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Adaptive quantum circuits, which combine local unitary gates, midcircuit measurements, and feedfor-
ward operations, have recently emerged as a promising avenue for efficient state preparation, particularly
on near-term quantum devices limited to shallow-depth circuits. Matrix product states (MPS) comprise a
significant class of many-body entangled states, efficiently describing the ground states of one-dimensional
gapped local Hamiltonians and finding applications in a number of recent quantum algorithms. Recently, it
has been shown that the Affleck-Kennedy-Lieb-Tasaki state—a paradigmatic example of an MPS—can be
exactly prepared with an adaptive quantum circuit of constant depth, an impossible feat with local unitary
gates alone due to its nonzero correlation length [Smith et al., PRX Quantum 4, 020315 (2023)]. In this
work, we broaden the scope of this approach and demonstrate that a diverse class of MPS can be exactly
prepared using constant-depth adaptive quantum circuits, outperforming theoretically optimal preparation
with unitary circuits. We show that this class includes short- and long-ranged entangled MPS, symmetry-
protected topological (SPT) and symmetry-broken states, MPS with finite Abelian, non-Abelian, and
continuous symmetries, resource states for MBQC, and families of states with tunable correlation length.
Moreover, we illustrate the utility of our framework for designing constant-depth sampling protocols,
such as for random MPS or for generating MPS in a particular SPT phase. We present sufficient condi-
tions for particular MPS to be preparable in constant time, with global on-site symmetry playing a pivotal
role. Altogether, this work demonstrates the immense promise of adaptive quantum circuits for efficiently
preparing many-body entangled states and provides explicit algorithms that outperform known protocols
to prepare an essential class of states.
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I. INTRODUCTION

One of the most important problems intersecting
many-body physics and quantum computation is the
efficient preparation of interesting and useful entangled
states on quantum hardware. For instance, state preparation
is a key subroutine for many quantum algorithms [1,2] and
an essential first step for a variety of promising applica-
tions of quantum hardware, including quantum simulation
[3,4], quantum machine learning [5], and quantum sensing
[6]. Moreover, the efficient preparation of nontrivial entan-
gled states offers a promising pathway for studying exotic
phases of matter not realized in nature [7,8].

However, while available quantum processors have
rapidly increased in qubit count in recent years, the faithful
preparation of large entangled states remains an outstand-
ing challenge. A central obstacle is the speed with which
correlations spread via local unitary gates: at a given circuit
depth, only qubits within a causal light cone can possi-
bly be correlated and, consequently, spreading correlations
among many qubits generically requires a circuit depth that
scales with the system size [9]. This scaling is particularly
prohibitive in the current noisy intermediate-scale quan-
tum (NISQ) era as, due to noise and gate imperfections,
current quantum processors are limited to fairly shallow
circuit depths [10], impeding the preparation of large quan-
tum states with even modest entanglement. Consequently,
algorithms that can faithfully prepare nontrivial entangled
states with constant-depth circuits are highly desirable,
particularly for near-term applications.

Given their fundamental and practical relevance, effi-
cient protocols to prepare matrix product states (MPS)
are of particular recent interest [11–16]. MPS are low-
entanglement many-body states that efficiently parametrize
the ground states of gapped one-dimensional (1D) local
Hamiltonians [17–19] and have furthermore played an
integral role in the classification of quantum phases
[20,21], offering crucial insights into the nature of
symmetry-protected topological (SPT) order [22–24].
They can be generated sequentially by linear-depth uni-
tary circuits [11–13]; their unitary circuit complexity,
therefore, sits between that of quantum states generated
by shallow (constant-depth) and deep (exponential-depth)
quantum circuits. While the advantages of MPS represen-
tations for classical computation are well established [25],
their use cases on quantum hardware are in their advent
and rapidly growing. Recent developments include MPS-
inspired (and, more generally, tensor-network-inspired)
approaches to variational quantum algorithms [26–29],
time dynamics [30,31], and loading classical data for quan-
tum machine learning [32–36]. In addition, certain MPS
are resources for measurement-based quantum computa-
tion (MBQC) [37–41] and other information-processing
tasks, such as blind quantum computation [42] and remote
state preparation [43]. To realize the promise of these

applications, a crucial ingredient is the efficient preparation
of MPS on quantum hardware.

As noted above, it is well known that MPS of constant
bond dimension can be exactly prepared with a unitary
circuit the depth of which scales linearly with the num-
ber of sites N [11–13]. Several works have improved upon
this O(N ) scaling by restricting to the class of so-called
normal MPS that exhibit only short-range correlations. In
particular, by allowing for an error ε, it is possible to faith-
fully prepare translationally invariant normal MPS using
approximate circuit-based and adiabatic schemes, requir-
ing O(log(N/ε)) [15] and O(polylog(N/ε)) [14] time,
respectively. A pertinent question is then whether it is
possible to improve upon these methods. To that end,
it has been shown in Ref. [15] that the faithful prepa-
ration of normal MPS requires a local unitary circuit
of minimum depth �(log N ) [44]. Intuitively, this lower
bound stems from the fact that normal MPS typically have
nonzero correlation length [45], ruling out the possibil-
ity of constant-depth preparation with strictly local unitary
gates [46]. Furthermore, for non-normal MPS that exhibit
Greenberger-Horne-Zeilinger (GHZ)–like long-range cor-
relations, linear-depth preparation is provably optimal
[9,47]. Thus, the preparation of MPS with local unitary cir-
cuits generically requires a depth scaling with system size,
limiting their utility for near-term applications on quantum
hardware.

In parallel to this effort, there has been consider-
able recent interest in the bolstered capabilities of so-
called adaptive or dynamic circuits [48–52], which aug-
ment unitary circuits with nonunitary resources such as
midcircuit measurements and classical feedforward oper-
ations—capabilities that are now supported on several
cloud-based quantum computing platforms [53,54]. In par-
ticular, it has been shown that adaptive circuits are capa-
ble of preparing long-range entanglement and topological
order in constant depth [55–62], an impossible feat with
local unitary evolution alone [9,47]. Perhaps the sim-
plest and most well-known example of such a speedup
is for the preparation of the GHZ state, achievable with
a constant-depth adaptive circuit yet requiring either a
linear- or log-depth unitary circuit, depending on the con-
nectivity of the device (see, e.g., Ref. [63]). Separately, it
has recently been shown that the Affleck-Kennedy-Lieb-
Tasaki (AKLT) state can be prepared exactly using a
constant-depth adaptive circuit [16], a feat unachievable
with local unitary gates alone due to its nonzero correlation
length. Notably, both the GHZ and AKLT states are simple
examples of MPS. This raises the question as to whether
there is a common mechanism underlying the reduction in
time complexity for preparing these states with adaptive
circuits and to what extent generalization to other MPS is
possible.

In this work, we address this question and present a
unified framework for exactly preparing a diverse class

030344-2



CONSTANT-DEPTH PREPARATION OF MATRIX PRODUCT STATES PRX QUANTUM 5, 030344 (2024)

of translationally invariant [64] MPS with constant-depth
adaptive quantum circuits. Within this framework, we
present two explicit protocols: one for preparing so-called
normal MPS with short-range correlations and another for
non-normal MPS with long-range correlations. In both
cases, we consider MPS of arbitrary (but constant) bond
dimension and provide sufficient conditions that they must
satisfy to be preparable in constant time via our scheme.
Furthermore, we discuss two special classes of MPS that
guarantee these conditions, including (i) fixed-point MPS
with zero correlation length and, separately, (ii) MPS with
global on-site symmetry. Regarding this latter class, one of
our key results is that, independent of correlation length,
all normal MPS with global on-site symmetry can be
exactly prepared via our constant-depth scheme if the sym-
metry manifests as an irreducible representation on the
virtual level and is finite (or has a finite subgroup, in
the case of continuous symmetries). In addition, we show
that any non-normal MPS can be prepared if it can be
decomposed into independently preparable normal MPS.
Altogether, these results demonstrate that a broad class of
MPS can be exactly prepared using constant-depth adap-
tive circuits. Furthermore, this class includes short- and
long-range entangled MPS that cannot be faithfully pre-
pared in constant depth using local unitary circuits alone,
thus illustrating the tremendous promise for adaptive quan-
tum circuits for preparing nontrivial entangled states in the
near term.

To illustrate the diversity of physically interesting
many-body states preparable with our scheme, we provide
a variety of representative examples tabulated in Table I.
These include SPT and symmetry-broken states, MPS with
discrete Abelian, non-Abelian, and continuous symme-
tries, parametrized families of MPS with tunable correla-
tion length, and resource states for MBQC. Among these
examples, we discuss the preparation of many paradig-
matic MPS, including the Majumdar-Ghosh, AKLT, and
generalized qudit GHZ states. Moreover, we demonstrate
that our framework enables constant-depth sampling of
random MPS and, more generally, facilitates the design of
sampling protocols for MPS with specific properties, such
as from an SPT phase. Finally, in addition to these exam-
ples, we provide a flexible method to construct general
families of symmetric MPS of any bond dimension that
can be prepared in constant depth using our framework.

Before continuing to our results, we note that several
prior works have discussed the preparation of transla-
tionally invariant MPS via quantum circuits that com-
bine unitary gates, measurements, and feedforward. In
particular, Ref. [48] has shown that all quantum phases
in 1D collapse to the trivial phase if local unitary cir-
cuits are supplemented with local operations and classical
communication (LOCC). Furthermore, in Ref. [65], the
authors have studied how restricting to symmetric uni-
taries, measurements, and feedforward operations alters

this classification, finding that phases protected by finite
Abelian groups trivialize via a protocol similar to the one
introduced in Ref. [16] that we generalize here. However,
in both of these works, only the constant-depth prepara-
tion of fixed-point states (i.e., those with zero correlation
length [66]) have been demonstrated; preparation of a
non-fixed-point MPS in the same phase then requires sub-
sequent application of a O(polylog(N ))-depth circuit [65].
In contrast, here our goal is to generalize the protocol of
Ref. [16], which has shown that a non-fixed-point MPS
(i.e., one with nonzero correlation length) can be prepared
in constant depth. Thus, our attention is on a compara-
tively broader class of states and not just the fixed-point
representatives of quantum phases.

The remainder of this paper is organized as follows. In
Sec. II, we define a number of useful concepts that will
be used throughout this work (Sec. II A) and follow this
with a high-level outline of our framework (Sec. II B).
We then provide further details on the core algorithmic
ingredients that underlie our protocol, including sequen-
tial preparation of MPS (Sec. II C), measurement-based
fusion (Sec. II D), and operator pushing (Sec. II E). We
then discuss the special role of correlation length and
global on-site symmetries toward the latter ingredient. In
Sec. III, we demonstrate how these ingredients can be
combined to prepare certain MPS in constant depth, first
for normal MPS with short-range correlations (Sec. III A),
followed by generalization to non-normal MPS with long-
range correlations (Sec. III B). We then present a variety of
pedagogical examples (Sec. III C) that include states with
SPT order, resource states for MBQC, families of MPS
with tunable correlation length, and MPS with both dis-
crete on-site symmetries (e.g., Z2, A4, and Z4 × Z2) and
continuous symmetries (e.g., SO(3), SU(n), and Sp(2n)).
Finally, we show that our scheme also enables the sam-
pling of random MPS and MPS from a specific phase. We
then conclude in Sec. IV.

II. INGREDIENTS FOR CONSTANT-DEPTH
PREPARATION

In this section, we provide a brief introduction to MPS
and discuss conventions and language used throughout this
work. We then present a brief outline of our framework and
follow this with an in-depth discussion of its underlying
ingredients.

A. Preliminaries

We begin by considering an N -site MPS of physical
dimension d and constant bond dimension [67] D,

|�〉 =
∑

�m
Tr
(
Am1Am2 . . . AmN X

) | �m〉 . (1)

Here, mi = {0, 1, . . . , d − 1} indexes the d possible states
of a physical spin at the ith site and �m collects all physical
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indices {m1, m2, . . . , mN }. The state |�〉 is parametrized by
the rank-3 tensor A, which can equivalently be interpreted
as a set of D × D matrices {Am}d−1

m=0. This latter viewpoint
is particularly useful for invoking the valence-bond pic-
ture for MPS, where each matrix Am encodes the state of
a pair of D-dimensional virtual spins underlying a single
d-dimensional physical spin [12]. In that vein, it will later
prove beneficial to work directly with the linear map

Ā =
∑

ijm

Am
ij |m〉 〈ij | , (2)

which takes virtual states in HD ⊗ HD to physical states
in Hd. Separately, due to the close relationship between
MPS and quantum channels [68], we will often refer to the
matrices Am as Kraus operators throughout this work.

In writing the MPS in Eq. (1), we have enforced transla-
tional invariance in the sense that each site is described
by the same tensor A but with arbitrary boundary con-
ditions specified by the matrix X . For example, X = I
yields an MPS with periodic boundary conditions, while
the case of open boundary conditions corresponds to the
selection X = |R〉 〈L|, with |L〉 and (|R〉)∗ the state of the
left and right virtual edge spins, respectively. Throughout
this work, we will implicitly assume all MPS to be transla-
tionally invariant up to boundary conditions unless stated
otherwise.

Importantly, the matrices Am define a unique MPS only
up to a gauge freedom, i.e., the state is invariant under
Am → V−1AmV up to modified boundary conditions. To fix
this redundancy, we adopt the convention of left-canonical
form, where the gauge is chosen such that

∑

m

Am†Am = 1. (3)

As we will see in Sec. II C, this choice plays an impor-
tant role in mapping a given MPS to a sequential quantum
circuit. We emphasize, however, that similar to Kraus
operators for quantum channels, this does not completely
fix the gauge, as we can still conjugate Am by a gen-
eral unitary operator (i.e., Am → U†AmU) while preserving
left-canonical form.

Furthermore, we can always apply a local change of
basis on each physical spin via the replacement Am →∑

n UmnAn for some unitary U. Without loss of general-
ity [69], we choose this basis such that the Kraus operators
Am are orthogonal under the Hilbert-Schmidt norm,

Tr(Am†An) ∝ δmn, (4)

a choice that ensures that Ā maps orthogonal virtual states
onto orthogonal physical states. Moreover, throughout this
work we assume Ā to be surjective (i.e., rank(Ā) = d ≤
D2). If this is not the case, one can always discard a

local isometry from Ā without altering the MPS [66]. This
property will later become important in Sec. II E.

In presenting our constant-depth preparation protocol, it
will prove beneficial to distinguish between two distinct
classes of states: normal MPS and non-normal MPS. The
former are the class of unique ground states of gapped 1D
Hamiltonians with local interactions [12,19] and exhibit
short-range exponentially decaying correlations. In con-
trast, the latter describes degenerate ground states of
gapped local Hamiltonians and are thus closely related to
phases with symmetry breaking [12,21]. Unlike their nor-
mal counterparts, non-normal MPS can display long-range
correlations, with the GHZ state serving as a paradigmatic
example.

Whether a given MPS is normal or non-normal is inti-
mately tied to the structure of A. We defer to Refs. [19,66,
70] for a more detailed discussion on this topic but, in brief,
normal MPS are characterized by a tensor A that is itself
normal—i.e., by blocking a finite number of sites [71], the
virtual-to-physical map Ā becomes injective (or, equiva-
lently, the set of blocked matrices {Am} span the space of
D × D matrices). A non-normal MPS does not have this
property and no amount of blocking will yield an injective
map Ā. More formally, the normality of a given MPS is
evidenced by its canonical decomposition [19,66], where
each Kraus operator is expressed in block-diagonal form
Am =⊕K−1

α=0 Am
α . For normal MPS, Am contains just a sin-

gle block (K = 1), while for non-normal MPS, Am can
be decomposed into multiple blocks (K > 1) that cannot
be further reduced. Importantly, this latter property allows
us to write any non-normal MPS as a linear superposi-
tion of normal MPS [66], a feature that we will exploit in
Sec. III B to generalize the constant-depth preparation of
normal MPS to the non-normal case.

With the above conventions and definitions in place, we
are now ready to present a high-level outline of our strategy
to prepare MPS in constant depth. Later, in Sec. III, we will
provide a more detailed presentation of explicit protocols
to prepare both normal and non-normal MPS, complete
with conditions for specific states to be preparable via this
scheme.

B. Outline of the preparation strategy

Our high-level strategy to prepare MPS in constant
depth is illustrated in Fig. 1. It consists of three simple
steps:

(1) Prepare multiple small MPS in parallel, using the
sequential unitary preparation scheme for each (see
Sec. II C).

(2) Use midcircuit fusion measurements to merge all
independently prepared MPS in parallel, yielding
the target state up to random defects at each fusion
site (see Sec. II D).
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FIG. 1. Our strategy to prepare a target MPS in constant
depth. First, we prepare a small MPS using a sequential uni-
tary protocol. Next, we use fusion measurements between edge
bond qudits, resulting in random defects at each fusion site.
Under certain conditions, these defects can then be determinis-
tically corrected with feedforward operations by leveraging the
operator-pushing relations of the target state.

(3) Correct these defects using feedforward opera-
tions and available operator-pushing relations (see
Sec. II E).

In the following sections, we work entirely in terms of
qudit resources. However, we note that this is a choice
of convenience and in a practical setting each qudit can
be encoded by a logarithmic number of qubits. Crucially,
this increases the circuit depth by a constant that depends
only on the physical and bond dimensions but not sys-
tem size, thus preserving our claim of a constant-depth
protocol.

Before proceeding, two further comments are warranted.
First, we note that our scheme cannot prepare an arbi-
trary MPS but, rather, only those with certain properties.
This will be discussed further in Sec. III. Furthermore,

for MPS where constant-depth preparation is possible, our
scheme does not come without trade-offs. In comparison
to both the known linear-depth [11–13] and log-depth [15]
protocols, we gain a superexponential advantage in cir-
cuit depth at the cost of a constant factor in total qudit
count (along with the requirement for midcircuit measure-
ments and feedforward operations). While this reduction
in total space-time resources is clearly beneficial, the
trade-off between temporal and spatial resources may be
an important consideration in certain contexts, e.g., for
small system sizes or for platforms with limited ancillary
resources.

We now continue with an in-depth discussion on the
core ingredients of our preparation algorithm, beginning
with the sequential preparation of MPS.

C. Sequential preparation

As previously discussed, an arbitrary matrix product
state can be prepared using a linear-depth unitary circuit
[11–13]. This is an important primitive for our constant-
depth approach, namely, for the initial preparation of small
MPS. The key idea is to first identify that, for an MPS
in left-canonical form, the map VA =∑m Am ⊗ |m〉 is an
isometry from HD to HD ⊗ Hd. As shown in Fig. 2(a),
this enables the definition of the unitary

U =
∑

m

Am ⊗ |m〉 〈0| + C⊥ (5)

via Stinespring dilation. Intuitively, this unitary prepares a
physical qudit of dimension d in the state |m〉 while enact-
ing the Kraus operator Am on an ancillary subsystem of
dimension D. We term this ancillary subsystem the bond
qudit. The operator C⊥ is chosen to ensure the unitarity of
the entire operation. By successively acting U on a series
of N physical qudits (using the same bond qudit for each),
one can prepare an N -site MPS via a linear-depth unitary
quantum circuit with boundary conditions determined by
the initial and final states of the bond qudit. In particu-
lar, the right boundary condition is determined by its initial
state, while the left boundary condition is entangled with
the bond qudit at the end of the circuit [72].

In the present work, we adopt a slight modification of
this approach that leaves both left and right boundaries
each entangled with a bond qudit, a feature that under-
lies the measurement-based fusion of MPS discussed in
Sec. II D. As described in our previous work [16], the
core idea is to preempt the above steps with the initial
preparation of a pair of bond qudits in the maximally
entangled state |I〉 =∑j |jj 〉 /

√
D. As shown in Fig. 2(b),

we can then use one entangled bond qudit to sequentially
“grow” the MPS via repeated application of U, adding a
single physical site with each application and ultimately
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���

���

FIG. 2. Mapping an MPS to a sequential unitary circuit.
(a) Leveraging left-canonical form, the tensor A can be embedded
in a unitary U acting in a larger Hilbert space. The physical qudit
(red) flows vertically, while the bond qudit (green) flows hori-
zontally. (b) Two bond qudits are initially entangled in the Bell
state |I〉 =∑j |jj 〉 /

√
D. Employing one of these bond qudits,

physical sites are prepared via sequential application of U. The
boundary conditions are determined upon measurement of the
bond qudits.

producing the state

|� ′〉 = 1√
D

∑

ij

∑

�m
〈i| Am1Am2 . . . AmN |j 〉 | �m〉 ⊗ |ij 〉 ,

(6)

corresponding to an N -site MPS with the left and right
boundaries entangled with the dangling bond qudits
indexed by i and j, respectively. Throughout the remain-
der of this work, we will refer to such an MPS as having
entangled boundary conditions.

Notably, one can use projective measurements to
collapse the state onto an MPS with definite boundary
conditions: defining |B〉 = (1/

√
D)
∑

ij B∗
ij |ij 〉, the act of

projecting the dangling qudits of |� ′〉 onto |B〉 yields the
state |�〉 ⊗ |B〉, where |�〉 is the MPS in Eq. (1) with the
replacement X → BT. It is important to note that preparing
an MPS with a particular boundary matrix is probabilistic
with this strategy. However, for normal MPS, this proba-
bility scales as 1/D2, requiring on average D2 repetitions
to successfully prepare a state with particular boundary
conditions [73]. Finally, while enforcement of periodic
boundary conditions (or any other entangling boundary
matrix B) naively requires either long-range connectivity
between the edge qudits or O(N ) SWAP gates, we note that
this can be remedied by first distributing a qudit Bell pair
in O(1) time using measurements and feedforward and,
after preparing the MPS, employing gate teleportation to
facilitate measurement of the dangling edge qudits in an
arbitrary basis.

D. Measurement-based fusion of MPS

We now discuss the measurement-based fusion of MPS,
the second primitive underlying our constant-depth proto-
col. For illustrative purposes, we specialize to the scenario
of fusing two MPS of n = N/2 sites each, though we
emphasize that our eventual strategy will entail fusing
many single- or few-site MPS in parallel.

To illustrate the basic concept, we take two n-site copies
of an MPS with entangled boundary conditions as in
Eq. (6), and write the composite (unentangled) MPS pair
|�〉 = |� ′〉 ⊗ |� ′〉 as

|�〉 = 1
D

∑

ij �p

∑

�m
〈i| Am1Am2 . . . Amn |j 〉

× 〈�| Amn+1Amn+2 . . . AmN |p〉 | �m〉 ⊗ |ij �p〉 . (7)

Next, we measure the intermediary pair of mutually uncor-
related dangling bond qudits indexed by j and �. In
particular, we carry out a projective measurement in the
basis formed by the states |Bk〉 = (1/

√
D)
∑

ij (B
k
ij )

∗ |ij 〉,
where k = {0, 1, . . . D2 − 1} labels a particular measure-
ment outcome, and 〈Bk|Bk′ 〉 = δkk′ , such that the basis is
orthonormal. In practice, such a measurement is carried
out by first applying the two-qudit unitary V =∑k |k〉 〈Bk|,
followed by two single-qudit measurements in the com-
putational basis {|k〉}. We note that orthogonality between
the basis states |Bk〉 is not strictly necessary. Instead, we
only require that the map V is isometric, i.e., V†V = 1D×D,
allowing for a nonorthogonal measurement basis. In this
latter case, measurement is facilitated by additional ancil-
lary qubits, corresponding to a positive operator-valued
measurement (POVM). We will return to this possibility
in Sec. III A 1. For now, we take V to be unitary and the
states |Bk〉 to be mutually orthogonal.
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(a) (b) (c)

(d)

FIG. 3. The ingredients for constant-depth preparation of MPS. (a) Fusion measurements are employed to merge “small” MPS
prepared in parallel. Due to the probabilistic nature of measurements, a random defect B is inserted at the fusion site. (b) The operator-
pushing relations for the tensor A. In this work, we define pushing relations as in (i), equating application of the operator Op on the
physical leg to insertion of O� and Or on the left and right virtual legs, respectively. As shown in (ii), we employ these pushing relations
to manipulate random defects on the virtual level, “pushing” virtual operators from one leg to the other. (c) By blocking q sites of the
MPS parametrized by the tensor A, we define a new tensor A(q). In general, the pushing relations for A(q) are dependent upon the
blocking parameter q. (d) To correct defects in non-normal MPS, we decompose such states into a superposition of normal MPS via
the block decomposition A =⊕α Aα . Pushing relations for Aα are independently employed by conditioning Op on the block index α,
a notion that we term block-conditional operator pushing.

To understand the impact of this measurement and, in particular, its back action on the rest of the system, it is helpful
to rewrite the state |�〉 in the chosen measurement basis {|Bk〉},

|�〉 = 1
D3/2

∑

k

|Bk〉 ⊗
∑

ip

∑

�m
〈i| Am1Am2 . . . AmnBkAmn+1Amn+2 . . . AmN |p〉 | �m〉 ⊗ |ip〉 , (8)

where we have rearranged the tensor-product ordering to
emphasize the structure of the state. Written in this form, it
is evident that measuring a particular outcome k = k0 fuses
the two unentangled MPS, depositing the corresponding
defect matrix Bk0 at the fusion site [see Fig. 3(a)]. This can
also be understood graphically (see, e.g., Ref. [74]): using
the Choi-Jamiolkowski isomorphism, we can define a set
of two-qudit projectors,

Pk = (Bk ⊗ 1)† |I〉 〈I | (Bk ⊗ 1)

= |Bk〉 〈Bk| , (9)

where |I〉 = (1/
√

D)
∑

j |jj 〉. Graphically, this projector
can be represented as

(10)

and may be intuitively thought of as a “cap” for the
measured dangling-bond-qudit legs in Fig. 3(a).

In this work, we will be most interested in measurements
that project the intermediate bond qudits onto maximally
entangled states; in this case, the phenomenon of MPS
fusion is easily understood through the principle of entan-
glement swapping. Furthermore, from Eq. (9), it is clear

that projection onto a maximally entangled state corre-
sponds to a unitary defect matrix Bk. This feature will
become important in Sec. II E.

E. Operator pushing

We now describe the concept of operator pushing, the
final primitive for our constant-depth protocol. We empha-
size that the idea of operator pushing is not unique to this
work and has previously been applied to construct error-
correcting codes [75,76]. Separately, it is closely related to
the concept of operational symmetry of entangled states
[77]. Here, we are interested in using operator pushing
to unitarily remove unwanted defects resulting in unde-
sired fusion-measurement outcomes. To determine when
this is possible, we must first uncover the allowed pushing
relations derived from the properties of the tensor A.

As shown in Fig. 3(b), operator pushing can be under-
stood through several equivalent angles. In Fig. 3(b)(i), we
view it as the ability to replicate the action of the operators
O� and Or on the left and right virtual legs, respectively,
by acting a third operator Op on the physical leg. As will
be discussed in Sec. II E 2, this relation bears similarity to
the manifestation of global on-site symmetry [78,79] in the
local tensor A. As depicted in Fig. 3(b)(ii), this same push-
ing relation allows us to remove Or from the right virtual
leg by acting O†

p on the physical leg and at the expense
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of applying O†
� on the left virtual leg. For simplicity, we

have additionally assumed Or and O� to be unitary, an
assumption that is not strictly necessary but will nonethe-
less hold for the defects considered in this work. While
the relation in Fig. 3(b)(ii) foreshadows our eventual strat-
egy of manipulating individual defects on the virtual level,
we find that uncovering the allowed pushing relations for
a particular tensor A is simpler using the convention of
Fig. 3(b)(i) and we will therefore favor this viewpoint
going forward [80].

To gain insight into the conditions under which pushing
relations exist, it is advantageous to consider the d × D2

matrix Ā that maps from the virtual space HD ⊗ HD to
the physical space Hd, defined in Eq. (2).

Furthermore, it will prove beneficial to define analogues
of the rank-3 tensor A and virtual-to-physical map Ā after
blocking q sites [see Fig. 3(c)], which we denote by A(q)

and Ā(q), respectively. In line with the conventions dis-
cussed in Sec. II A, Ā(q) is taken to be a surjective map
without loss of generality—i.e., it is represented by a
d(q) × D2 matrix of rank d(q) ≤ D2 [68].

We can then express operator pushing as

OpĀ(q) = Ā(q)
(OT

� ⊗ Or), (11)

where OT
� is the transpose of O�, and we have furthermore

generalized to the case of pushing through q sites. We now
state several formal results related to operator pushing. For
simplicity, we drop the superscript q but emphasize that
analogous claims hold under the replacement Ā → Ā(q).

Theorem 1 (Existence). For given unitary operators O�

and Or acting on the virtual legs of the map Ā, there exists
a corresponding physical operator Op satisfying the push-
ing relation Eq. (11) if and only if [OT

� ⊗ Or, Ā−1
R Ā] = 0,

where Ā−1
R is the right inverse of Ā.

The proof can be found in Appendix A. As discussed in
Sec. II A, the map Ā is surjective, ensuring the existence
of the right inverse Ā−1

R . However, Ā is not left-invertible
in general; instead, Ā−1

R Ā = P is a projector onto the row
space of Ā. As discussed in Appendix A, the commutator
in Theorem 1 can be reexpressed as Pc(OT

� ⊗ Or)P = 0,
where Pc = 1 − P is the projector onto the kernel of Ā.
Intuitively, Theorem 1 therefore states that the physical
operator Op exists if the virtual operator OT

� ⊗ Or does not
map elements in the row space of Ā onto its kernel (i.e., it
must map the row space onto itself) (for further discussion,
see Appendix A).

It is instructive to consider the special case in which any
O� and Or can be pushed to the physical level: via Schur’s
lemma, this requires that Ā−1

R Ā = 1, i.e., the map Ā must
be injective such that it is left-invertible. Notably, this can
always be achieved for a normal MPS by blocking at most

2D2(6 + log2 D) sites [19,81] such that the (blocked) phys-
ical dimension is equal to the squared bond dimension,
d(q) = D2. We emphasize, however, that injectivity of Ā
is not strictly required for operator pushing and particular
operators O� and Or can be pushed through a noninjective
map as long as OT

� ⊗ Or and the projector A−1
R Ā commute.

Intuitively, this requires that the row space and kernel of Ā
are each invariant subspaces of OT

� ⊗ Or.
While the above theorem provides useful intuition

regarding the mere existence (or lack thereof) of Op given
particular virtual operators O� and Or, we now narrow our
scope to the particular case in which Op is a unitary oper-
ator. This will ensure that virtual defect operators can be
manipulated deterministically via feedforward operations.

Theorem 2 (Unitarity). For given unitary operators O�

and Or acting on the virtual legs of the map Ā, there exists
a corresponding unitary physical operator Op obeying
Eq. (11) if and only if [OT

� ⊗ Or, Ā†Ā] = 0.

The proof is in Appendix A. Here, Ā† is the conjugate
transpose of the d × D2 matrix Ā, and Ā†Ā is there-
fore a D2 × D2 matrix. To gain intuition into when the
above condition is obeyed, it is helpful to reexpress the
desired commutation relation in terms of the singular-value
decomposition Ā = 	V, where we have, without loss of
generality, chosen the left-hand d × d unitary to be the
identity, in accordance with Eq. (4). The j th row of V
encodes the normalized virtual basis state |vj 〉 ∈ HD ⊗
HD, while the singular value 	i =

√
Tr(Ai†Ai) denotes a

relative scaling between |vi〉 and the physical basis state
|ui〉 ∈ Hd to which it is mapped.

Using this decomposition, rearrangement of the commu-
tation relation in Theorem 2 yields

[V†(OT
� ⊗ Or)V, 	T	] = 0. (12)

Above, we have found that the existence of Op requires
that O� and Or leave the row space and kernel of Ā invari-
ant. In analogy, the above condition further breaks the row
space into the invariant subspaces Wk = span{|vi〉 | 	i =
	k}, where k labels one of the unique singular values. In
other words, unitarity of Op imposes that the subspaces
of equal singular value are left invariant by the virtual
operation or, equivalently, that the transformed opera-
tor V†(OT

� ⊗ Or)V is block diagonal, with block k acting
entirely in the subspace Wk.

Finally, as it is not immediately obvious, it is worth
emphasizing that if OT

� ⊗ Or commutes with Ā†Ā, it nec-
essarily commutes with the row-space projector Ā−1

R Ā
when O� and Or are unitary. This implication follows from
the above argument concerning invariant subspaces but we
provide an alternative proof in Appendix A. Thus, the con-
dition supplied by Theorem 2 ensures both the existence
and unitarity of the physical operator Op .
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We now discuss two particular classes of states for
which unitary pushing relations can always be defined:
MPS with zero correlation length and MPS with on-site
symmetry. While distinct, both cases lead to MPS char-
acterized by a singular-value matrix 	 with degenerate
values. For the former class, all nonzero singular values
are equal to one. For the latter, degenerate singular val-
ues characterize invariant subspaces under the action of the
symmetry.

1. Special case: Zero correlation length

We first consider the stringent scenario in which a
unitary physical operator Op exists for any choice of uni-
tary operators O� and Or. Invoking Schur’s lemma, from
Theorem 2 this requires that Ā is unitary, i.e., Ā†Ā = 1
(or, in terms of the singular-value matrix, 	T	 = 1). In
this case, we can, without loss of generality, choose a phys-
ical basis such that Ā = 1, allowing us to identify the
corresponding MPS as a tensor product of D-dimensional
generalized Bell pairs up to local unitary transformations.
Such states correspond to fixed points of the renormaliza-
tion procedure introduced in Ref. [82] and, up to blocking,
are equivalent to the class of normal MPS with zero
correlation length (ZCL [83]) [66].

Though unitarity of Ā necessarily implies injectivity
and, by extension, that the MPS is normal, an analogous
notion can be extended to non-normal MPS. In that case,
the renormalization fixed points correspond to GHZ-like
superpositions of normal MPS, each with ZCL—a struc-
ture that can be exploited to intuit pushing relations for
non-normal fixed points. In brief, each Kraus operator is
expressed in a block-diagonal form, Am =⊕α Am

α , where
each set {Am

α }d−1
m=0 parametrizes a normal MPS with ZCL; in

isolation, each is therefore endowed with pushing relations
for arbitrary virtual operators. In terms of the non-normal
tensor A, this implies that pushing relations can be defined
for arbitrary O� and Or as long as (i) the virtual operators
have the same block-diagonal structure as {Am} and (ii) one
can condition the physical operator on the block α. This is
the core idea behind our strategy for correcting defects in
non-normal states—first decompose into normal MPS and
then leverage the pushing relations for each by controlling
physical operators on the block index α [see Fig. 3(d)].

In the above, we have been somewhat imprecise with
the relationship between operator pushing for ZCL states
and the requirements for blocking and a few comments
are in order. First, for an MPS with ZCL, it is only after
blocking a number of sites q greater than the so-called
injectivity length i(A) [19] that the tensor becomes injec-
tive and pushing relations can be defined for arbitrary O�

and Or. In terms of the unblocked sites, this implies that
the corresponding physical operator Op has support on q
sites. For example, the cluster state has ZCL but is injective
only after blocking q = 2 sites. Consequently, arbitrary

virtual operators can be pushed through pairs of sites via
a two-qubit physical unitary but cannot be pushed through
a single site. In general, i(A) depends only on the bond
dimension D [19,81] and, as a result, the blocked physi-
cal operator Op has support on a constant number of qubits
(i.e., independent of N ). This is an important considera-
tion for our algorithm, as the promise of constant depth
requires that all operations (Op included) have strictly
finite support.

Finally, drawing upon our discussion following
Theorem 1, it is interesting to note that both the injectivity
length i(A) and correlation length ξ define important length
scales for operator pushing through normal MPS. Roughly
speaking, the former sets the physical length scale at which
Op is guaranteed to exist. In contrast, ξ sets the length
scale at which it is unitary, as states with nonzero corre-
lation length flow to ones with ZCL after blocking q � ξ

sites. This suggests a tempting strategy to prepare non-
fixed-point MPS: first prepare and fuse MPS of q � ξ sites
and subsequently correct all defects using the arbitrary
pushing relations of the fixed-point MPS with ZCL. How-
ever, there is an important subtlety that spoils this strategy
from enabling constant-depth preparation—the fixed point
approximates a non-fixed-point MPS to within error ε only
after blocking q = O(log(N/ε)) sites [15,48]. To bound
the state-preparation error, the proposed strategy would
therefore require the initial preparation of “small” MPS of
length O(log(N/ε)), spoiling our goal for constant-depth
preparation. Consequently, we seek additional structure
that enables local operator pushing for states with nonzero
correlation length without relying on approximation by
fixed-point states.

2. Special case: On-site symmetry

We now consider a special class of states that pro-
vide such structure: translationally invariant MPS with
global on-site symmetry. As will be shown, such states are
endowed with unitary pushing relations without the strin-
gent condition of ZCL. Consequently, we will show that
this class provides numerous examples of MPS that can
be prepared exactly with a constant-depth adaptive cir-
cuit but otherwise require a log-depth unitary circuit for
approximate preparation [15].

a. Normal MPS. We first consider normal MPS that
are symmetric under a group G, i.e., there exists some set
of unitary operators Ug for g ∈ G such that, when applied
to every physical qudit, the state is invariant up to modi-
fied boundary conditions. From the fundamental theorem
of MPS [19], this symmetry manifests in the local tensor A
through the relation

∑

n

(Ug)mnAn = eiφg VgAmV†
g , (13)
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where the virtual operators Vg form a projective repre-
sentation of G and the phases eiφg form a 1D irreducible
unitary representation of G. In terms of the map Ā, this
relation reads e−iφg UgĀ = Ā(VT

g ⊗ V†
g). Via the choice

O� = Vg , Or = V†
g , and Op = e−iφg Ug , the condition of

Theorem 2 is clearly satisfied, resulting in pushing rela-
tions of the form

.

(14)

On-site symmetry under the group G therefore guarantees
the ability to push projective representations of G through
the tensor A via unitary operations on the physical leg.

b. Non-normal MPS. For non-normal MPS, the man-
ifestation of symmetry at the virtual level is more com-
plicated. Here, we aim to outline the basic principle and
we refer to Refs. [21,65] for a more complete discus-
sion. We first recall that any non-normal MPS can be
expressed as a superposition of normal MPS, which we
index by α. This results in a block decomposition of the
form Am =⊕K−1

α=0 Am
α , where K labels the total number of

blocks. Assuming periodic boundary conditions, this non-
normal MPS physically describes the K-fold degenerate
gapped ground space of some local parent Hamiltonian
[19]. Let us group these blocks into superblocks labeled
by a. Within each superblock, the symmetry G acts inde-
pendently, allowing us to further decompose the tensor
as [21]

Am =
na⊕

a

Ka⊕

α∈a

Am
α , (15)

where K =∑na
a Ka. The idea behind this decomposition

is that the K-fold degeneracy can include both accidental
degeneracies (corresponding to distinct superblocks a) and
degeneracies due to symmetry breaking of G (subdividing
superblock a into subblocks α ∈ a). While the symmetry
acts independently on each superblock, symmetric opera-
tions can permute distinct symmetry-broken states, making
the virtual action of the symmetry on the subblocks more
complicated.

As illustrated in Fig. 3(d), our strategy to correct defects
in non-normal MPS relies on their decomposition into nor-
mal MPS, each with pushing relations that can be indepen-
dently applied via block-conditioned physical operations.
While the pushing relations inherited from on-site symme-
try are naturally decoupled between distinct superblocks,
this is not the case among subblocks due to the permutation

action. Thus, preempting our protocol to efficiently pre-
pare non-normal MPS, it will prove beneficial to repackage
these symmetries into the form of Fig. 3(d).

To achieve this, we simplify to the scenario of a sin-
gle superblock (na = 1). Extension to multiple superblocks
is then trivial, as the symmetry acts independently on
each. As discussed in Refs. [21,65], this situation yields
a generalization of Eq. (13) for non-normal MPS:

∑

n

(Ug)mnAn = Pg

[
K−1⊕

α=0

eiφα
g Vh(g,α)Am

α V†
h(g,α)

]
(Pg)

T.

(16)

Here, the symmetry acts on the virtual level through an
interplay of two effects. First, within each block α, the
matrices Am

α are conjugated by unitary operators Vh(g,α),
just as in the normal case. These operators form a projec-
tive representation of the subgroup H ≤ G corresponding
to the portion of the full symmetry group G that is unbro-
ken and therefore act on each block independently. Second,
the blocks are permuted through conjugation by Pg , oper-
ators that form a permutation representation of G. The
precise relationship between G, H , and the permutation
action can be formalized in the language of induced rep-
resentations, with h(g, α) uniquely defined by g and α (for
details, see Refs. [21,65]). For our purposes here, it will
suffice to highlight a few key features that will play an
integral role in the preparation of symmetry-broken states.

First, we emphasize that Eq. (16) specifies a set of |G|
unique pushing relations, diagrammatically expressed as

,

(17)

where we have partitioned the bond index into a block
index (blue) and an intrablock index (black) and have fur-
thermore adopted “α-controlled” lines to indicate block-
diagonal tensors (i.e.,

⊕
α Am

α and
⊕

α Vh(g,α)). Up to a
diagonal phase matrix on the block index, the above can
be identified as a pushing relation of the form in Fig. 3(b),
with virtual operators O� = Vg and Or = V†

g , where Vg =
(Pg ⊗ 1)(

⊕
α Vh(g,α)).

To repackage this relation into the form of Fig. 3(d), we
first “lift” the block index to the physical space:

.

(18)

For each h ∈ H and α ∈ K , we then identify the physical
unitary Ug(h,α) that obeys Eq. (17) but with the permutation
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action on block α trivial (i.e., block α is mapped to itself).
As described in Appendix B, we can then conditionally
apply Ug(h,α) to each block individually, thus establishing
for each h ∈ H block-conditional pushing relations of the
form

,

(19)

where the modified physical unitary U′
h is defined as

.

(20)

Here, we have adopted a shorthand for the phase matrix
ϕh =⊕α e−iφα

g , with g = g(h, α). For more details on the
map g(h, α), see Appendix B. Here, we simply note that
for Abelian groups, g(h, α) = h, significantly simplifying
the pushing relation in Eq. (19), as the conditioned Ug(α,h)

operator can be replaced by an unconditional application
of Uh.

With Eq. (19) in hand, we have demonstrated that the |G|
pushing relations characteristic of symmetry-broken non-
normal MPS can be reformulated as |H | block-controlled
pushing relations of the form in Fig. 3(d), up to an overall
phase matrix ϕh. Here, H ≤ G is the unbroken symmetry
that is preserved by each block independently. Crucially,
this allows us to simplify the complex task of prepar-
ing non-normal MPS to the comparatively simpler one of
preparing normal MPS, as the former class can be decom-
posed into superpositions of the latter. In Sec. III B, this
will allow us to state sufficient conditions for the constant-
depth preparation of non-normal MPS. Importantly, these
conditions will depend only on the pushing relations of the
composing normal MPS, agnostic with regard to the phys-
ical mechanism to which they are attributed at the level of
the full non-normal MPS.

III. CONSTANT-DEPTH PREPARATION OF MPS

We now demonstrate how the above ingredients together
enable the constant-depth preparation of translationally
invariant MPS with arbitrary boundary conditions. We
begin with the case of normal MPS and then extrapolate
to non-normal MPS. Importantly, we emphasize that this
scheme cannot deterministically prepare arbitrary MPS but
is limited to MPS with pushing relations that exhibit cer-
tain properties. Below, we discuss the sufficient conditions
for a particular MPS to be deterministically preparable
with our scheme and, furthermore, present several theo-
rems pertaining to important classes of MPS.

Before proceeding, it is worth clarifying that by deter-
ministic, here and throughout the remainder of this work
we mean that the state

|�〉 =
∑

�r

∑

�m
〈�| Am1Am2 . . . AmN |r〉 | �m〉 ⊗ |�r〉 , (21)

i.e., with boundary conditions entangled with ancillary
qudits, can be prepared exactly and deterministically with
a constant-depth adaptive circuit; this state is equivalent
to the output of the linear-depth sequential scheme in
Sec. II C and, as previously discussed, can be converted
into an MPS with particular (open or periodic) boundary
conditions via measurement, albeit with a probability that
scales as O(1/D2) in the large-N limit [84]. One may view
this as the deterministic preparation of a ground state of the
corresponding parent Hamiltonian but a random sampling
from the degenerate ground-state space (for a discussion in
terms of the AKLT state, see, e.g., Ref. [16]). Furthermore,
the important feature is that this probability is indepen-
dent of N and thus, on average, adds a constant sampling
overhead.

A. Normal MPS

Combining the previously described ingredients in
Sec. II, the full preparation protocol for preparing normal
MPS is shown in Fig. 4. The step-by-step procedure is as
follows.

Protocol 1: Normal MPS

(1) Prepare n q-site copies of the target MPS with
entangled boundary conditions in parallel, using the
sequential unitary preparation for each (Sec. II C).

(2) Employ fusion measurements on all nonedge pairs
of bond qudits in an entangling basis defined by VB,
in parallel. Through entanglement swapping, this
produces the target MPS (with N = nq sites), up to
random defects Bi at each fusion site indexed by i
(Sec. II D).

(3) Combining available unitary pushing relations of
the target state and knowledge of the measure-
ment outcomes, remove all defects in parallel using
feedforward operations of the form U(i)

B and B0†

at each site i ∈ {0, 1, . . . , N − 1} and at the edge,
respectively (Sec. II E).

(4) Measure the remaining edge bond qudits to col-
lapse the defect-free MPS onto definite boundary
conditions, with each particular outcome having
probability approximately 1/D2 (see relevant dis-
cussion in Sec. II C).

While this protocol is at face value exceptionally sim-
ple, much of the complexity is hidden in the details of
each step—i.e., the choice of q, the choice of measure-
ment basis (governed by VB), and, most importantly, when
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FIG. 4. The constant-depth preparation of normal MPS using Protocol 1. First, prepare many small MPS in parallel using the
sequential unitary protocol outlined in Sec. II C. In the above, we illustrate the preparation of many single-site MPS for simplicity but
note that “small” more generally refers to a q-site MPS, where q is a constant determined by the pushing relations of the target state.
Next, carry out fusion measurements in the basis defined by VB, corresponding either to a projective measurement if VB is unitary (as
shown above) or, more generally, to an ancilla-aided POVM if VB is an isometry [see Eq. (23)], broadening the set of MPS preparable
with this scheme. In either case, measurement yields the desired target state up to a random defect Bi at each fusion site. Finally,
leveraging knowledge of measurement outcomes and available pushing relations correct defects by applying classically conditioned
unitaries U(i)

B at each site i and B†
0 at the edge, each dependent upon on all measurement outcomes at sites j ≥ i [see Eq. (27)]. Up to

the enforcement of boundary conditions, this constant-depth adaptive quantum circuit exactly and deterministically prepares any target
MPS that satisfies the conditions of Theorem 3.

these choices lead to deterministic preparation of the target
state. Furthermore, the “correct” choices are inextricably
informed by the pushing relations of the target state and,
as such, should be considered on a case-by-case basis.
Nonetheless, general statements concerning certain classes
of MPS can be made. To that end, we first extrapolate on
the close relationship between the map VB and the set of
defects {Bk}.

1. Constraining the defects {Bk}
Closely intertwined with the ability (or lack thereof)

to correct the postmeasurement state is the choice of
measurement basis (or, equivalently, the map VB), which
is in one-to-one correspondence with the set of random
postmeasurement defects {Bk}, where k labels the possi-
ble measurement outcomes (see Sec. II D). The choice of
measurement basis is therefore equivalent to the choice of

defects {Bk}. For example, in our prior work on prepar-
ing the AKLT state [16], these defects correspond to the
2 × 2 Pauli operators {I , X , Y, Z} and VB to a map from the
Bell basis to the two-qubit computational basis. More gen-
erally, we momentarily put aside the question of whether
these defects are correctable for a particular MPS and con-
sider the required properties for a valid basis. To facilitate
this discussion, let us take η to denote the total number of
unique defect types.

First, this measurement basis must define a valid
POVM. Defining the map

VB = D√
η

η∑

k=0

|k〉 〈Bk| , (22)

this imposes the condition V†
BVB = 1. This is naturally sat-

isfied if VB is unitary (in which case, η = D2) but more
generally requires that VB is isometric (corresponding to
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η ≥ D2). This latter case can be accounted for in Fig. 4
with the replacement

,

(23)

where the additional wire represents a p-dimensional ancil-
lary qudit [85] that promotes the isometry VB to a unitary
ṼB = VB ⊗ 〈0| + C⊥ in an enlarged Hilbert space, where
C⊥ is a unitary completion operator. In terms of the defects
{Bk}, this condition implies that they form a (possibly
over-complete) basis for the D × D complex matrices and
requires that the condition

∑

k

(Bk
ij )

∗(Bk
�m) = η

D
δi�δjm (24)

is satisfied, where we have recalled the correspondence
|Bk〉 = (1/

√
D)
∑

ij (B
k
ij )

∗ |ij 〉.
Second, we choose the defects {Bk} to be unitary, a pre-

requisite for the existence of unitary pushing relations.
Interestingly, we note that imposing that the defect basis
{Bk} is unitary is equivalent to the condition that all mea-
surement basis states |Bk〉 are bipartite maximally entan-
gled [86]. Thus, we restrict our possible bases to those of
maximally entangled states.

Finally, it will prove beneficial to endow the defects
with a group structure such that the set {Bk} includes the
“defect-free” identity matrix and is closed under multi-
plication. In particular, we consider bases corresponding
to defects that form a projective representation of a finite
group G, i.e., one that obeys

BgBh = ω(g, h)Bgh, for all g, h ∈ G, (25)

where ω(g, h) is a phase. We note that it is always possible
to choose Bg to be unitary. Further restricting this represen-
tation to be irreducible guarantees that Eq. (24) is satisfied,
as it is exactly equivalent to the grand orthogonality rela-
tion with η = |G| [87]. Therefore, irreducible projective
representations of finite groups provide an ideal defect (and
measurement) basis, satisfying all of the above require-
ments. We specialize to such bases through the remainder
of this work.

As a final general comment on the properties of the
measurement basis, we note that for VB unitary, the
defects are orthogonal under the Hilbert-Schmidt norm,
i.e., Tr

(
Bk†Bk′) = Dδkk′ . In this case, our conditions sim-

plify to those of “nice error bases,” originally introduced
in the context of error correction and shown to be equiva-
lent to unitary irreducible projective representations of the
group G with dimension D = |G|1/2 [88–90]. In this work,

we will explicitly make use of several examples of such
bases, including the 2 × 2 Pauli matrices (which form a
projective representation of Z2 × Z2) and their D × D ana-
logues, the qudit Pauli matrices. The latter are generated by
the clock and shift matrices,

X =
D−1∑

j =0

|j + 1 mod D − 1〉 〈j |

Z =
D−1∑

j =0

e2π ij /D |j 〉 〈j | ,

(26)

and furthermore form a projective representation of ZD ×
ZD. However, we emphasize that for the more general
case in which VB is merely isometric (and not unitary), the
defects will not form an orthogonal basis and, as a result,
our conditions extend beyond nice error bases. While still
parametrized by irreducible projective representations of a
finite group G (as discussed above), this relaxed condition
allows us to decouple the bond dimension D and the group
order |G|, allowing more generally for POVM-defining
bases of D × D unitary matrices, where D ≤ |G|1/2. In
Sec. III C 4, we provide an illustrative example where such
a measurement basis is employed, enabling the constant-
depth preparation of a continuous family of MPS that are
symmetric under the non-Abelian alternating group A4.

2. Conditions for preparing normal MPS

For a particular target state to be deterministically pre-
pared via Protocol 1, we require that any defect from the
set {Bk} is correctable. In practice, this amounts to either
(i) pushing the defect to the edge and acting with an appro-
priate unitary that annihilates it (as in Ref. [16] for the case
of the AKLT state) or (ii) through “local removal,” where
the defect is corrected via a k-local unitary on the physical
level (which can also be viewed as pushing a defect B to
the identity matrix I ).

Combining this logic with the discussion of the
Sec. III A 1 we arrive at the following theorem.

Theorem 3 (Preparation of normal MPS). Let Ā(q) be
the virtual-to-physical map parametrizing a translationally
invariant [91] normal matrix product state |�MPS〉 with
bond dimension D and a blocking parameter q that is
independent of N . Then, |�MPS〉 can be exactly and deter-
ministically prepared by Protocol 1 if for some finite q
there exists a finite group G and a D-dimensional irre-
ducible projective representation Bg thereof such that for
each g ∈ G, there exists an h ∈ G such that [(Bh)T ⊗
Bg , Ā(q)†Ā(q)] = 0.

The proof is a straightforward extension of the results
of the previous sections. For clarity of discussion, we spe-
cialize to the case of q = 1 and note that the proof follows
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analogously for q > 1, albeit with feedforward operations
that are q-local (but still carried out in constant depth).
First, let the fusion-measurement basis correspond to a
D-dimensional irreducible projective representation of G.
Next, let Bg

i denote a defect at the ith fusion site, with g ∈
G. From Theorem 2, the condition [(Bh)T ⊗ Bg , Ā†Ā] = 0
guarantees that, for some choice of gauge, there exists a
physical unitary U(i)

i to push the defect Bg
i through physi-

cal site i, converting it into a defect Bh
i−1 at fusion site i − 1.

Because h ∈ G, this process can be iterated until the defect
is pushed to the edge. In particular, we apply U(j )

i to each
physical site j ≤ i. Crucially, U(j )

i and U(k)
i commute for all

j and k and can therefore be applied in parallel. Likewise,
the removal of defects originating at all N − 1 fusion sites
can be carried out with an O(1) feedforward step by first
classically computing the local unitary,

U(i)
B = U(i)

i U(i)
i+1 . . . U(i)

N−1. (27)

As shown in Fig. 4, we then apply U(i)
B to each physical site

i and the appropriate group element B†
0 at the boundary in

parallel, yielding the exact defect-free target state.
It is worth emphasizing that Theorem 1 provides a

set of conditions that are provably sufficient but not evi-
dently necessary. For example, one might imagine that
there are instances of deterministically preparable states
where defects are pushed between different representations
of the group G or where each defect type requires a differ-
ent blocking parameter q. Separately, the protocol outlined
in Figure 4 can be extended to nontranslationally invariant
states as long as each (possibly blocked) tensor carries the
appropriate pushing relations. We leave such broad possi-
bilities as an avenue for future exploration and here narrow
our focus on states characterized by the comparatively
manageable set of conditions in Theorem 3.

Leaning on the results of Sec. II E, we now state two
corollaries of Theorem 3 that cover specific cases in which
the requisite conditions are guaranteed to be satisfied.

Corollary 1. Any normal MPS with zero correlation
length can be deterministically prepared in constant depth
using Protocol 1.

The proof is a simple extension of Sec. II E 1, where it
has been shown that for some blocking parameter q, uni-
tary pushing relations can be defined for arbitrary unitary
virtual operators O� and Or for MPS with ZCL. In fact,
this scenario allows one to choose O� to be the identity,
enabling the local removal of the defect Or = Bg for all
g ∈ G, regardless of the choice of finite group G. As such,
we can choose the defects according to convenience, with
one option being the D-dimensional qudit Pauli matrices,
which form a representation of ZD × ZD and are generated
by the clock and shift matrices in Eq. (26).

It is important to note that any normal MPS with ZCL
can be prepared in constant depth with a purely unitary
circuit. Still, the adaptive procedure outlined in Protocol 1
may offer advantages for the preparation of such states in,
e.g., linear optical platforms, where native unitary two-
qubit gates are unavailable and entangling operations are
instead carried out using joint measurements. In fact, we
note a close resemblance between the protocol proposed
here and so-called fusion-based quantum computation,
where fusion measurements are used to prepare large clus-
ter states from small resource states [92]. Furthermore, our
protocol is an attractive approach for distributed quantum
hardware, as separate sections of MPS can be prepared
and subsequently fused across multiple local quantum
processing units without a direct link between physical
sites.

Corollary 2. Let |�MPS〉 be a translationally invariant
[93] MPS characterized by global on-site symmetry under
a finite group G. If the action of group elements on the
physical sites manifests as an irreducible representation
on the virtual level, then |�MPS〉 can be deterministically
prepared in constant depth using Protocol 1.

The proof is as follows. As discussed in Sec. II E 2, nor-
mal MPS with on-site symmetry G are endowed with a set
of |G| pushing relations with Or = Vg and O� = V†

g , where
the unitary operators Vg form a projective representation of
G. By virtue of the group axioms, the inverse operations V†

g
are also group elements. Consequently, the defects Bg =
Vg are correctable for all g ∈ G. However, as discussed in
Sec. III A 1, the set {Bg} must also define a POVM. This
condition is satisfied if the group G is finite and the rep-
resentation Vg is irreducible. Thus, states that obey these
conditions satisfy the requirements of Theorem 3.

The conditions of Corollary 2 encompass a variety of
physically interesting nontrivial entangled states that can
be constructed for any bond dimension (see Appendix F).
For instance, if the virtual operators Vg form a projective
representation of G, then the target MPS represents a point
in a nontrivial SPT phase, characterized by elements in the
second cohomology group H2(G, U(1)) [94–96]. States
with SPT order exhibit a number of interesting properties,
such as ground-state degeneracy for open boundary condi-
tions, edge modes, and long-range string order [19,24,95].
Furthermore, SPT order is intimately linked to utility as a
resource for MBQC [38,41,97].

However, Corollary 2 is not strictly limited to states with
SPT order but also encompasses certain entangled states in
the trivial phase with respect to G. This is due to the fact
that the symmetry group G can be either Abelian or non-
Abelian. In the case of Abelian symmetries, irreducibility
of Vg for bond dimension D > 1 necessarily implies that
the representation is projective, as all linear irreducible
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representations of finite Abelian groups are 1D. MPS satis-
fying Corollary 2 with D > 1 and G Abelian are therefore
in a nontrivial SPT phase. In the case of non-Abelian
symmetry, however, linear irreducible representations of
higher dimensions are possible. Consequently, Corollary
2 is also satisfied by certain entangled states in the trivial
phase that are symmetric under a non-Abelian group. We
provide examples of such states in Sec. III C 4, where we
demonstrate the preparation of a continuous family of MPS
symmetric under the non-Abelian alternating group A4. In
addition, we note that these MPS can also be constructed
using the method of Appendix F.

Furthermore, while Corollary 2 at first glance appears
to rule out preparation of MPS with continuous on-site
symmetry, we emphasize that this is not the case. As a
simple counterexample, it has been shown in Ref. [16]
that Protocol 1 can deterministically prepare the SO(3)-
symmetric spin-1 AKLT state. There, the key strategy was
to employ a measurement basis corresponding to a finite
subgroup of SO(3), namely, G = Z2 × Z2 (correspond-
ing to the Bell basis). Thus, the implications of Corollary
2 are not limited to the preparation of MPS within only
finite symmetries; we can also prepare MPS with contin-
uous symmetries, given that there exists a finite subgroup
G with an irreducible projective representation of dimen-
sion D. This strategy is demonstrated for a variety of MPS
with continuous symmetries in Sec. III C, including those
with SU(n), SO(2� + 1), and Sp(2n) symmetry that have
previously been identified as resources states for MBQC
with qudits [39]. See also Appendix F 2 for a tabulation
of the finite subgroups of SU(2), which in turn enable the
constant-depth preparation of SU(2)-symmetric MPS up to
D = 6 (i.e., up to the spin-5/2 representation of SU(2)).

Finally, while Corollaries 1 and 2 provide explicit
classes of normal MPS that can be prepared exactly and
deterministically using Protocol 1, we emphasize that
they by no means fully encompass the states that satisfy
Theorem 3. In Sec. III C 1, we provide an explicit exam-
ple of a family of states that do not fit within either case,
indicating that the complete landscape of MPS that can
be exactly prepared with our scheme is not fully captured
by these two corollaries. A complete classification of such
states, however, is beyond the scope of this work.

B. Non-normal MPS

Though Protocol 1 enables the constant-depth prepa-
ration of a variety of normal MPS, it is comparatively
limited in the case of non-normal MPS. Intuitively, this is
because such states are parametrized by noninjective Kraus
operators Am, placing significant constraints on the set of
“pushable” virtual operators. In turn, this severely com-
plicates (and often outright prohibits) the construction of
a complete measurement basis from entirely correctable
defects. For example, Corollary 2 provides no insight into

the preparation of non-normal MPS with global on-site
symmetry, as such states are characterized by a reducible
representation of the symmetry group [79]. Though cer-
tain non-normal MPS are preparable via Protocol 1 (such
as the set of generalized qudit GHZ states, described in
Sec. III C 6 and, furthermore, playing an important role
in this section), these limitations motivate a preparation
protocol tailored to the block-diagonal structure defining
non-normal MPS.

In this section, we present such a protocol, enabling the
constant-depth preparation of a broad class of long-range
entangled states in constant depth. The overarching strat-
egy is to first “seed” the non-normality of the target state
by preparing a GHZ state of block qudits—i.e., qudits that
encode the block index of the tensor A—and subsequently
apply the general procedure underlying Protocol 1 but now
with each step conditioned on the block index. Similarly to
Protocol 1 for normal MPS, we emphasize that this scheme
cannot prepare arbitrary non-normal MPS but, rather, only
those endowed with particular pushing relations, as will
be discussed. We begin by making several preliminary
comments regarding the features of non-normal MPS that
underpin this strategy.

First, we recall that any non-normal MPS in canoni-
cal form can be expressed as a superposition of normal
ones [66]. At the level of the tensor A that parametrizes
the non-normal MPS, this is reflected in its block-diagonal
structure, A =⊕K−1

α=0 μαAα , where K denotes the total
number of blocks, each Aα independently parametrizes
a normal MPS in left-canonical form, and each μα is a
constant. This decomposition can be used to write

|�〉 =
∑

�m
Tr
(
Am1Am2 . . . AmN X

) | �m〉

=
K−1∑

α=0

∑

�m
(μα)N Tr

(
Am1

α Am2
α . . . AmN

α Xα

) | �m〉 , (28)

where we have decomposed the boundary matrix X =⊕N−1
α=0 Xα according to the block structure of A, leverag-

ing the fact that off-diagonal blocks do not contribute to
the trace and can be neglected. As in the normal case, our
goal is to first prepare the target non-normal MPS with
entangled boundary conditions [Eq. (21)] and subsequently
convert this state into one with a particular boundary
matrix via measurement of edge ancillary qudits.

Second, throughout this section, we will, without loss
of generality, assume each block α to have the same
dimension D̄ such that the total bond dimension is D =
KD̄; if this is not the case, it is always possible to
“inflate” the MPS [96] by mapping Am

α → Am
α ⊗ 1rα×rα

and Dα → rαDα , where rα = lcm(D0, D1, . . . DK−1)/D̄,
where Dα is the (uninflated) dimension of block α. Further-
more, we will assume that μα = 1 for all α, as it is always
possible to absorb μα �= 1 into the desired boundary matrix
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X (for more details, see Appendix B). Employing these
assumptions, Eq. (21) can be cast into the form

|�〉 =
K−1∑

α=0

|�α〉 ⊗ |α〉⊗2 , (29)

where |�α〉 is exactly a normal MPS with entangled
boundary conditions:

|�α〉 =
D̄−1∑

i,j =0

∑

�m
〈i| Am1

α Am2
α . . . AmN

α |j 〉 | �m〉 ⊗ |ij 〉 , (30)

where we have decomposed each D-dimensional ancil-
lary edge qudit into a block qudit of dimension K and a
bond qudit of dimension D̄. The former encodes the block
index α, while the latter encodes the intrablock boundary
conditions for each normal MPS |�α〉.

This decomposed form of |�〉 motivates the follow-
ing preparation strategy. First, prepare a pair of block
qudits in the Bell state |φ〉 = (1/

√
K)
∑K−1

α=0 |αα〉. Then,
for each block-qudit state |α〉, conditionally prepare the
normal MPS |�α〉 using Protocol 1. This indeed results
in the target state and is the essence of our strategy,
but with one important modification—to enable constant-
depth preparation with local unitary gates, we elevate the
aforementioned Bell state to a GHZ state of N + 2 qudits,
such that block information is “distributed” across the N
MPS sites, providing local access to the block index α.
Crucially, this initial GHZ state can be prepared in constant
depth with adaptive circuits via Protocol 1 (see Sec. III C 6)
or through other known measurement-based approaches
[48], ensuring that our overall protocol can be realized with
a constant-depth adaptive quantum circuit.

With these ingredients in hand, we now formally outline
our protocol (see also Fig. 5). Similarly to Protocol 1, we
use n to denote the number of small MPS prepared in par-
allel, each with q sites. N = nq denotes the length of the
final MPS. In all, this strategy requires 2n D̄-dimensional
bond qudits [98], N + 2 K-dimensional block qudits, and
N d-dimensional physical qudits.

Protocol 2: Non-normal MPS

(1) Prepare N + 2 qudits of dimension K in the gener-
alized GHZ state,

|GHZ〉 = 1√
K

K−1∑

α=0

|α〉⊗N+2 . (31)

This can be achieved in constant depth using
Protocol 1 or other measurement-based schemes
(see Sec. III C 6). In the following steps, this long-
range entangled state is used to (locally) enact

block-conditional operations, where the operation
carried out depends on the block index α.

(2) Block-conditionally prepare n q-site copies of the
MPS parametrized by the tensor block Aα . In par-
ticular, employ the strategy of Sec. II C using D̄-
dimensional bond qudits [99] and condition all oper-
ations on the block index α encoded in a block
qudit.

(3) Employ fusion measurements on all nonedge pairs
of bond qudits, projecting each into a maximally
entangled state. In general, the measurement basis
can be made block specific by conditioning the pre-
measurement isometry VB on the block index. This
produces an N -site MPS with α-conditioned random
defects at each fusion site.

(4) Leveraging the unitary pushing relations specific
to each intrablock tensor Aα , remove all block-
conditional defects using a O(1)-depth layer of
block-conditional feedforward operations.

(5) Disentangle all nonedge block qudits by measuring
each in the (qudit) Pauli-X basis. Using feedfor-
ward, remove the outcome-dependent phase via a
phase gate U†

ϕ applied to an edge block qudit (for
details, see Appendix B).

(6) Measure the remaining edge bond and block qudits
to collapse the defect-free MPS onto definite bound-
ary conditions as in Protocol 1, with each particular
outcome having probability approximately K/D2

[100].

Similarly to Protocol 1, α-conditional projective mea-
surement can be generalized to an α-conditional POVM
through the replacement

,

(32)

where the additional wire corresponds to a p-dimensional
ancilla. Furthermore, this protocol can be simplified in
many cases of interest. In particular, if each block is
endowed with pushing relations for the same group G,
then we can choose a gauge where each block carries the
same irreducible representation such that isometry VB does
not need not be α-conditioned, simplifying step (3) of the
protocol.

1. Conditions for preparing non-normal MPS

We now turn to the question of when Protocol 2 can
deterministically prepare a particular non-normal MPS in
constant depth (up to boundary conditions). Viewing non-
normal MPS through the lens of its decomposition into
normal MPS, we arrive at the following theorem.
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FIG. 5. The constant-depth preparation of non-normal MPS using Protocol 2. First, prepare a GHZ state of K-dimensional block
qudits to encode the block index α. Next, follow the steps of Protocol 1 with each operation locally conditioned on a block qudit. As in
the case of normal MPS, here we illustrate the preparation and fusion of many single-site (block-conditioned) MPS but more generally
allow for small MPS of a constant number of sites q. In addition, the block-conditional fusion measurements can be generalized from
a projective measurement (as shown) to an ancilla-aided POVM [see Eq. (32)]. After correcting defects, all nonedge block qudits are
deterministically disentangled using measurements and feedforward (see Appendix B). Up to the enforcement of boundary conditions,
this constant-depth adaptive quantum circuit exactly and deterministically prepares any non-normal MPS that satisfies the conditions
of Theorem 4.

Theorem 4. Let |�MPS〉 be a non-normal MPS in canon-
ical form and let |�〉 =∑K−1

α=0 cα |�α〉 be its decomposi-
tion, where each state |�α〉 is a normal MPS. Then, |�MPS〉
can be exactly and deterministically prepared by Protocol 2
if each composing normal MPS |�α〉 satisfies Theorem 3.

The proof is self-evident from the design of Proto-
col 2 and the conditions of Theorem 3. Naturally, the
above theorem guarantees the ability for constant-depth
preparation of any non-normal MPS constructed from nor-
mal MPS satisfying (but not limited to) Corollaries 1
and 2, and mixtures thereof. Furthermore, it enables the

constant-depth preparation of the symmetry-broken states
previously discussed in Sec. II E 2 when the subgroup H ≤
G is finite and its representation Vh(g, α) is irreducible
[see Eq. (16)]. We provide an example of such a state in
Sec. III C 8.

In the particular scenario in which periodic boundary
conditions are enforced and all |�α〉 satisfy Corollary 1,
the state |�MPS〉 corresponds to a fixed point of the
renormalization procedure introduced in [82]. It has pre-
viously been shown that such states can be prepared
using constant-depth quantum circuits augmented with
midcircuit measurements and feedforward operations [48].
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Furthermore, in Ref. [65], it has recently been demon-
strated that the fixed point of any non-normal phase pro-
tected by finite Abelian symmetry can be prepared using a
constant-depth circuit composed of local unitaries, mea-
surements, and feedforward operations that all preserve
the symmetry. We note that the procedure employed in
Ref. [65] bears similarity to our Protocol 2, though with a
measurement strategy that fuses both GHZ and intrablock
components in parallel and that is tailored to fixed-point
states exhibiting symmetries of the form in Eq. (16). In
contrast, the scope of our protocol encompasses both fixed-
point and non-fixed-point states with nonzero correlation
length. Furthermore, it places no restriction on the relation-
ship between the normal MPS |�α〉 in different blocks and
thus extends beyond symmetry-broken states (see, e.g., the
Majumdar-Ghosh states in Sec. III C 7).

C. Examples

In this section, we provide a number of concrete exam-
ples to illustrate the diversity of states that are preparable
in constant depth with our scheme. As summarized in
Table I, these examples include families of MPS with dis-
crete and continuous symmetries, symmetry-broken states,
MPS with non-Abelian symmetry, and resource states for
MBQC. We also address the possibility of using our pro-
tocols to sample MPS. Namely, we discuss the constant-
depth preparation of random MPS and additionally present
a procedure to randomly sample from a nontrivial SPT
phase. For each example, we state the pushing relations
and measurement basis that enables constant-depth prepa-
ration. Except where clarity is needed, we employ a sim-
plified notation for pushing relations, omitting the red
diamonds and gray boxes enclosing defects and physical
unitaries used throughout this work.

We emphasize that the selected examples are nonex-
haustive and have primarily been chosen to demonstrate
the variety of physically interesting states that can be
prepared in constant depth. In fact, it is possible to system-
atically construct parametrized families of preparable MPS

TABLE I. A list of the examples presented in Sec. III C.

Category Example Section

Normal Z2-symmetric family III C 1
The AKLT state III C 2
SU(3) symmetry III C 3
A4-symmetric family III C 4
SU(n), SO(2� + 1), and Sp(2n) III C 5

Non-normal GHZ states III C 6
Majumdar-Ghosh states III C 7
Z4 × Z2 symmetry-broken III C 8

Sampling Random MPS III C 9
Haldane phase III C 10

for any bond dimension. We present such a construction
method in Appendix F.

1. Z2-symmetric family

We begin with the Z2-symmetric family of MPS of
physical dimension d = 2 and bond dimension D = 2,
first introduced in Ref. [101]. It encompasses a set of
parametrized states with a continuously “tunable” correla-
tion length, interpolating between the cluster state (which
has ZCL) and the GHZ state (which has long-range cor-
relations). As such, it is an illustrative case study for our
framework, as its primary advantage is in its ability to
spread correlations across N sites in constant time, an
impossible feat with unitary resources alone.

Previously, it has been shown that this family of states
can be approximately prepared in O(polylog(N )) time
using an adiabatic scheme [14] and in O(log(N/ε)) depth
with error ε using a circuit-based approach [15]. Fur-
thermore, the latter reference has demonstrated that this
depth can be further reduced to O(log log(N/ε)) by aug-
menting a unitary circuit with measurements and feedfor-
ward to synthesize all-to-all connectivity. In all of these
approaches, the nonzero correlation length of the state
presents an unavoidable bottleneck and, consequently,
there is a trade-off between precision and preparation time.
However, as initially shown in Ref. [102], this trade-off can
be altogether evaded by leveraging midcircuit measure-
ments and feedforward, enabling an exact constant-depth
preparation. Here, we leverage the MPS representation of
this family to demonstrate its preparation using Protocol 1.

This family of states |�(g)〉 is parametrized by the
matrices

A0 = η

(
1 0√−g 0

)
, A1 = η

(
0 −√−g
0 1

)
, (33)

where η = 1/
√

1 + |g|. We note that the above form
of A0 and A1 differs slightly from that of Ref. [101]
as we have cast the matrices into left-canonical form,∑

m Am†Am = 1. As previously mentioned, |�(g)〉 cap-
tures both the zero-correlation-length cluster state (g =
−1) and the long-range correlated GHZ state (g = 0).
More broadly, |�(g)〉 has a correlation length that inter-
polates these two extremes,

ξ =
∣∣∣∣ln
(

1 + g
1 − g

)∣∣∣∣
−1

. (34)

Furthermore, it is a normal MPS for all g except at the
“critical point,” g = 0.
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Independent of the parameter g, the tensor A obeys the
pushing relations

,

(35a)

,

(35b)

where X , Y, and Z are Pauli operators. These pushing rela-
tions are “complete” in the sense that measurement in the
Bell basis is guaranteed to yield a pushable defect. Con-
sequently, |�(g)〉 satisfies all requirements of Theorem 3
and can be exactly prepared in constant depth, independent
of g and, by extension, ξ .

As a final remark on this family of states, we note that it
does not fall under the specifications of either Corollary
1 or Corollary 2 for general g and, as such, provides a
concrete example that shows these corollaries to be nonex-
haustive. In particular, Eq. (35a) is a manifestation of the
Z2 symmetry, yet with a reducible representation {V0 =
I , V1 = Y} on the virtual level. However, Z defects can
be removed “locally” via Eq. (35b), enabling us to form
a complete measurement basis without the irreducibility
constraint of Corollary 1.

2. The AKLT state

The spin-1 AKLT state is a historically important
instance of a matrix product state [66,103] and additionally
serves as a paradigmatic example of SPT order [104]. Due
to the latter feature, it exhibits a number of exotic prop-
erties, such as long-range string order and fractionalized
edge modes [24,105,106]. Furthermore, not unrelated to its
SPT order, the AKLT state is a resource for measurement-
based quantum computation and quantum teleportation
[37,107].

The AKLT state can be exactly expressed as an MPS
with bond dimension D = 2 and physical dimension d =
3. It is parametrized by the matrices

A+ =
√

2
3
σ+, A− = −

√
2
3
σ−, A0 = −

√
1
3

Z, (36)

where σ± = (X ± iY)/2. As the AKLT state has a nonzero
correlation length, it cannot be prepared exactly by
a constant-depth unitary quantum circuit. However, as
shown in Ref. [16]—the precursor to this work—it can be
exactly prepared via Protocol 1.

Enabling this preparation is the SO(3) ∼= SU(2)/Z2
symmetry of the AKLT state, which provides a continuous

family of pushing relations,

,

(37)

where the Ug (Vg) form a linear (projective) representa-
tion of SO(3). However, the full SO(3) symmetry is not
required for preparation—in Ref. [16], measurements have
been carried out in the Bell basis, corresponding to a
selection of defects B ∈ {X , Y, Z, I} that form a projective
representation of Z2 × Z2 ⊂ SO(3). Thus, this example
illustrates the previously alluded-to strategy of preparing
states with continuous symmetries by choosing a mea-
surement basis in correspondence with a D-dimensional
irreducible representation of a finite subgroup of the full
continuous symmetry. For more details, see Ref. [16],
which additionally includes experimental demonstrations
carried out on an IBM Quantum processor.

3. SU(3) symmetry

As an illustrative example of an MPS with D > 2, we
now consider a spin-1 state with global on-site SO(3)

symmetry. First constructed in Ref. [79], this state is
parametrized by

A+ = 1√
2

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ , A− = 1√
2

⎛

⎝
0 0 0

−1 0 0
0 −1 0

⎞

⎠ ,

A0 = 1√
2

⎛

⎝
1 0 0
0 0 0
0 0 −1

⎞

⎠ . (38)

As the virtual degrees of freedom carry a linear (spin-1)
representation of SO(3), this state is in the trivial phase
with respect to this symmetry. However, in Ref. [108] it
has been shown that the edge modes carry a representation
of SU(3), revealing an underlying SPT order with respect
to this symmetry and exhibiting a number of exotic prop-
erties as a consequence, such as edges that carry conjugate
representations (i.e., quark and antiquark edge states).

Separate from the “single-site” SO(3) pushing relations,
this enlarged SU(3) symmetry gives rise to a continuous
set of pushing relations after blocking q = 2 sites:

,

(39)

where the Ug (Vg) form a linear (projective) representa-
tion of SU(3). We have used a gray box to indicate that
the physical unitary Ug is applied to pairs of physical sites.
As with the AKLT state, we can prepare this MPS by first
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identifying a set of defects Bk ∈ SU(3) that form an irre-
ducible representation of a finite group. To that end, we
choose the 3 × 3 qudit Pauli matrices,

B(i,j ) = X iZj , (40)

where Z and X are the clock and shift matrices defined in
Eq. (26). This set of defects forms an irreducible projective
representation of Z3 × Z3 and provides a natural extension
of the Bell basis to qutrits [109]. Furthermore, it satisfies
Theorem 3 for the choice q = 2 and this MPS is therefore
preparable in constant depth.

4. The A4-symmetric family

Next, we consider a d = 3, D = 3 family of normal
MPS with global on-site symmetry under the non-Abelian
alternating group A4, constructed using the technique out-
lined in Appendix F. This class of states provides an
explicit example of the case D <

√|G| which, as dis-
cussed in Sec. III A 1, is handled by replacing the pro-
jective fusion-measurement scheme with a more general
(ancilla-aided) POVM—see Eq. (24).

Denoting this family by |�(θ , φ)〉, it can be exactly
expressed as an MPS parametrized by the matrices

A+= 1√
2

⎛

⎝
0 u 0
v 0 u
0 −v 0

⎞

⎠ , A−= 1√
2

⎛

⎝
0 v 0

−u 0 −v

0 −u 0

⎞

⎠ ,

A0 = 1√
2

⎛

⎝
u 0 −v

0 0 0
v 0 −u

⎞

⎠ , (41)

where we have adopted the shorthand u = [cos(θ/2) +
eiφ sin(θ/2)]/

√
2 and v = [cos(θ/2) − eiφ sin(θ/2)]/

√
2.

Notably, the faithful unitary preparation of |�(θ , φ)〉
requires at minimum a log-depth circuit, as it has nonzero
correlation length for all θ and φ,

ξ = −1/ ln
(

1
2

√
1 + 3 cos2 θ

)
. (42)

In contrast, this family of states can be prepared exactly
with Protocol 1 by leveraging the on-site symmetry. In par-
ticular, |�(θ , φ)〉 is endowed with pushing relations of the
usual form,

,

(43)

where Vg and Ug both form an irreducible linear repre-
sentation of A4. Therefore, Theorem 3 is satisfied by way
of Corollary 2. More specifically, A4 has the presentation

〈
x, y|x2 = y3 = e, yxy = xy2

〉
. For the virtual representa-

tion Vg , the generators x and y take the form

Vx =
⎛

⎝
0 0 −1
0 −1 0

−1 0 0

⎞

⎠ ,

Vy = 1√
2

⎛

⎝
i/

√
2 1 −i/

√
2

−i 0 −i
i/

√
2 −1 −i/

√
2

⎞

⎠ . (44)

This same representation parametrizes the physical uni-
taries Ug . In contrast to previous examples, |�(θ , φ)〉
is in the trivial phase with respect to the A4 symme-
try, as the virtual operators Vg form a linear representa-
tion. In total, there are |A4| = 12 unique defects. Because
|A4| > D2 = 9, fusion measurements for this defect basis
require an ancilla-aided POVM [see Eq. (23)]. Specif-
ically, this leverages an ancillary qudit of dimension
lcm(12, 9)/9 = 4.

Finally, we note that this family of states includes the
SO(3)-symmetric state discussed in Sec. III C 3, corre-
sponding to |�(π/2, 0)〉. This is due to the fact that A4
is a subgroup of SO(3). As a result, |�(π/2, 0)〉 can be
prepared either by first preparing many two-site MPS and
employing a fusion-measurement basis derived from a pro-
jective irrep of Z3 × Z3 (as in Sec. III C 3) or by preparing
many single-site MPS and relying on a linear irrep of A4
(as shown here). This demonstrates that for certain tar-
get states, there is flexibility in how one leverages pushing
relations for constant-depth preparation.

5. MBQC resource states with higher symmetries

Each of the previous examples concerns the prepara-
tion of MPS with a small bond dimension D ≤ 3. We
emphasize, however, that our scheme is also capable of
preparing states with higher bond dimensions. This gen-
erally requires that the target state is symmetric under a
large symmetry group, as the correction of η ≥ D2 unique
random defects necessitates a commensurate number of
pushing relations. As an illustration of this principle, we
consider a class of states with higher-symmetry SPT orders
studied in Ref. [39]. In particular, it has been shown that
AKLT-type states with SU(n), SO(2� + 1), and Sp(2n)

symmetry can be used as resource states for MBQC. In
contrast to the SO(3)-symmetric spin-1 AKLT state, which
encodes a single logical qubit for MBQC, its higher-
symmetry variants encode either a single n-dimensional
qudit (in the case of SU(n) symmetry) or many qubits (in
the case of SO(2� + 1) and Sp(2n) symmetries) (for a rel-
evant discussion on SO(n)- and SU(n)-symmetric general-
izations of the spin-1 AKLT state, see also Refs. [110,111]
and Refs. [112,113]).

We refer to Ref. [39] for the explicit form of these MPS.
Here, we remark that each is characterized by a suite of
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TABLE II. Generalizations of the spin-1 AKLT state with
SU(n), SO(2� + 1), and Sp(2n) symmetries constructed in
Ref. [39]. All can be prepared in constant depth using Protocol 1.
We tabulate the physical dimension d, the bond dimension D,
and the appropriate measurement basis Bk for each case. The lat-
ter property is reported in terms of the relevant finite subgroup
for which the defects {Bk} form a projective irrep, where Zn is
the cyclic group of order n and Dn is the dihedral group of order
2n (for more details, see Appendix E).

SU(n) SO(2� + 1) Sp(2n)

d n2 − 1 2� + 1 or �(2� + 1) n(2n + 1)

D n 2� 2n
Bk Zn × Zn (Z2 × Z2)

�
Z2 × Zn × Dn

pushing relations analogous to those of the AKLT state
[Eq. (37)], with Vg and Ug both forming an irrep of either
SU(n), SO(2� + 1), or Sp(2n). As with the spin-1 AKLT
state, our strategy for preparation is to identify a subset of
defects that form a (projective) irrep of a finite subgroup.
We list these subgroups in Table II and, furthermore, pro-
vide an explicit representation of each in Appendix E. See
also the similar Table I in Ref. [39], which lists the relevant
properties of each MPS family for MBQC. In all cases,
the provided basis satisfies the constraints of Corollary 2,
enabling the exact constant-depth preparation of this large
class of resource states via Protocol 1.

6. Generalized qudit GHZ states

Turning to the preparation of non-normal MPS, we
begin with the d-dimensional qudit GHZ state of the form
|�〉 = (1/

√
d)
∑d−1

j =0 eiφj |j 〉⊗N . As discussed in Sec. III B,
this state plays a pivotal role in Protocol 2, providing an
initial “seed” for the preparation of non-normal MPS. Fur-
thermore, the preparation of GHZ-like states is an impor-
tant task in its own right, lending itself to applications such
as quantum secret sharing [114] and quantum metrology
[115]. While the measurement-based preparation of GHZ-
like qudit states has been previously explored [15,48], here
we illustrate the integration of this example into our uni-
fied framework for preparing MPS with measurements and
feedforward.

For simplicity, we focus on the case φj = 0 for all j but
note that our discussion extends to the more general form.
The state |�〉 can be cast as an MPS of bond dimension
D = d, described by the tensor A with elements

Am
ij = δij δim. (45)

Importantly, |�〉 is symmetric under any globally applied
on-site permutation operator, including powers of the D-
dimensional shift operator X defined in Eq. (26). Further-
more, any diagonal operator (including powers of the clock
operator Z) can be “locally” removed from the virtual

level. As a result, the tensor A obeys the pushing relations

,

(46a)

,

(46b)

which, in turn, generate D2 pushing relations for the
defects B(i,j ) = X iZj . As these defects form a projec-
tive irreducible representation of ZD × ZD, Theorem 3 is
satisfied and |�〉 can be prepared via Protocol 1.

We note that for the task of preparing GHZ states,
Protocol 1 is not optimal, as other measurement-based
approaches (see, e.g., Ref. [48]) require fewer ancillas.
This is due to the fact that generalized Bell measurements
involve the determination of both XX and ZZ, such that
two “dits” of information are learned, requiring two ancil-
lary bond qudits at each fusion site. However, due to the
special form of A, the XX information (which produces
defects of the form Zk) is not needed for fusion and one can
alternatively measure ZZ alone (for relevant experiments
that prepare the d = 2 GHZ state, see, e.g., Refs. [63,116]).
One can view this strategy as a variant of Protocol 1 in
which the defects are not matrices but rank-3 tensors with
a “residual” physical leg of dimension d (encoding the XX
information). It can be shown that these defect tensors are
equivalent to A up to a random (correctable) permutation
matrix on a virtual leg, enabling the preparation of GHZ-
like states with only one d-dimensional ancilla per fusion
site.

7. Majumdar-Ghosh states

Next, we provide a simple example of non-normal MPS
that can be prepared in constant depth with Protocol 2. In
particular, we consider the paradigmatic Majumdar-Ghosh
(MG) state [117] and its higher-spin generalizations [118].
The former describes the exact (degenerate) ground state
of a spin-1/2 Heisenberg chain with nearest- and next-
nearest-neighbor interactions. A precursor to the AKLT
state, the MG state and its parent Hamiltonian have played
a historically important role toward the understanding of
gapped spin chains with continuous SU(2) symmetry. Fur-
thermore, this state can be exactly expressed as an MPS
with d = 2, D = 3, and matrices

A0 =
⎛

⎝
0 1 0
0 0 0
1√
2

0 0

⎞

⎠ , A1 =
⎛

⎝
0 0 1

− 1√
2

0 0
0 0 0

⎞

⎠ . (47)

The MG state is both non-normal and two-periodic [12].
To handle the latter property, we block pairs of sites and
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additionally transform the physical index into a convenient
basis, yielding

Ãm =
(

δm0 0
0 −Pm/2

)
, (48)

where Pm denotes a 2 × 2 Pauli matrix, with m ∈
{0, 1, 2, 3} corresponding to Pm ∈ {I , X , Y, Z}, respectively.
Importantly, each Ãm is expressed in terms of K = 2
blocks, allowing us to make the decomposition Ã = Ã0 ⊕
Ã1, with Ãm

0 = δm0 and Ãm
1 = −Pm/2. As each block has

a different bond dimension, we inflate Ã0 (i.e., replace it
by Ã0 → I ⊗ δm0) such that Dα = D̄ = 2 for α = {0, 1}.
Crucially, each intrablock tensor Ãα parametrizes a normal
MPS.

With these preliminaries established, we now describe
the preparation of this state using Protocol 2. First, we
prepare a GHZ state composed of N + 2 block qudits of
dimension K = 2. Following this, each block of the tar-
get MPS is prepared by block-conditionally applying the
steps of Protocol 1 using bond (physical) qudits of dimen-
sion D̄ = 2 (d = 2) and a blocking parameter of q = 2.
Notably, each intrablock MPS has zero correlation length
and arbitrary defects can therefore be corrected without
reliance on the SU(2)-symmetry of the state. For exam-
ple, we can apply fusion measurements in the standard
Bell basis, leading to 2 × 2 Pauli defects that can be
(locally) removed via block-conditioned feedforward oper-
ations applied to the physical qubits. Consequently, the
Majumdar-Ghosh state satisfies Theorem 4 by virtue of
Corollary 1 and can be prepared in constant depth.

As discussed in Sec. II E 2, MPS with on-site symmetry
are characterized by representations of the symmetry that
manifest on the physical and virtual level. In the above
example, we have focused on the standard Majumdar-
Ghosh state, characterized by spin-j representations of
SU(2) with jphys = 1

2 and jvirtual = 0 ⊕ 1
2 . However, the

physical and virtual representations of SU(2) can be gener-
alized to jphys = s, jvirtual = 0 ⊕ s for arbitrary s, resulting
in a family of fully dimerized states known as general-
ized Majumdar-Ghosh states [118]; all can be prepared via
Protocol 2 (for relevant discussion pertaining to the con-
struction of general MPS with SU(2) symmetry, see also
Ref. [79]).

8. Z4 × Z2 → Z2 × Z2 symmetry breaking

Next, we turn to an illustrative example that highlights
the utility of Protocol 2 for preparing nontrivial symmetry-
broken states. In particular, we leverage recent results from
Ref. [65], where a classification of the phases of non-
normal MPS under G = Z4 × Z2 symmetry has been pre-
sented. Furthermore, it has been shown that the fixed points
of these phases can be prepared in constant time using
symmetric local unitaries, measurements, and feedforward

operations. Here, we turn to the preparation of an explicit
non-fixed-point MPS belonging to one of these phases,
constructed using the technique described in Appendix F.
In particular, we consider the symmetry-broken phase that
preserves the subgroup H = 2Z2 × Z2 ≤ G and narrow
our focus to a d = 3, D = 4 non-normal MPS in this phase.
This state, which we denote by |�SB〉, is parametrized by
the matrices

A+ =
√

2
3

(
σ+ 0
0 iσ−

)
, A− = −

√
2
3

(
σ− 0
0 iσ+

)
,

A0 = −
√

1
3

(
Z 0
0 Z

)
. (49)

Interestingly, the upper block of this MPS corresponds
exactly to the matrices of the AKLT state (see Sec. III C 2).
The same is true for the lower block up to a unitary
transformation on the physical spin-1 degree of freedom.
Similarly to the AKLT state, |�SB〉 is characterized by
a nontrivial hidden antiferromagnetic ordering, where +
and − alternate with any number of intermediate sites in
the 0 state [16,105]. Distinct from the AKLT state, how-
ever, |�SB〉 has an additional intriguing property that is due
to the relative phase between each block. Assuming peri-
odic boundary conditions and denoting the normal MPS
of block α by |�α〉, the parity of total “+−” pairs is
conserved across all allowed configurations in the non-
normal MPS |�(±)

SB 〉 = [|�0〉 ± |�1〉]/
√

2. Specifically, the
state |�(+)

SB 〉 includes only configurations with even pairs,
while |�(−)

SB 〉 contains only those with odd pairs. Thus, one
must acquire nonlocal information in order to distinguish
between these two states.

The Z4 × Z2 symmetry of this non-normal MPS mani-
fests on the virtual level via the projective representation
[65]

V(a,b) =
(

X bZ�a/2� 0
0 X bZ�(a+1)/2�

) (
X a ⊗ 1

)
, (50)

where a ∈ {0, 1, 2, 3} and b ∈ {0, 1}. Here, the intrablock
operators, written in terms of 2 × 2 Pauli matrices X
and Z, form an irreducible projective representation of
H = 2Z2 × Z2. While we do not write them out here, for
each g = (a, b) ∈ G, there exists a corresponding symme-
try operation Ug on the physical level; together, they form
a linear representation of G. As discussed in Sec. III B, for
g /∈ H (i.e., for odd a), Ug induces a permutation between
the symmetry-broken states within each block. On the vir-
tual level, this is carried out by the operator P̃g = (X a ⊗ 1)

on the right-hand side of Eq. (50).
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Graphically, we can represent this symmetry action as a
set of |G| pushing relations of the form

,

(51)

where Vh(g,α) = X bZ�(a+α)/2� and Pg = X a for g = (a, b).
As the virtual operators Vh form an irreducible projective
representation of the finite group H , this indicates that the
normal MPS within each block α can be prepared via Pro-
tocol 1—an unsurprising statement, as each is equivalent
to an AKLT state up to a local unitary transformation. This
then guarantees that, by way of Theorem 4, the non-normal
MPS |�SB〉 can be prepared using Protocol 2 (with D̄ = 2
and K = 2).

The only remaining missing component for Protocol 2
is a set of block-controlled operator-pushing relations. In
general, such relations can be derived by following the
procedure outlined in Sec. II E 2 and Appendix B. How-
ever, this is unnecessary in the present case—due to the
simplicity of that target state |�SB〉, all defects can be cor-
rected without relying on block-conditional operations. To
see this, we first note that both of the normal MPS underly-
ing |�SB〉 carry the same representation of H . As a result,
it is not necessary to block-control the measurement basis
in step (3) of Protocol 2 and both blocks will share the
same defect after fusion measurements. We can then cor-
rect these defects by simply picking out the |H | pushing
relations from Eq. (51), for which there is no permutation
action. This leads to a set of |H | pushing relations that are
block independent:

,

(52)

Thus, the only component of Protocol 2 that requires
a block-controlled operation is the initial preparation of
small MPS in step (2). In general, such drastic simplifica-
tion is not possible, particularly for MPS with non-Abelian
symmetries or those constructed from normal MPS that are
unrelated by symmetry—cases that can be handled by the
more general form of Protocol 2.

9. Random MPS

We now explore a compelling application of our pro-
tocol: the preparation of random matrix product states
(RMPS). RMPS have proven a useful concept in vari-
ous contexts, including statistical quantum physics [119,
120] and tensor-network-based machine learning [121,

122]. Furthermore, it has recently been shown that, on
average, RMPS are highly magical—i.e., their nonsta-
bilizerness generically grows exponentially with system
size [123]—and there has been increased interest in their
properties and utility as a result [124,125]. Consequently,
finding an efficient scheme to prepare RMPS is not only
pertinent to the aforementioned applications but would
additionally enable the rapid generation of useful quantum
resources. To that end, we now show that our fusion-based
strategy provides such a scheme, enabling the preparation
of RMPS in constant time.

We first recall the unitary embedding illustrated in
Fig. 2(a) and reproduced here for convenience:

,

(53)

where the subscript [i] denotes the ith site. Due to the
above relation, an MPS can be parametrized either in terms
of the rank-3 tensors A[i] or the embedding unitaries U[i].
RMPS are typically defined in terms of the latter: for each
site i, we randomly sample U[i] ∈ U(dD), where U(dD)

is the Haar measure for dD × dD unitary matrices, with
d and D the physical and bond dimensions of the MPS,
respectively.

Our strategy to prepare RMPS is simple—we follow the
first few steps of Protocol 1, beginning with the preparation
of small RMPS and following with fusion measurements
in a basis of maximally entangled states (such as the gen-
eralized Bell basis, yielding D × D qudit Pauli defects).
In contrast to the scenario in which we wish to prepare
a particular MPS, however, it is not necessary to cor-
rect the defects: if U is a Haar-random unitary and B any
unitary, then UB is itself a Haar-random unitary by the
translational invariance of the Haar measure [126]. Conse-
quently, one can just “absorb” random defects into adjacent
sites and measure the dangling edge bond qudits to project
into definite boundary conditions. The resulting state is an
RMPS.

Finally, we note that the above strategy can be gen-
eralized for the constant-depth preparation of higher-
dimensional random tensor-network states, which have
found applications toward the study of holography [127]
and entanglement phase transitions [128,129].

10. Random sampling from an SPT phase

Our strategy for preparing RMPS can be incorporated
into other MPS sampling protocols, such as from a non-
trivial SPT phase. As an example, consider the spin-1
Haldane phase. Away from the AKLT point, it has been
shown that the MPS tensors factorize into protected and
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junk subsystems [38]:

Am = Am
AKLT ⊗ Am

junk. (54)

Here, Am
AKLT denotes the 2 × 2 matrices of the AKLT state

and encodes the subsystem protected by Z2 × Z2 symme-
try. Separately, the matrices Am

junk encode the junk space,
within which the symmetry acts trivially (i.e., the virtual
operators decompose into trivial representations of Z2 ×
Z2). Then, defects are correctable within the protected
subspace but not within the junk space. As a result, we
cannot deterministically prepare an arbitrary MPS within
the Haldane phase using Protocol 1. Instead, we can adapt
our scheme to randomly sample from the Haldane phase
by (i) choosing the matrices Am

junk at random, (ii) choos-
ing a fusion-measurement basis with defects that factor-
ize as Bg,k = Vg ⊗ Bjunk, where the operator Vg form an
irreducible projective representation of Z2 × Z2, and (iii)
correcting (absorbing) defects within the protected (junk)
subspace. Though this scheme cannot guarantee transla-
tional invariance, the Haldane phase does not require this
symmetry to be respected. The extension of this sam-
pling strategy to other SPT and non-normal phases is an
interesting direction for future exploration.

IV. CONCLUSIONS

In this work, we have introduced a framework for the
exact preparation of certain MPS using constant-depth
adaptive quantum circuits. Building upon the protocol
introduced in Ref. [16] to prepare the AKLT state, this
framework relies on an extremely simple concept—using
measurements to fuse together small MPS prepared in par-
allel and subsequently employing feedforward operations
to correct random defects in the postmeasurement state.
Leveraging this strategy, we have presented two explicit
preparation protocols: one for normal MPS with short-
range correlations and another for non-normal MPS with
GHZ-like long-range correlations. Despite their reliance
on nonunitary resources, we have shown that for target
states with certain well-defined properties, both protocols
are deterministic in the bulk (i.e., up to a probabilistic
selection of boundary conditions), thus enabling the exact
preparation of a broad set of physically interesting non-
trivial entangled states in a time independent of system
size.

Notably, this constitutes a significant (i.e., superexpo-
nential) improvement in preparation time over exact linear-
depth [11] and approximate log-depth [15] circuit-based
protocols to prepare MPS, while incurring only a constant
factor in total qudit count. Of course, it also requires mid-
circuit measurements and feedforward operations, capabil-
ities that are supported on several available cloud-based
quantum computing platforms [53,54]. Perhaps most inter-
esting is the fact that the class of states preparable with our

scheme encompasses instances of MPS with either nonzero
correlation length and/or long-range correlations—both
scenarios for which faithful constant-depth preparation is
provably impossible with local unitary gates alone [9,15,
47]. Thus, our approach not only provides a significant
speedup over existing protocols for preparing a variety
of physically interesting MPS but, more generally, under-
scores a key advantage of adaptive quantum circuits over
their unitary counterpart: the ability to prepare nonlocal
quantum correlations in constant time.

It is important to emphasize that our scheme does not
enable the preparation of arbitrary MPS in constant time
but is instead limited to certain target states that are
endowed with particular “pushing relations”—a key con-
cept that we leverage to correct random postmeasurement
defects. In that vein, we have presented a set of sufficient
and easily verifiable conditions for particular MPS to be
prepared in constant depth via our framework. Further-
more, we have delved into special cases that guarantee
these conditions, including (i) fixed-point MPS with zero
correlation length and (ii) MPS with global on-site sym-
metry. While it has previously been shown that the former
class can be prepared in constant depth using measure-
ments and feedforward [48,65], preparation of the latter
class constitutes one of our key results.

In particular, we have shown that independent of cor-
relation length, any normal MPS with global on-site sym-
metry can be exactly prepared in constant depth via our
scheme, as long as that symmetry manifests as an irre-
ducible representation on the virtual level and is finite
(or, alternatively, has a finite subgroup). Furthermore, we
have demonstrated that it is possible to construct prepara-
ble non-normal MPS by taking arbitrary superpositions of
preparable normal MPS. Altogether, this indicates that, for
any bond dimension, there exist broad families of both nor-
mal and non-normal MPS with on-site symmetries that can
be prepared in constant depth via our scheme. To that end,
we have additionally provided a recipe for constructively
generating such states (see Appendix F).

To highlight the diversity of nontrivial states preparable
with our scheme, we have provided a variety of illustrative
examples that include symmetry-protected topological and
symmetry-broken states, MPS with finite Abelian, non-
Abelian, and continuous symmetries, resource states for
MBQC, and families of states with tunable correlation
length. Moreover, we have demonstrated the applicability
of our framework toward the design of sampling protocols,
showcasing a capability to sample both random MPS and
those from a particular SPT phase in constant depth.

This work opens up a number of promising avenues
for future research. For one, it would be interesting to
incorporate our constant-depth protocols into the emerg-
ing applications for MPS on quantum hardware. These
include, e.g., tensor-network-inspired variational quantum
algorithms [26–29], quantum simulation of time dynamics
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[30,31], and loading of classical data for quantum machine
learning [32–36]. In addition, our scheme provides an
extremely efficient route toward the preparation of fam-
ilies of resource states for MBQC and, in some sense,
generalizes the core idea underlying fusion-based quan-
tum computation [92] beyond the cluster state. It would be
interesting to pursue this connection further, particularly in
the context of linear optical platforms where one relies on
joint measurements to carry out entangling operations, in
close alignment with our scheme. Similarly, we note that
our protocol constitutes a particularly attractive approach
for the efficient preparation of large entangled states span-
ning distributed quantum hardware, as sections of MPS can
be independently prepared and subsequently fused across
multiple local quantum processing units without a direct
link between physical sites.

Furthermore, this work leaves open several intriguing
questions. In particular, a complete classification of MPS
that can be faithfully prepared with constant-depth adap-
tive quantum circuits is beyond the scope of this work.
Here, we have presented a general framework that enables
the preparation of a wide variety of MPS and have fur-
thermore provided conditions for target states that are
sufficient but not strictly necessary. For example, Corollary
2 requires that a global on-site symmetry presents as an
irreducible representation on the virtual level. However,
in Sec. III C 1, we have provided an explicit example of
a family of Z2-symmetric MPS that can be prepared via
our scheme, despite carrying a reducible representation on
the virtual level. Thus, our conditions do not encompass all
states that can be prepared and we leave open the task of
complete classification to future work. Moreover, it may
be possible to generalize the protocols presented here in
a fashion specifically tailored to reducible representations.
Separately, in this work we have considered MPS with
constant bond dimension D that is independent of sys-
tem size N . For the more general scenario in which D ∼
poly(N ), our approach naively allows for the constant-
depth preparation of such states, but with the unrealistic
requirement for (bond) qudits of dimension poly(N ), hin-
dering practicality. If we instead encode each bond qudit
using log(D) qubits, our scheme requires a circuit depth of
O(d2D2) [29]. Furthermore, our approach requires a O(D2)

sampling overhead for the selection of particular boundary
conditions and is therefore constant-time only for con-
stant D. Thus, alternative strategies to efficiently prepare
more general MPS with measurement and feedforward
constitutes an interesting direction for future study.

An important practical direction is to benchmark our
constant-depth approach on quantum hardware and, fur-
thermore, compare it to purely unitary linear-depth (or log-
depth) preparation of MPS. Throughout this work, we have
implicitly assumed classical feedforward to be a “free” and
instantaneous resource. In practice, however, integration
into quantum hardware can be challenging—e.g., in the

context of preparing the GHZ state, in Ref. [63] it has
been found that linear-depth unitary circuits outperform
constant-depth dynamic circuits on an IBM Quantum pro-
cessor; this has primarily been attributed to an inefficient
implementation of classical feedforward, with a tempo-
ral cost scaling with the number of possible midcircuit
measurement outcomes (i.e., exponentially in system size).
However, this limitation is not a fundamental one and
it is expected that this scaling will soon be improved to
either linear or constant in system size [63]. Furthermore,
for small system sizes, the question of whether there is
an advantage in replacing a unitary circuit with an adap-
tive circuit that includes many midcircuit measurements
depends inextricably on details specific to that platform,
such as qubit coherence times and midcircuit measure-
ment fidelities. Given these nuanced considerations, it
would be interesting to investigate how such hardware-
specific details influence the “break-even” point of our
scheme—i.e., the system size for which constant-depth
adaptive preparation outperforms its unitary counterpart.

Finally, an especially intriguing next step would be to
investigate whether our framework can be extended to effi-
ciently prepare other tensor-network states beyond MPS.
Seemingly, this extension is straightforward in the case of
tree-tensor networks, as one can employ the same strate-
gies here as long as the target state is characterized by a
sufficient set of pushing relations. In contrast, extension to
higher-dimensional projected-entangled pair states (PEPS)
and the multiscale entanglement renormalization ansatz
(MERA) is less trivial. While the constant-depth prepa-
ration of certain PEPS such as the two-dimensional (2D)
toric code ground state [50,57] can be expressed in a lan-
guage similar to the one developed here [58], extension
to PEPS with on-site symmetry (e.g., such as the spin-
3/2 AKLT state on a honeycomb lattice) presents addi-
tional challenges. In particular, closed loops can effectively
“trap” random defects, inhibiting the ability to push them
to the edge for removal. We expect similar challenges to
arise in the case of MERA. Thus, it remains an open prob-
lem as to whether this framework is useful for preparing
higher-dimensional non-fixed-point tensor-network states.
We leave these questions for future work.
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APPENDIX A: PROOFS OF THEOREMS 1 AND 2

We begin by proving Theorem 1. Starting from Eq. (11)
and dropping the superscript q for clarity, we can first
note that Ā is by construction surjective and is therefore
guaranteed to have a right-inverse Ā−1

R . Right-multiplying
Eq. (11) by Ā−1

R , we find

Op = ĀOĀ−1
R , (A1)

where we have adopted the shorthand O = (OT
� ⊗ Or).

While this yields a definition for Op , it is not guaranteed
to provide a solution to Eq. (11), as Ā is not left-invertible
unless it is also injective. To check the conditions under
which it is a valid solution, we substitute this definition
into Eq. (11), to find

ĀOĀ−1
R Ā = ĀO. (A2)

Identifying P = Ā−1
R Ā as the projector onto the row space

of Ā (i.e., the set of virtual states in HD ⊗ HD mapped
onto the physical basis states spanning Hd), we can rewrite
the above equation as

ĀOPc = 0, (A3)

where Pc = 1 − P is the projector onto the kernel of Ā.
Already, this provides the necessary condition for exis-
tence of Op : left-multiplying by Ā−1

R , we find POPc = 0.
This result is intuitively sensible—O� and Or can induce
transitions between elements within the row space and ker-
nel and can additionally map elements from the row space
to the kernel (as these will be annihilated by Ā and can
similarly be enacted by projecting out those same elements
at the level of Op ). However, noting that elements of the
physical space Hd and row space of Ā are in one-to-one
correspondence, Op cannot possibly map elements from
the kernel of Ā to its row space, leading to the determined
imposed condition on the virtual operations.

In the case in which O is unitary, POPc = 0 implies that
PcOP = 0. To see this, note that O can be expressed as a
lower-triangular block matrix, with POP , PcOP , PcOPc

corresponding to the upper-left, lower-left, and lower-right
blocks. The inverse of a lower-triangular block matrix
is itself a lower-triangular block matrix. However, O† is
clearly an upper-triangular matrix and O must therefore
be block diagonal (i.e., PcOP = 0). Then, O = POP +
PcOPc, equivalent to the commutation condition [O,P] =
0, which, cast back in terms of Ā, becomes

[O, Ā−1
R Ā] = 0, (A4)

concluding our proof of Theorem 1.
Turning to Theorem 2, we first assume the existence of

an operator Op defined by Eq. (A1) such that Eq. (11) holds
via Theorem 1. Further demanding that Op is unitary then
requires

(Ā−1
R )†O†Ā†ĀOĀ−1

R = 1. (A5)

Noting that Ā and Ā† are right- and left-invertible, respec-
tively, we can right-multiply by Ā and left-multiply by Ā†,
to find

Ā†Ā = (Ā−1
R Ā)†O†Ā†ĀOĀ−1

R Ā
= O†Ā†ĀO, (A6)

where we have used the fact that [O, Ā−1
R Ā] = 0 in going

from the first to the second line. Using the fact that O is
unitary, simple rearrangement gives

[O, Ā†Ā] = 0, (A7)

concluding our proof of Theorem 2.
Finally, we note that the commutator in Eq. (A7) implies

that of Eq. (A4) when O is unitary, which is not immedi-
ately obvious at first glance. To see this, it is simplest to
prove that Eq. (A7) implies Eq. (A3), which in turn ensures
commutation of O and Ā−1

R Ā, as we have shown. Using
the fact that (ĀĀ−1

R )† is the identity, we insert this into the
left-hand side of Eq. (A3), to find

ĀOPc = (Ā−1
R )†Ā†ĀOPc

= (Ā−1
R )†OĀ†ĀPc = 0, (A8)

where we have used the commutation relation of Eq. (A7)
in going from the first line to the second and have further-
more used the fact that Pc is the projector onto the kernel of
Ā. Therefore, for a unitary virtual operator O, the condition
Eq. (A7) alone ensures that Op exists and is unitary.

APPENDIX B: BLOCK-CONTROLLED PUSHING
RELATIONS FOR SYMMETRY-BROKEN STATES

In this appendix, we aim to provide additional details
on the derivation of the pushing relations in Eq. (19). As
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mentioned in the main text, the details surrounding the
action of the symmetry on the virtual level can be under-
stood through the language of induced representations (for
a complete discussion, see Refs. [21,65]). Here, we will
provide the necessary details to understand the connection
between the |G|-pushing relations of the form in Eq. (17)
and the |H |-pushing relations in Eq. (19), with |H | ≤ |G|.
To do this, we will lean heavily on the arguments of the
aforementioned references.

First, we make a few remarks regarding the subgroup
H and its relation to G. In brief, the basic idea is this:
as shown in Eq. (16), the physical symmetry operators
Ug manifest on the virtual level as a combination of two
effects: conjugation by operators Vh(g,α) within each block
(up to a phase eiφα

g , as in the normal case) and permutations
among the blocks. Let us denote the permutation action by
πg(α) = γ , i.e., the physical symmetry Ug maps block α

to block γ . Clearly, γ is a function of both g and α and we
therefore define γ ≡ γ (g, α).

We choose a particular block α0 and identify the ele-
ments g ∈ G for which γ (g, α0) = α0, i.e., those the per-
mutation action of which maps α0 to itself. As discussed in
Ref. [21,65], this naturally defines the subgroup

H = {h : h ∈ G | πh(α0) = α0} ≤ G. (B1)

The virtual intrablock operators Vh(g,α) form a projective
representation of H .

Next, we note that G can be broken into disjoint left
cosets kαH , where we have chosen a set of representa-
tives kα ∈ G such that πkα (α0) = α. In other words, for
each block α, kα specifies the element such that the cor-
responding physical operators Ukα send our selected block
α0 to α. These representatives can then be used to uniquely
determine γ (g, α) and h(g, α) via the relation [21]

gkα = kγ (g,α)h(g, α). (B2)

Crucially, this clarifies the permutation action—each ele-
ment g ∈ G maps elements of the coset kαH to the coset
kγ (g,α)H and the permutation operators mirror this map-
ping, sending block α to γ (g, α).

Returning to the topic of pushing relations, the deter-
mination of γ (g, α) and h(g, α) allows us to completely
specify |G| distinct instances of Eq. (17). However, we
now show that if one can conditionally apply the physical
unitary Ug to each block, it is possible to derive a second
set of pushing relations that act invariantly on the block
structure with no permutation action.

To see this, we first emphasize that the subgroup H ,
by construction, defines a set of elements such that acting
Uh on the physical leg maps block α0 to itself. Notably,
this does not necessarily guarantee that Uh leaves all other
blocks invariant, as Uh can still permute a subset of blocks.

However, if we conditionally apply Uh only to the block
α0, this leads to the pushing relation

,

(B3)

where we have used a control on α to indicate a tensor
with nontrivial components for all α (i.e., A =⊕α Aα) and
have used a control on α0 alone to denote a tensor that has
a nontrivial component only for block α0. Furthermore, we
have redefined the physical unitary such that there is no
residual phase, U′

h = Uhe−iφ
α0
h . This gives us the freedom

to push an irrep of H through block α0 without causing
permutations.

We now aim to extrapolate this ability to all of the
blocks. In analogy to the above exercise with block α0,
this is achieved by finding the subgroup Hα ≤ G that maps
a general block α to itself. We emphasize that these groups
are all isometric and, because the choice of α0 has been
arbitrary, Eq. (B3) is already sufficient to show that the
pushing relations we seek exist. For clarity of explanation,
however, we will make their construction explicit.

For a given block α, we can define the subgroup

Hα = {kαhk−1
α : h ∈ H} = kαHk−1

α . (B4)

By inserting the elements of this group into Eq. (B2), it is
straightforward to see that this group provides the desired
property—γ (kαhk−1

α , α) = α—and thus can be used to
write a pushing relation analogous to Eq. (B3) but for an
arbitrary block α. By applying many such pushing rela-
tions in parallel, each conditioned on a distinct block α,
we arrive at the desired result,

,

(B5)

where we have again redefined U′
h as

,

(B6)

where we have additionally defined the phase matrix ϕh =⊕
α e−iφα

g with g = kαhk−1
α . Thus, we have arrived at the

set of desired pushing relations, enabling the manipula-
tion of projective representations of H within each block
without incurring nontrivial operations on the block index.
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We note that for the special case in which G is an Abelian
group, Eq. (B5) simplifies significantly, as kαhk−1

α = h up
to a possible phase. Consequently, Ukαhk−1

α
= Uh and it is

unnecessary to condition the physical operations on the
lifted block index. Similarly, further simplifications are
gained if each block carries the same virtual representa-
tion of H , allowing us to replace the α-conditioned virtual
operations with unconditional ones. However, for general-
ity, we have opted here to present the most general result,
suitable for both Abelian and non-Abelian groups and,
furthermore, allowing for different representations within
each block.

APPENDIX C: FURTHER DETAILS ON
PROTOCOL 2

In this appendix, we expand upon several key details
underlying Protocol 2. First, we clarify the sufficiency of
considering the limit μα → 1 for the more general prepa-
ration of non-normal MPS with arbitrary block amplitudes
μα . Following this, we expand upon an important step
in our preparation protocol where the block qudits are
disentangled from the site qubits via measurement.

1. Sufficiency of the limit μα → 1

First, let us recall that the goal of Protocol 2 is to first
prepare the state |�〉, defined as

|�〉 =
∑

�r

∑

�m
〈�| Am1Am2 . . . AmN |r〉 | �m〉 ⊗ |�r〉 , (C1)

up to an overall normalization constant. Following this, the
subsystems indexed by � and r are measured, collapsing
the state onto an MPS with particular (but probabilisti-
cally determined) boundary conditions. For concreteness,
let us imagine that our goal is to measure the edge qudits in
the state |X 〉 =∑ij (X

∗)ji |ij 〉, such that the final prepared
MPS is

|� ′〉 =
∑

�m
Tr
(
Am1Am2 . . . AmN X

) | �m〉 . (C2)

For a non-normal MPS, the matrices Am can be decom-
posed as

Am =
K−1⊕

α=0

μαAm
α , (C3)

where the intrablock tensors are in left-canonical form,∑
m Am†

α Am
α = 1. Rewriting Eq. (C2) in this light (and leav-

ing the bounds on α implied to simplify the notation), we

find

|� ′〉 =
∑

�m
Tr

(
⊕

α

μN
α Am1

α Am2
α . . . AmN

α X

)
. (C4)

Noting that only the block-diagonal entries of X contribute
to the trace, we can, without loss of generality, assume
X =⊕α Xα such that it has the same block-diagonal struc-
ture as the matrices Am. Furthermore, let us define the
modified boundary matrix

X̃ = 1
η

⊕

α

μN
α Xα , (C5)

where η is a normalization factor that ensures that
Tr
(
X̃ †X̃

) = 1. Then, our target state can be reexpressed
as

|� ′〉 =
∑

�m
Tr

(
⊕

α

Am1
α Am2

α . . . AmN
α X̃

)

=
∑

�m
Tr
(
Ãm1 Ãm2 . . . ÃmN X̃

)
, (C6)

where we have defined the modified matrices Ãm =⊕
α Am

α . But these correspond exactly to the original matri-
ces Am in the limit μα → 1. Consequently, we can either
prepare the amplitudes μα �= 1 at the outset (i.e., by incor-
porating them into the initial GHZ state preparation) or,
alternatively, we can, without loss of generality, prepare a
variant of Eq. (C1) parametrized by the modified tensor
Ã and incorporate the amplitudes μN

α in the final mea-
surement step by projecting onto the modified boundary
condition X̃ (with probability p � 1/KD2 in the large-N
limit, where D is the maximum dimension of the individual
blocks).

2. Disentangling the block qudits

Next, we expand upon step (5) of Protocol 2, where
“lifted” ancillary block qudits are disentangled from the
target state via measurements. After step (4), the system is
in the state

|�4〉 =
∑

ij

∑

α

|� ij
α 〉 ⊗ |α〉⊗N |Liα〉 |Rj α〉 , (C7)

where we have adopted the shorthand |Liα〉 = |i〉 ⊗ |α〉
for the composite left dangling qudit (composed of both
a D-dimensional bond and a K-dimensional block qudit)
and, likewise, |Rj α〉 = |j 〉 ⊗ |α〉 for the composite right
dangling qudit, and have furthermore defined

|� ij
α 〉 =

∑

�m
〈i| Am1

α Am2
α . . . AmN

α |j 〉 | �m〉 . (C8)

Our present goal is to disentangle the N “bulk” block
qudits (not to be confused with the “edge” block qudits that
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partially compose |Liα〉 and |Rj α〉), leaving the remainder
of the system in the form of Eq. (C1). To that end, we first
apply a Walsh-Hadamard gate W to each K-dimensional
(bulk) block qudit,

W = 1√
K

⎡

⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 ωK−1 ω2(K−1) · · · ω(K−1)2

1 ωK−2 ω2(K−2) · · · ω(K−1)(K−2)

...
...

...
. . .

...
1 ω ω2 · · · ωK−1

⎤

⎥⎥⎥⎥⎥⎦
,

(C9)

where ω = e2π i/K , and subsequently measure each qudit
in the computational basis. Regardless of the measurement
outcome, this collapses |�4〉 into the form

|�5〉 =
∑

ij

∑

α

eiφ
α,�k |�α〉 ⊗ |Liα〉 |Rj α〉 , (C10)

where we have discarded the measured bond qudits and
have furthermore made the definition

φα,�k = −2πα

K

N−1∑

j =0

kj , (C11)

where each kj ∈ {0, 1, . . . K − 1} labels the measurement
outcome for the j th block qudit. These phases are known
from the measurement result and, as such, can be removed
using a (feedforward) diagonal phase gate on the remaining
edge block qubits. Alternatively, one can adaptively incor-
porate this phase into the basis for the final measurement
of the composite dangling edge qudits.

Applying the appropriate unitary U(�k)†
ϕ to remove these

phases, we arrive at the desired outcome:

|� ′
5〉 = U(�k)†

ϕ |�5〉
=
∑

ij

∑

α

|� ij
α 〉 ⊗ |Liα〉 |Rj α〉

=
∑

�r

∑

�m
〈�| Am1Am2 . . . AmN |r〉 | �m〉 ⊗ |�r〉 , (C12)

where we have defined composite indices i, α → � and
j , α → r, leveraging the fact that the matrices Am are block
diagonal. The only remaining step is to measure the com-
posite dangling edge qudits to collapse the state onto one
with particular boundary conditions.

APPENDIX D: REDUCING THE POSTSELECTION
OVERHEAD FOR OPEN BOUNDARY

CONDITIONS

While both Protocol 1 and Protocol 2 deterministically
prepare the bulk of the target MPS, achieving particular

boundary conditions requires a postselection overhead of
O(D2). We stress that this overhead depends only on the
bond dimension D, which we assume to be independent of
system size N in this work. However, for small system sys-
tems and particular experimental platforms, this overhead
may present an important trade-off with the linear- and log-
depth unitary preparation schemes. In this appendix, we
discuss how one can reduce this overhead for the case of
open boundary conditions.

To explain, let us for simplicity consider the case of nor-
mal MPS. For periodic boundary conditions, the O(D2)

postselection overhead is seemingly unavoidable. This can
be understood via Fig. 4 where, in the final stage, all
defects have been corrected. To realize periodic boundary
conditions, we perform a projective generalized Bell-basis
measurement between the remaining bond qubits at the
edge (either nonlocally or using a distributed ancillary Bell
pair). If this measurement results in a nonidentity defect,
then it is uncorrectable—any operations on the physi-
cal qubits will merely push the defect cyclically around
the state. Thus, we postselect on a defect-free final mea-
surement outcome, which has a probability of success
p ∼ 1/D2 under the assumption N � ξ , where ξ is the
correlation length of the target state.

On the other hand, for open boundary conditions, we can
reduce the postselection overhead to O(D). In this case, the
target state in Eq. (1) becomes

|�〉 =
∑

�m
〈L| Am1Am2 . . . AmN |R〉 | �m〉 , (D1)

where |L〉 and |R〉 are D-dimensional unit vectors. The pro-
cedure then can be simplified by, in Fig. 4, replacing the
right-most small MPS with one having a definite right vir-
tual edge state. Specifically, this amounts to replacing the
right-most two-qudit “Prep. |I〉” gate with a single-qudit
gate that prepares the state |R〉. The rest of the procedure is
identical, with the caveat that one must push all defects to
the left (as there is no right dangling bond qudit). After the
correction of defects, this yields the state

|� ′〉 =
∑

i

∑

�m
〈i| Am1Am2 . . . AmN |R〉 | �m〉 ⊗ |i〉 . (D2)

Therefore, to realize the target state in Eq. (D1), one must
postselect upon measuring the left dangling qudit (indexed
by i) in the state |L〉. In the limit where N � ξ , this result
has probability p ∼ 1/D. It is unclear whether this can be
further improved. We leave this as a direction for future
work.

APPENDIX E: MORE DETAILS ON TABLE II

Here, we expand on the defect bases denoted in Table II,
providing an explicit representation for each of the indi-
cated SU(n), SO(2� + 1), and Sp(2n) subgroups. The first
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two are straightforward: as discussed in the text surround-
ing Eq. (26), the clock and shift matrices generate a projec-
tive irrep of Zn × Zn ⊂ SU(n), typically referred to as the
qudit Pauli basis. Separately, the set of 4� weight-� (2 × 2)
Pauli operators forms a projective irrep of (Z2 × Z2)

� ⊂
SO(2� + 1). We note that measurement in this basis is par-
ticularly straightforward—if each bond qudit is encoded
using log2(D) qubits, then fusion measurements can be
carried out in a pairwise manner using the qubit Bell basis.

Due to the symplectic constraint on the correctable
defects, the relevant irrep for the Sp(2n)-symmetric states
is more subtle. First, we define

r =
(

Z 0
0 Z∗

)
, s = i

(
0 1
1 0

)
, (E1)

where Z is the n × n clock matrix. Together, r and s gener-
ate a projective irrep of Dn, the dihedral group of order 2n.
Separately, we define the following two matrices:

a = i
(
1 0
0 −1

)
, b =

(
X 0
0 X

)
, (E2)

where X and 1 are the n × n shift and identity matrices,
respectively. Together, a and b generate a projective irrep
of Z2 × Zn. Taking the direct product between these two
representations, the resulting matrices,

Bi,j ,k,� = aibj rks� ∈ Sp(2n), i, � ∈ {0, 1} j , k ∈ {0, n − 1},
(E3)

form an irrep of Z2 × Zn × Dn ⊂ Sp(2n) and thus provide
a correctable defect basis for the preparation of the SPT-
ordered MPS with Sp(2n) symmetry in Ref. [39].

APPENDIX F: CONSTRUCTING MPS WITH
ON-SITE SYMMETRY

In this appendix, we describe a method for construct-
ing families of MPS with global on-site symmetry. We
note that this problem has been studied previously [79].
Here, our goal is the following: given a group G and
a D-dimensional (projective) representation V, we would
like to construct a parametrized family of MPS that sat-
isfies Eq. (13) [or, equivalently, Eq. (16) in the case
of symmetry-broken non-normal MPS]. Naturally, such
a family of MPS would be preparable using Protocol 1,
independent of the bond dimension corresponding to the
chosen representation. Likewise, the physical dimension
of the MPS is constrained to a set of possible values
determined by the choice of V.

We begin by constructing a linear representation of G
from the projective representation V by defining V̄, where

V̄g ≡ Vg ⊗ V∗
g . (F1)

Since V̄ is a linear representation, it can be decomposed as
a direct sum of irreducible representations (irreps) of G:

Vg ⊗ V∗
g =

⊕

J

( nJ⊕

n=1

uJ
g

)
, (F2)

where J labels the irrep of G and nJ is the number of times
irrep J appears in V̄. In other words, V̄g is a D2-dimensional
matrix that can be block diagonalized via a unitary W:

V̄g = WŪgW†, (F3)

where

(F4)

Here, dJ is the dimension of irrep J . To construct the
parametrized tensor A that defines the (translationally
invariant) MPS, we require two elements: the unitary W
and an isometric operator P that picks out one or more of
the irreps in Eq. (F4) that determines the physical dimen-
sion. The unitary W can be determined by solving the
system of linear equations

V̄gW − WŪg = 0, ∀g ∈ G. (F5)

Since there are |G| linear equations and the D2-
dimensional unitary matrix W has D4 independent real
parameters, the tensor A (and, by extension, the family of
symmetric MPS) will be parametrized by

max
(
0, D4 − |G|) ≤ N ≤ D4

real variables.
After determining W, we next choose particular irrep

blocks in Ū. This fixes the physical dimension d of the
MPS, corresponding to the sum of the dimensions of the
chosen irrep blocks. To extract the chosen blocks, we
define an isometric operator P that is a D2 × d matrix,
with ones along the diagonal of the chosen blocks and
zeros otherwise. For example, to select just one irrep J ,
the appropriate isometry P is a D2 × dJ matrix with ones
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along the diagonal of the block containing uJ in Ūg . The
operator P will then obey

ŪgP = PUg , (F6)

where Ug is the d-dimensional block-diagonal represen-
tation that was selected from Ūg . The tensor A is then
constructed by reshaping the D2 × d matrix,

Ā = WP, (F7)

where the mth column of Ā corresponds to the D × D
matrix Am. One can verify that Ā satisfies the desired
property:

V̄(g)Ā = (WŪgW†) (WP) (F8)

= WŪgP (F9)

= WPUg (F10)

= ĀUg , (F11)

which is equivalent to the symmetry condition of Eq. (13).
We now illustrate this practical construction method for
several simple examples of on-site symmetry.

1. Example: Z2 × Z2

Let us consider the dimension two irreducible projective
representation Vg of Z2 × Z2, the Pauli matrices. For this
representation, Ve = I and Vk = σk. Because this group is
Abelian, Eq. (F3) yields a diagonal matrix Ūg , with each
entry corresponding to one of the four 1D representations
of the group. Furthermore, we find

W = 1√
2

⎛

⎜⎝

a 0 0 d
0 b −c 0
0 b c 0

−a 0 0 d

⎞

⎟⎠ , (F12)

where a, b, c, d ∈ U(1). We can then build an MPS of phys-
ical dimension d = 2, 3, or 4 (d = 1 is not interesting).
Choosing the isometry

P =

⎛

⎜⎝

1 0
0 1
0 0
0 0

⎞

⎟⎠ , (F13)

the tensor A resulting from Eq. (F7) corresponds to a d = 2
MPS of the form

A = 1√
2

(
a |0〉 b |1〉

−b |1〉 −a |0〉
)

. (F14)

Here, we are adopting a shorthand notation in which the
above matrix corresponds to a pair of matrices of the form

A0 =
(

a 0
0 a

)
, A1 =

(
0 b

−b 0

)
. (F15)

We will use this shorthand throughout the remainder of
this appendix. The above isometry is not the only option,
however. We could instead choose, e.g.,

P =

⎛

⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟⎠ , (F16)

which yields a d = 3 MPS of the form

A = 1√
3

(
a |0〉 b |1〉 + c |2〉

−b |1〉 + c |2〉 −a |0〉
)

. (F17)

This parametrized family of MPS includes the ground
state of the AKLT model, corresponding to the selection
(a, b, c) = (1, −i, 1). Finally, for the case d = 4, we can
see P = 14×4. This yields the family

A = 1
2

(
a |0〉 + d |4〉 b |1〉 + c |2〉

−b |1〉 + c |2〉 −a |0〉 + d |4〉
)

, (F18)

which encompasses the cluster state with blocked pairs of
sites.

2. Example: SU(2)

Next, we turn to the case of SU(2) symmetry. In this con-
text, the MPS construction procedure is best understood
using the language of spin angular momentum. Let Vg be
a spin-S irreducible representation of SU(2). Then Ug will
be an irrep of a spin S′ system, where 0 ≤ S′ ≤ 2S from
the addition of angular momentum for two spin-S systems.
The unitary W in Eq. (F3) becomes a matrix of Clebsch-
Gordan coefficients. For example, we can let Vg be the
spin-1/2 representation

Vg = eian̂·�σ/2, (F19)

where a is a real parameter, n̂ is a unit 3-vector, and �σ is
the Pauli 3-vector. Then, Eq. (F2) is equivalent to

1
2

⊗ 1
2

= 0 ⊕ 1, (F20)

with

W =

⎛

⎜⎜⎜⎜⎜⎝

1√
2

0 − 1√
2

0

0 1 0 0
0 0 0 −1
1√
2

0
1√
2

0

⎞

⎟⎟⎟⎟⎟⎠
. (F21)
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TABLE III. A table of spin representations Vg , the matrix
dimension of Vg , and the finite subgroup with an irrep of the same
dimension. 2O is the binary octahedral group, I is the icosahedral
group, and 2I is the binary icosahedral group. The right-most
column p gives the dimension of the ancilla qudit needed to
construct the projective measurements.

Spin Irrep dimension
Allowed

physical spin H p

1/2 2 1 Z2 × Z2 1
1 3 2, 1 A4 4
3/2 4 3, 2, 1 2O 3
2 5 4, 3, 2, 1 I 12
5/2 6 5, 4, 3, 2, 1 2I 10

The only nontrivial option is the spin-1 representation,
which can be selected using the isometry

P =

⎛

⎜⎝

0 0 0
1 0 0
0 1 0
0 0 1

⎞

⎟⎠ .

Together with W, this yields the MPS

A = 1√
3

⎛

⎜⎜⎝
− 1√

2
|0̄〉 |+〉

− |−〉 1√
2

|0̄〉

⎞

⎟⎟⎠ , (F22)

which is exactly the spin-1 AKLT state expressed in the Sz

eigenbasis {|+〉 , |0̄〉 , |−〉}.
More generally, our method allows us to construct

SU(2)-symmetric MPS of higher bond dimension D. As
discussed in the main text, preparing such states generally
requires that there exists a finite subgroup H ⊂ SU(2) that
has a (projective) irrep of dimension D. One can then nar-
row to a set of defects that form a representation of this
subgroup, such that Theorem 3 is satisfied and the state
can be prepared via Protocol 1. Several examples of this
strategy have been discussed in the main text, including in
Secs. III C 2 and III C 5

In that vein, Table III shows finite subgroups of SU(2),
each corresponding to a different spin representation. MPS
constructed from these spin representations can be pre-
pared using constant-depth adaptive circuits by leveraging
the above “subgroup” strategy.

3. Example: Z2

Finally, we turn to perhaps the simplest example of our
construction—the Abelian group Z2. Let us consider a
D = 2 dimensional unitary representation of this group.
Without loss of generality, this can be chosen as Vz = σy .

Then,

V̄z = Vz ⊗ Vz =

⎛

⎜⎝

0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

⎞

⎟⎠ (F23)

= W

⎛

⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞

⎟⎠W†. (F24)

Here,

W =

⎛

⎜⎝

w1 w2 w3 w4
w5 w6 w7 w8

−w5 −w6 w7 w8
w1 w2 −w3 −w4

⎞

⎟⎠ , (F25)

and the wi values are further constrained from WW† =
W†W = I . V̄ is decomposed as two 1D irreps, each with
multiplicity 2. Now let us choose the first and third blocks
of Ūz, corresponding to the following selection for the
isometry:

P =

⎛

⎜⎝

1 0
0 0
0 1
0 0

⎞

⎟⎠ . (F26)

This fixes our d = 2 dimensional representation on the
physical level, with Uz = σz. Together with W, Eq. (F7)
yields

A =
(

w1 |0〉 + w3 |1〉 w5 |0〉 + w7 |1〉
−w5 |0〉 + w7 |1〉 w1 |0〉 − w3 |1〉

)
(F27)

= 1√
2

(
a |+〉 +b |−〉 c |+〉 +d |−〉

−d |+〉 − c |−〉 b |+〉+a |−〉
)

, (F28)

where a = w1 + w3, b = w1 − w3, c = w5 + w7, and d =
w5 − w7. This corresponds to a family of D = 2 MPS with
on-site Z2 symmetry. In particular, setting

w1 = w3 = 1√
2

1√
1 + |g| , w5 = w7 = − 1√

2

√
−g

1 + |g| ,

and making the basis transformation |+〉 → |0〉, |−〉 →
|1〉, we find that this parametrized MPS encompasses the
Z2-symmetric family described in Sec. III C 1.
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