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One of the most prominent application areas for quantum computers is solving hard constraint
satisfaction and optimization problems. However, detailed analyses of the complexity of standard quan-
tum algorithms have suggested that outperforming classical methods for these problems would require
extremely large and powerful quantum computers. The quantum approximate optimization algorithm
(QAOA) is designed for near-term quantum computers, yet previous work has shown strong limitations on
the ability of QAOA to outperform classical algorithms for optimization problems. Here we instead apply
QAOA to hard constraint satisfaction problems, where both classical and quantum algorithms are expected
to require exponential time. We analytically characterize the average success probability of QAOA on a
constraint satisfaction problem commonly studied using statistical physics methods: random k-SAT at the
threshold for satisfiability, as the number of variables n goes to infinity. We complement these theoretical
results with numerical experiments on the performance of QAOA for small n, which match the limiting
theoretical bounds closely. We then compare QAOA with leading classical solvers. For random 8-SAT,
we find that for more than 14 quantum circuit layers, QAOA achieves more efficient scaling than the
highest-performance classical solver we tested, WalkSATlm. Our results suggest that near-term quantum
algorithms for solving constraint satisfaction problems may outperform their classical counterparts.
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I. INTRODUCTION

Hard constraint satisfaction and optimization problems
are ubiquitous in society, and are critically important in
fields ranging from finance to logistics. Problems of this
form require finding a joint assignment to a set of variables
such that certain constraints on the variables are satisfied,
or such that a cost function of the variables is mini-
mized. Unfortunately, these problems are often extremely
challenging to solve, with our best algorithms requiring
exponential time in the worst case.

Quantum computers could solve problems like this more
efficiently than classical computers can. Grover’s quan-
tum algorithm famously achieves a quadratic speedup over
classical unstructured search [1], and can be applied to
solve unstructured optimization problems [2]. This family
of algorithms requires a fault-tolerant quantum computer,
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with very significant overheads for error correction [3,4],
and can be outperformed by classical methods tailored
to the problem being solved. In the setting of near-term
quantum computing, the most well-studied approach to
solving optimization problems is the quantum approx-
imate optimization algorithm (QAOA) [5,6]. In a very
influential pair of studies, Farhi, Goldstone, and Gutmann
[6,7] found provable bounds on the performance of this
algorithm for instances of the Max-Cut and Max-E3Lin2
optimization problems. In the latter case, for certain fam-
ilies of instances, QAOA outperformed the best classi-
cal algorithm known at the time. However, a classical
algorithm was then found, which outperformed QAOA [8].
Although there have been many subsequent works on the
theoretical and empirical performance of QAOA for opti-
mization problems (see Ref. [9] for a review), none has yet
shown an unambiguous advantage over the best classical
algorithms.

Here, we study the performance of QAOA for hard con-
straint satisfaction problems. For problems of this form, we
seek to find a solution that exactly satisfies all constraints,
and expect the algorithm’s running time to scale exponen-
tially with the number of variables n. We focus on the
fundamental Boolean satisfiability problem, in the form of
random k-SAT, where one is given a randomly generated
Boolean formula with k variables per clause, and aims to
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find an assignment to the variables that satisfies all clauses.
We define this problem formally in Definition 1 below; an
example of a k-SAT formula with k = 2 and n = 4 is

(x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) , (1)

where x0, . . . , x3 are Boolean (0/1-valued) variables, the
bar over a variable denotes negation and ∨ (respec-
tively, ∧) denotes disjunction (OR) [respectively, conjunc-
tion (AND)]. The formula above is, for instance, satis-
fied by the assignment x0 = x1 = 1, x2 = x3 = 0. k-SAT
is NP-complete for k ≥ 3, implying that it is expected
that no efficient algorithm exists to solve arbitrary k-SAT
instances.

QAOA was already applied to random k-SAT by Hogg
in a pioneering work in 2000 [5]. (Hogg’s “quantum
heuristic” is essentially identical to QAOA, the chief dif-
ference being a prescribed set of choices for the parameters
of the algorithm.) Hogg applied his algorithm to hard ran-
dom 3-SAT instances, using analytic arguments relying
on a mean-field approximation, which, while nonrigorous,
seemed to be largely confirmed by small-scale numeri-
cal simulations. He did not find an improvement in run-
ning time compared with the best classical algorithms for
3-SAT.

In this work, we consider the performance of QAOA
on random k-SAT at constant depth with fixed angles:
that is, the parameters of the algorithm are not allowed to
depend on the problem instance. This feature is desirable
as it means the quantum algorithm need not be modi-
fied for each instance (requiring many runs on a quantum
computer). Fixed angles have been shown to achieve a
nontrivial approximation ratio for a typical instance of the
Max-Cut problem on random graphs [10]. Here, we aim to
maximize the probability psucc that QAOA outputs a satis-
fying assignment. Repeatedly running QAOA immediately
translates into an algorithm for determining satisfiability
whose expected running time on that instance is 1/psucc.

In the constant-depth regime, by a simple light-cone
argument [6], QAOA outputs any optimal solutions with
probability decaying exponentially with the problem size.
This limitation is a generic feature of constraint satisfac-
tion problems with a constant number of variables per
constraint and a constant clauses-to-variables ratio. Nev-
ertheless, in the context of random k-SAT close to the
satisfiability threshold, this result should not necessarily
lead to pessimism regarding the performance of QAOA:
the reason is that state-of-the-art classical algorithms also
empirically require exponential running time to solve this
constraint satisfaction problem [11]. The question then
becomes which of QAOA or classical solvers has the
smallest empirical or theoretical running time exponent.

In this work we provide a theoretical and empirical
analysis of the performance of QAOA on random k-SAT.
First, we propose an analytic method to estimate the mean

QAOA success probability over instances in the infinite-
size limit, together with a concrete algorithmic imple-
mentation. The correctness of the algorithm is rigorously
proven for sufficiently small variational parameters. We
underline that in this context, “small” allows for con-
stant parameters as the problem size goes to infinity, a
regime in which QAOA remains hard to classically sim-
ulate. The analytic algorithm can be used in practice for
relatively large numbers of quantum circuit layers p (up
to p = 10 shown in this work) to evaluate or even train
QAOA on random k-SAT. However, we also empirically
show that when it comes to finding near-optimal average-
instance variational parameters, the analytic method essen-
tially coincides with a much easier one, namely, estimating
the expected success probability from an empirical average
over a limited set of modest-size instances. In particular,
full simulation and training of QAOA even for large p is
very efficient on a classical computer at this size.

Encouraged by the agreement between analytic and
numerical results, we then benchmark constant-depth
QAOA, trained with the “easier” method just described,
against many classical solvers for random k-SAT. We find
that the WalkSATlm solver [12] is consistently the most
efficient classical solver. We focus on relatively large k, as
this is the regime in which we find that QAOA achieves the
highest performance relative to classical algorithms. Based
on both our analytic and numerical results, we estimate that
for random k = 8 instances at the satisfiability threshold,
QAOA with about 14 circuit layers would match the per-
formance of WalkSATlm, with a running time of at most
20.33n to find a satisfying assignment. Notably, this is sig-
nificantly faster than naïve use of Grover’s algorithm, and
with a far lower-depth quantum circuit. For larger numbers
of layers, we predict that QAOA will start to outperform
WalkSATlm. The extent of the advantage is unclear. For
60 layers, for example, numerical estimates of the median
running time for small instances suggest an approximately
equal to 20.30n scaling, whereas based on theoretical results
on the average success probability, the scaling could be
as low as 20.19n; the relevant numerical data and fits are
reported in Fig. 4, and see Sec. III C for a discussion. We
also tested a combination of QAOA and the classical Walk-
SAT algorithm, but found the improvement in performance
over standard QAOA to be modest. We remark that, given
a fault-tolerant quantum computer, amplitude amplifica-
tion [13] can be used to reduce all of these exponents by a
factor of 2.

The main theoretical contribution of this work is a
technique to estimate a certain family of “generalized
multinomial sums,” extending the standard binomial and
multinomial theorems. A similar goal was very recently
achieved [14], leading to an estimate of the performance
of QAOA on spin-glass models. That analysis relied
on a sophisticated combinatorial analysis of generalized
multinomial sums combined with complex analysis
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techniques, and involved the new and nontrivial concept of
well-played polynomial. This work is similar in that it con-
siders generalized multinomial sums involving a certain
family of (exponentiated) polynomials; however, instead
of the “well-played” property, it rather requires the polyno-
mial to be expressible as a sum of perfect powers. Despite
its simplicity, this assumption covers the case of QAOA
applied to random k-SAT where k is a power of 2, which
is the focus of this work.

More precisely, the success probability of this quan-
tum algorithm can be expressed as a generalized multi-
nomial sum satisfying all required properties. We then
estimate generalized multinomial sums by recasting them
as integrals. The asymptotic scaling of these integrals (in
the limit where the problem size n goes to infinity) can
in turn be rigorously estimated using the saddle-point
method. Unfortunately, the method is only fully justified
if certain parameters defining the multinomial sum are
sufficiently small. In the context of QAOA, this require-
ment translates to sufficiently small variational angles;
however, they may be held constant as n→∞, a param-
eter regime where classical simulation or even predic-
tion of QAOA performance remains nontrivial in general.
This additional requirement is a shortcoming compared to
the method developed in Ref. [14], which remains oper-
ational unconditional on the magnitude of the QAOA
angles. However, the two approaches rely on very differ-
ent assumptions and presumably do not apply to the same
problems.

This work is organized as follows. In Sec. II, we intro-
duce the required elements of background on random
k-SAT and QAOA for the statement of our results. Ana-
lytic and numerical results are then discussed in Sec. III,
including the analytic method of evaluationg the expected
success probability of random k-SAT QAOA, exposed
in Proposition 1. We defer remaining technical content
to appendices. Appendix A is dedicated to the proof of
the last result. It starts Appendix A 1 by recasting the
expected success probability of QAOA on random k-SAT
as a generalized multinomial sum (Definition 3). The rest
of the work is dedicated to analyzing generalized multi-
nomial sums—its application is therefore not necessarily
limited to random k-SAT QAOA. In Appendix A 2, which
is self-contained, we introduce a trivial yet instructive toy-
model example (optimizing the Hamming weight squared
cost function with QAOA), which gives an accurate fla-
vor of the general method. In fact, the analysis of random
2-SAT (among other examples) almost immediately fol-
lows from this example, as discussed in Appendix A 3 b.
In the Supplemental Material [15], we outline the analysis
of the general case, applying in particular to random k-
SAT QAOA with k a power of 2, is given. The algorithmic
implementation of our method for estimating multinomial
sums, hence the success probability of random k-SAT
QAOA, is made explicit in Appendix A 3 c.

A. Other background and related work

1. Random k-SAT

We refer to Ref. [16] for a thorough and accessible
review of recent progress in the field, recalling only a few
salient facts here. Instances of random k-SAT are gener-
ated from a random ensemble of constraint satisfaction
problems, which is parametrized by a positive integer k;
the precise description of this ensemble used in this work
is given in Definition 1. An important fact is, the existence
of solutions to random k-SAT and the complexity of algo-
rithmically finding them are related to the ratio between
the number of constraints m and the number of variables
n. For each integer k ≥ 1 and problem size n (satisfia-
bility thresholds r are reported in Table I), there exists
a threshold rk(n), known as satisfiability ratio, such that
for all ε > 0, a randomly generated instance admits solu-
tions with high probability if (m/n) < rk(n)− ε, while it is
almost surely unsatisfiable for (m/n) > rk(n). The thresh-
olds rk(n) are believed to admit a limit rk as n→∞
(k fixed). This quantity can be practically estimated to
good precision, either through numerical simulations or
nonrigorous analytic arguments from statistical physics
[17]. It is rigorously known that for sufficiently large
k, rk(n) ∼ 2k log(2) to leading order in k [16]. Remark-
ably, exact algorithms or heuristics are at least empirically
known to solve random k-SAT efficient for a ratio (m/n) <

2k((log(k))/k), but not any further beyond this ratio. The
last ratio is known as algorithmic ratio and is strictly
smaller than the satisfiability ratio, with a discrepancy
increasing with k. It is therefore an outstanding problem
to understand the ultimate limitations of different types
of algorithms in the region between the algorithmic and
the satisfiability threshold. This possibly involves consid-
ering nonconventional computational paradigms such as
quantum computing.

2. Related work on QAOA

Recently, a numerical study [18] considered the com-
plexity of training QAOA for a parametrized constraint
satisfaction problem: exact k-cover, which is distinct from
random k-SAT but also admits a threshold. The authors
showed that the difficulty of training the variational circuit
with the goal of producing a solution with high probabil-
ity dramatically increased as one approached the thresh-
old. This led them to conjecture that QAOA, similar to
classical algorithms, underwent a phase transition when
approaching the satisfiability threshold.

A distinctive feature of our work compared with
earlier theoretical work on Max-Cut-QAOA is that we
optimize the expected success probability in the average-
instance case rather than the instancewise or average-
instance energy. A similar idea was explored, e.g., in
Ref. [19], which proposed to optimize the Gibbs free
energy instancewise, leading to an empirical improvement
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on the probability of finding a high-quality solution; we
recall that depending on the temperature parameter the
Gibbs free energy interpolates continuously between the
expected energy of a sampled solution and the probability
of sampling an optimal solution.

II. DEFINITIONS AND PRELIMINARIES

A. Notation

Given an integer variable n, we shall denote by
poly(n)≈

equality up to a factor that is at most polynomial in n. Intu-
itively, if one considers exponential scalings, a polynomial
factor is irrelevant and this approximate equality therefore
signifies the exponential scalings are the same.

Besides, for any integer r, we denote

[r] := {0, 1, . . . , r− 2, r− 1} (2)

for the set of the first r natural integers (note this differs
from the one-based convention frequently used in other
works).

Given an integer n ≥ 1 and r integers n0, . . . , nr−1 sum-
ming to n, we denote by

(
n

n0, . . . , nr−1

)
=
(

n(
nj
)

j∈[r]

)
:= n!∏

j∈[r] nj !
(3)

multinomial coefficients, generalizing binomial coeffi-
cients and obeying a generalization of the binomial
theorem (known as multinomial theorem):

∑
n0,...,nr−1

n0+...+nr−1=n

(
n

n0, . . . , nr−1

) ∏
j∈[r]

x
nj
j =

⎛
⎝∑

j∈[r]

xj

⎞
⎠

n

. (4)

B. The quantum approximate optimization algorithm

In this section, we recall the principle of the quan-
tum approximate optimization algorithm as described by
Farhi et al. in Ref. [6] (see also Hogg’s prior work [5]).
QAOA is a quantum algorithm designed to find approxi-
mate solutions to combinatorial optimization problems; for
the purpose of this work, it is sufficient to think of such
a problem as the task of minimizing a cost function of n
bits H(x) (x ∈ {0, 1}n). Finding approximate minimizers
of this cost function can be rephrased as finding low-
energy eigenstates of the corresponding n-qubit classical
Hamiltonian:

HC :=
∑

x∈{0,1}n
H(x) |x〉 〈x| . (5)

QAOA attempts to achieve this task by starting with a
product state corresponding to a uniform superposition of

bitstrings:

|+〉⊗n = 1√
2n

∑
x∈{0,1}n

|x〉 , (6)

and alternating Hamiltonian evolution under HC and the
transverse-field Hamiltonian

HB :=
∑
j∈[n]

Xj . (7)

The evolution times under HB and HC are hyperparameters
of the algorithm to be optimized. Explicitly, the variational
state prepared by a p-layer QAOA ansatz can be expressed:

|�QAOA(β, γ )〉 = e−
iβp−1

2 HBe−
iγp−1

2 HC . . .

e−
iβ0
2 HBe−

iγ0
2 HC |+〉⊗n , (8)

where the variational parameters β, γ ∈ Rp are often
referred to as “QAOA angles.” They are optimized in
order to minimize an empirical cost function, estimated by
repeatedly preparing the quantum state and measuring it
in the computational basis. The expected energy achieved
by the state: 〈�QAOA(β, γ )|HC|�QAOA(β, γ )〉 is the most
frequently used such function, but other candidates have
been reported, including the “CVar” [20] (average over
energies after discarding samples with energy above a
certain threshold) or the Gibbs free energy [19]. Once
satisfying variational parameters have been determined,
preparing the corresponding QAOA state in Eq. (8) and
measuring it in the computational basis (ideally) provides
good approximate solutions to the original combinatorial
problem.

C. Random k-SAT and QAOA

This work considers the performance of the quantum
approximate optimization algorithm on the random k-SAT
combinatorial optimization problem. An instance of k-SAT
is a formula on n Boolean variables x0, . . . , xn−1, which
is a conjunction of m clauses; conjunction means the for-
mula is satisfied if and only if all clauses are. Besides,
each clause is a disjunction of k literals, where a literal is
a Boolean variable or its negation; disjunction means the
clause is satisfied if and only if at least one of its literals
is. Such a formula is said to be in conjunctive normal form
(abbreviated CNF), meaning it is expressed as a conjunc-
tion of disjunctions. An example of a k-SAT formula with
k = 2 and n = 4 is

(x0 ∨ x1) ∧ (x1 ∨ x2) ∧ (x1 ∨ x3) , (9)

where the bar over a Boolean variable denotes negation
and ∨ (respectively, ∧) denotes disjunction (respectively,
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conjunction). The formula above is, for instance, satisfied
by the assignment x0 = x1 = 1, x2 = x3 = 0. An algorith-
mically interesting setting for k-SAT is when instances
are generated at random with a number of clauses m pro-
portional to the number of variables n, where the ratio
r := (m/n) is known as clauses-to-variables ratio. In ran-
dom k-SAT, the existence of solutions to a random k-SAT
instance and the hardness of finding it are determined by r
[21]. In our case, rather than fixing m to be a constant mul-
tiple �rn� of n, we sample it from a distribution of expecta-
tion rn peaked around this mean, namely Poisson(rn). This
technical choice allows the success probability of random
k-SAT QAOA to be written as a generalized multinomial
sum of the form of Eq. (A30), making its analysis possi-
ble via the saddle-point method, the correctness of which
is proved in detail in the Supplemental Material [15].

Definition 1 (Random k-SAT problem). Let k ≥ 1 an
integer and r > 0. The random k-SAT problem is a
constraint satisfaction problem on n variables, temporar-
ily denoted by x0, . . . , xn−1 for convenience. A random
instance of such a problem is defined as follows:

(1) Sample m ∼ Poisson(rn).
(2) Generate m random OR clauses σ = (σ0, . . . , σm−1).

Each clause consists of k literals chosen uniformly
(with replacement) from {x0, x0, x1, x1, . . . , xn−1,
xn−1}. The OR clause is satisfied if and only if at
least one of its literals is.

(3) The random instance thereby generated, character-
ized by σ = (σ0, . . . , σm−1), is satisfied if and only
if all OR clauses σj are.

A problem instance generated from this random ensem-
ble will be denoted by σ ∼ CNF (n, k, r). Besides, for y =
(y0, . . . , yn−1) ∈ {0, 1}n, one denotes

y � σ . (10)

to signify that assignment y of the literals satisfies all
clauses in σ .

Definition 2 (Random k-SAT QAOA). Let k ≥ 1 an
integer, r > 0 and n a positive integer. Given a ran-
dom k-SAT instance σ = (σ0, . . . , σm−1) ∼ CNF (n, k, r)
generated according to Definition 1, we denote by

H [σ ] :=
∑

y∈{0,1}n

∣∣{j ∈ [m] : y �� σj
}∣∣ |y〉 〈y| (11)

the diagonal quantum Hamiltonian corresponding to the
classical cost function counting the number of unsatisfied
clauses in σ . The diagonal elements of this Hamiltonian
are in {0, . . . , m}. For each m′ ∈ {0, . . . , m}, we then denote

by

{
H [σ ] = m′

}
:=

∑
y∈{0,1}n

|{j∈[m] : y ��σj }|=m′

|y〉 〈y| (12)

the orthogonal projector onto the eigenspace of H [σ ] of
eigenvalue m′. In particular, {H [σ ] = 0} is the orthog-
onal projector onto the space of satisfying assignments.
Besides, for β, γ ∈ Rp , we denote by

|� (σ , β, γ )〉 := e−
iβp−1

2
∑

j∈[n] Xj e−
iγp−1

2 H [σ ] . . .

e−
iβ0
2

∑
j∈[n] Xj e−

iγ0
2 H [σ ] |+〉⊗n . (13)

the state prepared by level-p QAOA for the optimization
problem defined by Hamiltonian H [σ ].

III. RESULTS

A. Theoretical results

The main technical result of this work, stated in the Sup-
plemental Material [15] in Proposition 7, allows estimation
of the leading exponential contribution of “generalized
multinomial sums” (precisely defined in Definition 3),
extending the standard multinomial theorem

∑
n0,...,nr−1

n0+...+nr−1=n

(
n

n0, . . . , nr−1

) ∏
j∈[r]

x
nj
j =

⎛
⎝∑

j∈[r]

xj

⎞
⎠

n

. (14)

The proof of this generalized multinomial theorem uses
the saddle-point method, whereby the generalized multi-
nomial sum is expressed as an integral, whose exponential
scaling is controlled by the unique critical point of the inte-
grand; with our methods, the existence and uniqueness of
the critical point requires certain parameters in the sum to
be sufficiently small. Now, as we show in Proposition 3,
the expected success probability of QAOA on random k-
SAT for fixed variational parameters β, γ can be cast as a
generalized multinomial sum. Now, Appendix A sketches
how such a sum can be estimated via the saddle-point
method—with complete proofs deferred to the Supplemen-
tal Material. In the context of QAOA, the “small parame-
ters” assumption required by Proposition 7 in the Supple-
mental Material translates to small γ angles; however, β is
allowed to take any finite value.

Proposition 1 (Average-case success probability of ran-
dom k-SAT QAOA by the saddle-point method). Let q ≥ 1
an integer, p ≥ 1 an integer and β, γ ∈ Rp . For γ suf-
ficiently small (i.e., smaller than a constant independent
of the problem size n), the expected success probability
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of random-2q-SAT QAOA admits the following scaling
exponent in the infinite-size limit:

lim
n→∞

1
n

log Eσ [〈�(σ , β, γ )|1 {H [σ ] = 0} |�(σ , β, γ )〉]

= F
(
z∗
)+ (

2q − 1
) ∑

α⊂[2p+1]

(
∂F
∂zα

(
z∗
))2q

, (15)

where F is a complex-valued function of 22p+1 variables,
each variable being indexed by a subset of [2p + 1]. The
explicit definition of F is as follows:

F
(
(zα)α⊂[2p+1]

)

:= log
∑

s∈{0,1}2p+1

bs exp

⎛
⎜⎜⎜⎝(r/2)

∑
α⊂[2p+1]
∀j ,j ′∈α, sj=sj ′

(−cα)1/2q
zα

⎞
⎟⎟⎟⎠ ,

(16)

where

bs = 1
2

∏
j∈[p]

〈sj |e
iβj
2 X |sj+1〉 〈s2p−j−1|e−

iβj
2 X |s2p−j 〉 , (17)

cα := (−1)1[p∈α]
∏

j∈α:j <p

(
e−

iγj
2 − 1

) ∏
j∈α:j >p

(
e

iγ2p−j
2 − 1

)
,

(18)

The definition of bs involves products of single-qubit
matrix elements, whose explicit values are given by

〈s|eiβX |s′〉 =
{

cos β if s = s′
i sin β if s �= s′ . (19)

Finally, z∗ ∈ C22p+1
, where F and its derivatives are eval-

uated, is the unique fixed point of function

C22p+1 −→ C22p+1

(zα)α⊂Z2p+1
�−→

(
−2q

(
∂F
∂zα

(z)
)2q−1

)
α⊂Z2p+1

.

(20)

The existence and uniqueness of the fixed point are guar-
anteed for sufficiently small γ .

A generalization of the multinomial theorem was
already derived in Ref. [14] in the context of QAOA
applied to Max-k-XOR, though with distinct assumptions
and a very different method. Besides, while the results from
[14] apply to arbitrary variational angles in the context of

Max-k-XOR, our analysis for random-k-SAT is (in princi-
ple) limited to sufficiently small γ angles. However, as will
be extensively discussed in Sec. IV A, the method empiri-
cally appears to be quantitatively accurate for a sufficiently
wide range of angles, most interestingly for the optimal
ones.

While Proposition 1 establishes a rigorous scaling for
the expected success probability of QAOA on random k-
SAT under certain assumptions, this quantity may not be
the most natural to consider to benchmark QAOA against
other algorithms. In fact, it may be more natural to con-
sider the median running time of the algorithm, which is
a common method to benchmark classical SAT solvers,
see e.g., Ref. [3]. The choice of the median running time
as a benchmark, as opposed, for instance, to the expected
or maximum running time, addresses an important diffi-
culty: since QAOA is based on sampling bitstrings from
the quantum state until one finds a satisfying assignment,
the algorithm will never terminate if the problem instance
is unsatisfiable. This would lead to an infinite expected
running time as soon as a randomly generated instance
has a finite probability of being unsatisfiable, which is the
case for the random ensemble introduced in Definition 1.
In contrast, the median running time will remain finite and
is besides less sensitive to outliers with finite, yet unusually
large, running time.

In addition, the expected success probability gives a
lower bound on the median running time. First, the
expected success probability can be related to the median
success probability μ via the following straightforward
argument:

Eσ

[
psucc(σ )

]
=
∑

σ

P(σ )psucc(σ )

=
∑

σ ,psucc(σ )<μ

P(σ )psucc(σ )+
∑

σ ,psucc(σ )≥μ

P(σ )psucc(σ )

≥
∑

σ ,psucc(σ )≥μ

P(σ )psucc(σ ) ≥ μ

2
. (21)

Hence

1
Eσ

[
psucc(σ )

] ≤ 2
μ

(22)

and the latter quantity is upper bounded by twice the
median running time via Jensen’s inequality for medians.
Namely, this inequality, precisely stated and derived in
Ref. [22], informally says

f (median of X ) ≤ median of f (X ) (23)

for a convex function f and an appropriate random vari-
able X . In this case, we used the convexity of x −→
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1/x and the fact that for all problem instances, the
expected running time is exactly the inverse of the success
probability.

B. Validation of the analytic algorithm

Next we validate the theoretical formula given by
Proposition 1 for the expected success probability of
QAOA on a random k-SAT instance.

First, we compare the limiting average success prob-
abilities for random k-SAT predicted by Proposition 1
with actual average success probabilities determined by
numerical experiments for small n. We sample up to
10000 instances from CNF(n, k, r) for each value of k and
problem size n ∈ {12, . . . , 20} and retain only satisfiable
instances. QAOA is then evaluated (and not trained) on
each of these instances using angles previously determined
to achieve a good average success probability, as detailed
in Sec. IV A below. Note that the instances used to train
QAOA are much less numerous (100) and smaller (12)
than the ones used to validate the performance here. For
each k and n, we compute the average success probabil-
ity and median running time on the relevant set of random
instances. For each problem size n, the instances gener-
ated for evaluation achieve an empirical uncertainty of

order < 0.5% on the expected success probability at size
n. This translates to an error of order 10% with the 100
instances used for training, confirming the latter provide
a rather coarse approximation of the success probability.
The results are shown in Fig. 1 for the case k = 8, where
we perform a linear least-squares fit on the experimental
data and compare against the scaling predicted from the
theoretical results. As the constant factor in this scaling is
unknown, we assume that this is equal to 1 in the plot.

Second, we exploit the fact, established in Proposition
4, that for p = 1 the expected success probability of ran-
dom k-SAT QAOA at finite size n can be computed in time
O(n3), allowing for a practical evaluation, and even opti-
mization of the expected QAOA success probability for
large instance sizes of order 100. Unlike the analytic pre-
diction for the infinite-size scaling exponent, the finite-size
calculation at p = 1 applies to all k (not only k a power
of 2) and arbitrary angles (not only sufficiently small γ ).
We may therefore extract the empirical scaling exponent of
this expected success probability by an exponential fit and
compare it with the infinite-size scaling exponent predicted
by Proposition 1. Here, the empirical scaling of the suc-
cess probability at n is defined as the ratio between success
probabilities at size n+ 1 and n, taken to the logarithm:

log
Eσ∼CNF(n+1,k,r)

[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]
Eσ∼CNF(n,k,r)

[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉] . (24)

Although less robust than an exponential fit, this metric
is usable in this context as the expectations can be evalu-
ated exactly. Besides, it has the advantage of sharply cap-
turing the local scaling of the success probability around
each n. The result of this comparison (between excess
scaling exponents rather than exponents themselves, see
Sec. IV A) is represented for k-SAT, k ∈ {2, 4, 8, 16}, with
instance sizes ranging from 10 to 70, in Fig. 1. The
plot shows that, as expected, the error decreases as n
increases. For a fixed size, the relative error incurred by the
finite-size approximation worsens as k increases. However,
the asymptotic decay rate of the error seems comparable
between the different k values considered.

While these comparisons were performed for (empir-
ically) optimal average-instance parameters, it is also
instructive to consider the full optimization landscape of
p = 1 QAOA for the same values of k, to determine
how well the analytic and empirical results match. In
addition, one may wonder whether the empirically optimal
parameters are close to the limiting optimal parameters.
Our experimental results to address these questions are
included in Appendix B.

C. Algorithm scaling

Having developed confidence that the analytic and
empirical scaling exponents are close, we use our ana-
lytic formulae to determine the behavior of the exponent
in terms of p (for a fixed set of parameters, determined
for each p using a small-scale experiment). This behavior
strongly suggests power-law decay; performing a fit to the
data allows us to extrapolate the performance of QAOA to
larger values of p than are accessible to our algorithm. The
results are shown in Fig. 2.

We also studied whether the inverse of the expected
success probability provides an accurate reflection of the
median running time, by comparing these two quantities
in numerical experiments. Using an exponential fit, we
extract a scaling exponent for both the success probabil-
ity and the median running time as functions of n. Observe
that while the success probability was shown to admit a
scaling exponent for sufficiently small variational angles
in Proposition 1, no such rigorous statement exists for the
median running time; the exponent for the latter quan-
tity should therefore be regarded as purely empirical. The
results are also shown in Fig. 2 for various choices of p .
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(a)

(b)

FIG. 1. Comparison of numerical results to limiting theoreti-
cal predictions. Top: points are empirical averages. Solid lines
are fits to empirical averages, dashed lines are scaling predicted
by theory (assuming unknown constant factor is 1). Error bars
are too small to be seen. Bottom: points are relative differences
in excess scaling exponents between numerical and theoretical
results, solid lines are added to guide the eye. (a) k = 8, varying
p; (b) p = 1, varying k.

We observe that for small p , the two complexity measures
are well aligned, while for large p , their slope appears to
differ. One possible explanation for this divergence is that
training to maximize the average success probability does
not necessarily minimize the median running time. This
may be a particular issue in the scenario where p is large
and n is small, because the QAOA success probability may
be close to 1 for many “easy” instances. Optimizing the
average success probability may lead to finding param-
eters that are good for these easy instances, while per-
forming poorly for harder instances. For example, taking
p = 60, k = 8, n = 12, the mean success probability was
approximately 0.56.

All in all, these results seem to provide theoretical
backing for the approach described in Sec. IV A below
of obtaining good average-case parameters for QAOA

FIG. 2. Scaling behavior of QAOA on random k-SAT. Top:
analytic scaling exponents c in terms of p , such that success
probability is predicted to be 2−cn up to lower-order terms. Fit
to a power law for each k. Fits are c ≈ 0.13p−1.12 (k = 2),
c ≈ 0.57p−0.51 (k = 4), c ≈ 0.69p−0.32 (k = 8). Bottom: median
running time (solid line) compared with running time estimated
from average success probability for random 8-SAT instances
(dashed line). Lines are linear fits. Error bars are too small to be
seen.

by estimating averages empirically on a small dataset of
modest size instances.

D. Comparison of fixed-parameter QAOA with
classical SAT solvers

Having built up confidence that our limiting theoreti-
cal results are well aligned with numerical benchmarks
for small n, we compare the performance of QAOA to a
variety of classical solvers for k-SAT. We choose to focus
on the case k = 8, motivated by a trade-off between the
need for a sufficiently large k (making the problem hard
enough for classical solvers) and the practical requirement
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Solver Fit Error
WalkSAT QAOA −3.232 + 0.295n 0.011
QAOA (p = 14) −1.064 + 0.326n 0.008
QAOA (p = 60) −2.842 + 0.302n 0.007

walksatlm −0.309 + 0.325n 0.008
maplesat 1.531 + 0.461n 0.004
glucose4 2.998 + 0.498n 0.005

FIG. 3. Scaling behavior of median running times of selected
classical and quantum algorithms for 8-SAT. WalkSAT QAOA
uses p = 60.

to store all generated instances (recalling that the clauses-
to-variables ratio at satisfiability threshold increases expo-
nentially with k [17]), together with our theoretical results
only being available for k a power of 2.

We benchmarked QAOA against the simple local search
algorithm WalkSAT [23–25], the optimized local search
algorithm WalkSATlm [12] and the suite of state-of-the-
art SAT solvers pySAT [26]. WalkSATlm has demon-
strated leading performance on random 5-SAT and 7-SAT
instances with clauses to variables ratio close to the satisfi-
ability threshold [12]. In the most recent SAT competition,
which included a track for randomly generated instances
[27], although WalkSATlm did not compete, the winning
solver was based on the Sparrow solver, which performed
significantly less well than WalkSATlm in previous experi-
ments [12]. We additionally considered comparing QAOA
to the well-known survey propagation algorithm intro-
duced in Ref. [28]. This work empirically showed this mes-
sage passing algorithm to outperform competitors close
to the satisfiability threshold. However, these conclusions
were only reported for relatively small k (3 or 4), and
initial experiments carried out at k = 8 using a publicly
available implementation [29] revealed the algorithm to be
impractical to run at k = 8 due to the high number of con-
straints per variable and the large degree of the constraint
graph. We therefore did not include this contender in our
comparisons.

We also studied a combination of QAOA and Walk-
SAT, whereby assignments sampled from QAOA (hence,

FIG. 4. Running times of QAOA compared with WalkSATlm
for random 8-SAT. Top: scaling exponent α in running time
approximately 2αn for QAOA estimated by inverting analytic
(p ≤ 10) and numerical (p ≤ 60) results on average probabili-
ties, and from numerical results on median running times for n ∈
{12, . . . , 20}. Horizontal line is experimentally estimated Walk-
SATlm median running time scaling exponent. Other lines are
fits. Blue dashed line is fitting based on all p , blue solid line
is using p ≤ 10. Error bars are too small to be seen. Bottom:
histogram of ratios of running times of QAOA (p = 60) and
WalkSAT for n = 20 instances.

not necessarily satisfying) are given as a starting guess
to WalkSAT. More precisely, the algorithm consists of
sampling an assignment from QAOA, apply a single iter-
ation of WalkSAT [consisting of a 	(n) steps walk], and
declare success or failure according to whether the walk

TABLE I. Random k-SAT satisfiability thresholds for values of
k considered in this work.

k Satisfiability threshold

2 1.0
4 9.93
8 176.54
10 708.92
16 45425.2

030348-9



SAMI BOULEBNANE and ASHLEY MONTANARO PRX QUANTUM 5, 030348 (2024)

updated the initial assignment to a satisfying one. Similarly
to WalkSAT, this process is repeated until success. Each
given instantiation of the algorithm has a success probabil-
ity, and the expected number of instantiations is the inverse
of this probability.

Similarly to results presented in Sec. III B, we extracted
the median running time of the solver, with respect to our
randomly generated instances, for each instance size n ∈
{12, . . . , 20} before determining an estimated scaling expo-
nent based on a fit to this data. We illustrate this method
for four of the most efficient classical solvers, together
with some quantum ones, in Fig. 3; a more complete list
of empirical scaling exponents is given in Table II in
Appendix B 2. We found that, in each case, a simple expo-
nential fit was highly accurate. Consistent with previous
experiments [12], WalkSATlm’s median running time, as
measured by the number of input formula evaluations, was
the lowest among the solvers considered. In addition, an
instance-by-instance analysis determined that WalkSATlm
was the most efficient algorithm on all but a few percent
of the instances considered. In the case of quantum algo-
rithms, we found that the combination of WalkSAT and
QAOA was not substantially more efficient than the use
of QAOA alone: for example, as seen in Fig. 3, the two
scaling exponents are within error bars for p = 60. We
therefore focused on the comparison between WalkSATlm
and QAOA.

Figure 4 shows the result of this comparison. We found
that for p ≈ 14, QAOA matches the performance of Walk-
SATlm. For larger p , the predicted running time scaling
based on our theoretical bounds on success probability
well matches the predicted scaling from empirical success
probabilities. However, the median running time diverges
from this prediction, and outperforms WalkSATlm more
modestly. As discussed in the previous section, one possi-
ble cause of this is that the QAOA parameters used, which
optimize the average success probability for small n, are
less effective at optimizing the median running time for
larger n. Further experiments would be required to deter-
mine whether this is the case, or if there truly is a gap
between the running time predicted by the average success
probability, and the median running time. We also show
in Fig. 4 a histogram of the ratios between running times
of QAOA (p = 60) and WalkSATlm for n = 20 instances.
We observe that there are rather substantial tails, corre-
sponding to instances where one solver or the other has
a large advantage over its counterpart.

IV. DISCUSSION

Our results suggest that it may be possible to outper-
form the scaling of state-of-the-art classical algorithms
for solving constraint satisfaction problems using a rela-
tively simple and low-depth quantum algorithm. However,
achieving a speedup using a quantum computer in practice

depends on many other factors, including the performance
of the hardware in terms of parameters such as clock speed
and latency, and any overheads needed for quantum error
correction.

The approach studied in this work is likely to be sig-
nificantly more suitable for near-term quantum computers
because of the low depth of the quantum circuits consid-
ered, when compared with the exponential-depth circuits
required for quantum algorithms like Grover’s algorithm.
Yet outperforming classical computers is likely to require
higher-performance hardware than is currently available,
or problem instances, which demonstrate a larger separa-
tion than we have shown for random k-SAT. In particular,
in this work we did not consider the effect of errors on
the quantum algorithm’s success probability, because the
problem sizes required to achieve a quantum-classical sep-
aration, while far smaller than suggested by previous work,
are large enough to be out of reach without quantum
error correction. However, there is significant scope for
algorithmic improvements to reduce this crossover point.

Our theoretical techniques are most importantly limited
by the specific form required of the generalized multino-
mial sum representing the algorithm’s success probability.
This limits the number of constraint satisfaction problems
accessible to our approach; for instance, our techniques
would not apply to Max-k-XOR, where the performance
of QAOA was recently studied using different techniques
[14]. Unifying these techniques to capture a broader vari-
ety of constraint satisfaction problems is an interesting
direction for future work. In addition, while our analysis
captures the average success probability of the algorithm,
it falls short of predicting more interesting metrics such as
the median or mean running time, as further discussed in
Methods. Finally, the argument establishing the existence
of an exponential scaling crucially relies on the ansatz
depth p being constant, leaving open the practically still
relevant cases p = O(log n) or p = poly(n). Addressing
these points would be a significant step towards charac-
terizing the power of QAOA, and perhaps to finding larger
quantum speedups for problems of practical interest.

A. Methods

1. Random k-SAT instances

Random k-SAT instances are generated from the ran-
dom ensemble described in Definition 1. When not explic-
itly specified, the clauses-to-variables ratio r is set to (an
approximation of) the satisfiability threshold. For k ≤ 15,
we use the same reference values for this threshold as Ref.
[3], while for k = 16, we estimate the threshold using the
third-order expansion from Ref. [17, Appendix], in agree-
ment with the method used by the former work for lower
k. For reference, we report in Table I the relevant threshold
values used in our numerical study.
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2. Comparison with classical algorithms

WalkSAT is an algorithm based on a randomized local
search approach. Given an assignment which does not sat-
isfy the formula, the algorithm picks a clause, which is not
satisfied, picks one of the variables within that clause, and
flips it. Various strategies have been proposed for choos-
ing clauses and variables; here we simply pick the clause
at random (among unsatisfied clauses) and pick a random
variable within that clause to flip. WalkSATlm is a modifi-
cation of WalkSAT with a more complex cost function. For
WalkSATlm, trial and error led to the choice of hyperpa-
rameters p = 0.15, w1 = 6, w2 = 5, see Ref. [12] for their
detailed meaning. For QAOA, we used pseudo-optimal
parameters obtained from 100 size 12 random problem
instances as described in Sec. IV A.

3. Parameter optimization

Since QAOA is a variational algorithm depending on
angles β and γ , all numerical experiments require either
optimization of these parameters or evaluation at well-
chosen guessed parameters. In this work, we choose the
second option to demonstrate the potential of using QAOA
without classical optimization loop. We therefore look for
variational parameters achieving good success probabil-
ity on an average instance. More precisely, this means
identifying parameters that maximize the expected success
probability of QAOA on a random instance of k-SAT.

Given mixer angles β, this probability is evaluated ana-
lytically for small enough γ by Proposition 4. Besides,
under this small-angle assumption, the fixed-point find-
ing procedure is numerically efficient, requiring only time
O (log(1/ε)) for a tolerated error ε (see discussion of the

Hamming weight squared toy example in Appendix A 2
for an explicit illustration of this fact). This suggests to
use Proposition 4 and its implementation detailed in Algo-
rithms 1 and 2 to perform this average-instance optimiza-
tion. Unfortunately, this approach presents two difficulties.
First, we do not know whether optimal parameters are suf-
ficiently small that Proposition 4 applies. Second, even
if this assumption was satisfied, we empirically observed
that for moderately large p , e.g., p ≥ 5, variational opti-
mization could not be performed in reasonable time (with
gradient descent, allowing hundreds of iterations and a
time budget of order hour) using the analytic algorithm to
evaluate the success probability.

We therefore chose to estimate the expected success
probability of QAOA empirically, using sets of randomly
generated instances. More specifically, given a number of
variables per clause k, a clauses-to-variables ratio r and
a finite instance size n, one generates a set of 100 ran-
dom instances sampled from CNF(n, k, r). Then, for each
set of angles β, γ , the fixed-parameters, average-instance
success probability of QAOA is estimated by empirically
averaging the success probability of QAOA over the set of
instances; angles β, γ are then updated accordingly. The
set of instances does not change between iterations of the
classical optimization algorithm. In this study, we initialize
the optimization by setting all β to 0.01 and γ to −0.01,
which we conjecture correspond to the correct signs of
the optimal angles based on many optimization trials from
randomly starting points. The small magnitude 0.01 was
chosen following the observation that excessively large
angles, e.g., 1, led to false maxima and barren plateaus,
notably for large p . The classical optimal algorithm we
used is a simple gradient descent, which we conjecture

TABLE II. Empirical exponential fits for all SAT solvers for 8-SAT. We further report the correlation coefficient of the fit. Besides,
we estimate the error on the scaling exponent as described in Sec. IV A.

Solver Fit Correlation coefficient Estimated exponent error

walksat_qaoa −3.232+ 0.295n 0.963143 0.011
eval_qaoa (p = 14) −1.064+ 0.326n 0.999422 0.005
eval_qaoa (p = 60) −2.842+ 0.302n 0.998161 0.007
walksatlm −0.309+ 0.325n 0.997503 0.007
maplesat 1.531+ 0.461n 0.999626 0.004
glucose3 2.998+ 0.498n 0.999826 0.004
glucose4 2.998+ 0.498n 0.999826 0.004
gluecard3 2.998+ 0.498n 0.999826 0.006
gluecard4 2.998+ 0.498n 0.999826 0.005
mergesat3 2.974+ 0.500n 0.999846 0.004
lingeling 2.681+ 0.505n 0.999700 0.005
cadical 2.702+ 0.518n 0.999645 0.005
minicard 2.725+ 0.523n 0.999689 0.004
minisat22 2.725+ 0.523n 0.999689 0.005
minisatgh 2.725+ 0.523n 0.999689 0.005
maple_chrono 2.557+ 0.533n 0.999814 0.005
maple_cm −0.713+ 0.581n 0.989826 0.005
schoning −2.657+ 0.649n 0.999826 0.006
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always converges to the optimum from this initial guess.
Besides, for each k and r, 100 random instances of size 12
were generated to evaluate the empirical average success
probability.

A limitation of this empirical average method is that the
average success probability is only approximated rather
than exactly calculated. In fact, the very limited num-
ber of samples: 100 used for this approximation is not
even sufficient to achieve acceptable statistical signifi-
cance on the estimation of the success probability itself,
as discussed in Sec. III B. Besides, individual instance
sizes must be limited for the method to remain practical.
Despite these apparent weaknesses, we find that the empir-
ical technique provides near-optimal angles (at least for
small p) when compared to the analytic one introduced
in Proposition 1. This justifies a posteriori the approach
of determining near-optimal angles from averages over
few sample instances. Therefore, we always use angles
optimized by this technique in the rest of the study.

The evaluation and optimization of QAOA were carried
out using the Yao.jl quantum circuit simulation frame-
work [30]. Among other advantages, this library combines
execution speed and seamless integration of differentiable
programming, making it particularly suitable for the study
of variational quantum circuits.

4. Comparison metrics

In the presentation of our numerical results, we have
made comparisons between different analytic and empir-
ical methods to estimate the performance of QAOA on
random k-SAT. We will also contrast QAOA against sev-
eral classical algorithms tackling the k-SAT problem. We
discuss here some aspects of the metrics used for these
comparisons.

The main figure of merit we use to characterize QAOA
is the scaling exponent of its success probability, averaged
over problem instances. Such a scaling exponent is rigor-
ously known to exist for sufficiently small γ according to
Proposition 1. It can also be estimated through an exponen-
tial fit of the success probability against the instance size.
In fact, rather than the scaling exponent itself, we occa-
sionally consider its excess over the value it would take
for random assignment. Recalling that random assignment
is the special case of QAOA where β = 0 or γ = 0, Eq.
(A8) gives a scaling exponent−2−kr in this case; therefore,
we systematically subtract this quantity from all scaling
exponents and call the resulting values excess scaling
exponents. This adjustment prevents excessive optimism
when comparing different algorithms to estimate scaling
exponents. Precisely, in the case that QAOA does little
better than random assignment (for instance, for small
angles) and two exponent estimation algorithms capture
this feature, these methods will simultaneously return a
value close to −2−kr, leading to a small relative error

between the methods. However, should they differ more
substantially when it comes to the excess scaling expo-
nents, this would go relatively unnoticed if only comparing
exponents.

We now discuss how the running time on a problem
instance is quantified for QAOA and classical algorithms.
In both cases, we used the median running time over ran-
domly generated instances as a figure of merit. However,
the running time of the algorithm on a single instance
is defined differently for QAOA and classical solvers. In
the case of QAOA, the instance running time is simply
defined as the inverse 1/(psucc) of the success probabil-
ity psucc (probability of sampling a satisfying assignment)
of QAOA on this instance. This is indeed the expected
number of samples one needs to draw to obtain a satisfy-
ing assignment, and corresponds to the “time-to-solution”
(TTS) metric used in experimental comparison of algo-
rithms, taking a success probability of 1/2. As for classical
solvers, the instance running time is understood as the
number of evaluations of the Boolean formula defining the
SAT problem. For algorithms from the pySAT suite [26],
this number is determined according to the information
returned by the library after execution of the solver.

5. Exponential fits

Our main analytic result for random k-SAT QAOA,
Proposition 1, predicts an exponential scaling in the infinite
size limit for the average-instance fixed-parameter success
probability. To compare this result to numerical experi-
ments, empirical scaling exponents need to be extracted
using an exponential fit. In practice, in this work, the
exponential fit is a least-squares linear regression on the
logarithm of the quantity to fit. For each problem size, we
obtain an empirical average success probability by aver-
aging over instances. The fit is then performed on these
empirical average success probabilities as a function of
problem size. To estimate the error on the parameters
returned by the fit (in particular, on the scaling exponent),
one uses resampling. Precisely, one recalculates empirical
average success probabilities using only half of the sample
instances, where the half is chosen uniformly at random.
This resampling process is repeated several times (typi-
cally 100), leading to a probability distribution for the fit
parameters. The error on each fit parameter is then esti-
mated as the standard deviation of the distribution of this
parameter.
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APPENDIX A: DERIVATION OF ANALYTIC FORMULAE

In this section, we derive an integral representation for the average-instance success probability of k-SAT QAOA given
in Proposition 1. This representation lends itself to estimation via the saddle-point method in the infinite instance size
limit n −→∞. We only show here the results in the case of 2-SAT; the formulae for 2q-SAT, q ≥ 2 and the proof of
correctness of the saddle-point method, as deferred to the Supplemental Material [15]. However, we start with a short
derivation of an analogous result for a toy example (QAOA applied to the Hamming weight squared cost function), which
gives an accurate flavor of the general method.

1. Random k-SAT QAOA expectations as generalized multinomial sums

We establish an expression for the expected success probability of random k-SAT QAOA (Definition 2) using a slight
generalization of Proposition 28 from Ref. [11]. According to this proposition, recalled here with adapted notations.

Proposition 2. Let a random constraint satisfaction problem be defined by a set of clauses σ and a diagonal quantum
Hamiltonian H [σ ]; one temporarily denotes σ ∼ CSP(n) for a set of clauses on n variables sampled from the random
ensemble. For β, γ ∈ Rp , let |� (β, γ )〉 the state prepared by level-p QAOA for this combinatorial optimization problem.
Assume that for all y(0), . . . , y(2p) ∈ {0, 1}n,

Eσ∼CSP(n)

⎡
⎣⊗

j∈[p]

e
iγj
2 H [σ ] ⊗ {H [σ ] = 0} ⊗

⊗
j∈[p]

e−
iγp−1−j

2 H [σ ]

⎤
⎦ ⊗

j∈[2p+1]

|y(2p−j )〉 (A1)

depends only on the numbers:

ns :=
∣∣∣{i ∈ [n] : ∀j ∈ [2p + 1], y(j )

i = sj

}∣∣∣ ,
(
s ∈ {0, 1}2p+1) . (A2)

[Note that the quantity in Eq. (A1) is always colinear to
⊗

j∈[2p+1] |y(2p−j )〉 since H [σ ] is diagonal.] In this case, we
introduce the notation:

E
(
(ns)s∈{0,1}

)
:=

⊗
j∈[2p+1]

〈y(2p−j )|Eσ∼CSP(n)

⎡
⎣⊗

j∈[p]

e
iγj
2 H [σ ] ⊗ {H [σ ] = 0} ⊗

⊗
j∈[p]

e−
iγp−1−j

2 H [σ ]

⎤
⎦ ⊗

j∈[2p+1]

|y(2p−j )〉 . (A3)

Then,

Eσ∼CSP(n) 〈� (σ , β, γ ) | {H [σ ] = 0} |� (σ , β, γ )〉 = 1
2n

∑
(ns)s∈{0,1}2p+1∑

s ns=n

(
n

(ns)s

) ∏
s∈{0,1}2p+1

Bns
β,sE ((ns)s) , (A4)

where

Bβ,s := (−1)1[s0 �=sp ]
∏

j∈[p]

(
cos

βj

2

)1[sj=sj+1]+1[s2p−j=s2p−j−1] ∏
j∈[p]

(
i sin

βj

2

)1[sj �=sj+1]+1[s2p−j �=s2p−j−1]

(A5)

depends only on the mixing angles β (in particular, not on the dephasing angles γ or the constraint satisfaction problem)
and

(
n

(ns)s∈{0,1}2p+1

)
= n!∏

s∈{0,1}2p+1 ns!
(A6)

is a multinomial coefficient.
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The idea of understanding QAOA by averaging over instances, leading to an expression in terms of configuration
basis numbers (ns)s∈{0,1}2p+1 , was first proposed in Ref. [31]. This earlier work considered a distinct constraint satisfaction
problem: the Sherrington-Kirkpatrick (SK) model and evaluated its fraction of satisfied constraints. This differs from the
current work’s approach of estimating the probability of finding a satisfying assignment. Both approaches are natural
given a random k-SAT instance (below satisfiability threshold) is satisfiable with high probability while a SK instance is
not. We will need the following lemma, which is a slight adaptation of the reasoning in Ref. [32, Section 3.1] to average
over random k-SAT instances.

Lemma 1 (Averaging over random k-SAT clauses). Let k ≥ 1 and p ≥ 1 integers and let σ be an OR clause on
n variables x0, . . . , xn−1 sampled as defined in Definition 1, i.e., by choosing k literals uniformly at random among
{x0, x0, . . . , xn−1, xn−1}. Let J bitstrings (representing literal assignment) y(j ) ∈ {0, 1}n, j ∈ [J ].

∀y ∈ {0, 1}n, Eσ

⎡
⎣∏

j∈[J ]

1
[
y(j ) �� σ

]⎤⎦ =
(∣∣y(0) ∩ . . . ∩ y(J−1)

∣∣
2n

)k

, (A7)

where y(0) ∩ . . . ∩ y(J−1) :=
{

i ∈ [n] : y(0)
i = y(1)

i = . . . = y(J−1)

0

}
is the set of indices where bitstrings y(j ) all coincide.

It is easily seen that in the degenerate case J = 0, it suffices to replace
∣∣y(0) ∩ . . . ∩ y(J−1)

∣∣ −→ 2n in the equation above
for it to remain correct.

Proof. It suffices to observe that for all k-literal OR clause σ , σ is simultaneously unsatisfied by y(0), . . . , y(J−1) if and
only if:

(1) all literals from σ have variables in y(0) ∩ . . . ∩ y(J−1);
(2) a variable appearing in the clause is negated if and only if it is set to 1 in y(0), . . . , y(J−1) (the value must be common

between these bitstrings by definition of y(0) ∩ . . . ∩ y(J−1)).

Using this fact, and since the probability of choosing one such literal among 2n possible literals is
((
∣∣y(0) ∩ . . . ∩ y(J−1)

∣∣)/2n), the probability of choosing k such literals is
(
((
∣∣y(0) ∩ . . . ∩ y(J−1)

∣∣)/2n)
)k by independence

of literal choices. �

Proposition 3. Let k ≥ 1, p ≥ 1 integers and let r > 0. Let β, γ ∈ Rp . The success probability of level-p QAOA on
random k-SAT with n variables and expected clauses-to-variables ratio r (see Definitions 1 and 2) is given by

Eσ∼CNF(n,k,r)
[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]

= 1
2n e−2−krn

(
1+4

∑
j∈[p] sin2 γj

4

) ∑
(ns)s∈{0,1}2p+1∑

s ns=n

(
n

(ns)s

)∏
s

Bns
β,s exp

⎛
⎜⎜⎜⎝rn

∑
J⊂[2p+1]
|J |≥2

cJ

⎛
⎜⎜⎜⎝

1
2n

∑
s∈{0,1}2p+1

∀j ,j ′∈J , sj=sj ′

ns

⎞
⎟⎟⎟⎠

k⎞
⎟⎟⎟⎠ , (A8)

where

cJ := (−1)1[p∈J ]
∏

j∈J : j <p

(
e−

iγj
2 − 1

) ∏
j∈J : j >p

(
e

iγ2p−j
2 − 1

)
, (A9)

and Bβ,s is defined in Proposition 2.
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Proof. In order to apply Proposition 2, we start by computing

Eσ∼CNF(n,k,r)

⎡
⎣⊗

j∈[p]

e
iγj
2 H [σ ] ⊗ {H [σ ] = 0} ⊗

⊗
j∈[p]

e−
iγp−1−j

2 H [σ ]

⎤
⎦ ⊗

j∈[2p+1]

|y(2p−j )〉

=
∑
m≥0

e−rn(rn)m

m!
Eσ=(σ0,...,σm−1)

⎡
⎣⊗

j∈[p]

e
iγj
2 H [σ ] ⊗ {H [σ ] = 0} ⊗

⊗
j∈[p]

e−
iγp−1−j

2 H [σ ]

⎤
⎦ ⊗

j∈[2p+1]

|y(2p−j )〉 .

We analyze the terms in the sum for fixed m.

⊗
j∈[p]

e
iγj
2 H [σ ] ⊗ {H [σ ] = 0} ⊗

⊗
j∈[p]

e−
iγp−1−j

2 H [σ ]
⊗

j∈[2p+1]

|y(2p−j )〉

=
⎛
⎝⊗

j∈[p]

e
iγj
2

∑
z(2p−j )∈{0,1}n

∑
l∈[m] 1

[
z(2p−j ) ��σl

]
|z(2p−j )〉〈z(2p−j )| ⊗

∑
z(p)∈{0,1}n

∏
l∈[m]

1
[
z(p) � σl

] |z(p)〉 〈z(p)| ⊗

⊗
j∈[p]

e−
iγp−1−j

2
∑

z(p−1−j )∈{0,1}n
∑

l∈[m] 1
[
z(p−1−j ) ��σl

]
|z(p−1−j )〉〈z(p−1−j )|

⎞
⎠ ⊗

j∈[2p+1]

|y(2p−j )〉

=
∏

j∈[p]

e
iγj
2

∑
l∈[m] 1

[
y(2p−j ) ��σl

] ∏
l∈[m]

1
[
y(p) � σl

] ∏
j∈[p]

e−
iγp−1−j

2
∑

l∈[m] 1
[
y(p−1−j ) ��σl

] ⊗
j∈[2p+1]

|y(2p−j )〉

=
∏
l∈[m]

⎧⎨
⎩1

[
y(p) �� σl

]
exp

⎛
⎝∑

j∈[p]

iγj

2
1
[
y(2p−j ) �� σl

]−∑
j∈[p]

iγp−1−j

2
1
[
y(p−1−j ) �� σl

]⎞⎠
⎫⎬
⎭

⊗
j∈[2p+1]

|y(2p−j )〉 .

By the factorization in l ∈ [m] just obtained and independence of clause choices, it suffices to average independently over
each random clause σ0, . . . , σm−1. We then compute

Eσ0

⎧⎨
⎩1

[
y(p) � σ0

]
exp

⎛
⎝∑

j∈[p]

iγj

2
1
[
y(2p−j ) �� σ0

]−∑
j∈[p]

iγp−1−j

2
1
[
y(p−1−j ) �� σ0

]⎞⎠
⎫⎬
⎭

= Eσ0

⎧⎨
⎩1

[
y(p) � σ0

] ∏
j∈[p]

exp
(

iγj

2
1
[
y(2p−j ) �� σ0

]) ∏
j∈[p]

exp
(
− iγp−1−j

2
1
[
y(p−1−j ) �� σ0

])
⎫⎬
⎭

= Eσ0

⎧⎨
⎩
∏

j∈[p]

(
1+ (

eiγj /2 − 1
)

1
[
y(2p−j ) �� σ0

]) ∏
j∈[p]

(
1+ (

e−iγp−1−j /2 − 1
)

1
[
y(p−1−j ) �� σ0

])

× (
1− 1

[
y(p) �� σ0

])
⎫⎬
⎭

= Eσ0

⎧⎨
⎩

∑
J⊂[2p+1]

cJ

∏
j∈J

1
[
y(j ) �� σ0

]
⎫⎬
⎭ ,

where J records the j where we chose the term with 1
[
y(j ) �� σ0

]
when expanding the parenthesis, and

cJ := (−1)1[p∈J ]
∏

j∈J : j <p

(
e−

iγj
2 − 1

) ∏
j∈J : j >p

(
e

iγ2p−j
2 − 1

)
.
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Using Lemma 1 to average over σ0 then gives

Eσ0

⎧⎨
⎩

∑
J⊂[2p+1]

cJ

∏
j∈J

1
[
y(j ) �� σ0

]
⎫⎬
⎭ = 1+

∑
∅�J⊂[2p+1]

cJ

⎛
⎝
∣∣∣⋂j∈J y(j )

∣∣∣
2n

⎞
⎠

k

.

Therefore, averaging the original m-clause expression over σ0, . . . , σm−1 yields

Eσ=(σ0,...,σm−1)

⎧⎨
⎩
∏
l∈[m]

1
[
y(p) � σl

]
exp

⎛
⎝∑

j∈[p]

iγj

2
1
[
y(2p−j ) �� σl

]−∑
j∈[p]

iγp−1−j

2
1
[
y(p−1−j ) �� σl

]⎞⎠
⎫⎬
⎭

=

⎛
⎜⎝1+

∑
∅�J⊂[2p+1]

cJ

⎛
⎝
∣∣∣⋂j∈J y(j )

∣∣∣
2n

⎞
⎠

k⎞
⎟⎠

m

,

which, after averaging over m ∼ Poisson(rn), becomes

∑
m≥0

e−rn(rn)m

m!
Eσ=(σ0,...,σm−1)

⎧⎨
⎩
∏
l∈[m]

1
[
y(p) � σl

]
exp

⎛
⎝∑

j∈[p]

iγj

2
1
[
y(2p−j ) �� σl

]−∑
j∈[p]

iγp−1−j

2
1
[
y(p−1−j ) �� σl

]⎞⎠
⎫⎬
⎭

= exp

⎛
⎜⎝rn

∑
∅�J⊂[2p+1]

cJ

⎛
⎝
∣∣∣⋂j∈J y(j )

∣∣∣
2n

⎞
⎠

k⎞
⎟⎠ .

Defining (ns)s∈{0,1} as in Eq. (A2) for bitstrings y(0), . . . , y(2p), the above can be rewritten as

exp

⎛
⎜⎜⎜⎝rn

∑
∅�J⊂[2p+1]

cJ

⎛
⎜⎜⎜⎝

1
2n

∑
s∈{0,1}2p+1

∀j ,j ′∈J , sj=sj ′

ns

⎞
⎟⎟⎟⎠

k⎞
⎟⎟⎟⎠ .

This shows that random k-SAT satisfies the permutation invariance assumption from Proposition 2. One can slightly
simplify the expression above by distinguishing the singleton J = {j } , j ∈ [2p + 1] from other J . Indeed, for these J ,

∑
s∈{0,1}2p+1

∀j ′,j ′′∈J ,sj ′=sj ′′

ns =
∑

s∈{0,1}2p+1

ns

= n,

030348-16



SOLVING BOOLEAN SATISFIABILITY PROBLEMS WITH... . . PRX QUANTUM 5, 030348 (2024)

giving the total contribution in the exponential

rn
∑

j∈[2p+1]

c{j }
( n

2n

)k

= rn
∑

j∈[2p+1]

2−k

⎧⎪⎨
⎪⎩

e−
iγj
2 − 1 if j < p
−1 if j = p

e
iγ2p−j

2 − 1 if j > p

= 2−krn

⎛
⎝∑

j∈[p]

(
2 cos

γj

2
− 2

)
− 1

⎞
⎠

= −2−krn

⎛
⎝4

∑
j∈[p]

sin2 γj

4
+ 1

⎞
⎠ .

�

Proposition 4. For single-layer (p = 1) QAOA, Eq. (A8) for the expected success probability of random k-SAT QAOA
specializes as follows:

Eσ∼CNF(n,k,r)
[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]

= e−2−krn
(

1+4 sin2 γ
4

) ∑
na,nb,nc,nd

na+nb+nc+nd=n

(
n

na, nb, nc, nd

)(
cos2 β

2

)na (
sin2 β

2

)nb
(

i sin β

2

)nc (
− i sin β

2

)nd

× exp

{
rn

[
4 sin2 γ

4

((
nb + na

2n

)k

−
( na

2n

)k
)
+ (

1− e−iγ /2) (nc + na

2n

)k

+ (
1− eiγ /2) (nd + na

2n

)k
]}

. (A10)

Proof. In the p = 1 case, it is easy to enumerate the terms in the J sum of the exponential in Eq. (A8). There are four
such terms given by J = {0, 1}, J = {0, 2}, J = {1, 2} and J = {0, 1, 2}. We therefore explicit

c{0,1} = 1− e−iγ /2,

c{0,2} = 4 sin2 γ

4
,

c{1,2} = 1− eiγ /2,

c{0,1,2} = −4 sin2 γ

4
.

Also,

Bβ,000 = Bβ,111 = cos2 β

2
,

Bβ,001 = Bβ,110 = − i
2

sin β,

Bβ,010 = Bβ,101 = sin2 β

2
,

Bβ,011 = Bβ,100 = i
2

sin β.
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Plugging it into the formula from Proposition 3,

Eσ∼CNF(n,k,r)
[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]

= e−2−krn
(

1+4 sin2 γ
4

)

2n

∑
(ns)s∈{0,1}3∑

s ns=n

(
n

(ns)s

)(
cos2 β

2

)n000+n111
(

sin2 β

2

)n010+n101
(

i sin β

2

)n011+n100

×
(
− i sin β

2

)n001+n110

exp

{
rn

[
4 sin2 γ

4

((
n000 + n010 + n101 + n111

2n

)k

−
(

n000 + n111

2n

)k
)

+ (1− e−iγ /2) (n000 + n100 + n011 + n111

2n

)k

+ (
1− eiγ /2) (n000 + n001 + n110 + n111

2n

)k
]}

.

We now observe that for all s ∈ {0, 1}3, variable ns always appears in the form ns + ns, where s denotes s with all bits
flipped. (For instance, n000 always appears as part of n000 + n111. Therefore, we may apply the standard multinomial
theorem to each pair of variables (ns, ns), reducing the summed variables to four instead of eight. Renaming these variables
as follows:

n000 + n111 −→ na,

n010 + n101 −→ nb,

n100 + n011 −→ nc,

n001 + n110 −→ nd,

the expression above becomes

Eσ∼CNF(n,k,r)
[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]

= e−2−krn
(

1+4 sin2 γ
4

) ∑
na,nb,nc,nd

na+nb+nc+nd=n

(
n

na, nb, nc, nd

)(
cos2 β

2

)na (
sin2 β

2

)nb
(

i sin β

2

)nc (
− i sin β

2

)nd

× exp

{
rn

[
4 sin2 γ

4

((
nb + na

2n

)k

−
( na

2n

)k
)
+ (

1− e−iγ /2) (nc + na

2n

)k

+ (
1− eiγ /2) (nd + na

2n

)k
]}

.

�

2. Generalized multinomial sums: A warm-up example

In this section, we estimate the leading exponential contribution of the success probability of QAOA applied to the
Hamming weight squared Hamiltonian:

HC :=
⎛
⎝∑

j∈[n]

1− Zj

2

⎞
⎠

2

. (A11)

The success probability is defined as the probability of sampling the all-zero string from the QAOA state:

psucc(n) :=
∣∣∣〈0|e− iβHB

2 e−
iγ HC

2 |+〉
∣∣∣2 . (A12)
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Applying all operators in the computational basis, one
can easily derive:

〈0|e− iβHB
2 e−

iγ HC
2 |+〉

= 1√
2n

∑
x∈{0,1}n

(
cos

β

2

)n−∑j∈[n] xj (
−i sin

β

2

)∑
j∈[n] xj

× e−
iγ
2

(∑
j∈[n] xj

)2

. (A13)

Note that the general term of the sum over bitstrings x ∈
{0, 1}n depends only on the Hamming weight of x and the
above can therefore be rewritten

〈0|e− iβHB
2 e−

iγ HC
2 |+〉

= 1√
2n

∑
0≤k≤n

(
n
k

)(
cos

β

2

)n−k (
−i sin

β

2

)k

e−
iγ k2

2

(A14)

and evaluated in time O(n). Unfortunately, the infinite-
size limit is not immediate due to the exponential of
square e−((iγ k2)/2) preventing from applying the usual bino-
mial theorem. However, this difficulty can be remedied at
the expense of introducing an additional integral. Indeed,
using

∫
R

dθ
e−θ2/4

√
4π

eθx = ex2
, (A15)

〈0|e− iβHB
2 e−

iγ HC
2 |+〉

= 1√
2n

∑
0≤k≤n

(
n
k

)(
cos

β

2

)n−k (
−i sin

β

2

)k

×
∫

R
dθ

e−θ2/4

√
4π

eθ

√
− iγ

2 k

= 1√
2n

∫
R

dθ
e−θ2/4

√
4π

1√
2n

×
∑

0≤k≤n

(
n
k

)(
cos

β

2

)n−k (
−i sin

β

2

)k

eθ

√
− iγ

2 k

= 1√
2n

∫
R

dθ
e−θ2/4

√
4π

(
cos

β

2
− i sin

β

2
eθ

√
− iγ

2

)n

= 1√
2n

∫
R

dθ
e−θ2/4

√
4π

(
cos

β

2
− i sin

β

2
eθ

√
− iγ̃

2n

)n

(
γ ←− γ̃

n

)

=
√

n
2n

∫
R

dθ̃
e−nθ̃2/4

√
4π

(
cos

β

2
− i sin

β

2
eθ̃

√
− iγ̃

2

)n

(
θ̃ ←− θ

√
n
)

= √n
1√
2n

e−
iβn
2

∫
R

dθ̃
e−nθ̃2/4

√
4π

×
(

e
iβ
2

(
cos

β

2
− i sin

β

2
eθ̃

√
− iγ̃

2

))n

=
√

n
4π

∫
R

dθ̃ exp
{

n
[
− log 2

2
− iβ

2
− θ̃2

4

+ log
(

e
iβ
2

(
cos

β

2
− i sin

β

2
eθ̃

√
− iγ̃

2

))]}

=:
√

n
4π

∫
R

dθ̃ exp
(
n�β,γ̃ (θ̃ )

)
, (A16)

where in the fourth line we prescribe the scaling (γ̃ /n),
γ̃ constant, for γ , allowing for a change of integration
variable θ −→ θ̃ such that the argument of the inte-
grated exponential in the last line is the product of n
and an n-independent function of θ̃ ; this is precisely
the setting in which the saddle-point method applies.
The sixth line introduces uses the dummy identity 1 =
e−((iβn)/2)e((iβn)/2), which allows the argument of the log-
arithm to be 1 when θ̃ = 0 or γ̃ = 0. In the latter case,
the logarithm vanishes for all θ and the integral is the last
line is simply Gaussian with value ((e−((iβn)/2))/(

√
2n)),

as could have been more directly found using HB |+〉 =
n |+〉: 〈0|e−((iβHB)/n)e−((iγ HC)/2)|+〉 = 〈0|e−((iβHB)/2)|+〉 =
e−((iβn)/2) 〈0|+〉 = ((e−((iβn)/2))/(

√
2n)). The logarithm is

understood as the principal determination of the complex
logarithm, i.e., log(ρeiϕ) := log ρ + iϕ for ρ > 0, ϕ ∈
[−π , π); it has a discontinuity across the negative real axis.

Remark 1. It is easily verified numerically that for large
enough real θ , the argument of the logarithm crosses the
negative real axis; however, the exponential of the loga-
rithm, hence exp

(
n�β,γ̃ (θ)

)
is still analytic in θ on the

whole complex plane. Concretely, only the analyticity of
the logarithm around θ = 0 will be relevant to apply the
saddle-point method, while the integrand will require only
a crude bound (not relying on the analyticity of the log) for
large θ .

We now estimate the integral in the limit n→∞ using
the saddle-point method. The results we show apply only
to small enough (but still constant) γ̃ ; we will not dedi-
cate much effort to accurately estimating this upper bound
as numerical experiments suggest that our estimate for
〈0|ee−((iβHB)/2)

e−((iγ HC)/2)|+〉 holds beyond the assumptions
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required for the proofs anyway [33]. In the following, we
always assume γ̃ is positive without loss of generality
since (β, γ ) −→ (−β,−γ ) is equivalent to conjugating
the amplitude. We first show that for small enough γ̃ , �β,γ̃
has a single critical point and provide an accurate estimate
for it. To achieve that, it will be convenient to look at criti-
cal points of �β,γ̃ as the fixed points of a certain function.
Namely, by simple differentiation,

�′β,γ̃ (θ) = 0 ⇐⇒ θ = − i
√−2iγ̃ sin β

2 eθ

√
− iγ̃

2

cos β

2 − i sin β

2 eθ

√
− iγ̃

2

. (A17)

To justify the existence and uniqueness of the critical point
as well as estimate it, we need only to show the function on
the right-hand side is contractive with a sufficiently small
constant.

Lemma 2. Let F(θ) := − i
√−2iγ̃ sin β

2 eθ

√
− iγ̃

2

cos β
2−i sin β

2 eθ

√
− iγ̃

2

. There exists

a universal constant c > 0 such that for all γ̃ < c and all
θ , θ ′ ∈ C with |θ |, |θ ′| ≤ 2

√
γ̃ , the following holds:

(1) |F(θ)| , |F(θ ′)| ≤ 2
√

γ̃ .
(2)

∣∣F(θ)− F(θ ′)
∣∣ ≤ γ |θ − θ ′|.

Proof. Let us prove the first statement:

|F(θ)| =
∣∣∣∣∣∣−

i
√−2iγ̃ sin β

2 eθ

√
− iγ̃

2

cos β

2 − i sin β

2 eθ

√
− iγ̃

2

∣∣∣∣∣∣

≤
√

2γ̃

∣∣∣∣eθ

√
− iγ̃

2

∣∣∣∣∣∣∣∣cos β

2 − i sin β

2 eθ

√
− iγ̃

2

∣∣∣∣

=
√

2γ̃

∣∣∣∣eθ

√
− iγ̃

2

∣∣∣∣∣∣∣∣e− iβ
2 − i sin β

2

(
eθ

√
− iγ̃

2 − 1
)∣∣∣∣

≤
√

2γ̃
e
√

2γ̃

1− (
e
√

2γ̃ − 1
) (|θ | ≤ 2

√
γ̃ )

≤ 2
√

γ̃ (for small enough γ ).

As for the second statement, we consider the derivative:

F ′(η) = − eη

√
− iγ̃

2 sin βγ̃

2
(

cos β

2 − i sin β

2 eη

√
− iγ̃

2

)2 . (A18)

Similarly to the previous calculation, this is ≤ γ̃ for small
enough γ̃ and |η| ≤ 2

√
γ̃ . This completes the proof. �

The existence and uniqueness of the fixed point of F
(corresponding to the critical point of �β,γ̃ ) then follows
from the Banach fixed-point theorem [34]:

Theorem 1 (Banach fixed-point theorem). Let (X , d) a
nonempty complete metric space. Let T : X −→ X a con-
traction mapping; that is, there exists k ∈ [0, 1) such that
for all x, x′ ∈ X , d(T(x), T(x′)) ≤ kd(x, x′). Then T has a
unique fixed point x∗ in X . Besides, x∗ can be obtained
by iteratively applying T to an arbitrary element of X : for
x0 ∈ X , xn := T(xn−1) (n ≥ 1), xn −→ x∗.

Proposition 5. There exists a universal constant c > 0
such that for γ̃ < c, �β,γ̃ has a unique critical point θ∗ sat-
isfying

∣∣θ∗ − e(iβ/2)−((3π i)/4) sin(β/2)
√

2γ̃
∣∣ ≤ O (

γ̃ 3/2
)
.

Proof. By an earlier observation, θ is a critical point of
�β,γ̃ if and only if it is a fixed point of F defined in Lemma
2. Applying the Banach fixed-point theorem to F , for small
enough γ̃ , F has a unique fixed point θ∗, which can be
obtained by iteratively applying F to 0. The first iter-
ate is F(0) = ((−i

√−2iγ̃ sin(β/2))/(cos β

2 − i sin β

2 )) =
e(iβ/2)−((3π i)/4) sin(β/2)

√
2γ̃ . We now bound the distance

between this and θ∗:

∣∣θ∗ − F(0)
∣∣ = ∣∣F(θ∗)− F(0)

∣∣
≤ ∣∣F(θ∗)− F(F(0))

∣∣+ |F(F(0))− F(0)|
≤ γ̃

∣∣θ∗ − F(0)
∣∣+ |F(F(0))− F(0)|

(Lemma 2)

so that

∣∣θ∗ − F(0)
∣∣ ≤ |F(F(0))− F(0)|

1− γ̃

≤ γ̃ |F(0)− 0|
1− γ̃

≤
√

2γ̃ 3/2

1− γ̃
= O(γ̃ 3/2).

�

We now provide several additional estimates of �β,γ̃
itself and its higher-order derivatives that will make the
Gaussian approximation rigorous.

Lemma 3. Let the conditions of Proposition 5 be satis-
fied and θ∗ the unique fixed point of �β,γ̃ . The following
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estimates hold:

∀θ ∈ C, �β,γ̃ (θ)

= − log(2)

2
− iβ

2
− θ2

4

− e
iπ
4 sin

β

2
e

iβ
2

√
γ̃

2
θ +O (

γ̃ θ2) , (A19)

∀θ ∈ C, �′′β,γ̃ (θ) (A20)

= −1
2
+O (γ̃ ) , (A21)

�β,γ̃ (θ∗) = − iβ
2
− log 2

2
+ i

2
sin2 β

2
eiβ γ̃ +O (

γ̃ 2) ,

(A22)

�′′β,γ̃ (θ∗) = −1
2
+O (γ̃ ) , (A23)

∀θ ∈ C,
∣∣exp(n�β,γ̃ (θ))

∣∣
≤ exp

(
n

(
log 2

2
− �

(
θ2
)

4
+ |θ |

√
γ̃

2

))
,

∀θ ∈ C, |θ | = o
(

1√
γ̃

)
(A24)

=⇒ ∣∣�′′′β,γ̃ (θ)
∣∣ = O (

γ̃ 3/2) . (A25)

Proof. The first and second result are systematic Taylor
expansions. More precisely, an error O (

γ̃ θ2
)

is obtained
in the first equation since �β,γ̃ (θ) can be written as the
sum of −((log(2))/2)− (iβ/2)− ((θ2)/4) and a function
of
√

γ̃ θ ; the first-order Taylor expansion of the latter gives
the stated error term.

The third and fourth results then follow from plugging
the estimate of the critical point from Proposition 5 in the
Taylor expansions of �β,γ̃ , �′′β,γ̃ just derived.

The fifth result follows from a crude bound:

∣∣exp
(
n�β,γ̃ (θ)

)∣∣
=
∣∣∣∣ 1√

2n
e−nθ2/4

(
cos

β

2
− i sin

β

2
eθ

√
− iγ̃

2

)n∣∣∣∣
≤ 1√

2n
e−n�(θ2)/4

(
1+

∣∣∣∣eθ

√
− iγ̃

2

∣∣∣∣
)n

≤ 1√
2n

e−n�(θ2)/4
(

1+ e|θ |
√

γ̃
2

)n

≤ 1√
2n

e−n�(θ2)/4
(

2e|θ |
√

γ̃
2

)n

= exp

(
n

(
log 2

2
− �(θ2)

4
+ |θ |

√
γ̃

2

))
.

For the fourth result,

�′′′β,γ̃ (θ) = e−
3π i
4

25/2

×
eθ

√
− iγ̃

2 γ̃ 3/2 sin β

(
cos β

2 + i sin β

2 eθ

√
− iγ̃

2

)
(

cos β

2 − i sin β

2 eθ

√
− iγ̃

2

)3

= e−
3π i
4

25/2

eθ

√
− iγ̃

2 γ̃ 3/2 sin β
(

e
iβ
2 + o(1)

)
(

e−
iβ
2 + o(1)

)3

(
θ = o(γ̃−1/2)

)
= O (

γ̃ 3/2) .

�

Proposition 6. For sufficiently small γ̃ > 0 and
γ := (γ̃ /n), the leading exponential contribution of
〈0|e−((iβHB)/2)e−((iγ HC)/2)|+〉 as n→∞ is given by

lim
n→∞

log
(

e
iβn
2 〈0|e− iβHB

2 e−
iγ HC

2 |+〉
)

n

= iβ
2
+�β,γ̃ (θ∗), (A26)

where θ∗ is the unique critical point of �β,γ̃ defined in
Proposition 5.

Proof. Recall

〈0|e− iβHB
2 e−

iγ HC
2 |+〉

=
√

n
4π

∫
R

dθ exp
(
n�β,γ̃ (θ)

) =:
√

n
4π

I .

We now decompose integral I into three contributions:

I =
∫ θ∗− γ̃−1/4√

−�′′
β,γ̃ (θ∗)

θ∗− γ̃−1/4√
−�′′

β,γ̃ (θ∗)
−∞

dθ exp
(
n�β,γ̃ (θ)

)

+
∫ θ∗+ γ̃−1/4√

�′′
β,γ̃ (θ∗)

θ∗− γ̃−1/4√
−�′′

β,γ̃ (θ∗)
dθ exp

(
n�β,γ̃ (θ)

)

+
∫ θ∗+ γ̃−1/4√

−�′′
β,γ̃ (θ∗)

+∞

θ∗+ γ̃−1/4√
−�′′

β,γ̃ (θ∗)
dθ exp

(
n�β,γ̃ (θ)

)

=: I1 + I2 + I3.

Here, the integrals are understood as complex contour inte-
grals; I1 and I3 are along horizontal half-lines, while I2 is
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along an oblique segment. Deforming R to this path is licit
by analyticity and sufficiently fast decrease (cf. estimates
from Lemma 3 for the last point) of the integrand. We will
now show that the dominant integral is I2, with I1 and I3
being negligible.

Let us then first consider I2. Introducing a parametriza-
tion of the integration path,

I2 = γ̃−1/4√
−�′′β,γ̃ (θ∗)

×
∫ 1

−1
dt exp

⎛
⎝n�β,γ̃

⎛
⎝θ∗ + t

γ̃−1/4√
−�′′β,γ̃ (θ∗)

⎞
⎠
⎞
⎠ .

By applying the Taylor expansion formula to second order:

f (z + h) = f (z)+ hf ′(z)+ h2

2
f ′′(z)

+ h3
∫ 1

0
du

(1− u)2

2
f ′′′(z + uh),

we can estimate the integrand as follows:

�β,γ̃

(
θ∗ + t

γ̃−1/4

√−�′′(θ∗)

)

= �β,γ̃ (θ∗)+ t
γ̃−1/4√
−�′′β,γ̃ (θ∗)

�′β,γ̃ (θ∗)

+ t2

2
γ̃−1/2

−�′′β,γ̃ (θ∗)
�′′β,γ (θ∗)

+ t3

2
γ̃−3/4

(
−�′′β,γ̃ (θ∗)

)3/2

×
∫ 1

0
du (1− u)2�′′′β,γ̃

⎛
⎝θ∗ + ut

γ̃−1/4√
−�′′β,γ̃ (θ∗)

⎞
⎠

= �β,γ̃ (θ∗)− t2γ̃−1/4

2

+ t3

2
γ̃−3/4

(
−�′′β,γ̃ (θ∗)

)3/2

×
∫ 1

0
du (1− u)2�′′′β,γ̃

⎛
⎝θ∗ + ut

γ̃−1/4√
−�′′β,γ̃ (θ∗)

⎞
⎠ .

Now, according to the estimate on �′′′β,γ̃ from Lemma 3 and
the estimate on θ∗ from Proposition 5, the function in the

last integral is uniformly bounded by O (
γ̃ 3/2

)
. Therefore,

∫ 1

−1
dt exp

(
n�β,γ̃

(
θ∗ + t

γ̃−1/4

√−�′′(θ∗)

))

=
∫ 1

−1
dt exp

(
n
(

�β,γ̃ (θ∗)− t2γ̃−1/4

2
+O (

γ̃ 3/4t3
)))

= n−1/2 exp
(
n�β,γ̃ (θ∗)

) (
t −→ √nt

)

×
∫ √n

−√n
dt exp

(
− t2γ̃−1/4

2
+ 1√

n
O (

γ̃ 3/4t3
))

.

Assuming γ̃ small enough, the integrand is dom-
inated by exp

(−((t2γ̃−1/4)/4)
)
; therefore, dominated

convergence applies and the integral converges to∫
Rdt exp

(−((γ̃−1/4t2)/2)
) = √

2πγ̃ 1/4. In summary,

I2 ∼
n→∞

(
4π

n

)1/2

γ̃−1/8 (1+O (γ̃ )) exp
(
n�β,γ̃ (θ∗)

)
.

We now bound I3 (the reasoning for I1 being similar).
For that, we use the bound on exp

(
n�β,γ̃ (θ)

)
provided

by Lemma 3 along the integration path t ≥ 0 �−→ θ∗ +
((γ̃−1/4)/(

√
−�′′β,γ̃ (θ∗)))+ t:

∣∣∣∣∣∣exp

⎛
⎝n�β,γ̃

⎛
⎝θ∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

⎞
⎠
⎞
⎠
∣∣∣∣∣∣

≤ exp

⎛
⎜⎝n

⎛
⎜⎝ log 2

2
− 1

4
�

⎧⎪⎨
⎪⎩
⎛
⎝θ∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

⎞
⎠

2
⎫⎪⎬
⎪⎭

+
∣∣∣∣∣∣θ
∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

∣∣∣∣∣∣
√

γ̃

2

⎞
⎠
⎞
⎠ .

In fact, one can show that the real part squared dominates
from the following simple estimates:

�

⎧⎪⎨
⎪⎩
⎛
⎝θ∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

⎞
⎠

2
⎫⎪⎬
⎪⎭

= �
{(

O
(√

γ̃
)
+
√

2γ̃−1/4 +O (
γ̃ 3/4)+ t

)2
}
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= �
{(√

2γ̃−1/4 + t
)2 (

1+O
(√

γ̃
))}

=
(√

2γ̃−1/4 + t
)2 (

1+O
(√

γ̃
))

∣∣∣∣∣∣θ
∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

∣∣∣∣∣∣
√

γ̃

2

=
∣∣∣O (√

γ̃
)
+
√

2γ̃−1/4 +O (
γ̃ 3/4)+ t

∣∣∣
√

γ̃

2

=
∣∣∣√2γ̃−1/4 + t

∣∣∣
√

γ̃

2

(
1+O

(√
γ̃
))

.

It is important that in the expressions above, the error terms
are uniform in t ≥ 0. Therefore, it holds

1
8

∣∣∣∣∣�
{(

θ∗ + γ̃−1/4

√−�′′ (θ∗)
+ t

)2
}∣∣∣∣∣

≥
∣∣∣∣θ∗ + γ̃−1/4

√−�′′ (θ∗)
+ t

∣∣∣∣
√

γ̃

2

as long as
∣∣∣√2γ̃−1/4 + t

∣∣∣ ≥ √
32γ̃

(
1+O

(√
γ̃
))

,

which is indeed verified for all t ≥ 0 for sufficiently small
γ̃ > 0. Using that the quadratic part dominates, one can
simplify the bound as follows:

∣∣∣∣∣∣exp

⎛
⎝n�β,γ̃

⎛
⎝θ∗ + γ̃−1/4√

−�′′β,γ̃ (θ∗)
+ t

⎞
⎠
⎞
⎠
∣∣∣∣∣∣

≤ exp
(
−n

8

(√
2γ̃−1/4 + t

)2
)

≤ exp
(
−nγ̃−1/2

4
− nγ̃−1/4t

23/2

)
.

It follows that I3 = O (
γ̃ 1/4

)
exp

(
− γ̃−1/2n

4

)
. Compar-

ing it with the leading exponential contribution of I2:
exp

(
n�β,γ̃ (θ∗)

)
, using Lemma 3 to estimate �β,γ̃ (θ∗)

there, we conclude that for γ̃ sufficiently small, I3 is expo-
nentially negligible compared to I2 as n→∞. The same
holds for I1. Putting all this together yields the leading
exponential contribution of 〈0|e−((iβHB)/2)e−((iγ HC)/2)|+〉
stated in the proposition. �

Combining the last proposition with estimates on �̃

given in Lemma 3 leads to the following corollary:

Corollary 1. For sufficiently small γ̃ > 0 and γ :=
(γ̃ /n), the leading exponential contribution of

〈0|e−((iβHB)/2)e−((iγ HC)/2)|+〉 as n→∞ is given, up to first
order in γ̃ , by

lim
n→∞

log
(

e
iβn
2 〈0|e− iβHB

2 e−
iγ HC

2 |+〉
)

n

= − log 2
2
+ i

2
sin2 β

2
eiβγ̃ +O (

γ̃ 2) . (A27)

Given β, the last result informs on how to choose γ̃

to increase the success probability (compared to the triv-
ial random sampling case γ̃ = 0). This is equivalent to
increasing the real part of the scaling exponent just derived,
which is −((log(2))/2)− 1

2 γ̃ sin2(β/2) sin β +O (
γ̃ 2
)
.

Therefore, to first order in γ̃ > 0, one needs β ∈ [−π , 0]
for the exponent to be greater than −((log(2))/2), and the
optimal choice to maximize the growth rate in γ̃ is β =
−(2π/3), which yields −((log(2))/2)+ ((33/2)/16)γ̃ +
O (

γ̃ 2
)

for the exponent previously derived.
In fact, from exact evaluation of the amplitude at

finite size n [which requires only to compute the n-term
sum in Eq. (A14)], we conjecture the optimal parameters
rather converge to β = −(π/2) and γ̃ = π in the limit
n→∞. Besides, we conjecture that for this choice of
parameters, the success probability decays at most poly-
nomially in n. Remarkably, the analytic formula from
Proposition 6 agrees with these observations (although
we do not rigorously know it to apply for these param-
eters). Indeed, for β = −(π/2) and γ̃ = π , the critical-
point equation is easily checked to admit the simple
solution θ∗ = √−(iπ/2). One can check that for this
solution,

�β,γ̃
(
θ∗
) = iπ

8
. (A28)

Since this has vanishing real part, the saddle-point method,
if correct, would predict the amplitude to decay only poly-
nomially in n, in agreement with empirical results at finite
size.

3. Generalized multinomial sums

a. Statement of the problem

Definition 3. Let p ≥ 1 an integer, q ≥ 1 an integer and
A = (Aαs)α∈A

s∈S
, b = (bs)s∈S , c = (cα)α∈A families of com-

plex numbers indexed by two arbitrary index sets S and A.
Besides, assume

∑
s∈S

bs = 1. (A29)
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We consider the problem of estimating:

Sq (A, b, c ; n)

:=
∑

(ns)s∈S∑
s ns=n

(
n

(ns)s

)(∏
s

bns
s

)
en

∑
α cα

(
1
n
∑

s Aαsns
)2q

(A30)

as n→∞ while A, b, c are kept constant.

Example 1 (Random 2q-SAT QAOA). The expression obtained in Proposition 3 for the expected fixed-parameter
success probability of QAOA on random k-SAT is of the desired form when k = 2q up to the trivial factor

e−2−2q
rn
(

1+4
∑

j∈[p] sin2(γj /4)
)
. In this particular case, the parameters of the generalized multinomial sum can be taken as

follows:

S := {0, 1}2p+1, (A31)

A := {J ⊂ [2p + 1] : |J | ≥ 2} , (A32)

bs := Bβ,s

2
, (A33)

cα := r(−1)1[p∈α]
∏

j∈α, j <p

(
e−iγj /2 − 1

) ∏
j∈α, j >p

(
eiγ2p−j /2 − 1

)
, (A34)

Aαs := 1
2

1
[∀j , j ′ ∈ α, sj = sj ′

]
. (A35)

b. The quadratic case

In the case q = 1 of Definition 3, the generalized multinomial sum in Eq. (A30) can be given an integral representation
by Gaussian integration, similar to the toy-model example considered in Appendix A 2. Explicitly,

S1 (A, b, c ; n)

=
∑

(ns)s∈S∑
s ns=n

(
n

(ns)s

)(∏
s

bns
s

)
exp

⎛
⎝n

∑
α

cα

(
1
n

∑
s

Aαsns

)2
⎞
⎠

=
∫

R|A|

∏
α∈A

dyα

e−y2
α/4

√
4π

∑
(ns)s∈S∑

s ns=n

(
n

(ns)s

)(∏
s

bns
s

)
exp

(
√

n
∑

α

√
cα

(
1
n

∑
s

Aαsns

)
yα

)

= n|A|/2
∫

R|A|

∏
α∈A

dyα

e−ny2
α/4

√
4π

∑
(ns)s∈S∑

s ns=n

(
n

(ns)s

)(∏
s

bns
s

)
exp

(∑
α

√
cα

(∑
s

Aαsns

)
yα

)

(change variables yα := √ny ′α ∀α ∈ A)

= n|A|/2
∫

R|A|

∏
α∈A

dy ′α
e−n(y ′α)

2
/4

√
4π

∑
(ns)s∈S∑

s ns=n

(
n

(ns)s

)∏
s

(
bs exp

(∑
α

√
cαAαsy ′α

))ns
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= n|A|/2
∫

R|A|

∏
α∈A

dyα

e−ny2
α/4

√
4π

∑
(ns)s∈S∑

s ns=n

(
n

(ns)s

)∏
s

(
bs exp

(∑
α

√
cαAαsyα

))ns

= n|A|/2

(4π)|A|/2

∫
R|A|

(∏
α∈A

dyα

)
exp

(
−n

4

∑
α∈A

y2
α

)(∑
s

bs exp

(∑
α

√
cαAαsyα

))n

=:
n|A|/2

(4π)|S|/2

∫
R|A|

(∏
α∈A

dyα

)
exp

(
n�

(
(yα)α∈A

))
,

where

�
(
(yα)α∈A

)

:= −1
4

∑
α∈A

y2
α + log

∑
s∈S

bs exp

(∑
α∈A

√
cαAαsyα

)
. (A36)

This has the same formal structure as the Hamming weight squared toy example discussed in Appendix A 2, except the
integral is multivariable instead of univariate. Note that the prefactor ((n|A|/2)/((4π)|A|/2)), similar to

√
(n/4π) in the

toy example, is irrelevant to the exponential scaling here since we assume |A| constant, so that ((n|A|/2)/((4π)|A|/2)) =
poly(n). The analysis performed there for small γ̃ therefore carries over here for sufficiently small cα; similarly, the
analysis of the q ≥ 2 case detailed in the Supplemental Material [15] will require c to be bounded by a sufficiently
small constant. In the cases considered in Appendix A 1 where the generalized multinomial sum arises from a QAOA
expectation, this is equivalent to assuming small (yet constant) γ angles but places no restriction on the β [35]. We then
state the following proposition establishing the scaling of Sq (A, b, c ; n) in the q = 1 case. We leave out the proof, which
would essentially be a repetition of that of Proposition 6 from Appendix A 2; besides, the more general case q ≥ 1 will be
investigated in the Supplementary Material [15].

Proposition 7. Let a general multinomial sum S1 (A, b, c; n) be given as in Definition 3 with q = 1 and recall the
definition of �(·) in Eq. (A36). Then, for sufficiently small (cα)α∈A,

lim
n→∞

log S1 (A, b, c; n)

n
= �

(
y∗
)

, (A37)

where y∗ = (
y∗α
)
α∈A is the unique critical point of �(·), whose existence and uniqueness is indeed guaranteed for

sufficiently small (cα)α∈A. Besides, this critical point can be understood as the fixed point of the function:

C|A| −→ C|A|

(yα)α∈A �−→
(

2
√

cα
∑

s∈S bsAαs exp(
∑

α′∈A
√cα′Aα′syα′)∑

s∈S bs exp(
∑

α′∈S
√cα′Aα′syα′)

)
α∈A

. (A38)

In particular, assuming |cα| ≤ c for definiteness, the following estimates hold in the limit c→ 0:

y∗α = 2
√

cα

∑
s∈S

bsAsα +O (
c3/2) , (A39)

lim
n→∞

log S1 (A, b, c; n)

n

=
∑
α∈A

cα

(∑
s∈S

bsAαs

)2

+O (
c3/2) . (A40)

Remark 2. Note that the leading-order contribution of the scaling exponent of Sq (A, b, c; n) in Eq. (A40) is what we
would have obtained had we (nonrigorously) estimated Sq (A, b, c ; n) by naively expanding the log in � to lowest order
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in c for each value of (yα)α∈A, before integrating the resulting Gaussian over these variables. That is,

S1 (A, b, c; n)

poly(n)≈
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n�

(
(yα)α∈A

))

=
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n

(
−1

4

∑
α∈A

y2
α + log

∑
s∈S

bs exp

(∑
α∈A

√
cαAαsyα

)))

≈
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n

(
−1

4

∑
α∈A

y2
α + log

(∑
s∈S

bs

(
1+

∑
α∈A

√
cαAαsyα

))))
(not rigorous!)

=
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n

(
−1

4

∑
α∈A

y2
α + log

(∑
s∈S

bs +
∑
s∈S

bs

∑
α∈A

√
cαAαsyα

)))

=
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n

(
−1

4

∑
α∈A

y2
α + log

(
1+

∑
s∈S

bs

∑
α∈A

√
cαAαsyα

)))

≈
∫

R|A|

(∏
α∈A

dyα

)
exp

(
n

(
−1

4

∑
α∈A

y2
α +

∑
s∈S

bs

∑
α∈A

√
cαAαsyα

))
(not rigorous!)

poly(n)≈ exp

⎛
⎝n

∑
α∈A

cα

(∑
s∈S

bsAαs

)2
⎞
⎠ .

c. Algorithmic implementation

Proposition 1, and more generally proposition 7 from the Supplementary Material, establishes the exponential scaling
of the generalized multinomial sum Eq. (A30) (for sufficiently small c parameters) by expressing it as the fixed point of a
certain function. It remains to specify how this fixed point is found in practice. For sufficiently small c, a generalization
of the argument for the toy model from Appendix A 2 shows the fixed point can be approximated to error O (ε) using
O (log(1/ε)) iterations. Each iteration applies the function to the previous approximation of the fixed point, starting with
lowest-order approximation 0. The procedure is explicited in Algorithm 1.

For large c, we do not rigorously know whether the fixed point introduced in Proposition 7 from the Supplemental
Material [15] exists and is unique. Besides, even if this holds, we have not formally proven that this fixed point prescribes
the exponential scaling of the generalized multinomial sum. However, these limitations may be a mere artifact of our
proof methods; it would therefore be desirable for the fixed-point finding algorithm to extrapolate to larger c. For that
purpose, we supplement Algorithm 1 with a heuristic Algorithm 2, which attempts to find the critical point for large c.
Informally, the only change is to introduce some damping, controlled by a parameter ρ ∈ [0, 1], as the approximation to
the fixed point is updated: instead of updating z∗ to F(z∗), we update it to a weighted combination of this proposal and
the previous value. This simple amendment was empirically observed to solve the convergence problem and yield a fixed
point varying smoothly with c.

We now specialize to random k-SAT QAOA an describe a more efficient implementation of the algorithm in this
case. Precisely, we provide a more efficient implementation of the evaluation of F and its derivatives ∂αF by exploit-
ing the specific structure of matrix A of the generalized multinomial sum Eq. (A30) for the expectation value arising
from that problem. In general, recalling the definition of F(z) in Eq. (16), it is easily seen that naively evaluating
F(z) and all its derivatives requires O (|A|.|S|) multiplications. Applying that to random 2q-SAT using the parame-
ters stated in Example 1, this yields a complexity O (16p). We now describe a more efficient naive method reducing
this to O (4p). For that purpose, it will be more convenient to slightly amend the definition of the generalized multi-
nomial sum parameters in Example 1; namely, we include all subsets of [2p + 1] in the index set A (not only those
with two elements or more), based on the following rewriting of Eq. (A8) for the success probability of k-SAT
QAOA:
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Eσ∼CNF(n,k,r)
[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0} |�QAOA(σ , β, γ )

〉]

= 1
2n e−2−krn

∑
(ns)s∈{0,1}2p+1∑

s ns=n

(
n

(ns)s

)∏
s

Bns
β,s exp

⎛
⎜⎜⎜⎝rn

∑
J⊂[2p+1]

cJ

⎛
⎜⎜⎜⎝

1
2n

∑
s∈{0,1}2p+1

∀j ,j ′∈J , sj=sj ′

ns

⎞
⎟⎟⎟⎠

k⎞
⎟⎟⎟⎠ , (A41)

where the definition of cJ in Proposition 3 is unchanged
(and irrelevant to the argument). With this amended
setup, we now show that given a 22p+1-component vec-
tor

(
vj
)

j∈{0,1}2p+1 , both vector
(∑

α⊂[2p+1] Aαsvα

)
s∈{0,1}2p+1

and vector
(∑

s∈{0,1}2p+1 Aαsvs

)
α⊂[2p+1]

can be compute in

time O (p4p) instead of the naive O (16p).
In the above, we naturally identify n-bit bitstrings and

subsets of [n], where 1 bits denote the elements included
in the set. We now observe that both these sums can be
reduced to the sum-over-subsets problem [36] that we
recall below:

Definition 4 (Sum-over-subsets). Given a vector
(vα)α⊂[n] of size 2n, the sum-over-subset problem consists
of computing

∑
α⊂S vα for all subsets S of [n]. There exists

an algorithm, based on dynamic programming, performing
this calculation in time O (n2n).

A naive algorithm would be to iterate over subsets S and
sum the vα such that α is included in S, demanding time
O (4n). We now connect the sum-over-subsets problem to
the calculation of the sums mentioned above. Let us start

ALGORITHM 1. Compute an approached fixed point z∗ for
sufficiently small c.

Data: q parameter, matrices/vectors A, b, c,
maximum number of iterations Niter, relative
fixed-point error threshold ε

z∗ ← 0;
i ← 0;
while i < Niter do

z∗
α ← 2q (−∂αF (z∗))2

q−1;

if maxα∈A

∣
∣
∣
∣

z∗
α−∂αF(z∗)

z∗
α

∣
∣
∣
∣
< ε then

break
end
i ← i + 1;

end
return (i, z∗);

with the sum over α, which can be expanded as follows:

∑
α⊂[2p+1]

Aαsvα

= 1
2

∑
α⊂[2p+1]
∀j ,j ′∈α, sj=sj ′

vα

= 1
2

∑
α⊂{j :sj=0}

vα + 1
2

∑
α⊂{j :sj=1}

vα .

Interpreting s as describing a subset of [2p + 1], the
last sum can then be understood as a sum over the
subsets of s, and can therefore be evaluated in time
O (

(2p + 1)22p+1
) = O (p4p) with the DP algorithm for

sum-over-subsets. The first sum can be interpreted sim-
ilarly, still regarding s as a subset of [2p + 1], but with
set elements now identified to 0 bits. Let us now con-
sider the sums over s. By the discussion on the sums over
α, this sum can be considered as sums over supersets.
These in turn reduce to sums over subsets by passing to

ALGORITHM 2. Try to compute an approached fixed point z∗
with initial suggestion and damping.

Data: q parameter, matrices/vectors A, b, c,
maximum number of iterations Niter, relative
fixed-point error threshold ε, initial suggestion
z∗
init for z∗, damping coefficient ρ ∈ [0, 1)

z∗ ← z∗
init;

i ← 0;
while i < Niter do

z∗
α ← ρz∗

α + (1 − ρ)2q (−∂αF (z∗))2
q−1;

if maxα∈A

∣
∣
∣
∣

z∗
α−∂αF(z∗)

z∗
α

∣
∣
∣
∣
< ε then

break
end
i ←− i + 1;

end
return (i, z∗);
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ALGORITHM 3. Compute sum
∑

α Aαsvα for random 2q-SAT
QAOA.

Data: Vector v = (vα)α⊂[n].
z(1) ← v;
z(0) ← v;
if i ∈ {0, . . . , n − 1} ; /* Interpret 1 bits of s as
designing set */
then

for s ∈ {0, 1}n do
if si = 1 then

z
(1)
s ← z

(1)
s + z

(1)
s XOR 2i ;

end
end
for i ∈ {0, . . . , n − 1} ; /* Interpret 0 bits of
s as designing set */
do

for s ∈ {0, 1}n do
if si = 0 then

z
(0)
s ← z

(0)
s + z

(0)
s XOR 2i

end
end

end
return z(0) + z(1) − v∅.

end

the complementary sets. Explicitly,

∑
s∈{0,1}2p+1

Aαsvs

= 1
2

∑
s∈{0,1}2p+1

α⊂{j :sj=0}

vs + 1
2

∑
s:α⊂{j :sj=1}

vs

= 1
2

∑
s∈{0,1}2p+1

[2p+1]−{j :sj=0}⊂[2p+1]−α

vs

+ 1
2

∑
s∈{0,1}2p+1

[2p+1]−{j :sj=1}⊂[2p+1]−α

vs

= 1
2

∑
s∈{0,1}2p+1

{j :sj=1}⊂[2p+1]−α

vs + 1
2

∑
s∈{0,1}2p+1

{j :sj=0}⊂[2p+1]−α

vs.

The first sum in the last expression can be computed as
a sum over subsets of [2p + 1]− α. Therefore, to evalu-
ate it for all α, it suffices to apply the sum-over-subsets
algorithm (interpreting 1 bits of s ∈ {0, 1}2p+1 as designing
the elements included in the set) and reverse the resulting
vector to account for the complement [2p + 1]− α. The
same applies for computing the second sum, except one
interprets 0 bits of s as marking elements of the set. The
overall complexity is then also O(p4p). To make these

ALGORITHM 4. Compute sum
∑

s Aαsvs for random 2q-SAT
QAOA.

Data: Vector v = (vs)s∈{0,1}n

z(0) ← Reverse(v) ; /* Reversing vector is
equivalent to flipping bits of bitstring
coordinates */

z(1) ← v for i ∈ {0, . . . , n − 1} ; /* Indices from α
are 0 in s */
do

for α ⊂ [n] do
if i /∈ α then

z
(0)
α ← z

(0)
α + z

(0)
α�{i}

end
end
for i ∈ {0, . . . , n − 1} ; /* Indices from α are 1
in s */
do

for α ⊂ [n] do
if i /∈ α then

z
(1)
α ← z

(1)
α + z

(1)
α�{i}

end
end

end
return z(0) + z(1) − v∅

end

observations concrete, we provide detailed Algorithms 3
and 4 to evaluate the desired sums.

APPENDIX B: ADDITIONAL NUMERICAL
RESULTS

In this Appendix we present the full optimization land-
scape for QAOA at p = 1 in Figs. 5 (k = 2), 6 (k = 4),
7 (k = 8), 8 (k = 16). More precisely, for each value of
k, we report three quantities as functions of β and γ ,
corresponding to the three columns of the figures.

(1) The expected success probability, with a logarithm
taken and rescaled by the number of variables n:

1
n

logEσ

[〈
�QAOA(σ , β, γ )|1 {H [σ ] = 0}
× |�QAOA(σ , β, γ )

〉]
, (B1)

which, assuming the existence of an exponential
scaling, converges to the scaling exponent as n→
∞.
For this set of experiments, n = 20.

(2) The empirical scaling exponent determined from an
exponential fit. In the results shown, the fit is per-
formed on 11 points corresponding to problem sizes
20 ≤ n ≤ 30.

(3) The correlation coefficient of the exponential fit.
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(a)

(b)

(c)

FIG. 5. QAOA optimization landscape at p = 1 and for k = 2.
By periodicity (following from the integrality of the cost func-
tion), β and γ can be, respectively, restricted to [−π , π ] and
[−2π , 2π ]. In case the represented function is negligible except
on a small part of this domain, we choose to enlarge the rectan-
gle while keeping centered at 0; for instance, when enlarging by a
factor of 2, the represented domain is [−(π/2), (π/2)]× [π , π ].
The central symmetry is a general feature of QAOA, applying to
all cost functions and diagonal unitaries. (a) Logarithmic success
probability. (b) Exponential fit. (c) Correlation coefficient.

From these results, it first appears that the existence of
the exponential scaling is not granted for all β and γ ,
with a correlation coefficient even approaching 0 in certain
regions. This effect is particularly pronounced for larger
k and these problematic regions exhibit a complex pat-
tern that cannot be only explained by the magnitude of
the angles. However, in the regions where an exponen-
tial scaling exists, the landscapes in the first two columns
should coincide for sufficiently large n. We observe this
is indeed the case in the figures. Interestingly, the regions

(a)

(b)

(c)

FIG. 6. QAOA optimization landscape at p = 1 and for k =
4 (enlargement: 2×). (a) Logarithmic success probability. (b)
Exponential fit. (c) Correlation coefficient.

where the success probability is maximized always exhibit
an exponential scaling, as shown by the correlation coef-
ficient close to unity. As for extrema, while 2-SAT and
4-SAT possess a single local maximum (up to the central
symmetry), 8- and 16-SAT have spurious local maxima.

1. Quality of empirically determined optimal
variational angles

In the main text, we compared exact (for p = 1 only) or
empirical (for p ∈ [1, 10]) finite-size results to the predic-
tion made by Proposition 1 for the infinite-size limit. These
comparisons helped us build confidence that the analytic
method, which is in principle restricted to sufficiently small
angles, remains correct when evaluated with the pseudo-
optimal angles we chose. Assuming the analytic method
remains operational in a neighborhood of these variational
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(a)

(b)

(c)

FIG. 7. QAOA optimization landscape at p = 1 and for k =
8 (enlargement: 2×). (a) Logarithmic success probability. (b)
Exponential fit. (c) Correlation coefficient.

parameters, allowing for an exact evaluation of the exact
success probability in this region, one may now wonder
how far from optimal these angles are.

To investigate this, we reoptimize the success proba-
bility using the analytic formula, with the initial angles
(empirically optimised for n = 12) as an educated guess.
As usual, a simple gradient-descent algorithm is used.
We then consider the relative variation of the analyti-
cally determined scaling exponent along the optimization,
together with the relative variation of the angles. Figure 9
reports these results for 8-SAT and precisely defines the
metrics just evoked. The p values used here are more
restricted than in the main text due to the overhead of
evaluations required by optimization as opposed to sim-
ple evaluation. These results show the angles determined

(a)

(b)

(c)

FIG. 8. QAOA optimization landscape at p = 1 and for k =
16 (enlargement: 4×). (a) Logarithmic success probability. (b)
Exponential fit. (c) Correlation coefficient.

by the simple empirical method described in Sec. IV A
are very close to optimal, or at least to a local optimum.
Relative variations for both the angles and the exponent
along the optimization are of order a few percent. Surpris-
ingly, the relative variation even appears to decrease with
p , but we do not know how robust the last conclusion is
due to the limited number of values of p considered and
the dependence of these results on the small dataset used
to determine approximately optimal angles.

2. Further experimental results for classical solvers for
k = 8

We include all the classical experimental results on the
complexity of solvers for 8-SAT in Table II.
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(b)

(a)

FIG. 9. Relative variation of scaling exponent and optimized
angles after reoptimization from analytic method. The relative
error for the exponent is defined as the ratio between the new
and old value, minus 1. For angles, the distance between the
old angles

(
β(i), γ(i)

)
and the new ones

(
β(f), γ(f)

)
is calculated

by considering the representative of
(
β(f), γ(f)

)
closest to the(

β(i), γ(i)
)

in order to account for 2π periodicity in the βj and
4π periodicity in the γj . The β components of the difference vec-
tor

(
β(f) − β(i), γ(f) − γ(i)

)
are then rescaled by (1/(π

√
2p)), and

the γ components by (1/(2π
√

2p)), mapping the 2-norm of the
resulting vector into [0, 1]. (a) Exponent. (b) Angles.
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