampling process. As in the classical
domain, quantum architectures have been used to address
two main types of application: detector output simulation
and final state generation. In both cases, but in particular
for detector output simulation, the main limitation of the
current models lies in the dimensionality of the simulated
output. Realistic applications to particle physics detectors
require generative models to learn distributions whose size
scales with the number of detector sensors.

Current models can generate accurate simulations for
very small (ten-sized) setups, using one qubit to repre-
sent a detector sensor. Typically, reversible data com-
pression techniques, such as autoencoders, can be used
to bring down the original simulation to a size that is
manageable by the quantum system: the classical encoder
network produces a reduced latent representation that is
then learned by the quantum generative model. A classi-
cal decoder network is then used to transform the synthetic
output from the latent dimension to the original one. The
expected advantage of using a quantum algorithm in this
task would come from a more accurate and more gener-
alizable learning of the latent representation. It is clear,
however that a most interesting development in this direc-
tion would require reducing the weight of the classical data
dimensionality reduction step with respect to the quantum
algorithm. In this context, a 100 ⊗ 100 machine would
enable the simulation of far more realistic use cases.

Aside from the sheer detector size, the need for dis-
cretization also affects how realistic quantum generative
model–based simulations can be. In most cases, our detec-
tors produce continuous features, while qubits naturally
map to discreet quantities, so the size of the qubit system
can have an impact on the detector simulation resolu-
tion. These same problems can affect the direct generation
of high-level features, albeit at a different scale: in this
case quadrimomenta (and possibly angular correlations)
of particles produced in scattering or decay processes are
in the range of a few tens, instead of a few thousands,
making the problem much more manageable on near-term
quantum systems. In this case, extreme care should be
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put into correctly describing cross-correlations among par-
ticles, and thus good connectivity and the possibility to
reproduce complex entanglement patterns over multiple
qubits become essential.

III. ALGORITHMS, METHODS, AND
LIMITATIONS

A. Quantum algorithms for quantum dynamics

The development of quantum algorithms for the sim-
ulation of quantum dynamics is a very active field of
research, with potential applications covering a broad spec-
trum across the physical sciences [232,233]. Many power-
ful methods have been developed over the past few years,
which can generally be classified as either decomposition
based or variational in nature [233]. Techniques belong-
ing to the former category aim at realizing a target unitary
evolution U(t) = e−iHt through a decomposition into ele-
mentary quantum logic operations. This approach typically
yields rigorous scaling laws and a priori error bounds, and,
most importantly, provides a systematic way of exchang-
ing resources (i.e., circuit depth, gate counts, and auxiliary
qubits) for accuracy. Examples of decomposition methods
include product formulas (see below), linear combinations
of unitaries [234], quantum signal processing [235], and
qubitization [236]. On the other hand, variational strate-
gies address the task of approximating U(t) by resorting to
parameterized quantum circuits, for example, implement-
ing time-dependent ansatzes or learning effective partial
representations of the dynamics. This often reduces the cir-
cuit complexity compared with decomposition methods,
thus lowering the experimental requirements for imple-
mentations on current noisy quantum processors. How-
ever, such an advantage comes at the cost of some classical
overhead (e.g., optimization and additional measurements)
and within a more heuristic framework where accuracy
guarantees are harder to obtain. Both decomposition-based
and variational algorithms have been applied for specific
dynamical studies in LGT on quantum computers [26,237].

1. Product formulas

Among decomposition methods, product formulas are
the simplest and most widely adopted paradigm [52,238,
239]. In their basic implementation, they rely on the
general Trotter approximation rule [240]:

e−iHt = lim
n→∞

( M
∏

i

e−iHit/n
)n

, (21)

where H = ∑M
i Hi. At first order and for every finite

choice of n, one has

e−iHt �
( M

∏

i

e−iHit/n
)n

+ O(
M

∑

i>j

‖[Hi, Hj ]‖t2/n
)

, (22)

i.e., the decomposition error amounts to O(M 2t2/n). This
may be systematically reduced either by one choosing a
larger n or by one using a higher-order PF, for which the
error becomes O((Mτ)2k+1/n2k) at order 2k (k ≥ 1) (see
also Sec. III A 3). In both cases, greater theoretical accu-
racy is obtained in return for an increased gate count.
Further improvements are possible, based, for example,
on randomization and adaptive techniques [241–244] or
on the use of linear combinations of PFs (multi-product-
formulas) [152,245], which can reduce Trotter errors.
Importantly, PFs can also be used for simulation of time-
dependent Hamiltonians [246–248].

2. Variational approaches

Parameterized quantum circuits can be used to tackle
quantum dynamical problems by either one resorting to
well-established variational principles or by one recast-
ing them as optimization tasks. In the first case [249], one
builds a time-dependent wave-function ansatz spanning a
suitable manifold in the Hilbert space of the target sys-
tem and propagates the parameters by solving a classical
equation of motion. For sufficiently well-behaved dynam-
ics, the trajectory of a specific quantum state in time can be
approximated by parameters whose number is significantly
smaller than the dimension of the full space. This, in prin-
ciple, results in a simulation whose cost in terms of quan-
tum resources—and specifically circuit depth—is constant,
or increases only moderately, with time (in contrast to,
e.g., PFs). As an example, for an ansatz |�(θ(t))〉 ≡ |�〉
evolving under the action of a Hamiltonian H , the applica-
tion of McLachlan’s variational principle leads to a set of
differential equations for the parameters of the form [249]

Mθ̇ = V , (23)

where

M = Re
(
∂ 〈�|
∂θi

∂ |�〉
∂θj

+ ∂ 〈�|
∂θi

|�〉 ∂ 〈�|
∂θj

|�〉
)

(24)

and

V = Im
(
∂ 〈�|
∂θi

H |�〉 − ∂ 〈�|
∂θi

|�〉 〈�|H |�|�|H |�〉
)

.

(25)

The matrix elements of M and V have to be evaluated
through measurements on the quantum processor where
the ansatz is prepared, while Eq. (23) is integrated clas-
sically. Two main versions of the VTE algorithm have
been devised and applied in quantum simulations: the
variational quantum time evolution algorithm for real-
time propagation, and the variational quantum imaginary
time evolution algorithm for “dynamical” ground state
preparation (for a review, see Ref. [233]).
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The VTE algorithm is particularly attractive in those
cases where a direct decomposition of unitary Hamiltonian
evolution becomes quickly demanding with growing sys-
tem size, for example, in first quantization [250] or when
one is dealing with fermionic or bosonic degrees of free-
dom [251–254] and gauge fields [26,48]. In practice, one
crucial ingredient is the choice of the ansatz, which ideally
should incorporate physical intuition (e.g., respecting sym-
metries and/or conservation laws) and good mathematical
properties (e.g., concerning the form of the tangent space
associated with the parameterized manifold along time-
evolution paths). While several promising strategies for
ansatz construction have been proposed, including adap-
tive ones [255], it remains challenging, in general, to
correlate in a systematic way ansatz expressivity with sim-
ulation accuracy and performances, if not with a posteriori
error bounds [256]. The application of VTE is also lim-
ited by the high numerical sensitivity associated with the
solution of Eq. (23) via matrix inversion and by the large
number of measurements required to construct M and V
[253,256].

In parallel to the standard VTE algorithm, numer-
ous other approaches are being explored. For instance,
variational quantum methods have been used to learn a
(partial) diagonalization of the short-time evolution of a
system [257–260] and to compress the circuits required to
implement a short time step on a given state [261–264].
Additional proposals aimed at implementing near-term
quantum simulations include quantum-assisted methods
that perform all necessary quantum measurements at the
start of the algorithm instead of using a classical-quantum
feedback loop [265–267], methods based around Cartan
decompositions [268,269], and approaches using Krylov
theory [270].

3. Algorithmic limitations

Of the two approaches for performing time-evolution
dynamics, it is considerably more straightforward to char-
acterize the (near-term) simulation errors associated with
Trotterization-based methods. For a fixed total time T, the
discretization in n time intervals (dt = T/n) of the time-
evolution operator according to Eq. (21) (i.e., with use
of first-order Trotter expansion) will lead to a residual
error ε of O(αc(T/n)p+1), with p = 1 and where αc =
∑

i,j ||Hj , [Hj , Hi]|| (see Ref. [271]). This implies that one
would require n × O(Mαcomm(T/n)2) gates to achieve the
desired accuracy, where M is the number of Pauli strings
building up the system Hamiltonian. On the other hand,
a practical implementation of the Trotter expansion in
near-term, noisy, quantum computers will need to face the
additional errors arising from the gate infidelities. Assum-
ing that we have only errors induced by the two-qubit CNOT
operations, ε2g, the overall Trotter error will scale as

εTrotter ∼ O(αc(T/n)2 + (n0ε2g)
n), (26)

where n0 is the number of two-qubit operations required
for the circuit implementation of the operator eiHt, for fixed
t. We therefore conclude that for the Trotter formula there
must be an optimal value of the discretization variable n,
which we name n∗, that minimizes the overall error.

In the case of the VTE algorithm, the quantum cir-
cuit is of a constant depth, while the number of gates
required for its implementation depends on the number of
degrees of freedom necessary to produce a suitable rep-
resentation of the subspace that spans the dynamics of
the system. Assuming that we have knowledge of a vari-
ational form that can be systematically improved by one
adding circuit layers, L, one can—in principle—achieve a
desired accuracy as a function of the circuit depth. In the
case of LGT, one could, for instance, use a recently pro-
posed Hamiltonian-inspired variational ansatz [48], which
has the advantage of combining a physically motivated
variational circuit with the possibility of naturally enforce
dynamical constraints, such as Gauss’s law. On the for-
mal side, Zoufal et al. [256] investigated error bounds
associated with VTE. However, unlike the Trotter expan-
sion and similar methods, there seems to be no systematic
way to assess a priori the scaling the variational error in
the VTE algorithm as a function of the total simulation
time T or number of circuit layers L. Preliminary studies
[272] showed that in the case of QED calculations in 1 + 1
dimensions the number of Hamiltonian-inspired layers to
reach a desired accuracy increases rapidly with the dimen-
sionality of the problem, approaching the number of gates
required to implement the Trotter formula already with
10–15 sites. Finally, it is also important to mention that
the quality of the VTE approach depends on the accuracy
in the solution of the system of linear differential equations
in Eq. (23).

B. Quantum machine learning

1. Opportunities for quantum speedup

QML is an area of particular interest in experimen-
tal particle physics encompassing many of the algorithms
described in this section. In general terms, two main
approaches have emerged in the development of quantum-
enhanced machine learning: the role of the quantum com-
puter as an accelerator of otherwise established classical
learning methods and the design of genuinely quantum
methods, which do not mimic classical algorithms. This
first method includes the relatively straightforward appli-
cation of QC methods to speed up an otherwise compu-
tationally costly training method [273]. Such approaches
include classes of methods, dubbed “quantum linear alge-
bra–based methods,” in which the principal goal is to
represent high-dimensional data in states of just loga-
rithmically many qubits. This approach may allow even
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exponential speedups, but comes with numerous caveats
[274], most notably requiring some means of generating
the required data-bearing quantum states, which, if done
naively, already nullifies any possible advantage. Solutions
to this may exist, for example, by the use quantum RAM
[275], but in any case these methods are mostly considered
only in the context of large-scale fault-tolerant quantum
computers.

In contrast, the design of genuinely quantum methods
may yet offer advantages based on the idea of parame-
terized quantum circuits (PQC-based methods) as the key
building block of the model. The basic examples here
include the quantum support vector machine [178] and the
closely related quantum kernel methods [179], and, more
generally, so-called quantum neural network models.

In general, the quantum model attains the form fθ (x) =
Tr[ρ(x, θ)O(x, θ)], where the observable O is most often
fixed and independent of data (x) or trainable parameters
(θ ), and ρ(x, θ) is prepared by one applying a parameter-
ized circuit on some fiducial state, for example, ρ(x, θ) =
U(x, θ)|0〉〈0|U(x, θ). In so-called linear models such as
kernels and QSVMs, in contrast to data-reuploading mod-
els [276], the state depends only on x, and this constitutes
the loading of the data. Note that the targeted advantage
in these settings is not in the dimensionality or number of
data points but is rather in the quality of learning that can
be achieved.

The mapping x �→ ρ(x, θ), a process that is typically
independent of the setting of the θ parameters, consti-
tutes the data loading, in which the key questions here
are in finding a suitable mapping that will allow favor-
able data processing. Unlike in the case of quantum linear
algebra approaches, the dimensionality of the state ρ(x) is
typically independent of the data dimensionality. In partic-
ular, as was proven in Ref. [276], a single qubit line can
express arbitrary multidimensional functions, given suffi-
cient depth and data reuploading. This is analogous to how
one-hidden-layer neural nets allow functional universality
[277], but nonetheless the use of multiple layers allows
more efficient access to useful function families. The use
of more qubits allows more expressive function families at
shallower circuit depths, and indeed qubit number scaling
as a function of data dimension is necessary for any poten-
tial of a quantum utility or advantage (as constant-sized
quantum circuits are simulatable in polynomial time in the
depth).

Indeed, the minimum is superlogarithmic scaling of the
qubit numbers in the dimension of x, and linear scalings
can ensure the exponential cost of the classical simula-
tion of the quantum model using the best known classical
algorithms. This freedom also stymies any good approxi-
mations of how many qubits would be necessary to achieve
good performance of quantum learning algorithms of this
type; it is easy to construct models that are not classi-
cally simulatable, but currently, it is not known how the

increase in qubit numbers affects the quality of outcomes,
and whether this can ultimately lead to a method that can
outperform classical solutions. In practice, it has been sug-
gested that a linear scaling between qubits and the input
dimension may be a good starting point [179]; however,
this necessitates the use of either classical dimensionality-
reduction techniques or circuit-cutting techniques [278] for
any real-world applications in this field.

We highlight that QML by construction inherits the
heuristic feature of machine learning. As of today, there are
no evident HEP use cases where a strict quantum advan-
tage can be claimed. On the other hand, we have very
clear reasons to believe that quantum models can lead to
a learning advantage; this is the key point of Ref. [279].
In essence, it shows that any bounded-error quantum poly-
nomial time (BQP)–hard problem, or more precisely any
problem not in HeurBPP/poly (i.e., the class of decision
problems that can be solved by a polynomial-time heuris-
tic algorithm) but in BQP, allows there to be learning
advantages. In a HEP context, potential examples include
scattering in scalar field theories (BQP complete), and
various problems related to hard variants of gauge field
theories (essentially anything that we do not know how to
simulate but that a QC could simulate is a candidate), can
lead to a quantum advantage. How to reconcile these com-
plexity theoretical arguments with the challenges posed by
exponential concentration (see below) is an important and
active area of research [280].

It is also worth highlighting that a quantum advantage
could be claimed even for problems in HeurBPP/poly, but
not BPP, if the poly advice needs to be collected with
a quantum computer (i.e., if producing advice is in BQP
but not BPP). In this manner, a quantum computer might
prove valuable for producing data for quantum enhanced
machine learning algorithms, for example, as explored in
Ref. [281]. Again, such advantages could be imagined in
any HEP scenario where a quantum simulation is expected
to provide an advantage.

Another more indirect argument for an advantage for
some HEP contexts comes by one combining the results
on advantages from topological data analysis (TDA) with
the duality between TDA and supersymmetric theories
[282,283].

2. Algorithmic limitations

A fundamental limitation to the scaling up most PQC-
based machine learning methods is the so-called barren
plateau phenomenon, where the gradients [284] of the
cost function vanish exponentially with n. On such bar-
ren plateau landscapes, the cost function exponentially
concentrates about its mean, leading to an exponentially
narrow minimum (a narrow gorge) [285]. Hence, on a
barren plateau, exponential precision is required to detect
a cost-minimizing direction and therefore to navigate
through the landscape. Thus, minimization of the cost
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typically requires an exponential number of shots, even
if we use gradient-free [286] or higher-derivative [287]
optimizers. While this phenomenon was originally iden-
tified in the context of variational quantum algorithms and
quantum neural networks, it has recently been shown that
exponential concentration is also a barrier to the scalability
of quantum generative modeling [288] and quantum kernel
methods [180].

A number of causes of barren plateaus have by now been
identified, including the use os variational ansatzes that are
too expressive [284,289–291] or too entangling [292–294].
However, even inexpressive and low-entangling quantum
neural networks may exhibit barren plateaus if the cost
function is “global” [295], i.e., relies on one measuring
global properties of the system, or if the training dataset
is too random or entangled [296–299]. Finally, barren
plateaus can be caused by quantum error processes wash-
ing out all landscape features, leading to noise-induced
barren plateaus [300,301].

Several methods to mitigate or avoid barren plateaus
have been proposed. The simplest is perhaps to use a shal-
low ansatz along with a local cost function [284,295]; how-
ever, it is questionable whether physically interesting and
classically intractable problems can be solved within this
regime. More promising is the ongoing search for problem-
inspired ansatzes [302–306], problem-inspired initializa-
tion strategies [307], pretraining strategies [308–313], or
layerwise learning [314]. Of particular interest currently is
the field of geometric quantum machine learning, which
provides a group-theoretic strategy for building symme-
tries into quantum neural networks [315–318]. In the con-
text of LGT simulations, this approach could be suitable
since we can use the (local and global) gauge symmetry
(see Ref. [48] for a gauge-invariant construction of the
ansatz, although it is not clear if this ansatz can mitigate
the barren plateau problem).

Beyond barren plateaus, there is a growing awareness of
the problems induced by local minima [319–322]. Namely,
it has been shown that quantum cost landscapes for a large
class of problems can exhibit highly complex and non-
convex landscapes that are resource intensive to optimize
[319,320,322]. Thus, the construction of strategies to mit-
igate and avoid local minima [321] is another important
research direction to ensure the successful scaling up of
hybrid variational quantum algorithms.

3. Near-term applications

Given access to a noiseless 100-qubit system, assuming
that we have the capacity to train the model, it is, in prin-
ciple, possible to tackle very high-dimensional systems,
and also learning problems where the underlying physics
generating the data is very sophisticated. In essence, any
system where a 100-qubit quantum simulation would be
able to capture relevant physics could, in principle, be

captured by a 100-qubit learning model. In practice, as
mentioned, this will be possible only if the PQC architec-
ture is carefully tailored to the learning task to enable the
trainability of the system.

As shown in Sec. II B, architectures inspired by the
properties of classical deep neural networks have been suc-
cessfully trained in the quantum context: quantum hierar-
chical classifiers, such as Tree Tensor Networks (TTN) and
multi-scale entanglement renormalization ansatz (MERA),
for example, have been successfully trained to reproduce
two-dimensional images representing the output of a HEP
detector [323–325], and quantum convolutions achieved
optimal results for image analysis and image generation
while mitigating the problem of barren plateaus [326].
A 100 ⊗ 100 machine could be used to understand to
what extent a quantum convolutional neural network could
reproduce the hierarchical learning of a classical convo-
lutional neural network, before incurring the limitations
mentioned in the next subsection.

While a graph-based interpretation of HEP data has been
tested for a relatively small setup in the field of particle tra-
jectory reconstruction, interesting quantum graph imple-
mentations have been proposed [327] and could be tested
in conjunction with point-cloud interpretation of HEP data
for applications ranging from tracking to jet reconstruction
and jet tagging to event generation of matrix element cal-
culations. Quantum equivariant neural networks are also
under study. Examples implementing spatial symmetries
(rotations or reflections) have shown great potential on
image-related tasks and are being studied on HEP datasets
as well. The case of physics symmetries, equally, if not
more interesting, is also very promising, although for
certain applications in classical data processing, a major
challenge is represented by the difference existing between
the original symmetries underlying the quantum process
and the remnants accessible through measurements and
observables. An appropriate choice of loss functions and
learning processes will determine the task PQCs can be
trained for.

As explained throughout this paper, generative models
are among the most powerful and most versatile architec-
tures that could be studied on a 100 ⊗ 100 machine: in
particular, it should be possible to move from a hybrid
version to a fully quantum version of the more complex
topologies such as a QGAN or a QAE. Designing a mech-
anism for efficiently reproducing attention on quantum
states could pave the way for the implementation of trans-
formers, which are among the most powerful architectures
existing today in the classical domain. Similar consider-
ations can be made in the choice of feature maps and
kernels for kernel-based methods such as quantum support
vector machines, which together with variational algo-
rithms are used for classification, clustering, or anomaly-
detection problems in the frameworks of both supervised
and unsupervised learning.

037001-25



ALBERTO DI MEGLIO et al. PRX QUANTUM 5, 037001 (2024)

C. Resource estimation for the proposed use cases

1. Theoretical applications

We conclude this section with a rough estimation of the
resources needed for the proposed applications. In the case
of QED static calculations, we take ground state prop-
erties as our main target (e.g., targeting phase structure
features for which high precision is not required). Simi-
larly, for QED dynamics we are interested in the qualitative
behavior of scattering particles (e.g., entanglement pro-
duction). In the following we are concerned only with the
number of qubits and layers required for the simulation of
the relevant physical problems, which are also compatible
with the noisy hardware at our disposal in the near term.
Therefore, we will avoid mentioning the targeted precision
of the solutions (the results must be qualitatively correct,
in agreement with the best known classical approxima-
tions) or the execution time of the algorithms, which is
limited by the machine runtime to a maximum of a few
hours.

Table I reports preliminary resource estimates, i.e., the
number of qubits and the number of CNOT gate lay-
ers, to execute the three selected topics discussed in this
section on a near-term quantum device compatible with the
utility-scale experiments targeted in this work—namely,
hardware with about 100 qubits and capable of execut-
ing several thousand two-qubit gate operations. The values
reported in Table I are based on state-of-the art calculations
performed recently by the authors or by other members
of the community. In particular, the dimensions of the
systems were motivated by the limits imposed by the
available number of qubits and the minimal dimensions
and sizes needed to obtain meaningful physical insights
[328]. On the other hand, the number of qubits and gate
counts required for the implementation of these mini-
mal setups on a quantum register were estimated from
recent studies on similar Hamiltonians [see, e.g., Refs. [26,
31,329] for “(2 + 1)D QED static”, Refs. [26,330] for
“(1 + 1)D QED dynamics”, and Ref. [148] for “neutrino
oscillations”], while the values given for the larger imple-
mentations (maximum values) are obtained from realistic

extrapolations based on these “minimum size” calculations
and theoretical studies [26].

2. Experimental applications

Because of the difficulty in predicting trainability, con-
vergence, and the quality of the final results for QML
algorithms, we provide in Table II an outlook on the size
of physical systems that could be studied by the different
applications assuming a best case scenario for the data-
embedding circuit. We assume linear scaling for the encod-
ing circuit depth through angle (or dense angle) encoding.
No assumption on the trainability of such a system can
be made at this point. However, the possibility to imple-
ment such systems at the 100-qubit scale would provide
valuable insights into the impact QML algorithms could
make in the next few years. As an example, an anomaly-
detection problem, such as the Higgs analysis described
herein, could be implemented by one skipping entirely
the classical data-compression step (currently based on a
classical autoencoder): the quantum circuit could directly
analyze the raw jet features without the introduction of any
intermediate bias or loss of information. In this respect,
recent work [331] showed the remarkable impact the data-
compression step can have on the performance of a classi-
fier. In the case of generative modeling, both for detector
simulation and for event generation, access to a large
number of qubits O(100) will allow the generation of two-
dimensional detector images, albeit still limited in size. On
the other hand, an event generator capable of generating
hundreds of features could be used to generate an entire jet
and study its substructure. Assuming that we have train-
ability and convergence, the pattern-recognition use cases
are probably those that could show the greatest advantage.
The possibility to input hundreds of features (space points
in the case of particle trajectory reconstruction, or parti-
cles in the case of jet reconstruction and jet tagging) would
allow us to overcome the iterative approach used by cur-
rent implementations and enable reconstruction of large
event fractions in one step.

TABLE I. For (2+1)D QED, we consider a minimum linear lattice size L of 4 and a maximum of 8; this leads to 8–16 qubits to
describe the fermionic degrees of freedom and 10/15 gauge links, which leads—with truncation of the gauge fields l = 2, 3—to 20/100
and 30/150 qubits, respectively. The final number of resources is reported in the table. For (1+1)D QED dynamics, we give a suitable
number of lattice points that allows us to study the time evolution of scattering particles. For two flavor neutrinos we consider a direct
mapping to qubits, where the cost is based on a first-order PF. For the largest system, with 40 neutrinos, the CNOT gate count would still
be 2340 with depth 120 (for more details, see Ref. [148]). VQITE, variational quantum imaginary time evolution; VQTE, variational
quantum time evolution.

Systems
Physical size

(minimum/maximum)
No. of qubits

(minimum/maximum) Algorithm No. of CNOT gate layers

(2+1)D QED static 4 × 4/8 × 8 sites 30/160 VQE/VQITE ∼10/100
(1+1)D QED dynamics 12/20 sites 30/100 VQTE/Trotter 20/100
Collective neutrino oscillations 10/40 neutrinos 10/40 VTE/PF 30/120
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TABLE II. Tested QML applications. The last column shows the size of the problem that could be implemented with 100 qubits,
assuming linear circuit depth scaling for the encoding circuit (as in the case of angle or dense angle encoding). QAG, quantum angle
generator; QCBM, quantum circuit Born machine; QGNN, quantum-classical hybrid graph neural network.

Application Algorithm Features No. of qubits Circuit depth F100 (projected)

Anomaly detection QSVM 16 (latent features) 16 30 300
Detector simulation QAG 8 (pixels) 8 16 100
Event generation QCBM 16 (output features) 4 4 100
Event generation QGAN 3 (output features) 3 1 100
Tracking QGNN 2 (input space points) 8 9 200

IV. CONCLUSIONS AND OUTLOOK

In this paper we have described applications from
experimental and theoretical high-energy physics where
quantum computers have the potential to show a better
performance than their classical counterparts. The selected
applications were chosen for utility-scale noisy hardware,
i.e., devices with approximately 100 qubits capable of
executing several thousand two-qubit gates, and, where
possible, a resource estimate was made. The given appli-
cations are by no means complete, and should serve as
examples that are of very great interest for the high-energy
physics community. We emphasize that this work should
serve as an initial step by the present authors for explor-
ing the potential of quantum computing for high-energy
physics, and we expect that the community of high-energy
physicists working on this will substantially grow in the
future.

Concerning the quantum algorithms proposed for the
applications outlined in Sec. II A, we have identified quan-
tum dynamics as one of the main targets because of its
relevance in the field of HEP, for example, in scatter-
ing phenomena, string breaking, quenching, or dynamical
properties of phase transitions. The exponentially grow-
ing costs of the corresponding classical approaches com-
bined with the availability of well-tuned quantum algo-
rithms make quantum computing a very promising tool
for tackling problems in quantum dynamics. As outlined
in Sec. II A and Table I, such quantum dynamics applica-
tions are indeed compatible with utility-scale noisy hard-
ware. Besides the dynamical aspects of the applications of
theoretical HEP models, we have also described static situ-
ations where quantum computing could lead to better per-
formance. These include Abelian and non-Abelian lattice
gauge theories supplied with topological terms or nonzero
fermion density or investigations of neutrino oscillations.
While for these cases quantum computing has clearly an
advantage over classical Markov Chain Monte Carlo meth-
ods, it remains to be seen whether it will have advantages
over tensor network approaches, for example, when one is
taking the continuum limit or close to a phase transition.

In this paper, we have identified and proposed concrete
examples of (1 + 1)D and (2 + 1)D theoretical models
of HEP (and, in particular, lattice gauge theory) that are

particularly hard classically due to the level of the entan-
glement produced, but still have a great physical relevance
as prototypes for understanding fundamental dynamic but
also static aspects of the laws of nature. In the path towards
large-scale simulations, we propose the development of
hybrid quantum-classical algorithms, which can optimally
leverage the advantages offered by the two complementary
computational paradigms; for instance, the combination
of TNs with a quantum circuit representation of the sys-
tem wave function can offer a unique opportunity for
enabling simulations of strongly entangled systems for
longer timescales or close to phase transitions. The models
we consider are an intermediate step towards the (3 + 1)D
theories needed to study the Standard Model of HEP.
These lower-dimensional models are of great interest by
themselves. Investigating them with quantum computing
can help develop algorithms and methods to study their
(3 + 1)D counterparts. A fascinating perspective would
be to explore phases of QCD currently out of reach,
such as the very early universe or when the strengths of
a topological term becomes large. In addition, quantum
computing may allow studies of scattering phenomena in
a fully nonperturbative fashion, thereby providing com-
pletely new insight into particle collisions and shedding
light on the transition from the confined phase of QCD to
the quark-gluon plasma.

A wide variety of QC applications are anticipated in
quantum simulations and experimental HEP workflows.
Quantum simulations of simplified LGTs in the Standard
Model, such as (2+1)D QED or (2+1)D SU(2) theory, are
potential well-motivated applications for near-term quan-
tum computers. In experiments, QML may improve, for
example, signal processing and detector reconstruction.
However, as mentioned in Sec. II B, encoding classical
data into a quantum circuit is a big challenge, in particu-
lar for future colliders, which will produce an enormous
amount of data. Moreover, this data encoding can also
cause barren plateaus.

This provides motivation for the possibility of using
quantum data, i.e., data generated by a quantum sys-
tem, to directly exploit the quantum properties encoded in
quantum simulations and HEP experimental data. Under-
standing how to learn quantum states has received much
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attention. For instance, in tomography, a learner is given
copies to an unknown n-qubit quantum state ρ and needs
to learn ρ up to an ε-trace distance. Here, the sample
complexity was pinned down to �(22n/ε2) [332,333].
The exponential nature of learning an unknown quantum
state is undesirable. However, certain restricted classes
of states are learnable with use of polynomially many
copies of the states, such as stabilizer states [334], Gibbs
states of local Hamiltonians [335], and matrix product
states [336]. Another body of work considers learning
only certain properties of ρ instead of the entire unknown
quantum state. For instance, (1) in probably approximately
correct (PAC) learning, one has access to (Ei, Tr(ρEi)),
where {Ei, I − Ei} is a uniformly random positive opera-
tor–valued measure element; (2) in shadow tomography,
the goal is, given copies of an unknown ρ, to learn the
expectation values of ρ with respect to a certain set of
fixed, a priori known observables {E1, . . . , Em}; and (3)
other models, such as classical shadows, online learning,
and learning with differential privacy, have modified the
models (1) and (2). In all these models the complexity of
learning is O(n) [337–340], which is exponentially better
than tomography. For a detailed survey of the complexity
of learning quantum data, we refer the interested reader to
Ref. [341].

Quantum data learning for HEP may help extract
physical information from quantum states in quantum sim-
ulations. This was first proposed for condensed-matter
physics [342] and was further explored in Refs. [84,343–
348]. An example is the recognition of quantum phases.
Here, the QML model learns pairs of a quantum state and
its phase to predict the phase of unknown states. In HEP,
we often encounter phase transitions that cannot be inves-
tigated by local order parameters, such as confinement-
deconfinement transitions in QCD. Here, quantum data
learning may help extract physical information.

In the long term, one may perform a quantum exper-
iment, for example, with an analog quantum simula-
tor, measure the final state with a quantum sensor, and
then coherently transduce the states to a quantum com-
puter to extract physical information via QML (see, e.g.,
Ref. [349]). This hybrid system could be extended to
the concept of a quantum-enhanced HEP experiment.
For instance, one could physically place quantum sens-
ing devices in HEP experiments and directly feed the
quantum states registered on the sensors into quantum
computers. This involves many challenges; for example,
detect particles or wavelike matter with quantum sen-
sors, coherently transfer the generated state to another
quantum system, and perform quantum operations to mea-
sure physical properties within coherence times. Such
experiments provide an exciting opportunity to directly
explore quantum phenomena observed in HEP experi-
ments and extract dynamical properties of entangled quan-
tum states.

A crucial success criterion in the era of noisy
quantum devices is the codesign of error mitigation
schemes that efficiently mitigate the different noise sources
(e.g., gate errors, qubit decoherence, and crosstalk) to guar-
antee results of sufficient quality to extract the physics
of interest. Several error mitigation schemes have been
proposed in the past few years (see Appendix A), includ-
ing zero-noise extrapolation [350], probabilistic error can-
cellation [351], and the probabilistic error amplification
approach recently applied to the dynamics of the trans-
verse field Ising model with more than 100 sites [2]. All
these methods require an accurate description of the noise
sources in the quantum device. This has become a very
active and successful area of research [350–355]. Finally,
the precision of most quantum algorithms depends on the
quality of the measurement process. Accurate results can
require a number of projective measurements that easily
exceed what is currently affordable with current quantum
computer clock speeds. These clock speeds are deter-
mined, in part, by the gate times, which currently range
from a few tens of nanoseconds with superconducting
qubits to a few hundred milliseconds with ion-based tech-
nologies. This urges the design of novel approaches to
reduce this measurement overhead. Informationally com-
plete positive operator–valued measures [356] and classi-
cal shadows [357] offer viable solutions to this problem,
thereby opening new avenues to use quantum computers
in large-scale simulations.

ACKNOWLEDGMENTS

A.D.M., M.G., and S.V. are supported by CERN through
the CERN Quantum Technology Initiative. K.J.’s work is
funded by the European Union’s Horizon Europe frame-
work program under the ERA Chair scheme with Grant
Agreement No. 101087126. A.C. and C.T. are supported
in part by the Helmholtz Association—“Innopool Project
Variational Quantum Computer Simulations.” K.J., A.C.,
C.T., and S.K. are supported by funds from the Ministry
of Science, Research and Culture of the State of Bran-
denburg within the Centre for Quantum Technologies and
Applications. A.R. is funded by the European Union. This
project has received funding from the European Union’s
Horizon Europe research and innovation program under
Grant Agreement No. 101080086 – NeQST. E.R.O. is
supported by Grant No. PID2021-126273NB-I00 and by
the European Union via QuantERA project T-NiSQ Grant
No. PCI2022-132984, QuantERA project QuantHEP, the
project Euryqa, and PASQUANS2 funded by the Euro-
pean Union “NextGenerationEU”/PRTR, by the Euro-
pean Regional Development Fund (ERDF) – “A way of
making Europe”, by MCIN/AEI/10.13039/501100011033,
by the Italian National Center for HPC, Big Data and
Quantum Computing, by the Basque Government through
Grant No. IT1470-22. J.T. has received support from the

037001-28



QUANTUM COMPUTING FOR HIGH-ENERGY PHYSICS. . . PRX QUANTUM 5, 037001 (2024)

European Union’s Horizon Europe research and inno-
vation program through the ERC starting grant FINE-
TEA-SQUAD (Grant No. 101040729). J.T.B., V.D., and
V.C. are supported by the Dutch National Growth Fund,
as part of the Quantum Delta NL program. V.D. and
V.C. also are supported by the Netherlands Organisa-
tion for Scientific Research (NWO/OCW), as part of
the Quantum Software Consortium program (Project No.
024.003.037/3368). Z.H. acknowledges support from the
Sandoz Family Foundation’s Monique de Meuron pro-
gram. L.N. is supported by the IBM-UTokyo lab under
the Japan–IBM Quantum Partnership. J.S. acknowledges
the support of the Fundação para a Ciência e a Tecnologia
(FCT) under Contracts No. CERN/FIS-COM/0036/2019
and No. UIDB/04540/2020 and the project QuantHEP sup-
ported by the European Union Horizon 2020 QuantERA
ERA-NET Cofund in Quantum Technologies and by FCT
(Contract No. QuantERA/0001/2019). E.F. acknowledges
support by the Deutsche Forschungsgemeinschaft under
Germany’s Excellence Strategy—EXC-2123 “Quantum-
Frontiers”—390837967. J.C.H. acknowledges financial
support by the Emmy Noether Programme of the Deutsche
Forschungsgemeinschaft under Grant No. HA 8206/1-1.
The IBM team acknowledges Jay Gambetta for his pre-
cious and constant support of the HEP working group.

The views and opinions expressed are those of the
authors only and do not necessarily reflect those of the
European Union or the European Commission. Neither the

European Union nor the granting authority can be held
responsible for them.

APPENDIX A: IBM ROADMAP ON QUANTUM
COMPUTING

In the last few years, we have observed the flourishing
of many different quantum computing platforms, each with
its own technological and scientific goals. Common to all
these quantum computing efforts is the ambition to scale up
their technology to empower scientific progress and fos-
ter innovation. In the following, we provide a summary
of the IBM quantum computing Roadmap (see Fig. 2)
based on superconducting qubits, which is the one most
familiar to the authors. However, by no means should
this be taken as a reference for the realization of our
research program in HEP. A summary of the Roadmaps
for the other main quantum computing platforms, includ-
ing trapped ions, neutral atoms, quantum dots, photonics,
and NMR, can be found in Ref. [358].

Bringing useful quantum computing to the scientific
world, and in particular to the HEP community, is contin-
gent on the development of quantum computing hardware
and software that permits the execution of quantum algo-
rithms at a scale that is capable of producing insights and
results not accessible by classical computers. But more
than requiring only a large-scale device, one requires that

FIG. 2. IBM’s Roadmap for upcoming quantum computers, updated 2023.
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the components are sufficiently reliable and have coher-
ence times as well as gate parameters of high quality
[359]. The IBM Quantum Roadmap proposes a list of
stepping stones that progressively improve on the neces-
sary requirements. The first development Roadmap was
previewed in 2020 [360], laying out a progression of the
then available 27-qubit Falcon devices to the Condor chip
with 1121 qubits by the end of 2023. With the release of
the 433-qubit Osprey chip at the end of 2022 [361] the
Roadmap has been extended [362]. The new Roadmap
now lays out a path to the newly introduced Kookaburra
chip with 4105 qubits that uses interconnected chip designs
with long-range couplers. Furthermore, the new Roadmap
added new chip architectures, such as the Heron chip with
133 qubits incorporating recent advances from gate and
qubit research.

The greatest adversary to the realization of large-scale
quantum computers is noise. The components of quantum
computers are considerably more sensitive to imperfec-
tions and external interactions than their classical coun-
terparts, leading them to decohere and turn into classi-
cal mixtures [363]. For specific tasks such as quantum
dynamical simulations it is reasonable to expect that use-
ful insights may already be gathered from noisy quantum
processors [2], for example, for gauge theories [79]—as
the technology matures. However, other well-known quan-
tum algorithms, such as Shor’s factoring procedure [364],
quantum amplitude amplification [365,366] and quantum
phase estimation [367] will almost certainly require some
form of quantum error correction. The design plans for
the progressively larger QC layouts are therefore aimed
at providing a path to the long-term goal of realizing a
fault-tolerant quantum computer. However, current error-
correcting codes, which could be used to realize fault-
tolerant quantum computing at a nontrivial scale, require
system sizes that exceed the available hardware by several
orders of magnitude [368,369]. Building a fault-tolerant
computer, therefore, requires not only higher-quality and
larger-scale devices but also research in error-correcting
codes. Recent advances in the theory of error correction
[370–374], including recent effort exploring the interplay
between quantum error correction and gauge-fermionic
theories [375–378], provide us with a reason to be opti-
mistic about future progress. However, if we wait for the
realization of a fault-tolerant quantum computer to run
algorithms and do not actively explore the potential of
near-term devices, we will forgo a promising opportunity
to obtain a computational advantage in the near future.

We are observing remarkable progress in quantum hard-
ware. As the Roadmap and the already completed mile-
stones indicate, we are both building larger devices and
can manufacture components with an order of magnitude
improvement in two-qubit gate fidelities [379]. A quantum
processing unit at the scale of the 65-qubit Hummingbird
chip could implement circuits with a few thousand gates

to a reasonable degree of accuracy without resorting to
error correction when two-qubit gate fidelities of 99.99%
become available. Circuits of such a size can arguably
no longer be simulated by exact methods on a classical
computer. This suggests an alternative path of utilizing
current and impending quantum devices [380]. Here, one is
restricted to computations with only shallow-depth quan-
tum circuits, where the size of the circuit is determined
by hardware parameters such as coherence times and gate
fidelities. As these hardware characteristics improve, the
circuit sizes that become accessible increase, ultimately
leading to circuits that provide a computational advantage
over classical approaches. This path lays out a gradual pro-
gression to obtaining quantum advantage one hardware
improvement at a time, ultimately driving the hardware
evolution to progressively better and larger devices until
error correction methods can be applied to provide us with
access to circuits no longer limited by the device noise.

Early experiments [381] demonstrated that despite the
restriction to shallow-depth circuits, noise and decoher-
ence lead to a bias in the estimates of expectation values.
For this approach to provide an advantage over clas-
sical approximation methods, this bias has to be miti-
gated. These observations have motivated the development
of error mitigation tools such as zero-noise extrapola-
tion [350,382] and probabilistic error cancellation [350].
The goal of these methods is to reduce, or even fully
remove, the noise-induced bias from expectation values
measured in shallow-depth circuits. This is achieved by
one slightly modifying the circuits in different ways and
combining measurement outcomes in postprocessing to
produce noise-free estimates. The protocols introduce an
additional computational and sampling overhead that will
ultimately grow exponentially in the noise strength, illus-
trating that these protocols do not extend the circuit depth
beyond the device-specific parameters, but ensure only that
accurate values are produced within the allotted circuit
size. The zero-noise extrapolation method was experimen-
tally implemented for the first time on small-scale chips
[355]. There it was shown that the effect of noise in
earlier experiments [381] could be removed. Recently it
was demonstrated [239] that this method could be scaled
to larger circuit sizes on improved quantum hardware,
such as the recent version of the 27-qubit Falcon proces-
sor, by combination of the method with error suppression
techniques including dynamical decoupling [383,384] and
Pauli twirling [352,353,385]. Advances in learning and
modeling correlated noise on quantum processors have
enabled the implementation of probabilistic error cancel-
lation [351] to fully remove the noise bias for even the
highest-weight observables on larger devices.

To enable the scientific community to utilize these
advances, IBM Quantum has announced a challenge to
both internal developers and the community: the 100 ⊗
100 Challenge [1]. In 2024, IBM Quantum is planning
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to offer a quantum computing chip capable of calculat-
ing unbiased observables of circuits with 100 qubits and a
depth of 100 gate operations in a reasonable runtime, i.e.,
within 1 day. This new tool is to challenge the community
towards proposing quantum algorithms that use this hard-
ware to solve interesting problems that are notoriously hard
for classical computers.

The HEP community plays a pivotal role here since
the field is one of the driving sources for challenging
computational problems inherent to quantum mechanics.
This community is ideally equipped to propose problem-
relevant heuristics [386,387] that stand to benefit from
early demonstrations on quantum hardware.

APPENDIX B: EXECUTION ON QUANTUM
HARDWARE

To give readers an overview of how a quantum com-
putation is done, we briefly summarize the steps required
to go from a HEP problem to an execution on hardware.
First, the problem is mapped to a language understandable
by a digital quantum computer. For instance, continuous
fermionic fields are discretized on a lattice, resulting in cre-
ation and annihilation operators a†

i,σ and ai,σ with spin σ at
lattice site i. Next, the discretized operators are mapped to
Pauli spin operators, such that the initial statistics of the
model are preserved. For instance, the anticommutation
rules of fermions are preserved with the Jordan-Wigner
or Bravyi-Kitaev mappings [388]. This results in a set of
Pauli operators {Pi} that a quantum computer can work
with. Here, each Pi is a tensor product of Pauli spin matri-
ces {I , X , Y, Z}. Typically, a quantum computation will
then act with exponentials of the Pi’s—resulting in unitary
operators Ui = exp{−iθPi}—on the corresponding qubit
register. Most digital quantum computers support a uni-
versal hardware native basis gate set built from a two-qubit
gate (e.g., a CNOT gate or a controlled Z gate) and single-
qubit rotations. Therefore, they cannot directly implement
an arbitrary Ui. To overcome this, a transpiler decomposes
the Ui’s into the hardware native basis gate set. While
general results such as the Solovey-Kitaev theorem exist
[389], efficiently transpiling unitary operators is an active
area of research [390]. Once the circuit is transpiled to the
hardware native basis gate set, it can be executed by the
device.

The transmon is a popular superconducting qubit built
from a Josephson junction in parallel with a capacitor
[391,392]. This system forms a nonlinear resonator engi-
neered such that the ground state and the first excited state
are split by an energy �ω01, where the qubit transition fre-
quency ω01/2π is engineered to lie close to 5 GHz. On
IBM Quantum hardware, single-qubit

√
X and X gates

are engineered by microwave pulses, close to Gaussians in
shape [393], modulated at ω01. Arbitrary rotations RZ(θ)

around the Z axis of the qubit are virtual and implemented

by one changing the phase of all subsequent microwave
pulses [394]. Two-qubit gates are typically more com-
plex than single-qubit gates and have a larger error. For
instance, a CNOT gate can be created by one driving one
qubit at the frequency of another qubit [395], while con-
trolled Z gates can be created by one carefully modulating
a frequency-tunable element that couples two qubits [396].
Finally, the state of the qubits is read out, which requires
one driving a microwave resonator whose resonance fre-
quency depends on the state of the qubit to which it is
coupled. The transmission and reflection of this resonator
is then converted to a 0 or a 1 [392].

APPENDIX C: ILLUSTRATION OF A QUANTUM
SIMULATION: THE CASE OF THE SCHWINGER

MODEL

Let us consider the Schwinger model, i.e., QED in 1 + 1
dimensions, to illustrate how to obtain a lattice formulation
and how to address it with a quantum device. The contin-
uum Lagrangian for the massive Schwinger model reads
[397]

L = ψ̄(iγ μ∂μ − gγ μAμ − m)ψ − 1
4

FμνFμν , (C1)

where ψ = (ψ1,ψ2)
T denotes a two-component Dirac

spinor describing the fermions, m is the bare fermion mass,
Aμ is the gauge field with coupling constant g, Fμν =
∂μAν − ∂νAμ corresponds to the field strength tensor, and
γ μ are the Dirac matrices for two dimensions. The indices
μ and ν in Eq. (C1) take the values 0 and 1, corresponding
to the temporal and spatial components of the gauge field,
and the Einstein summation convention is implied.

Choosing temporal gauge, A0 = 0, performing a nega-
tive Legendre transformation of L, and integrating it over
space, one can obtain the Hamiltonian

H =
∫

dx
(

−iψ̄γ 1(∂1 − igA1)ψ + mψ̄ψ + 1
2
F2

)

,

(C2)

where F = −Ȧ1 corresponds to the electric field. The
physical states of the Hamiltonian have to fulfill an addi-
tional constraint in the form of Gauss’s law,

∂1F = gψ†ψ , (C3)

which is a consequence of the choice of gauge and corre-
sponds to the equation of motion for A0.

At first glance, a discretization of the Hamiltonian in
Eq. (C2) seems straightforward: after the introducion of a
spatial lattice, the fields can be discretizted and the deriva-
tives can be approximated as finite differences. However,
such a naive approach fails to produce the correct con-
tinuum limit in the sense that observables extracted from
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the lattice theory do not converge to their continuum val-
ues as the lattice spacing is taken to zero. The origin
of this problem can be traced back to additional low-
energy contributions in the first Brillouin zone of the lattice
theory [87,88]. In general, discretization of the Hamilto-
nian of a fermionic theory in d spatial dimensions yields
2d − 1 unwanted contributions. Since the number of detri-
mental contributions doubles with each dimension, this is
commonly referred to as “fermion doubling” [88].

To avoid fermion doubling, one has to counteract these
additional low-energy contributions arising from the lat-
tice discretization. There are various ways to remove the
doublers; the two most commonly used ones for quan-
tum simulation are Wilson fermions and Kogut-Susskind
staggered fermions. Wilson’s approach, also mentioned in
Sec. II A 2, adds a lattice version of the second derivative
of the fermion fields to the Hamiltonian that lifts the addi-
tional low-energy contributions and vanishes as the lattice
spacing is taken to zero [46,88,90]. The Kogut-Susskind
staggered fermions correspond to distributing the different
spinor components of the Dirac spinor to different lattice
sites. This technique effectively doubles the lattice spacing,
thus avoiding fermion doubling [7,87]. While the Kogut-
Susskind approach allows one to fully avoid fermion dou-
bling in one spatial dimension, in higher spatial dimensions
it reduces only the number of doublers [87]. So far, most
quantum simulation experiments for LGT with fermions
have used the Kogut-Susskind staggered fermions; hence,
we focus on the lattice discretization of the Schwinger
Hamiltonian using these in the following.

The Hamiltonian lattice formulation of the Schwinger
Hamiltonian in Eq. (C2) with Kogut-Susskind staggered
fermions reads

Ĥ SM =
∑

�

[

− κ

2a
(

φ̂
†
� Û�,�+1φ̂�+1 + H.c.

)

+ m(−1)�φ̂†
� φ̂� + ag2

2
Ê2
�,�+1

]

, (C4)

where m is the bare fermion mass, a is the lattice spac-
ing, g is the coupling, and we have introduced an addi-
tional parameter κ in front of the kinetic term. The
matter degrees of freedom are represented by the single-
component fermionic fields φ̂�, φ̂

†
� on site �. The gauge

degrees of freedom are represented by the link operators
Û�,�+1 = exp

(

iθ̂�
)

and the electric field operators Ê�,�+1,
both acting on the gauge link between sites � and �+ 1.
The operator θ̂� is the canonical conjugate of the electric
field operator, [θ̂�, Ê�′] = iδ��′ , and takes values in [0, 2π ].
Hence, one finds for the commutation relations

[

Ê�,�+1, Û�′,�′+1
] = δ�,�′Û�,�+1, (C5a)

[

Û�,�+1, Û†
�′,�′+1

] = 0. (C5b)

This implies that the unitary operator Û�,�+1 acts as a shift
operator for the electric field on the gauge link joining sites
� and �+ 1, lowering the electric flux by one unit. The
physical states |ψ〉 of the Hamiltonian in Eq. (C4) must
fulfill the lattice version of Gauss’s law, which is given by
for all �, Ĝ� |ψ〉 = 0, where

Ĝ� = Ê�,�+1 − Ê�−1,� − Q̂�. (C6)

The operators Ĝ� are the generators of time-independent
gauge transformations, and Q̂� = φ̂

†
� φ̂� − (

1 − (−1)�
)

/2
is the staggered charge on site �.

For κ = 1, the continuum limit, ag → 0, of Eq. (C4)
converges to the continuum Hamiltonian for (1 + 1)D
QED. In particular, one has the correspondence

φ̂�√
a

→
{

ψ1(�a) for � even,
ψ2(�a) for � odd

(C7)

for the fermion fields and

θ̂�/ag → A1(�a), gÊ�,�+1 → F(�a) (C8)

for the gauge fields. Using the fact that the gauge connec-
tion shows only a small change along the link between
neighboring lattice sites in the limit of small lattice
spacing, one can expand Û�,�+1 ≈ 1 + iagA1 + O (

(ag)2
)

,
which together with the correspondence above allows one
to recover the continuum Hamilton.

The fermionic degrees of freedom in the Schwinger
Hamiltonian can, in principle, be realized in an analog
quantum simulator. However, they do not readily translate
on digital devices. With a Jordan-Wigner transformation,
we can replace the fermionic degrees of freedom with Pauli
operators:

φ̂� =
∏

n<�

(iσ̂ z
n ) σ̂

−
� , φ̂

†
� =

∏

n<�

(−iσ̂ z
n ) σ̂

+
� , (C9)

where σ±
� = (σ̂ x

� ± iσ̂ y
� )/2. Moreover, the commutation

relations in Eq. (C5) imply that the Hilbert spaces on the
gauge links are infinitely dimensional, which makes them
challenging for numerical simulations and experimental
implementations.

In the case of open boundary conditions, the problem
of infinite-dimensional gauge links can be avoided by one
integrating out the gauge links. After the electric field
value l0 on the left boundary has been fixed, a recur-
sive application of Gauss’s law in Eq. (C6) allows the
reconstruction of the electric field purely from the charge
content of the sites, Ê�,�+1 = ∑

k<�+1 Qk + l0. By substi-
tuting this into Eq. (C4), applying a unitary to the fermionic
fields [90,398], and translating the resulting expression to
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spin language with the Jordan-Wigner transformation, we
obtain

Ĥ SM = − κ

2a

N−2
∑

�=0

(

σ̂ x
� σ̂

x
�+1 + σ̂

y
� σ̂

y
�+1

)

+ m
N−1
∑

�=0

(−1)�σ̂ z
� + ag2

2

N−2
∑

�=0

(
�

∑

k=0

Qk + l0

)2

,

(C10)

where Q� = (σ̂ z
� + (−1)�)/2 is the staggered charge oper-

ator in the spin representation, and l0 corresponds to a
topological θ term [90,399]. We also dropped all constant
terms in the Hamiltonian.

Another way to address the infinite-dimensional links
in practical simulations is to truncate them to a finite
dimension. While there are various ways of truncating the
gauge degrees of freedom [91,92,105,106], the quantum
link model formulation [121,122,124] has been success-
fully used in many experiments and simulations. QLMs
replace the infinite-dimensional link operators with finite
spin operators:

Û�,�+1 → ŝ+
�,�+1√

S(S + 1)
, (C11a)

Ê�,�+1 → ŝz
�,�+1, (C11b)

where ŝ±
�,�+1 = (ŝx

�,�+1 ± iŝy
�,�+1)/2 and ŝx

�,�+1, ŝy
�,�+1, ŝz

�,�+1
are the spin operators of the chosen spin representa-
tion S acting on the link between sites � and �+ 1.
This renders the commutation relations from Eqs. (C5) of
the form

[

Ê�,�+1, Û�′,�′+1
] → δ�,�′

ŝ+
�,�+1√

S(S + 1)
, (C12a)

[

Û�,�+1, Û†
�′,�′+1

] → 2δ�,�′
ŝz
�,�+1

S(S + 1)
. (C12b)

In the limit S → ∞, the QLM representation converges to
the commutation realtions in Eqs. (C5). The spin-S U(1)
QLM Hamiltonian reads

Ĥ QLM =
∑

�

[

− κ

2a
√

S(S + 1)

(

σ̂+
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

)

+ m
2
(−1)�σ̂ z

� + g2a
2

(

ŝz
�,�+1

)2
]

. (C13)

1. Analog quantum simulation

We illustrate the concept of analog quantum simulation
with the simplest case of S = 1/2, which renders the gauge

and electric field operators as two-level systems. This gives
rise to the spin-1/2 U(1) QLM with Hamiltonian

Ĥ QLM =
∑

�

[

− κ

2
(

σ̂+
� ŝ+

�,�+1σ̂
−
�+1 + H.c.

) + m
2
(−1)�σ̂ z

�

]

,

(C14)

where we omitted a trivial factor in the kinetic term for
notational brevity. We also set the lattice spacing to unity,
a = 1. Importantly, the electric energy term ∝ g2 becomes
an inconsequential constant for S = 1/2, which is why it is
omitted in Eq. (C14).

We seek to map the target model (C14) onto an ana-
log quantum simulator that is feasible to implement in the
laboratory. To this end, we use an optical superlattice of
bosons, with the shallow sites representing the sites of the
QLM, and deep sites representing the links of the QLM;
see Fig. 3. We would like to engineer our quantum sim-
ulator such that on a shallow superlattice site only one
or zero bosons can live, while on a deep site only two
or zero bosons can reside, which can faithfully map the
allowed configurations based on Gauss’s law (see Fig. 3).
In this gauge-invariant subspace, the QLM operators can
be represented by bosonic operators as

ŝ+
�,�+1 =

(

b̂†
�,�+1

)2

√
2

, ŝz
�,�+1 = b̂†

�,�+1b̂�,�+1 − 1

2
, (C15a)

σ̂+
� = b̂†

�, σ̂ z
� = 2b̂†

�b̂� − 1, (C15b)

where b̂†
�,�+1 (b̂�,�+1) are bosonic creation (annihilation)

operators acting on the link between site � and site �+
1. Yang et al. [78] showed that this mapping can be
achieved in second-order degenerate perturbation theory

FIG. 3. Mapping of a QLM onto a Bose-Hubbard model quan-
tum simulator (adapted from Ref. [78]).

037001-33



ALBERTO DI MEGLIO et al. PRX QUANTUM 5, 037001 (2024)

using the Bose-Hubbard superlattice Hamiltonian (Bose-
Hubbard model),

Ĥ BH = −J
L−1
∑

j =1

(

b̂†
j b̂j +1 + H.c.

) + U
2

L
∑

j =1

n̂j
(

n̂j − 1
)

+ 1
2

L
∑

j =1

[

(−1)j δ + 2j�
]

n̂j , (C16)

in the regime of U, δ � J ,�. Here J is the bosonic tun-
neling constant, U is the on-site repulsion strength, δ is a
staggering potential (between the shallow and deep sites),
� is a global tilt, and n̂j = b̂†

j b̂j ; see Fig. 3. The parame-
ters of the QLM are related to those of the Bose-Hubbard
model as m ≈ δ − U/2 and κ ≈ 8

√
2J 2/U.

Subleading terms arise in this perturbative mapping
that explicitly break Gauss’s law, but the corresponding
violations are reliably and controllably suppressed by a
leading-order linear gauge protection term proportional to
∑

j j�(−1)j Ĝj , where Ĝj is the generator of Gauss’s law
[400].

2. Digital quantum simulations

A typical quantum simulation of the Schwinger Hamil-
tonian in Eq. (C10) will start with the optimization of
the ground state. To this end, one can implement a vari-
ational quantum circuit, which preserves the desired sym-
metries of the Hamiltonian (see, e.g., Ref. [48]) and then
perform a hybrid VQE calculation to obtain the set of cir-
cuit parameters that characterizes the ground state wave
function.

To perform quantum dynamics, one first decompose the
time-evolution operator corresponding to the Hamiltonian
in Eq. (C10) using the Suzuki-Trotter formula as

e−iHSM�t ≈ e−iHkin�te−iHm�te−iHE�t, (C17)

where Hkin, Hm, and HE are the kinetic, the mass and the
electric energy terms of the Hamiltonian, and�t is the time
step. The latter two factors, e−iHm�t and e−iHE�t, are easily

qi RZ(π/2) RY (−α) RZ(−π/2)

qj RY (π/2) RY (−α) RY (−π/2)

FIG. 4. Quantum circuit for e−i(XiXj +YiYj )(α/2) on qubits i and j .

implemented with use of RZ single-qubit rotations, while
the first factor e−iHkin�t can be implemented by a quantum
circuit as shown in Fig. 4.

APPENDIX D: RESOURCE REQUIREMENTS FOR
QUANTUM SIMULATION OF LATTICE QED

In this appendix we assess the resource requirements
for the implementation of the quantum link model for-
mulation of U(1) lattice gauge theories with dynamical
Wilson fermions in arbitrary dimension d. In Ref. [26],
we assessed the number of qubits required to capture all
degrees of freedom. Then we also reported the number of
Pauli strings that are required to implement the different
terms in the QED Hamiltonian, and finally we touched
upon how this translates into the number of required
quantum gates. We express all scalings in terms of a
combination of the following model parameters:

(1) ns, the number of lattice sites.
(2) ne, the number of lattice edges (scales linearly with

ns in regular lattices).
(3) np , the number of lattice plaquettes (scales linearly

with ns in regular lattices).
(4) nspinor, the number of spinor components.
(5) d, the number of spatial lattice dimensions.
(6) dS, the dimension of the spin-S system in the quan-

tum link model.
(7) nnonzero(A), the number of nonzero elements of the

matrix A.
(8) nPauli(Ô), the total number of Pauli strings in the

encoding of the operator Ô.
(9) nreal(Ô), the number of Pauli strings with real coef-

ficients in the encoding of Ô.

TABLE III. Scaling relations for the number of Pauli terms for the terms in the lattice QED Hamiltonian shown for different encod-
ings of the truncated gauge operators. These relations do not depend on whether the Jordan-Wigner, Bravyi-Kitaev, or parity mapping
is used for the fermions.

Term Number of Pauli strings

Logarithmic encoding Logarithmic encoding (perfect) Linear encoding

Hmass O(nsnspinor) O(nsnspinor) O(nsnspinor)

Hhopp O(nsdn2
spinord

2
S) O(nsdn2

spinordS) O(nsdn2
spinordS)

HWilson O(nsdn2
spinord

2
S) O(nsdn2

spinordS) O(nsdn2
spinordS)

Helec O(nsddS) O(nsddS) O(nsdd2
S)

Hplaq O(nsdd8
S) O(nsdd4

S) O(nsdd4
S)
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(10) nimag(Ô), the number of Pauli strings with imaginary
coefficients in the encoding of Ô.

(11) nmix(Ô), the number of Pauli strings with neither
purely real nor purely imaginary coefficients in the
expansion of Ô.

Table III provides a summary of this analysis. For the exact
formulas for the number of Pauli terms, we refer to the
respective sections above.

The analysis shows that the dominant term with respect
to the number of required Pauli strings is the plaquette term
Hplaq, due to its strong scaling with dS. For this reason, even
for small values of dS, the plaquette term contributes by far
the highest number of Pauli strings of all the terms in the
Hamiltonian.

The best overall scaling, and thus the lowest number of
required Pauli terms, is achieved by use of a logarithmic
encoding for a quantum link model with a perfectly repre-
sentable spin-S system. The logarithmic encoding is also
more favorable in terms of the number of required qubits.
The downside of perfectly representable S is that the eigen-
value Sz = 0 is not contained in the spectrum as dS is a
power of 2, resulting in a degenerate ground state.

APPENDIX E: ALGORITHMS AND THEIR
LIMITATIONS

In this appendix we provide an overview of various
classical and quantum algorithms relevant for the field of
high-energy physics and highlight their capabilities as well
as their limitations.

1. VQE and variational quantum deflation

The variational quantum eigensolver is a hybrid
quantum-classical approach to obtain an approximation
for the ground state of a (quantum) system [94]. The
algorithm uses the quantum device to prepare an ansatz
state in the form of a parametric quantum circuit. On the
basis of the measurement outcome of the expectation value
of the Hamiltonian, a classical minimization algorithm is
used to obtain a new set of parameters. Running the feed-
back loop between the classical computer and the quantum
device until convergence, one obtains an approximation
for the ground state and its energy, provided the ansatz
chosen is expressive enough and the optimization did not
converge to a local minimum. The main limitations of
the VQE are barren plateaus (see Sec. III B 2) and the
large number of measurements needed to solve problems
of interest. Wang et al. [401] have provided a poten-
tial approach for minimizing estimation runtime on noisy
quantum computers.

Variational quantum deflation is an extension of the
VQE allowing the computation of low-lying excitations
by running a VQE looking for a low-energy state that is

orthogonal to all previous states [95]. The subspace-search
variational quantum eigensolver is another approach used
to compute excited states. This algorithm searches for a
low-energy subspace by supplying orthogonal input states
to the variational ansatz [96]. All the variational algorithms
can be applied to Hamiltonians in both theoretical models
and experimental analysis.

2. Tensor networks

Tensor networks are a family of entanglement-based
ansatzes providing an efficient parameterization of the
physically relevant moderately entangled states [11,13].
TN algorithms allow the computation of ground states,
low-lying excitations, thermal states, and to a certain
extent real-time dynamics. While TNs are extremely suc-
cessful in situations with moderate entanglement, they
cease to work for highly entangled scenarios such as out-
of-equilibrium dynamics. Moreover, in higher dimensions,
the numerical algorithms are computationally challenging
but have a polynomial scaling in tensor size, thus allow-
ing the first proof-of-principle demonstrations for LGTs
[22,57].

3. Quantum approximate optimization algorithm

The quantum approximate optimization algorithm is a
hybrid quantum-classical approach, originally designed to
tackle combinatorial optimization problems [402]. The
problem is encoded in an Ising-type Hamiltonian whose
ground state is the optimal solution to the combinatorial
optimization problem. The QAOA can be seen as a spe-
cial type of VQE, where the initial state is given by

⊗ |+〉
and the parametric ansatz circuit in its plain vanilla form
consists of a series of two alternating types of layer, each
one containing a single real parameter. The first one is the
exponential of the problem Hamiltonian, exp(−iγH), fol-
lowed by a mixing layer corresponding to RX (βi) gates
applied to each qubit. In the limit of infinitely many lay-
ers, the QAOA can be interpreted as an adiabatic evolution
of an eigenstate of the X operator to the eigenstate of the
problem Hamiltonian. From a theoretical point of view, the
performance of the QAOA is not entirely clear; it seems to
depend on various factors and does not necessarily outper-
form classical algorithms [403–405]. Dalzell et al. [406]
gave some estimates on the number of qubits needed for
a quantum advantage with QAOA circuits. Furthermore,
the resulting quantum circuits can be deep, making them
hard to implement on noisy hardware [301,407]. How-
ever, some of these issues may be alleviated by algorithmic
advances such as warm starts [408] and counteradiabatic
driving [409]. Alternatives to the standard QAOA are also
described in the literature, including the expressive QAOA
[410], the multiangle QAOA [411], and the recursive
QAOA [412].
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4. Quantum k-means algorithm

The classical k-means algorithm is an efficient algorithm
to classify data into k clusters on the basis of an unlabeled
set of training vectors. It belongs to the family of unsu-
pervised machine learning algorithms. The number k of
clusters must be known a priori, which somewhat limits
the range of its application in HEP. The algorithm is itera-
tive and assigns at each step a training vector to the nearest
centroid. The centroid location is then updated according
to the average over the cluster of vectors associated at the
current step to the centroid. The most time-consuming and
resource-consuming part of the algorithm is the calcula-
tion of the distance. In the classical version, with Lloyd’s
version of the algorithm, the time complexity is O(NM ),
where N is the number of features and M is the number
of training examples [413–415]. The quantum version of
the k-means algorithm provides an exponential speedup
for very large dimensions of a training vector. This is
achieved through the introduction of two quantum subrou-
tines, SwapTest and DistCalc, for the distance calculation
[416] and the quantum subroutine GroverOptim to assign
a vector to the closest centroid cluster [417].

5. Quantum kernels

Quantum kernels are a supervised quantum machine
learning algorithm for classification and regression. The
inputs can either be quantum (i.e., quantum states with
an associated classical label) or fully classical (i.e., input-
output data pairs). For the latter, the input classical data
are first embedded into quantum states. For a quantum
speedup over classical algorithms, it is important to use an
embedding (also called a “quantum feature map”) that is
capable of recognizing classically intractable features
[281,418,419]. For a given input pair of inputs, one then
evaluates a similarity measure between two encoded quan-
tum states on a quantum computer. Formally, this function
corresponds to an inner product of data states, and is
known as a “quantum kernel” [178,281,420]. The fidelity
quantum kernel [178,420] and the projected quantum ker-
nel [281] are two common choices of kernels.

6. Quantum generative modeling

Quantum systems, as inherently probabilistic systems,
are naturally tailored to generative modeling tasks [421].
The aim of generative modeling is to use training samples
from a given target distribution to learn a model distribu-
tion that can then be used to generate new samples. As
well as providing an efficient means of generating samples,
it has been shown that quantum generative models can
encode probability distributions that cannot be modeled
efficiently classically [422–424]. A number of different
architectures and training strategies are being explored
for quantum generative modeling. The quantum circuit
Born machine [425] encodes a probability distribution in

an n-qubit pure state. The quantum Boltzmann machine
[426] is based on the Boltzmann distribution of a quan-
tum Hamiltonian. A QGAN [427] uses the interplay of
a generative quantum neural network and a classical or
quantum discriminative model for a target distribution.
In all cases the quantum generative model is generally
trained by optimization of a cost function that estimates the
distance between the model distribution and the training
distribution. Commonly used costs include the Kullback-
Leibler divergence [428], the Jensen-Shannon divergence
[429], the (quantum) Rényi divergence [430,431], and the
maximum mean discrepancy [432].

7. Quantum reinforcement learning

Reinforcement learning is an interactive mode of
machine learning well suited for sequential decision and
control tasks, and its objective is identifying the opti-
mal policy (specification of what a learner does in a
given situation) for a task environment. Current state-of-
art methods include policy gradient methods, where the
optimal policy is parameterized, and the performance is
optimized in the policy space with use of interactions
with the task environment, and deep Q-learning meth-
ods, where the optimal value functions, which evaluate the
“value” of a given state-action pair under a given policy,
are approximated. Other approaches combine features of
policy-based and value function–based methods. In quan-
tum reinforcement learning, i.e., in quantum approaches
to reinforcement learning, the policies (in policy gradi-
ents), or value functions (in value function–based meth-
ods) are expressed with use of parameterized quantum
circuits, instead of, for example, neural networks, which
are conventionally used. The first quantum policy meth-
ods that achieved successful performances in OpenAI Gym
benchmarking environments were reported in Ref. [433],
and the same paper proved the existence of task envi-
ronments that can be learned only with quantum learn-
ers. In Ref. [434] the quantum approach was extended
to value-based approaches (deep Q learning), and anal-
ogous proofs of learning separations were given. Jerbi
et al. [435] studied the use of quantum methods to speed
up neural network–based deep energy models. Follow-up
studies include the analysis of the performance of simple
unentangled quantum learners [436], learning in partially
observable environments [437], and applications in combi-
natorial optimization [438]. Quantum reinforcement learn-
ing was also used in the work reported in Ref. [439], where
free energy–based reinforcement learning is extended to
multidimensional continuous state-action space environ-
ments to open the door for a broader range of real-world
applications. A hybrid actor-critic scheme for continu-
ous state-action spaces was developed on the basis of
the deep deterministic policy gradient algorithm combin-
ing a classical actor network with a quantum Boltzmann
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machine–based critic. The environments used throughout
represent the existing particle accelerator beam line of
the Advanced Plasma Wakefield Experiment (AWAKE)
at CERN. Quantum reinforcement learning with param-
eterized circuits suffers from barren plateaus as well
(as it contains conventional supervised learning as a spe-
cial case), although it is not known whether the phe-
nomenon is exacerbated. In recent work [440], the effect
of noise was studied as well, and the results suggest that
the models could be somewhat resistant to noise, but more
studies are required for conclusive findings.

8. Topological data analysis

TDA is an increasingly studied technique for extract-
ing robust topological features from complex datasets, and
has in recent times also been used in high-energy physics
problems [441]. The principal computational task in TDA
is the extraction of so-called (persistent) Betti numbers,
which can be used to distinguish the underlying topolog-
ical spaces of data. In Ref. [442], a quantum algorithm for
this problem was proposed, and it was suggested it may
offer exponential speedups over conventional methods. In
Refs. [283,443] it was proven that certain generalizations
of the TDA problem are deterministic quantum computa-
tion with one-clean-qubit (DQC1) hard (and thus likely
offer exponential speedups), and Ref. [444] showcases
how persistent features can be extracted as well. Refer-
ences [282,445,446] provide streamlined versions of the
original algorithm, where up-to-exponential savings in the
qubit numbers were achieved, and Ref. [282] has show-
cased a concrete family of datasets where concrete super-
polynomial speedups over the best conventional methods
are achieved. In Refs. [283,447], based on Ref. [448], a
deep connection between TDA and supersymmetric theo-
ries was established that may lead to new applications of
(quantum) TDA in not only analyzing experimental data
but also exploring theoretical spaces beyond the Standard
Model. However it is important to note that it remains to be
determined if quantum TDA offers guaranteed speedups or
if it can be “dequantized” with use of a new class of classi-
cal methods. Further, it is still an open question whether
the regimes where quantum dramatic speedups kick in
(i.e., when the desired homology, or Betti number, is high)
have wide application.
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