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In computer and system sciences, higher-order cellular automata (HOCA) are a type of cellular automata
that evolve over multiple time steps and generate complex patterns, which have various applications, such
as secret-sharing schemes, data compression, and image encryption. In this paper, we introduce HOCA
to quantum many-body physics and construct a series of symmetry-protected topological (SPT) phases of
matter, in which symmetries are supported on a great variety of subsystems embbeded in the SPT bulk. We
call these phases HOCA-generated SPT (HGSPT) phases. Specifically, we show that HOCA can gener-
ate not only well-understood SPTs with symmetries supported on either regular (e.g., linelike subsystems
in the two-dimensional cluster model) or fractal subsystems, but also a large class of unexplored SPTs
with symmetries supported on more choices of subsystems. One example is mixed-subsystem SPT that has
either fractal and linelike subsystem symmetries simultaneously or two distinct types of fractal symme-
tries simultaneously. Another example is chaotic-subsystem SPT in which chaotic-looking symmetries are
significantly different from and thus cannot reduce to fractal or regular subsystem symmetries. We also
introduce a new notation system to characterize HGSPTs. We prove that all possible subsystem symme-
tries in a square lattice can be locally simulated by an HOCA-generated symmetry. As the usual two-point
strange correlators are trivial in most HGSPTs, we find that the nontrivial SPT orders can be detected
by what we call multi point strange correlators. We propose a universal procedure to design the spatial
configuration of the multi point strange correlators for a given HGSPT phase. Specifically, we find deep
connections between multi point strange correlators and the spurious topological entanglement entropy
(STEE), both exhibiting long-range behavior in a short-range entangled state. Our HOCA approaches and
multi point strange correlators pave the way for a unified paradigm to design, classify, and detect phases
of matter with symmetries supported on a great variety of subsystems, and also provide potential useful

perspective in surpassing the computational irreducibility of HOCA in a quantum mechanical way.
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I. INTRODUCTION

Cellular automata (CA) are dynamic systems that evolve
in discrete time steps, which have been widely used in
computer and system sciences [1]. CA have rather sim-
ple evolution rules, but produce rich structures. Because
of their ability to model a wide range of phenomena, they
have been used to model various real-world systems and
can be used for prediction and simulation [2,3].

In the field of condensed-matter physics, CA are often
adopted to simulate dynamical properties of systems, such
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as Ref. [4]. An example is the quantum cellular automata
(QCA), originating from von Neumann and Feynman
[5-7]. QCA consist of arrays of identical finite-
dimensional quantum systems that evolve in discrete-
time steps by iterating a unitary operator U [8]. QCA
are useful for simulating quantum systems and pro-
cesses, such as quantum walks, quantum circuits, and
quantum phase transitions [9—13]. Apart from simula-
tion, CA also play a role in the study of symmetry-
protected topological (SPT) order. Let us review some
basic facts of SPT physics. SPT phases are short-
range entangled states that cannot be smoothly deformed
into trivial states without breaking some symmetries
[14-36]. SPT phases have been extensively explored
through various methods, sparking interests from fields
like condensed-matter physics, mathematical physics,
and quantum information. These methods include group
cohomology [37], cobordism groups [38,39], nonlinear
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sigma models (NLSM) [40,41], topological field theories
[42-45], conformal field theories (CFT) [46—48], dec-
oration construction [49], topological response theory
[50-56], projective or parton construction [57—62], and
braiding statistics [63—66]. However, all the above SPTs
are limited to the cases where the symmetries are global,
meaning that they act uniformly on the whole system.
Recently, partially motivated by the field of fracton physics
[67—100], people have realized that not only symme-
tries themselves but also where exactly symmetries act
on the system matters, catalyzing the research of symme-
try protected topological phases protected by symmetries
supported on either regular (e.g., linelike, membranelike)
[101-108] or fractal [109—111] subsystems. However, sys-
tematically designing the Hamiltonian in order to get the
model protected by symmetries acting on a specific kind
of subset of the system remains a challenging problem.
On one hand, the Hamiltonian of a lattice model usually
involves some products of local operators; on the other
hand, we need to control the subsets that the symmetries
act on (usually the subsets are nonlocal and spread through
the system).

Remarkably, CA coincidentally have simple local rules
but exhibit complex behaviors, making them an ideal
paradigm to design the Hamiltonian of condensed-matter
physics. So far, order-one linear cellular automata have
been used to construct FSPT models whose nontrivial
edge states are protected by fractal subsystem symme-
tries [109]. Although fractal geometry in physics is also
an interesting topic [112—128], order-one linear CA cannot
produce subsystem symmetries without self-similarity (see
Appendix A). Therefore, it is natural to ask whether we
can include SPT orders protected by symmetries supported
on regular subsystems in the framework of CA [129],
and whether there are other possible subsets supporting
symmetry action.

In this paper, we go beyond the linear order-one CA
by using linear higher-order cellular automata (HOCA)
to generate SPTs with various kinds of subsystem sym-
metries. We call these phases HOCA-generated SPT
(HGSPT) phases. HOCA are cellular automata whose evo-
lution involves multiple time steps [130], and are widely
used in computer science [131-134]. HOCA produce rich
varieties of subsystem patterns in the space-time lattice,
including linelike and fractal patterns. HOCA have local
update rules that make them useful for constructing Hamil-
tonians [135]. By using HOCA, we obtain a series of
exactly solvable lattice models with various types of sub-
system symmetries, as shown in Table I and Fig. 1. These
models include not only SPT models with symmetries sup-
ported on regular or fractal subsystems, but also more
peculiar models. Therefore, in this paper we propose a
notation for the types of SPT orders protected by sym-
metries supported on subsystems, which includes regular
(-subsystems) SPT (RSPT), fractal(-subsystem) SPT

(FSPT), mixed(-subsystem) SPT (MSPT) and chaotic(-
subsystem) SPT (SPT) orders. For example, the 2D clus-
ter model with linear subsystem symmetries discussed in
Ref. [102] and order-one CA generated models with frac-
tal subsystem symmetries discussed in Ref. [109] are,
respectively, classified into RSPT [138] and FSPT orders.
Besides, we also have MSPT models with both linelike
and fractal-like subsystem symmetries, MSPT models with
two distinct types of fractal-like subsystem symmetries
and CSPT models with chaotic-looking subsystem sym-
metries. A more detailed and technical definition of these
types of SPT orders is given in Sec. III G. We also intro-
duce a new notation system to characterize these newly
discovered subsystem symmetries, claiming that HOCA
patterns can be labeled and HOCA rules can be classi-
fied by the patterns they produce. This notation plays the
role of an attempt towards constructing a universal classi-
fication system of all possible configurations of subsystem
symmetries, as the spatial form of symmetry elements has
not been mathematically labeled as has symmetry group
itself. We also discuss how universal the HOCA symme-
tries are, i.e., if any kind of subsystem symmetries can be
understood as an HOCA symmetry. Nevertheless, it is par-
ticularly worth noticing that the CSPT is a class of SPT
models supported on symmetries with highly exotic spa-
tial distribution, which is very challenging to extract the
mathematical properties of these symmetry patterns and
labeling them. Because of the application of HOCA in
the realm of data processing and encryption, we deem that
CSPT models are also applicable in quantum computation,
being a resource of quantum encryption algorithm, which
is left to future exploration.

To detect the nontriviality of a given SPT ordered
ground state, one may use strange correlators [139]. By
definition, a usual strange correlator is introduced as a two-
point correlation function in which bra and ket wave func-
tions are a symmetric short-range entangled state and the
state to be diagnosed, respectively. If the state to be diag-
nosed is indeed SPT ordered, the strange correlator will
either saturate to a constant or decay algebraically at long
distances. While nontrivial phenomena of SPT order are
fully characterized by the boundary with ’t Hooft anomaly,
strange correlators enable us to detect the nontrivial SPT
order directly from the bulk, which removes potential
analytic and numerical complexity induced by intricate
boundary conditions. So far, strange correlators have been
successfully applied to many SPT phases [101,139—-145],
and have also been applied in intrinsic topological orders
and conformal field theories (CFTs) [146—153]. In partic-
ular, in Ref. [101], this tool has been successfully applied
to a 2D SPT order protected by linelike subsystem symme-
tries, i.e., a RSPT order following the nomenclature of the
present paper. Therefore, one may wonder how to detect
SPT phases with other types of subsystem symmetries,
such as FSPT, MSPT, and CSPT discussed in the present
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A brief schematic introduction to the types of SPT models produced by (linear) CA of different orders. The order-one CA

can produce only fractal patterns (see Appendix A for detailed argument). It would require HOCA, i.e., CA with order n > 2, to
create SPT models like RSPT, CSPT, and MSPT. These are SPT models whose symmetries are supported on regular subsets of lattice,
chaotic-looking subsets of lattice, and more than one type of subset of lattice, respectively.

paper. It is also interesting to ask whether or not the usual
definition of two-point strange correlators is sufficient to
detect all HGSPTs.

In this paper, we find that HGSPTs can be efficiently
detected by what we call multi point strange correlators
(MPSC). More concretely, in some HGSPT models, two-
point strange correlators are insufficient for probing SPT
orders, which leads us to generalize the usual strange corre-
lators to multi point. This approach reveals the complexity
of SPT physics induced by HOCA and also expands the
research scope of strange correlators. To explore this topic,
we design a general procedure to detect the nontrivial
SPT orders in the HGSPT models and to determine the
class of HOCA update rules for a given HGSPT phase.
We have shown that there are models that can only be
detected by MPSC with more than two points by rigorous
mathematical proof. We explicitly present the multi point
strange correlators designed for the models discussed in
this paper. By generalizing the strange correlator to multi
point strange correlator, we find that the spatial properties
of the symmetry can be reflected by the configuration of
multi point strange correlator, exhibiting the complexity of
the HOCA evolution.

It is also worth noticing that we discover MPSC,
as the long-range behavior in a short-range entangled
ground state, is inextricably connected to the spuri-
ous topological entanglement entropy (STEE) [154],
a “spurious” long-range behavior in SSPT models devoid
of topological order. We show that the nonlocal sta-
bilizers that can run along the boundary in bound-
ary geometries like Levin-Wen prescription [155] or
dumbbell-like tripartition in [154], have the exact form
of MPSC in these HGSPT models. We demonstrate
this claim by many concrete models and mathemat-
ical proof in the paper. We discover a large vari-
ety of MPSC that can serve as the nonlocal stabiliz-
ers giving STEE in multiple HGSPT models, show-
ing that STEE is a common character of most SPT
orders with subsystem symmetry, beyond the scope
of models protected by linelike symmetries only. To
enable spurious contributions of these stabilizers, one
must consider more generalized boundary geometries,
e.g., staggered boundary and even detached boundary.
MPSC and STEE are both long-range behaviors in a short-
range entangled state, between which the relation is a
profound topic.

TABLEI. Representative examples of SPT phases generated by HOCA. Strange correlators of model IVc and model Vb can also be
calculated by the same procedure given in the paper, but is not explicitly shown in the table as these models are not the main focus of
this paper.
Strange
SPT phases Lattice models CA order Symmetry description correlators
I-MSPT 1[Eq. (17)] 2 a mixture of linelike and fractal-like symmetry (Fig. 4) Sec. IVB2
II-MSPT 1T [Eq. (20)] 3 a mixture of two types of fractal-like symmetry (Fig. 7) Sec. IVB3
CSPT III [Eq. (23)] 3 chaotic-looking, neither linelike nor fractal-like symmetry Sec. IVB4
(Fig. 9)
RSPT IVa [Eq. (27)] 2 regular (e.g., linelike, membranelike) subsystem symmetry Sec. IVB5
(Fig. 11) [101,102]
RSPT IVDb [Eq. (30)] 3 linelike symmetry, chaotic-looking symmetry (Fig. 13) Sec. IVB6
RSPT Ve [136] [Eq. (B2)] 2 linelike symmetry, a deformed 2D cluster model [137] e
FSPT Va [Eq. (55)] 1 fractal-like symmetry [109] Sec. IVB1
FSPT Vb [Eq. (78)] 1 fractal-like symmetry [109] e
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Hopefully, the multi point strange correlator can poten-
tially serve as a quantum mechanical approach to surpass
the computational irreducibility [1,156,157] of HOCA,
since we can effectively verify whether an arbitrary step
of HOCA evolution is the given configuration by measur-
ing the corresponding multi point strange correlator (see
also Sec. IVB4). These emergent phenomena naturally
urge us to establish a more general and fundamental the-
ory of strange correlators, shedding light on its underlying
physics and explaining its efficacy in probing SPT phases,
which is left to future exploration.

The rest of this paper is organized as follows. In Sec. I,
we provide some basic knowledge of HOCA. In Sec. I,
we present the details of HGSPTs (see also Table 1),
including the edge states, symmetry protection, duality,
and concrete examples of models. In Sec. III G, we intro-
duce a notation system to label HOCA rules and patterns,
and we give a technical definition of the types of SPT
orders protected by subsystem symmetries based on these
notations. Some typical examples are summarized in Table
II. In Sec. IV, we find that the phases mentioned above can
be detected via multi point strange correlators, and we pro-
pose a general procedure to design multi point strange cor-
relators for a given HGSPT model. We apply the procedure
to all models discussed in Sec. III and show the results in
Sec. IV B. In Sec. V we show the relation between MPSC
and STEE by some concrete examples. In Appendix A, we
prove that order-one CA cannot produce genuine RSPT
phases as HOCA can, demonstrating the need for intro-
ducing HOCA. In Appendix B we compare the model [Va
and the commonly known two-dimensional (2D) cluster
model, showing their subtle differences. In Appendix C, we
demonstrate that for an FSPT model, strange correlators
with two onsite operators are all trivial. And as a special
case, in Appendix D, we prove that there must be at least
three points in the multi point strange correlator to detect
the nontriviality of an FSPT model. We further add a part
comparing different CA approaches in constructing sub-
system symmetries in Appendix E, and a part that gives a
brief review of calculating several dynamical properties of
HOCA in Appendix F. The mathematical discussion of two
criteria in Sec. IV A on how to detect the class of HGSPT
phases using MPSC is given in Appendix G. Finally, a
mathematical discussion on the universality of the HGSPT
phase is given in Appendix H.

II. HIGHER-ORDER CELLULAR AUTOMATA

A. Preliminaries of CA and HOCA

Cellular automata (CA), first introduced by von Neu-
mann [5], have been recognized as a good dynamical
system for simulating complex physical systems. CA have
a simple structure but exhibit a great variety of com-
plex behaviors, and are used to model phenomena with

local, uniform, and synchronous processing [158]. For-
mally speaking, a CA consists of an infinite set of identical
finite automata placed over a lattice and all taking a state
from a finite set called the alphabet of the CA.

There are many possible variants of CA. People have
explored CA in higher dimensions to model systems with
multiple degrees of freedom, and higher-order CA with
memory size n > 1, which is the main focus of this paper.
A higher-order cellular automaton is a discrete dynamic
system whose evolution involves multiple time steps, first
introduced by Toffoli in Ref. [130]. While ordinary lin-
ear cellular automata always generate self-similar patterns
(e.g., fractal patterns in the space-time lattice, which can
be proved by Freshman'’s dream theorem of a polynomial
over [F, [159], see also Appendix A), (linear) HOCA pro-
duce many peculiar patterns besides fractal patterns [160].
For example, HOCA can exhibit chaotic behaviors, which
are often used in secret-sharing schemes [132,133], data
compression, and image encryption [131]. The encryption
algorithm based on HOCA can be efficiently implemented
in hardware due to the simple structure of CA, and is hard
to decipher due to the chaotic behavior of the HOCA.

Despite the above interesting applications in computer
science, the understanding of the dynamic behavior of
HOCA is still at an early stage, and few results are known
for linear HOCA [158]. More properties and applications
of HOCA are still to be studied and explored. Furthermore,
to the best of our knowledge, HOCA have not been used
in the realm of physics so far, and this paper will serve as
an attempt to explore the interdisciplinary amalgamation
of HOCA and condensed-matter physics.

Now we introduce some basic notations of HOCA. Con-
sider a set of 1D lattice sites {i}, i € Z with alphabet
a; € {0,1,...,p — 1} =, evolving with time ; ; the state
of any given site at any given time may be expressed
as a;(j). We introduce the polynomial representations to
simplify our notation. By doing the substitution

a;(j) — aUxiyf, where a; = a,(j) € IFp, (1)
we express the space-time configuration of all lattice sites
by a polynomial:

Fy)= Y Y agx'yl. )
i=—00 j=0

Also, we define site configuration at time j, with respect to
x as

Fjo (X) = Z aijoxi (3)

by picking all terms with y exponent equal to jy. Notice
that our model is defined on a semi-infinite plane here,
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which shows the entire evolution of the HOCA rule. The
HOCA model can also be defined on an open slab by trun-
cation, which we will introduce later in Sec. IIT A. We
will use 7;(x) to denote the configuration at time j from
now on. Now we introduce the concept of higher-order
cellular automata, which are extensions of traditional cel-
lular automata that involve interactions across multiple
time steps. In an order-n CA [161], the state of a site at
time jo is determined by the states of a neighborhood of
sites at times jo — 1,jo — 2, ...,jo — n. From now on, we
focus on HOCA defined on IF;, = {0, 1}. Every HOCA rule
mentioned below is defined on [F,, so each site can be in
the state 0 or 1. If a;,;, can be written as translationally
invariant sums of elements in {a;|i € Z,j € {jo — 1,jo —
2,...,jo — n}}, then the HOCA is defined to be linear,
meaning that

-1 R

= Z Z CpqQig+p jo+q> 4)

g=—np=—R

ig o

where ¢,, € I, are coefficients, R is radius, a constant
describing the maximal range of p, which does not scale
with the system size, making the rule local. We concentrate
on linear HOCA because the update rule of a linear order-
n HOCA can be represented by n polynomials, which
enables us to construct Hamiltonians with decorated defect
construction using these update rules. We demand R < oo
to make sure the HOCA rule is local, which means that
the effect of the HOCA rule (i.e., change of a;; due to the
HOCA rule) will not propagate faster than the speed R. We
denote an HOCA rule (i.e., update rule) by an n-row vector
f, dubbed as the update rule of the HOCA:

() = (i), (), .. i), (5)

where the superscript 7 denotes the transpose of the vec-
tor. When n = 1, the HOCA returns to the normal CA as
discussed in Ref. [109]. The time evolution of local lin-
ear HOCA can be denoted by a single formula (here we
assume j > n):

P = Y k@), (6)

k=1

where 7; (x) is defined in Eq. (3).

To ascertain the whole time-evolution process of all
lattice sites of an order-n CA, one needs to manually spec-
ify the configurations of first n time steps rg,71,..., 71,
which is called the initial condition of the system. It can
also be denoted by an n-row vector q(x):

T

: (7
By specifying an HOCA rule f and an initial condition q,
the whole space-time pattern can be uniquely defined. We

a) = (ro 0, 71 (0, -y 7a1 ()

define

eV = (f,,,fn,l,...,fl)T,

®)
EXM = (s +/ifurs oS+ (1)

and so on, such that r,_1.;(x) =q"(x)-EQEF). £V is
dubbed as the evolution operator, which can be calculated
using Eq. (6). We can always write 7;(x), j > n as the
sum of each row in the initial condition multiplied by some
update rules. It follows that the whole space-time pattern
can be expressed as

Fx,y)=q"@) You+ Y ¥y g @) - EP (D)
k=1

=:qu>-{yqn+-§:;ﬂ—H*5“RD}

k=1
=q’(x)-F(x,y), ©)

where q and F capture the effect of the initial condition and
the update rule separately, and the label y,, , is defined as

Vpg = (P Pty )T (10)
Equation (9) is useful in the calculation of commutation
polynomial [Eq. (15)], which is important to the discussion
of the symmetry elements in the HOCA generated SPT
phases (to be discussed in Sec. III A). If we treat the time
axis as another spatial dimension, we can view the whole
time evolution of the given HOCA .% (x,y) as a static pat-
tern in a 2D semi-infinite plane. Any given HOCA rule f
can generate an infinite number of patterns by adjusting
initial condition q(x).

B. Spin (qubit) model in terms of polynomial
representations

Polynomial representations can also express spin sys-
tems by identifying a; with the state of the spin located
at site x'y/ . Then the whole HOCA pattern .% (x, ) [given
in Eq. (9)] naturally expresses the spin configuration in
the lattice. By introducing polynomial representations, we
naturally transplant HOCA into the realm of spin sys-
tems. Consider a spin model defined on a d-dimensional
square lattice with « sublattices (i.e., each site contains
a-independent degrees of freedom, which do not have to
equal the order of the HOCA). One spin is placed on
each site of the sublattice. We introduce the following
conventions:

(a) The coordinate of site s = (i1,is,...,is) are repre-
sented by a monomial m with respect to xi,...,x4:
m = x| -+ -x}¢. In this paper, we focus on the d = 2
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case, and we use the notation i} = i,
X, X =Y.

(b) Previously defined a;; expresses the state of spin
located at site x’)/ (in a specific sublattice). a; = 0
represents that the spin at x’)/ is at the state |0), and
a; = 1 represents |1). The sublattice that the spin
belongs to will be defined in the next point.

(c) If the onsite Pauli operators Pauli X , Pauli Y. , and
Pauli Z operators are represented by O = X, Y, Z,
respectively, a many-body Pauli operator & can be
denoted as

h=j, x1=

O

(1) +m (1
2

+mk1

0 :=0 :

—|—m(a) Pot
(11)

(a) + m(a)

where m,(f) denotes the position of site s; in sublat-
tice i that the operator & acts nontrivially on, and Py
denotes a polynomial with respect to x.

(d) We define the coefficients of monomials mk) to be
in Z,, and then we can naturally obtain

0, _|_P102 Piﬁl Plﬁz
010, =0 : =0 +
D+ P Pt} \PZ
(12)

II1. HOCA-GENERATED
SYMMETRY-PROTECTED TOPOLOGICAL
PHASES

A. Lattice models, short-range entanglement,
symmetry, and symmetry-protected edge states

In this section we construct symmetry-protected topo-
logical phases protected by HOCA-generated symmetry.
Due to the great variety of the HOCA behavior, we can
naturally obtain models with fractal symmetries, linelike

symmetries, both of the above, and even chaotic symme-
tries, which are, respectively, classified into FSPT, RSPT,
MSPT, and CSPT orders according to our notation. And as
a summary, in Sec. Il G, we give the technical definition of
all these types of SPT orders based on the concrete exam-
ples demonstrated in this section. We will begin with some
basics and notations.

Through HOCA and decorated defect construction, we
can obtain symmetry-protected topological order with two
types of subsystem symmetries, which we refer to as
mixed-subsystem SPT (MSPT). Among all MSPT models,
there are models with both fractal-like and linelike subsys-
tem symmetries (abbreviated as [-MSPT), and models with
two different fractal symmetries (abbreviated as II-MSPT).
Additionally, there are models with only chaotic-looking
symmetries (dubbed as chaotic SPT) and models with
linelike and membranelike symmetries (resembling the
previously known SSPT model). These HOCA generated
models are all defined on a 2D square lattice with two sub-
lattices (a) and (b), and the Hamiltonians can be generally
written as

_ X (1 +f-§1,)
H = —ZZ( iy )

_ZX< At m))

where f is an HOCA update rule [see Eq. (5)], y is a vec-
tor composed of monomials of y [see Eq. (10)], and the
notation f means f(x) := f(¥) := f(x~1).

The Hamiltonian in Eq. (13) describes an exactly solv-
able cluster model with a short-range entangled unique
ground state on a torus, similar to the usual cluster states.
In fact, we can obtain the commonly seen 1D cluster model
(which is an SPT phase protected by global Z, x Z, sym-
metry) by taking f= 1, and define it on a lattice with
L, = 1. The Hamiltonian we get are equivalent to that of
the 1D cluster model up to a change of basis (Z < X).

(13)

| : FIG. 2. Two possible overlap-
1 : ping ways of Hamiltonian terms

e

of the I-MSPT model [Eq. (17)].
Gray circles are the overlapping

X and Z Pauli matrices from
two terms. Black lattice and blue
dashed lattice denote sublattices

(a),(b).
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The exact solvability of the model can be proved by not-
ing that there are always 0 or 2 overlapping operators
between two terms in the Hamiltonian, ensuring that every
Hamiltonian term commutes with each other. Two exam-
ples are shown in Fig. 2. The property of the ground
state can be verified by noting that there are 2L, L, qubits
and 2L,L, Hamiltonian terms in a model defined on a
L, x L, torus. Notice that each Hamiltonian term corre-
sponds to a unique onsite Pauli operator, resulting that all
Hamiltonian terms are independent from each other. For
x'y (14£1 )
X'y

0 -
tor Z (xzyl ), and each term X (Xiy/(1+f'yl,n)

example, each term Z ( ) corresponds to opera-

> correspond to

operator X (x%’j ) . With no other constraints being present,

the ground-state subspace has dimension 225y /22lxly =

20 = 1, giving a unique ground state on the torus.

Now, let us investigate deeper into the symmetry ele-
ments of the model. Suppose these models are defined on
an open slab with a size of L, x L,, and all Hamiltonian
terms with operators outside of the boundary are excluded.
Here, L, is the length in the i direction and L, is the length
in the j direction. For a SPT model generated by an order-
n CA, the open slab should satisfy Ly > pmin + Pmax and
L, > n, where ppnax and —pni, are, respectively, the largest
and smallest power of x in f(x) (if pmax OF Pmin are less than
zero, then it is defined to be zero), to ensure there is at least
one valid Hamiltonian term in the model.

We now focus on Hamiltonian terms whose coordinate
x'y/ is in the slab but contains sites outside of the slab.
Assuming the coordinate axis is taken as in Fig. 3, then for
sublattice (a) there are n rows of such Hamiltonian terms
excluded at the top edge of the system, pnax terms at the
left edge, and pp,;, terms at the right edge. Each excluded
term with coordinate x’)” plays the role of a lost constraint
on the ground-state manifold, producing a free spin at site
x'y/ . Similarly, we can obtain extra degrees of freedom at

FIG. 3. Pictorial illustration of two typical Hamiltonian terms
of the I-MSPT model [Eq. (17)]. Black lattice and blue dashed
lattice denote sublattices (a),(b).

sublattice (b), with everything reversed (top <> down,
left < right, etc.). Suppose there are k such excluded
Hamiltonian terms in the model, then the ground-state
degeneracy of the model will be 2.

We are now able to flip free spins at the edge with-
out changing the energy of the system. Flipping spins at
the edge will generally affect spins in the bulk following
the HOCA update rule, producing symmetry elements in
the shape of the HOCA pattern. The operations that flip
spins in these HOCA patterns commute with the Hamil-
tonian of the model, being the symmetries that protect the
degenerate edge state.

These models have two sets of subsystem symmetries
S@ and S® | each set per sublattice:

@ gy — x [F ) ®) (q) — -
A (q)—X( 0 > A} (q)—2<g(x,y)>,

(14)

where % (x,y) is the truncated HOCA pattern . (x,y)
[Eq. (9)] specified by an HOCA rule f and an initial con-
dition q, and all terms which are not fully in the slab are
excluded. The HOCA rule f controls which type of subsys-
tem symmetry can be found in this model, and q controls
the specific pattern of the symmetry. We can enumer-
ate these symmetry elements in an HOCA generated SPT
model by counting all possible different initial conditions
that can be defined in the slab.

These symmetry elements commute with the Hamilto-
nian terms, which can be verified by examining the com-
mutation polynomial. The commutation polynomial with
respect to two polynomials «, 8 is defined as P(w, ) =
aB. If the coefficient of x°y° in P(a, B) is zero, X (o) and
Z(B) commute with each other [109].

Now we verify the commutation relation in sublattice
(a). We will do the calculation in the semi-infinite plane
(—o00 < i< 00, j > 0)and do the truncation afterwards.
In sublattice (a), the symmetry writes [sublattice (b) are not
represented below] X (% (x, y)) and a general Hamiltonian
term (we consider the Z term only) writes Z(x'y/ (1 + f -
¥1..)). The commutation polynomial is

P(F (x,9),x'v (1 +£- 1))
=FZx Ty T A+ y,)

o
=x YT (A +1y1,) ) ¥k

k=0
[ele) [ele) n—1
=x7y7 [Zykrkoc) + )y + Zykﬂx)}
k=0 k=n k=0

n—1 n—1
=xly [Z Yo + ) yk?(x):| . (15)
k=0 k=0
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Here, 7(x) is defined as follows:

n—1 00 00
D VR =y Y v = Y v, (16)
k=0 k=0 k=n

where all terms have a power of y that is lower than n.
Note that i € Z and j € N. The definition of .# can be
found in Eq. (9). While the exponent of y is given by £ — j
in Eq. (15), and £ =0, 1,...,n — 1, which means that all
terms in the commutation polynomial have a y power less
than n. According to our convention, Hamiltonian terms
withj < n are all excluded. Hamiltonian terms withj > n
have a null commutation polynomial since the y power
of all terms in the commutation polynomial are less than
zero, which are also outside of the slab. Thus, we proved
that such symmetry elements indeed commute with the
Hamiltonian [Eq. (13)].

The edge states are protected by the above symmetry
elements. These symmetry elements are all in the shape
of an HOCA pattern (and their superposition after trans-
lation), which can be generated by choosing an initial
condition q and truncating the resulting HOCA pattern to
fit the open slab. The visual property of the symmetry ele-
ment is controlled by both initial condition q and HOCA
rule f. To explore edge physics, we can define a series of
new Pauli operators at the edge. Taking sublattice (a) as an
example, the edge Pauli matrices are written as

@ _ 0. @ _ o (X (L +1-§1,)
'%z"j _X<xiyj>’ ij —Z( xiyi >,

(@) _ xiyj(l +i" y ,n) 0
(),

J

where these operators are truncated to the slab by default.
Here, edge states in sublattice (a) are distributed along the
top, left, and right edges of the slab. These three matrices
all commute with remaining Hamiltonian terms and they
form a Pauli algebra. To open the gap of a degenerate edge
state, we can add a magnetic field to an edge-free spin. This
operation must violate approximately 2¢~! symmetry ele-
ments, which act nontrivially on this edge spin, reducing
the ground-state degeneracy by half.

Now we give a brief picture of the duality of HGSPT
model. On open slab, each ground state of an HGSPT
model can be mapped to a symmetry-breaking ground
state of the dual model. By redefining Pauli opera-
tors, an HGSPT Hamiltonian becomes two decoupled
copies of symmetry-breaking orders with the same HOCA-
generated symmetry, each showing a phase transition at
magnetic field 2 = 1 via Kramers-Wannier duality. So for
an HGSPT model, we can add magnetic field in two dif-
ferent directions (4, and /), and transition will happen at
hy = 1 and h, = 1. If both magnetic fields are smaller than

1, the model remains in the HGSPT order. If one of 7,
and 4, is bigger than 1, the model becomes the symmetry-

breaking phase in one sublattice. If A, s, are both big-
ger than 1, the system are in the trivial paramagnetic
phase.

We will give several examples of HGSPT models in the
next few subsections.

B. Model I: I-MSPT generated by order-two CA

An example of an [-MSPT Hamiltonian can be written
as

_ XY 4+y 't +14+x) +y2(1 +x7H)]
H = —Zz( xiy)

i

y

generated by an order-two CA with update rule

f(x) = (x_l +1 +x>. (18)

1 +x

The Hamiltonian is pictorially shown in Fig. 3.

The order of the HOCA is n = 2, so we need to spec-
ify two rows of initial conditions by a two-row vector q.
Now we focus on symmetry elements in sublattice (a), and
symmetries in sublattice (b) can be obtained similarly (by
reversing everything, as mentioned in Sec. III A). First,

_ZX o x'y!
Y +ya +14+x)+y*0+0])°

(17)

(

take an initial condition q and plug it into Eq. (9) to get
the symmetry pattern. Then, if the model is defined on
an L, x L, open slab, we place the first row of symmetry
pattern on top of the slab (row with j = 0) and exclude
parts that are not in the slab. Since the HOCA rule is
translationally invariant in x axis, we can move our pat-
tern in the x direction with terms outside of the slab being
excluded. The operation above gives us Z , which we plug
into Eq. (14) to get the symmetry element. In the case
of sublattice (a), the symmetry elements are made up to
Pauli-X operators in the shape of Z, just like we defined
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as(z)

ﬂ@%ﬁ
(2)

a4

",

FIG. 4. Four subsystem symmetries of the [-MSPT model [Eq. (17)] in sublattice (a). The initial conditions are shown in Egs.
(19a)19d). White pixels are spins that the Pauli-X operator acts nontrivially on. The first two rows in each figure are determined by
the initial condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (¢) q3(x). (d) q4(x).

in Eq. (14). Consider symmetry elements generated by the
following four initial conditions:

Q) = (1 ix> (19a)
Q@) = (}C) (19b)
qs(x) = (x_l +01+x>, (19¢)
qs(x) = (?) . (19d)

The overall results are shown in Fig. 4. It can be seen
clearly that a Sierpinski triangle [Fig. 4(a)] and a line
[Fig. 4(b)] can both be the symmetry element, and there
are symmetry elements that look like the attachment of
two patterns [Fig. 4(c)]. Although we consider only the
initial condition with the absolute values of exponent of
x (denoted as P) in each row less or equal than 1, any
q can be chosen, in principle, if it can fit into the size of

the open slab. However, doing so does not bring us extra
peculiar phenomenon. So far we have not found guiding
principles of ascertaining q for a given type of symmetry
element (e.g., linelike or fractal), and four initial conditions
mentioned above are found by computer enumeration. The
edge states of the model are protected by the symmetries
we generated above (and other possible HOCA-generated
symmetries). In Fig. 5 we explicitly show an example of
symmetry protection for model [Eq. (17)]. In the figure
we show that to open the gap of an edge spin must vio-
late two symmetries: a linelike symmetry and a fractal-like
symmetry (and many other HOCA-generated symmetries
that act nontrivially on this spin). The only way to mod-
ify edge spins while keeping all commutation relation
with symmetries is to couple edge spins at different edges,
which is either nonlocal or located at the corner of the
system.

C. Model II: II-MSPT generated by order-three CA

There are also models with two different fractal symme-
tries. Consider a Hamiltonian

WL+ y ' e + 1+ +y 2 +y 2 4+ D]
%:—Zz( iy

y

y

_ ZX xiyj
XYL 4+ya "+ 14+x) +y2x ! +331 +x)]

(20)
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FIG. 5.

Two examples of symmetries that protect the dangling spin (green circle) located at the top edge of the system. The Hamil-

tonian is [Eq. (17)]. If we manually break the degenerate edge mode at green circle (e.g., by adding a Zeeman term), such modification
of the Hamiltonian will anticommute with two symmetry elements shown in the figure (and many other terms that act nontrivially on
this site), showing that the edge mode is indeed protected by our HOCA-generated symmetry.

generated by an order-three HOCA rule

x4
fix) = x~! . 21
14+x

The Hamiltonian is pictorially shown in Fig. 6.
Examine symmetries generated by the following initial
conditions:

qi(x) = , (22a)

—_ O O

FIG. 6. Pictorial illustration of two typical Hamiltonian terms
of the II-MSPT model [Eq. (20)]. Black lattice and blue dashed
lattice denote two sublattices.

0
Q) =1x], (22b)
1
0
o= x"' |, (22¢)
x4 x
!
Q) =[x +1 (224d)
x T 4x

The overall results are pictorially shown in Fig. 7. When
there is only one flipped spin in the initial condition, the
HOCA rule gives a chaotic pattern [shown in Fig. 7(a)].
Figures 7(b) and 7(d) are two fractal subsystem symme-
tries of the model [Eq. (20)]. They are both Sierpinski
triangles but with different shapes and orientation. Figure
7(c) can be viewed as the attachment of two fractal sym-
metries (with small modifications in the middle).

D. Model I1I: CSPT generated by order-three CA

Chaotic SPT (CSPT) models contain only subsystem
symmetries in chaotic patterns. Under various initial con-
ditions, the symmetry elements majorly show chaotic pat-
terns. HOCA rules producing chaotic patterns are often
used for the encryption algorithm in computer science,
as a minor change in the initial condition may produce
an entirely different chaotic pattern. An example can be
written as

030342-10
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(@) . (®)

q4(z)

FIG. 7. Four subsystem symmetries of the II-MSPT model [Eq. (20)] in sublattice (a). The initial conditions are shown in Egs.
(22a)+22d). White pixels are spins that the Pauli-X operator acts nontrivially on. The first three rows in each figure are determined by
the initial condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (c) q3(x). (d) q4(x).

Ho==) 7 (xjyj[l T L) 4y +y3x1]>

. xy!
ij
x'y/
— x| .. 2
; (x’y’[l +y 41 +x)+y2+y3X]) 23)
\
with HOCA rule E. Model IVa: RSPT generated by order-two CA

It has been known that 2D regular SPT (RSPT, pre-

-1
f(r) = x +11 tx (24) viously referred to as SSPT in Ref. [102]) can be gen-
o . ’ erated by a cluster model. Now we want to show that

our HOCA framework also includes quantum models with

The Hamiltonian is pictorially shown in Fig. 8.
Given four initial conditions

0
am=[o], (252)
1
0
Q=1 0 |, (25b)
1+x
1
G =[(x"+1], (25¢)
X
x4+ 1+x
qs(x) = 1 . (25d)
X FIG. 8. Pictorial illustration of two typical Hamiltonian terms
of model [Eq. (23)]. Black lattice and blue dashed lattice denote
The resulting subsystem symmetries are shown in Fig. 9. two sublattices.
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FIG. 9.

Four symmetry elements generated by order-three CA [Eq. (24)] in sublattice (a). The initial conditions are shown in Egs.

(25a)+25d). White pixels are spins that the Pauli-X operator acts nontrivially on. The first three rows in each figure are determined by
the initial condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (¢) q3(x). (d) q4(x).

linelike and membrane-like symmetry elements just like
ZZ“b strong SSPT discussed in Ref. [102]. Our model is
different from the model discussed in Ref. [102], but some
of their subsystem symmetries share the same type. A rig-
orous proof of this statement is shown in Appendix B. In
addition, there are also checkerboardlike membrane sym-
metries [Fig. 11(d)] in our model, which is different from
the previously defined SSPT model. A typical update rule
of such an RSPT model can be written as

= (7). 26)

which generates the Hamiltonian

Xy 14y~ e +x) +y7%
H = —ZZ( iy
ij

x'y/
s (xiy’[l +y(x ! +x) +y2]) - @D

The Hamiltonian generated by this rule is pictorially
shown in Fig. 10.
Consider the following initial conditions:

ql(x) = (1 _?_x) )
06 = (T)

(28a)

(28b)

(28¢)

1) = (i)
qs(x) = (é) .

There are linelike and membrane-like symmetry elements
present in the model, as shown in Fig. 11.

(28d)

F. Model IVb: RSPT generated by order-three CA

Now let us consider a more nontrivial RSPT model
generated by an order-three CA:

x T +1
foy=|x"+14+x], (29)
14+x
FUlEIEEEEErNEEE
AN T T
@ 3 @ : \ZJ \ZJ
@)-
@ TR T @

FIG. 10. Pictorial illustration of two typical Hamiltonian terms
of the model [Eq. (26)]. Black lattice and blue dashed lattice
denote two sublattices.
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FIG. 11.

qa(z)

Four patterns generated by order-two CA [Eq. (26)] in sublattice (a). The initial condition are shown in Egs. (28a)—(28d).

White pixels are spins that the Pauli-X operator acts nontrivially on. The first two rows in each figure are determined by the initial
condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (¢) q3(x). (d) q4(x).

which generates the Hamiltonian

B YY1 4+yTA+x) +y 2@+ 14+x) +y 3@+ D]
H = —ZZ( iy

i

xyl ) . (30)

- ;X (x"ﬂ[l e D 422G+ 1) + 3 4 0]

The Hamiltonian of model IVDb is shown pictorially in
Fig. 12.
Given four initial conditions:

1

am=|1], Gla)
1
0

e =0, (31b)
1
1

G =10}, (31c)
0
0

am=]1], (31d)
1

we obtain four different subsystem symmetries shown
in Fig. 13. Different from model IVa, which can only
generate regular patterns, there are some chaotic-looking
symmetries in model IVb. At first look some symmetries

[e.g., Fig. 13(d)] may seem to possess a fractal structure,
but they do not actually have a rigorous self-similarity (see
Sec. [II G for more detailed discussions).

G. A notation system for labeling the higher-order
cellular automata

Now, we want to introduce new notations to charac-
terize various subsystem patterns generated by HOCA.
As we have shown in the previous sections, HOCA can
generate various types of patterns in the space-time lat-
tice, such as fractal patterns with rigorous self-similarity
(e.g., Sierpinski triangle), patterns that consist of some
periodic repetition of basic structures (e.g., checkerboard),
and even patterns that look like a mixture of the two above.
We also found these subsystems have various dimen-
sions (in the sense of Hausdorff dimension). We claim
that these properties of an HOCA pattern .# [defined on
the semi-infinite plane, see Eq. (9)] generated by a finite
initial condition (i.e., there are finite terms in the ini-
tial condition) can be captured by a mathematical object
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1
1
1
1
edececbaal
1
1
1
1
1
1

FIG. 12. Pictorial illustration of two typical Hamiltonian terms
of model [Eq. (29)]. Black lattice and blue dashed lattice denote
two sublattices.

X(F) = [d(F),M(F)). Here, d is defined as the Haus-
dorff dimension of the pattern with infinite time-evolution
steps, which can be approached numerically by box dimen-
sion. If we denote the number of evolution time steps by ¢,

(@) o
0
20
40
60
80
100

120

FIG. 13.

and the number of sites with state 1 from time 0 to time ¢
by a(?), then we have d = lim,—, », Ina(?)/Int.

For a Sierpinski triangle with Hausdorff dimension
dy =In3/In2 ~ 1.5850, the numerical result with ¢ =
256 gives d = 1.5830, which is quite close to the exact
result. Another quantity, M, is dubbed as the mix
rate, describing how fractal or periodic the pattern is.
For an order-n HOCA pattern, M is mathematically
defined as

M= Su;uSd, 32)
where
.00 = limsup Y ; A®D) 33)
and
Sutn) = lim gfw (34)

where A(i) is the number of cells in state 1 of the ith row.

The definition of M comes from the following observa-
tions. Now we have observed two possible local behaviors
of HOCA evolution patterns for all HOCA rules with
radius » < 3/2 and n < 3:

(1) Self-similar fractal structure: some parts of a HOCA
pattern tend to appear recurringly while we increase

&Y
:ﬂlﬁ%f‘ 5,

¥
b

Four patterns generated by order-two CA [Eq. (29)] in sublattice (a). The initial conditions are shown in Egs. (31a)~(31d).

White pixels are spins that the Pauli-X operator acts nontrivially on. The first three rows in each figure are determined by the initial
condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (¢) q3(x). (d) q4(x).
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the time of evolution (i.e., enlarging the pattern).
While the whole pattern may not be fully self-
similar in general, there are recognizable fractal
structures in many patterns. An example is Fig. 7(d).

(2) Regular structure: some parts of a HOCA pattern
may appear to be filled by some local repeating
structures, like Fig. 11.

While in general a HOCA pattern may not be a fully frac-
tal or regular pattern, a large subset of HOCA patterns can
be viewed as some mixture of fractal and regular patterns.
This visual observation can be clearly seen for almost all
HOCA patterns with » = 3/2 and n < 3, while it is subtle
to argue whether HOCA patterns like Fig. 9 can be viewed
as this kind of mixture just by watching. To give a more
quantitative and rigorous description of this mixing behav-
ior, we observe that fractal patterns and regular patterns
are distinguishable in terms of counting cells with state 1
in every row. We denote the number of cells with state 1
in row ¢ to be A(¢) as in Eqgs. (33) and (34), then we have
following qualitative observations:

(a) In a fully fractal pattern, there always exists a infi-
nite sequence {#;} such that A(¢;)/¢t; — 0. This obser-
vation is obvious because of the self-similar essence
of fractal. Self-similarity means there are infinitely
many rows can be represented by simply scaling
single-row configurations. An example of this is
the sequence {t = 2" — 1 : n € Z*} of Fig. 7(d). All
rows with an index in this sequence have two cells
in state 1, scaled by different proportions.

(b) In a fully fractal pattern, there is always a sequence
{t;} such that the sequence {4(#;)} grows to infin-
ity. A heuristic explanation of this observation is
that fractal patterns always tend to grow bigger as ¢
increases. A rigorous proof of this statement would
involve the sensitivity of HOCA rule, which will
be introduced in Sec. F 4. In short, this statement is
always true for a fractal pattern.

(c) In a fully regular pattern, where every row con-
figuration can be viewed as some repetitions of a
specific local structure [e.g., each row in Fig. 11(d)
can be viewed as the repetitions of a white-black
checkerboard structure], the number of sites with
state 1 in each row either grows linearly (for a
membranelike pattern), or remains a constant (for a
linelike pattern), or oscillate between two constants
(for a zipperlike pattern). In all situations, the upper
limit and the lower limit of the sequence {A(#)} when
t — oo will be at the same order, being both O(¢) or
o(1).

The observation above enables us to define the “mix rate”
M of two types of structures in a single HOCA pattern.
As seen in the definition of M [Egs. (32)~34)], for a

fully fractal pattern there will be a constant upper limit
of {4(t)/t}, and a zero lower limit of {A(f)/t} (all con-
stant lower limits of {A4(f)} will be suppressed by the 1/¢
factor). Thus, M =1 is always true for the fractal case.
As for the case of regular pattern, the upper and lower
limit of {A(#)/t} will either be equal to an identical con-
stant (membranelike pattern) or equal to zero (linelike,
zipperlike case). Both cases lead to the result that M = 0,
being the character of a regular pattern. Generally, M
is in [0, 1] for a general HOCA pattern, and this prop-
erty is true for any finite HOCA pattern generated by
finite initial condition (only sites in a limited area have
nonzero values). Specifically, the sum in the numerator
of Egs. (33) and (34) is taken from i=k to i=k+n
because the fact that there will be at most » — 1 consec-
utive empty rows in a pattern generated by an order-n
HOCA, which can cause some nonfractal pattern to obtain
a zero lower limit of {4(#)}, affecting the effectiveness
of M. As the research on the dynamical properties of
HOCA is still at early stages, there are still no math-
ematical paper to give rigorous classifications of these
properties. Therefore, we have done an exhaustive and
case-by-case verification of the validity of M for all » <
3/2 and n < 3 HOCA rules (512 rules in total), and have
found no counterexamples of our classification based on
our current observation. While there are certainly mathe-
matical foundations of this quantity, the topic is beyond
the scope of this research and is left as a part of future
works.

We provide a pictorial description of various HOCA
patterns:

(1) M = 1:1tis a fractal pattern exhibiting a self-similar
structure, like Fig. 7(d). Also there are mixed pat-
terns that can be considered as the attachment of
(d, 1) fractal pattern and a (1,0) pattern, as shown
in Fig. 4(c).

(2) M =0: (d,0) pattern can be considered as spatial
repeating of some minimal structures or some sta-
ble patterns. The overall pattern can extend in the
2D plane [Fig. 11(d)] or propagate along some 1D
subsystem of the plane [Fig. 11(b)].

(3) 0 < M < 1: Chaotic patterns can show recogniz-
able repeating structures locally or appear to be

irregular, but it does not fit into the classification
above, as shown in Fig. 9.

More explicit examples of the validity of M in classifying
HOCA is shown in Figs. 14 and 15.

An HOCA rule can generate infinite patterns by vary-
ing the initial condition q(x). However, if we collect
all possible patterns generated by an HOCA rule, we
find that different rules may produce different types of
patterns, dividing HOCA rules into four classes. We use
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Membranelike regular pattern

Checkerboardlike regular pattern

Linelike regular pattern

(b) M = 0.0, Dimension =2.0031
500
400
300
200
100
0
0 20 40 60 80 100 120
M=0
(d) M=0.0, Dimension = 1.8625
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0
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M=0
(f) M =0, Dimension = 0.9984
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FIG. 14. Example 1 (two in total) illustrating the validity of M in classifying HOCA patterns. Figures 14(a), 14(c), 14(e), 15(a),
15(c), and 15(e) show six examples of HOCA evolution pattern. Figures 14(b), 14(d), 14(f), 15(b), 15(d), and 15(f) show how

i+n

re; A(k) grows with i, where the numerical results of d, M is shown above each figure. S, and S; can be understood as the slope
of green and orange straight lines in the subfigures in the right column. For regular patterns two slopes are always equal, while for
fractal pattern, the slope of orange lines are always zero, for chaotic-looking patterns two straight lines have different nonzero slopes.
(a) Membranelike regular pattern. (b) M = 0. (c) Checkerboardlike regular pattern. (d) M = 0. (e) Linelike regular pattern. (f) M = 0.

X (f) = (X, Xr) to denote the classes [f], where

X, =1 — [min{M}],

X, = [max{M)], ¢

where [ ] and | | are ceil and floor functions, respec-
tively. {M} represents the set of all possible M gen-
erated by the given HOCA rule. Heuristically, X, and
X; describe whether a certain HOCA rule can generate
regular pattern or fractal pattern. For example, X, =1
means that there are at least one regular pattern (e.g.,

line, membrane, checkerboard, etc.) can be obtained from
the HOCA rule by varying the initial condition, and vice
versa.

Typical examples of patterns above can be found in
Figs. 14 and 15. Given a specific update rule f, different
patterns can emerge when we adjust the initial conditions.
Thus, we can classify different update rules by the patterns
they can produce, as shown below:

(a) X(f) = (0,0): These HOCA rules only produces
chaotic patterns like symmetry elements presented
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FIG. 15.

Fibonacci fractal pattern

Sierpinski fractal pattern

Chaotic-looking pattern

(b) M =1.0, Dimension = 1.7222
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M = 0.5424 , Dimension = 1.7737

0 20 40 60 80 100 120

M =0.54

Example 2 (two in total) illustrating the validity of M in classifying HOCA patterns. Figure 14(a), 14(c), 14(e), 15(a), 15(c),

and 15(e) show six examples of HOCA evolution pattern. Figure 14(b), 14(d), 14(f), 15(b), 15(d), and 15(f) show how Zj;’; A(k) grows
with i, where the numerical results of d, M is shown above each figure. S, and S; can be understood as the slope of green and orange
straight lines in the subfigures in the right column. For regular patterns, two slopes always equal, while for fractal pattern the slope of
orange lines are always zero, for chaotic-looking patterns two straight lines have different nonzero slopes. (a) Fibonacci fractal pattern.
(b) M = 1. (¢) Sierpinski fractal pattern. (d) M = 1. (e) Chaotic-looking pattern. (f) M ~ 0.54.

(b)

(©

in chaotic SPT. Neither fractal nor like-like patterns
can be found in this class.

X)) =(0,1): HOCA rules in this class can
produces fractal patterns but not periodic pat-
terns. Sierpinski FSPT [109], and previously men-
tioned II-MSPT can be generated by CAs in this
class.

X (f) = (1,0): HOCA rules in this class produces
periodic patterns, including linelike, membranelike
patterns. SSPT [102] can by generated by HOCA
rules in this class.

(d) X)) = (1,1): HOCA rules in this class produces
both fractal and periodic patterns. These rule can
generate [-MSPT phases.

To capture finer details of an HOCA rule, we define
two sets of characteristic dimension of an HOCA
rule f:

D, ={d(F)|M(F) = 0}, (36)
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and
Dy = {d(F)IM(F) =1}, (37)

where .% denotes any possible HOCA pattern generated
by the HOCA rule f, and d(.%) denotes the box dimen-
sion of the given HOCA pattern. By examining Dy and D,
one can quickly ascertain the types of patterns that a given
HOCA rule can produce. For example, if Dy is empty, then
the HOCA rule cannot produce any fractal patterns. If D,
contains only one element, then the HOCA rule can only
produce periodic patterns with the same dimension. Note
that different fractal patterns can share the same dimen-
sion, an example of which is shown in our II-MSPT model
[Eq. (20)]. Two HOCA symmetries in this model are Sier-
pinski triangles facing different directions, thus sharing the
same dimension. With this notation in hand, we can give
a technical definition of RSPT, FSPT, MSPT, and CSPT
orders as follows:

(a) Regular(-subsystem) SPT (RSPT) is the SPT phases
protected by subsystem symmetries that necessar-
ily (i) include regular subsystem symmetries (e.g.,
linelike symmetry) and (ii) exclude fractal subsys-
tem symmetries. For HGSPT models, it means that
RSPT models correspond to HOCA rules f satisfy-
ing X(f) = (1,0).

(b) Fractal(-subsystem) SPT (FSPT) is the SPT phases
protected by subsystem symmetries that necessar-
ily (i) exclude regular subsystem symmetries (e.g.,
linelike symmetry) and (ii) include fractal subsys-
tem symmetries. For HGSPT models, it means that
FSPT models correspond to HOCA rules f satisfying
XM = (,1).

(c) Type-I mixed(-subsystem) SPT (I-MSPT) is the SPT
phases protected by subsystem symmetries that nec-
essarily (i) include regular subsystem symmetries
(e.g., linelike symmetry) and (ii) include fractal sub-
system symmetries. For HGSPT models, it means
that I-MSPT models correspond to HOCA rules f
satisfying X' (f) = (1, 1).

(d) Chaotic(-subsystem) SPT (CSPT) is the SPT phases
protected by subsystem symmetries that necessar-
ily (i) exclude regular subsystem symmetries (e.g.,
linelike symmetry) and (ii) exclude fractal subsys-
tem symmetries. For HGSPT models, it means that
CSPT models correspond to HOCA rules f satisfy-
ing X (f) = (0,0).

Given the technical definitions above, there are still points
that need further clarification. Firstly, we can notice that
these definitions are not completely intuitive: for example,
when regular symmetries and chaotic-looking symmetries
exist simultaneously in one model and fractal symmetries
do not, the model is classified as the RSPT phase as well.

TABLE II. Typical SPT phases denoted by the new notation
system. Here, models I and II are, respectively, I-MSPT and II-
MSPT models, model III is a CSPT model, models IVa, IVb, IVc
are all RSPT models, models Va and Vb are both FSPT models.
In particular, we can notice that though models I'Va, IVb and IVc
are all classified as 2D RSPT models, their behavior can be very
different.

Model No. X, X D, Dy

1[Eq. (17)] ) {In3/In2}

11 [Eq. (20)] 0 1 o {In3/In2}

11T [Eq. (23)] 0 0 o 2
IVa[Eq.27)] 1 0 (1,2} 2
IVb[Eq.30)] 1 0 {1} o
IVe[Eq.(B2)] 1 0 {12 o
Va[Eq.(55] 0 1 2 {In3/1n2}
Vb[Eq. (78)] 0 1 o {1 +log, (‘g—ﬁ)]

Besides, II-MSPT orders with two different kinds of frac-
tal subsystem symmetries do not have a specific position
in this classification, as purely according to the X (f) of
HOCA rules they would be classified into FSPT orders.
Furthermore, for a HOCA rule f a rigorous proof between
X (f) = (0,0) and chaos is still lacking, although in our
observation X' (f) = (0,0) always implies the HOCA rule
can generate chaotic-looking patterns. A finer classifica-
tion of HGSPT orders naturally depends on a more com-
plete and sophisticated understanding of the dynamics of
HOCA, thus it is beyond the scope of this paper, but we
expect it to be an important future direction, which may
lead to further understanding of subsystem symmetries.

Here we list some SPT phases characterized by our
notation in Table II.

IV. MULTI POINT STRANGE CORRELATOR
DETECTION

Originally proposed in Ref. [139], “strange correlator”
is a powerful tool to detect nontrivial short-range entan-
gled states. Recently, strange correlators have been used to
detect the nontriviality of the RSPT state [101] (see Ref.
[138]). This work shows that the RSPT state with linelike
subsystem symmetries can be detected by strange correla-
tors with two operators ¢ being in the same straight line
corresponding to the anisotropy of the subsystem symme-
tries. This naturally motivates us to detect the nontriviality
of HGSPT phases through strange correlator, with the hope
that the configuration of the operators inside the strange
correlator will reflect the property of the HOCA-generated
symmetry of the model.

In the previous sections, we have shown that HOCA are
able to successfully generate SPTs protected by various
kinds of subsystem symmetries. In the following, given a
specific HGSPT, we want to detect its nontriviality and the
class that its HOCA rule belongs to. We will show that this
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task can be completed by what we call “multi point strange
correlator” (MPSC).

A. Definition
The strange correlator is defined as follows in Ref.
[139]:

(Qlo(e () V)
Q) v ’

C(r,v) = (38)

where |W) is the short-range entangled (SRE) state to be
diagnosed, |2) is the trivial disordered state in the same
Hilbert space as |W), ¢ is some local operator. For non-
trivial SRE states, the strange correlator will saturate to
a constant or undergo a power-law decay for specific ¢,
while that of trivial SRE states will decay exponentially or
become null. The strange correlator defined above involves
two local operators, and the definition can be extended
to the case of n local operators, dubbed as a multi point
strange correlator:

) = (2 0r1)p(ra) - () V) (39)
(Q)w

C(rl,l"z, .

Here, n are dubbed as the correlation number of the multi
point strange correlator. We also introduce the multi point
normal correlator, which can be regarded as the strange
correlator of the trivial disordered state, serving as the
“background” to be subtracted from the strange correlator:

Q () |92
N(rl,rz,...,rn)=< I¢(r1)¢§giﬁ ¢(ra) | >' (40)

For a given ¢ and a spatial configuration {r;}, we say the
strange correlator C({r;}) gives a nontrivial result if and
only if C({r;}) — N({r;}) saturate to a constant or decay
algebraically. Since if C({r;}) is (quasi-)long-range ordered
but C({r;}) — N({r;}) is not, it would mean that we cannot
distinguish nontrivial SPT ordered states from the trivial
symmetric state with this strange correlator. In this work
we demand ¢ to be onsite Pauli operators. By means of
multi point strange correlator, we construct a general pro-
cedure that detects the nontriviality of the HGSPT ground
state.

It is also worth noticing that using the duality rela-
tion between the SPT model and the symmetry-breaking
model, the MPSC can be mapped to the membrane-
like order parameters in the symmetry-breaking models,
some examples have been previously shown in Refs.
[109,162,163]. However, it has not been discussed, to
our knowledge, whether the ground state of SPT models
with fractal symmetries can only be detected by strange
correlators with more than two local operators, i.e., if
there is an “intrinsic” multi point nature in these mod-
els. In the following texts, we explore systematically the

behavior of MPSC in various HGSPT models and proved
that there is indeed SPT models that can only be detected
by strange correlators with more than two points, as shown
in Appendix D.

B. Detection through multi point strange correlators

In this subsection we are to probe the nontrivial ground
states of HGSPT models. The aim of this subsection is to
raise a universal approach that distinguishes HGSPT mod-
els in different classes. Now that we have demonstrated
that all HGSPT models have degenerate edge states on an
open slab in the previous section, it is guaranteed that we
can find a specific ¢ and a particular spatial configuration
of ¢ to produce nontrivial results. The point here is to find
the ¢ and configuration that give nontrivial results while
reflecting the symmetry properties of the system.

If we denote the position of operators in the multi point
strange correlator by {r;}, then for a HGSPT generated by
an order-n CA, we claim that the nontrivial ground state
of the HGSPT model can be detected by the multi point
strange correlator in the following configuration:

0
X (DL<q,f;x,y>> v
@

Clq. £, L {ri}) = , (4D

where

Di(q.f:x,y) = [@L;x) + mL; )] - yioper,  (42)

go(x)
q1(x)

El(x) — qn61 (x) , (43)

n+ L rows

mo(x)
mi(x)

P ()

mo=| [, (44)

L rows
Po(x)
p1(x)

o1 ()
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1

2
Yionyr = Y > (45)

2n+L—1
v

and we choose the trivial symmetric state [Q2) =
X @ = Z® = 1). Specifically, my(x) = 0, and m;(x), i >
0 can be calculated by

mi) =) gk @fix), (46)
k=1
and
Py =Y Furrpi k@), (47)
k=i+1

All calculations of polynomials above can be easily done
by computer.

L plays the role of “distance” in this configuration and
takes value in N, and is named evolution distance here-
after. Given the HOCA rule of the HGSPT model, we can
construct a series of multi point strange correlator by fix-
ing an initial condition q (as long as the initial condition
can be defined in the given bulk) and increase L. Differ-
ent series of multi point strange correlators will behave
variously depending on the X' (f) and q. Specifically, we
define the correlation number n of a strange correlator
to be the number of onsite operators ¢ included in the
correlator n[Dg(q, f; x,y)]. Then, we claim that by observ-
ing how n grows with L will be helpful to determine the
X (f) (Sec. 111 G), the class of the HOCA rule for the given
HGSPT phase.

The seemingly complicated configuration can be inter-
preted below: q(x) can be recognized as the initial con-
dition q(x) that generates the whole configuration. Since
generally the strange correlator is acted in the bulk, so the
configuration ¢g(x) may possibly violate the HOCA update
rule, resulting in a trivial result of the strange correla-
tor, forcing us to introduce the term m. The term m(x)
is added for two reasons: (i) m;(x) is added to each g;(x)
to make sure that the product of operators commute with
the symmetry, and is determined by ¢(x); (ii) p;(x) has
the form of HOCA pattern generated by ¢g(x) in the corre-
sponding rows to meet the commutation relations. Such a
construction ensures that X ( p, gt ) [take sublattice (b)
as an example] act equivalently as products of Hamilto-
nian terms in the given sublattice, giving a trivial action on
the ground state |\W). This guarantees that the multi point
strange correlator C(q,f, L; {r;}) gives nontrivial results

since

0
(QX (D ! )I\If>
Cla. £, L; {ri}) = L@, £x,7)

(Qw
ay,B
QX <x0y )Ha,ﬁHé‘,ﬁ |W)
N Q)W
=1 (48)

Here HD{ s 1s the Hamiltonian term defined on the site
denoted by «,8 and composed of X operators, where
o,B sum over all the sites with nontrivial values in
DL(q, faan)

Now we give some comments of this construction of
configuration. There are two main goals that we consider
while designing this specific configuration. First, we want
to find out the simplest configuration of ¢ needed to show
the nontrivial results in an HGSPT ground state. Second,
we hope that the configuration we design will reflect the
symmetry property of the given HGSPT model. The sec-
ond goal is well achieved in our construction in all models
discussed in this paper, while the first goal is not always
easy to satisfy. Generally, we conjecture that configuration
that meets the first goal are always included in this con-
figuration. This claim is proved rigorously in the case of
model Va [Eq. (55)], an FSPT model.

For an order-n HOCA generated SPT, we can determine
the class [f] by examining the behavior of correlation num-
ber n of the strange correlator in the configuration Eq. (42)
as L — oo.

Based on the definition of correlation number n[D,(q,
f; x,v)], we can further define the following quantity:

H@h=""c[o.1] (49)
sup
where
g = liminfn[D; (g, £:x,)] (50)
and
Ngup = lizn supn[Dy(q,f;x,)]. (51

Then the following two criteria holds:

(a) Criterion 1:

If Aq(x) # (0,0,...,0)” such that
A, =1, (52)
then X, = 1.
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TABLE III. Result of detecting HOCA-generated SPT phases
by multi point strange correlators. Model IVc and model Vb is
not included in this table, as these are not the models that we
focus on.

Model No. X X Criterion 1 Criterion 2

I[Eq. (17)] 1 1 Yes][Fig. 16(a)] Yes [Fig. 16(b)]
1T [Eq. (20)] 0 1 No Yes [Fig. 16(c)]
MI[Eq.23)] 0 0 No No
IVa[Eq.(27)] 1 0 Yes[Fig. 16(d)] No
IVb[Eq.(30)] 1 O Yes (Fig. 20) No
ValEq.(55)] 0 1 No Yes (Appendix D)

(b) Criterion 2:

If Aq(x) # (0,0,...,0)” such that
A (q,H) =0, (53)
then Xy = 1.

Figure 16 shows some explicit examples of these two cri-
teria. So far the search for the initial conditions that satisfy
criterion 1 or 2 is done by computers, and hopefully an
analytical way will be found in future works. The detailed
mathematical discussion and concrete examples of these
two criteria are shown in Appendix G.

Now we apply these criteria to HOCA-generated SPT
phases that we have discussed before.

It can be seen in Table III that the class [f] can be
detected by multi point strange correlator. Examples that
meet the criteria in the table are shown in Fig. 16.

1. Detecting FSPT (model Va) generated by
order-one CA

In this section, we will probe the nontriviality of the
Sierpinski FSPT ground state via the strange correlator.
The Sierpinski FSPT model has degenerate edge modes,
which are localized states at the boundary of the system
that are protected by the fractal symmetry of the model.
These edge modes are argued in detail in Ref. [109], and
they indicate that the ground state of the model must be
a nontrivial short-range entangled (SRE) state, which is a
quantum state that cannot be transformed into a product
state by local unitary operations. We take the Sierpinski
model as a model generated by order-one CA, and explore
its nontriviality by means of multi point strange correlator.
The update rule of the Sierpinski FSPT model [109] is

f(x) =1+nx, (54)

and the Hamiltonian is written as

Xy (1 +y~ !t x"ly=h
H = — Zz( iy
ij

x'y/
—X (xiyj(l +y —I—xy)) ' (53)

Applying our procedure to the model [Eq. (55)], we find
that when

0
X (D2k1(qa f;x,y)) )

C{ri}) = Qv ;

keNg,
(56)

where q = 1 and f = 1 4 x, then criterion 2 is satisfied:
A (q,f) = 0. (57)

Also, there are no possible configuration that satisfies cri-
terion 1, which can be proved by the self-similarity nature
of the order-one CA, or simply by enumearting all possible
initial conditions on an open slab. Thus, we indeed find out
that the Sierpinski rule [Eq. (54)] is in the (0, 1) class. This
configuration reflects the fractal symmetry of the Sierpin-
ski triangle. At the same time, this configuration possesses
the minimal correlation number among all possible strange
correlators made up of Pauli matrices in this FSPT model.
It can be proved that all two-point strange correlators show
trivial results, giving the same result as the normal correla-
tor gives. Detailed calculation can be found in Appendix C.
It is natural to ask what is the minimal » that gives nontriv-
ial multi point strange correlators (giving different results
from what multi point normal correlator gives). It is proved
that

min(n) = 3 (58)

in the case of the Sierpinski FSPT model, and these three
Pauli matrices must be placed at the three corners of a
Sierpinski triangle in the lattice. This claim is proved in
Appendix D.

2. Detecting I-MSPT (model 1) generated by
order-two CA

For model I [Eq. (17)], we expect that both criteria
above can be satisfied by controlling the initial condition.
We observe that the multi point strange correlator

0
(o)

C{ri}) = QU ,

keN,,
(59)
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FIG. 16. Examples of q and f that make .#"(q, f) satisfy criterion 1 or 2. The configuration D, ;(q;x,y) generated by the given q
and f are shown in the figure above. Detailed results are shown in Table III. (a) Model I [Eq. (17)], initial condition are given by
Eq. (19b), L = 14, correlation number n = 6. (b) Model I [Eq. (17)], initial conditions are given by Eq. (19¢c), L = 14, correlation
number n = 10. (¢) Model II [Eq. (20)], initial conditions are given by Eq. (22d), L = 13, correlation number n = 9. (d) Model IV
[Eq. (27)], initial conditions are given by Eq. (28c), L = 16, correlation number n = 4.

satisfies
N (q,f) =0, (60)

when the initial condition q is set to be Eq. (19¢c). The
correlation number of the configurations above are

n = 10, ©61)

of which three examples are shown in Figs. 18(b)-18(d).
Also, we find that the multi point strange correlator

0
X (Dk(q,f;x,w) )

C({rih) = X ;

keN,, (62)

satisfies
A(q,) =0, (63)

when the initial condition q is set to be Eq. (19b). The
correlation number of the configurations above are

n=6, (64)

of which an example is shown in Fig. 16(a).

3. Detecting II-MSPT (model II) generated by
order-three CA

For model II [Eq. (20)], we expect that criterion 2 can
be satisfied by controlling the initial condition. We observe
that the multi point strange correlator

0

C({rih) = QU , keNy,
(65)
satisfies
A(q,f) =0, (66)

when the initial condition q is set to be Eq. (22d). The
correlation number of the configurations above are

n=29, (67)
of which an example is shown in Fig. 16(c).

4. Detecting CSPT (model I11) generated by
order-three CA

For model IV [Eq. (23)], we expect that no criterion
can be satisfied. This claim is confirmed by computational
search on initial conditions with size L, < 50, and increas-
ing the size generally does not give any new phenomenon.
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()

Configuration of Do(q, f; z,y)

(b)

Configuration of D1(q, f;z,y)

Configuration of D3(q, f; z, )

FIG. 17.

(d)
: |

Configuration of D7(q, f; z, y)

Pictorial illustration of configuration of multi point strange correlator D; (q, f; x,y) of update rule Eq. (54), which generates

an FSPT phase [nontrivial terms are shown in blue cubes in Figs. 17(a)—17(d)]. Four configurations above have q(x) = 1 and n = 3. (a)
Configuration of Dy(q, f; x,»). (b) Configuration of D, (q, f; x,y). (c) Configuration of D3(q, f; x, ). (d) Configuration of D;(q, f; x,y).

For all possible configurations we observe the correlation
number n generally increases with L. Unlike other models
mentioned in this paper, fixing any initial condition q, we
will never obtain an infinite sequence of L that makes the
multi point strange correlators share the same correlation
number n. Among all strange correlators in this model, the
one with minimal correlation number can be written as

0
(Q)w ’

C{ri}) = (68)

where the initial condition is set to be Eq. (25a), of which
the figure is shown in Fig. 19.

We notice that multi point strange correlators in CSPT
order seem to give a promising procedure to overcome the
computation irreducibility of CA. While the computational
irreducibility states that we cannot directly calculate an
arbitrary step in CA evolution (for CA showing complex
behaviors, not CA with regular and predicable patterns,
e.g., HOCA rules in CSPT models) without calculating
steps before the wanted step, in principle, we can effi-
ciently prepare the ground state of this model in an array
of qubits and measure the strange correlator by a series of
quantum operations in this qubit array. Only the multi point
strange correlator with the correct configuration will show
a nontrivial result. That is to say, we can verify whether
the result of an arbitrary step is a given configuration
with zero knowledge about the intermediate steps, which
can potentially serve as a quantum approach to surpass

the well-known principle of computational irreducibility
[1,156,157].

5. Detecting RSPT (model IVa) generated by
order-two CA

For model 1Va [Eq. (27)], we expect that criterion 1
can be satisfied. We observe that the multi point strange
correlator

0
(@lx (D @t )) W)
Ciri)) = ’2;2‘) q’jx’y . keN., (69)
satisfies
AN (q,H) =1, (70)

when the initial condition q is set to be Eq. (28a). The
correlation number of the configurations above are

n=4,

(71)

of which an example is shown in Fig. 16(d).

6. Detecting RSPT (model 1Vb) generated by
order-three CA

For model IVb [Eq. (29)], we expect that criterion 1
can be satisfied. We observe that the multi point strange
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(a) §

©

(b) .

(d)

Configuration of D2(q, f; z,y)

Configuration of Dg(q, f;z,y)

FIG. 18.

"

Configuration of D14(q, f; z,y)

Pictorial illustration of configuration of multi point strange correlator D; (q, f; x, y) of update rule Eq. (18), which generates

an I-MSPT phase [nontrivial terms are shown in blue cubes in Fig. 18(b)~(d)]. Three configurations above have q(x) = (x—h(:l +x)

and n = 10. Figure 18(a) shows the HOCA pattern generated by the initial condition above. It can be seen in the figure that three
MPSC with different L share the same correlation number n, showing the scaling invariance of this MPSC. (a) HOCA pattern. (b)
Configuration of D;(q, f; x, ). (c) Configuration of Dg(q, f; x, ). (d) Configuration of D4(q, f; x, ).

correlator
0 )
C{ri}) = Qv , keNy, (72
satisfies
A(q,H) =1, (73)

when the initial condition q is set to be Eq. (31a). The
correlation number of the configurations above are

n = 10, (74)

of which an example is shown in Fig. 20.

V. MULTI POINT STRANGE CORRELATOR AND
SPURIOUS TOPOLOGICAL ENTANGLEMENT
ENTROPY

Firstly studied in Ref. [164], it has been pointed out in
Ref. [154] that the extraction of topological entanglement
entropy (TEE) —y via Sy, (e.g., prescriptions proposed
by Levin-Wen [155] and Kitaev-Preskill [165]) can suf-
fer from spurious contributions from the nonlocal string
order in the SSPT order, and this spurious contribution
is extensively studied [166—168]. Authors of Ref. [154]
have shown explicitly the stringlike nonlocal stabilizer

generators that spread across the boundary of subregions
can contribute to the Sipo in a 2D cluster model, and
have proposed a quantity Sgump to detect this spurious
contribution.

In this work, we want to show that MPSC are closely
related to the spurious contributions in these models, and
the spurious contributions in calculating TEE exist in a
large variety of SPT orders protected by subsystem sym-
metry. We will show how spurious topological entangle-
ment entropy (STEE) appears in the HGSPT order, and
how the configurations of the nonlocal stringlike stabilizers
that contribute to STEE are exactly mapped to the spatial
distributions of local operators in MPSC that can detect the
nontrivial SRE ground state of an HGSPT order.

In the next following sections, we will discuss what
kind of nonlocal stabilizers can contribute to STEE in
Sec. VA, explore the connection between STEE and
MPSC in Sec. V B, and show concrete models in Sec. V C.

A. Nonlocal stabilizers contributing to Siop,

In this subsection we will discuss what kinds of nonlocal
stabilizers can finally contribute to the calculation of Siopo.

While extracting the topological entanglement entropy
of a given physical model by means of tripartitions
(e.g., Kitaev-Preskill and Levin-Wen), we argue that the
calculation can be massively simplified by counting only a
special type of nonlocal stabilizer generator. First we start
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(a), (®),
I : |
|| |
Configuration of Do(q, f;z,y) Configuration of Da(q, f;z,y)
©), @,

THr.

o 5 10 15 20 25

Configuration of D4(q, f; x,y)

FIG. 19.

bl LN

Configuration of Dg(q, f; x,y)

Pictorial illustration of configuration of multi point strange correlator D; (q, f; x, ) of update rule Eq. (24), which generates

a CSPT phase [nontrivial terms are shown in blue cubes in (a)~«(d)]. The initial condition of four configurations above is given by
Eq. (25a). (a) Configuration of Dy(q, f; x, ). (b) Configuration of D,(q, f; x, ). (c) Configuration of D4(q, f; x, ). (d) Configuration of

Dsg(q,f;x,y).

with the entanglement entropy of a specific subregion 4 in
the system, which is given by

Sq = —tr pglog, ps = Ny —log, |G4l,
where N, is the number of qubits contained in region 4, G4
is the stabilizer group whose elements are fully supported

in 4. In gapped spin systems, the entropy scales with

Syq ~ clod| —y.
] "
o
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FIG. 20. Pictorial illustration of configuration of the multi
point strange correlator D;(q,f;x,y) of update rule Eq. (29),
which generates an RSPT phase (nontrivial terms are shown in
blue cubes). The initial condition is given by Eq. (31a).

Here ¢ is some nonuniversal constant, and the —y term
is the so-called topological entanglement entropy (TEE),
which is a universal constant. Kitaev and Preskill as well
as Levin and Wen proposed two tripartitions and used lin-
ear combinations of entanglement entropy of these parts to
cancel out the nonuniversal constant and extract the con-
stant term —y in the scaling behavior of the entanglement
entropy. The corresponding quantity is named topological
entropy Siopo, defined as

Stopo =S4 + Sp + Sc — Sup — Suc — Spc + Supc-

It is argued that the combinations in S;,, managed to can-
cel out all the boundary and corner contributions in the
entanglement entropy, leaving

Stopo =Y.

However, it is pointed out in Ref. [154] that Sip, is
not fully topologically invariant, being sensitive to the
deformation of the region boundaries in the subsystem
symmetry-protected topological (SSPT) phase. In SSPT
phase, this extraction process may suffer from unwanted
contributions due to long-range string order, giving a
nonzero Sy, in SSPT phase, being devoid of the topo-
logical order, which is different from our expectation that
—y = 0 in the SSPT phase.
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Here we want to systematically explore the origin of
the spurious contribution AS = Siopo + ¥ in the realm of
the lattice model. Similar calculations are also shown in
Ref. [169].

First we observe that

Sap = Nyp — log, |G 45|
= Ny + N — log, |G4| — log, |G|
— log, |Gunpl + l0gy |Gyl
=Ng+Np— 04— O0p — Oygpp+ Oyusp.

Nxp 1s the number of qubits that exist in AB but not in 4 or
B. O is the number of independent stabilizer generators in
A, and Oy, is the number of independent stabilizer gener-
ators that exists in AB but not in 4 or B. O, is the number
of independent stabilizer generators that exists in 4 or B,
but become no longer independent in 4B. The following
relationship holds:

O4p =04+ Op + Oyrp — Oyvs.
Similar observations can be found for Sp¢:

Supc = Napc — log, |Gl
= N4p + Nc — O4p — Oc — Oypac + Oupvc
=Ny+Np+Nc— 04— Op—Oynp
+ O4ve — Oc — Oyprc + Ogpvc.

Adding up each term in S,p,, We can explicitly observe
what terms are cancelled out in the linear combination. The
calculation process are shown below:

Stopo = Sa + S+ Sc — Sap — Sac — Spc + Sasc
=—04—0p—Oc+ O4p+ Oyc+ Opc — Oypc
= —(Ou4rc — Ounc — Osrc)

+ (Oupvc — Ogvc — Ovo)-

To explore what kind of operators can contribute to Sipo
eventually, we introduce some notation to keep track of
terms that a specific stabilizer generator enters. The distri-
bution vector D(g) of a valid generator (to be explained
below) g is defined as

D(g) = (T(2), P(2)),

where T(g) denotes the number of basic partitions (i.e., the
unions of partitions are not included here) that g as a total
has a support in. P(g) denotes the number of basic par-
titions that supports at least one local Hamiltonian term
making up the generator. From now on, we will denote the
support of the operator as total support and the union of

supports of Hamiltonian terms that make up the operator
as partial support. To specify the contribution of g in Sgpo,
we further define the contribution vector C(g), which can
be written as

C(g) = (C1(2), C2(g), - - ., Cn (2)),
where N is the number of partitions and C;(g) denotes how
many times does g appear as the minimal generators in ith
order region. An ith order region is the union of i basic
partitions (e.g., ABC is a third-order region), and a minimal
generator in the ith order region is a generator that cannot
be written as products of generators in jth (j < i) regions
with less area of support. We see explicitly in the definition
of C(g) that the contribution of g in Siqp, is

N
AS(g) =Y (—)'Cilg).
i=1

Through enumerations we find that for the N =3 case
(including LW, KP prescription):

Hg:T(g) =1, P(g) =3} = l{g: G =d;}l. (75)
And by calculation we observe that only the stabilizer gen-
erators with P(g) = 3 have a nonzero AS(g) in N =3

case (LW, KP prescription). We define the power of set
Hg : T(g) =i, P(g) =/} as Q(i,j). Then we obtain

3
St =D (=)0, 3). (76)
i=1

This quantity shows immediate potential to be generalized
to N partitions.

Equations (75) and (76) can be interpreted as follows:
the stablizers that finally contribute to the calculation of
Siopo are the ones that have a local support on all three
subregions, and their contributions depend on how many
subregions their global support have. With this in hand, we
can massively simplify the calculation of S;qp, by counting
these special nonlocal stabilizers only.

B. Connection to multi point strange correlator

In this subsection we want to show that the nonlocal sta-
bilizers will exactly be the operator that gives nontrivial
results in the multi point strange correlator.

In Eq. (76) we conclude that the stabilizers that can
contribute to the spurious value of TEE have partial sup-
port that spans across all three partitions. This kind of
stabilizer either appears at the triple intersection point of
partitions (KP case), or serves as nonlocal stabilizers run-
ning along the boundaries (both LW and KP cases). Next
we will show that the stabilizer in these cases will exactly

030342-26



HIGHER-ORDER CELLULAR AUTOMATA...

PRX QUANTUM 5, 030342 (2024)

be the operator that gives nontrivial results in the multi
point strange correlator. We will start with some explicit
examples. In the following part of this section, we will
show some nonlocal stabilizers that exist in some HGSPT
models. These nonlocal stabilizers have nonzero contribu-
tions to the value of S, in certain partition geometries.
While it was pointed out in Ref. [154] that the stringlike
nonlocal stabilizers in a 2D cluster model can be detected
by calculating a tripartite topological entropy Sgqump in a
dumbbell-like tripartition, we want to show the following
facts:

(a) In HGSPT models with generally more exotic sub-
system symmetries, there will be nonlocal stabiliz-
ers that contribute to the spurious values of Siopo
that cannot be detected by the original definition of
Sdumb~

(b) There will also be stringlike nonlocal stabilizers in
the HGSPT models devoid of any linelike symme-
tries, which can also be detected by Sqump. So there is
no general correspondence between the presence of
linelike symmetries and nonlocal long-range string
order proposed in Ref. [154].

And it is worth noticing that these nonlocal stabilizers hap-
pen to be the configuration of operators that can detect the
nontrivial SRE ground state of the corresponding HGSPT
phase. It is natural to notice that both STEE and MPSC
point out the fact that there are hidden long-range order
in the SPT phases protected by subsystem symmetries:
STEE is the unexpected contribution to the TEE in the
absence of the topological order, while MPSC is the hidden
long-range correlation behavior in a short-range entan-
gled ground state. By this exact relation we see that two
quantities share the same physical origin.

In the following texts, we show some nonlocal sta-
bilizers that can contribute to the tripartite topological
entropy

Stopo = S4 + S8 + Sc — Sap — Sac — Spc + Sasc, (77)

where the tripartitions 4, B, C are denoted by blue, green,
red areas, respectively, in the figure.

As a reminder, we would like to clarify that when we
say a nonlocal stabilizer is generated by a certain symme-
try, we are actually saying that we pick certain rows from
the symmetry pattern [Eq. (14)] to be the initial condition
that generates the MPSC [Eq. (42)], and the resulting local
operator configuration in the MPSC is the nonlocal sta-
bilizer generated by this symmetry. From the discussion
above, it is clear that a certain symmetry pattern can gen-
erate a huge amount of MPSC, but not all MPSC can serve
as the nonlocal stabilizers that contribute to Siop, calcu-
lation. Only the ones that fit the boundary geometry of
the tripartition can potentially have a spurious contribu-
tion. So we will explicitly draw the boundary geometry

that admits spurious contributions of nonlocal stabilizers
in the following texts. For the sake of simplifying the pic-
ture, we exerted a coarse-graining procedure on the lattice,
combining two sublattices. Now the model is defined on a
2D square lattice with two qubits per site. A general Pauli
operator acting on a site will be represented as O := 0,0;,
where O; denotes the operator acting on the sublattice
(a) and O, denotes the operator acting on sublattice (b),
respectively.

The reason why there exists such correspondence
between the configuration of MPSC and the nonlocal sta-
bilizers with spurious TEE contributions can be explained
as follows:

(a) Nonlocal stabilizers in the context of STEE are
always made up of products of Hamiltonian terms
along the boundary, which contain Hamiltonian
terms with supports outside of the tripartition. How-
ever, the nonlocal stabilizer as a whole does not have
support outside of the tripartition, making it an inde-
pendent stabilizer generator of stabilizer group of
area ABC (denoted as G4p¢). Details are discussed
in Sec. VA.

(b) Such nonlocal stabilzers naturally act trivially on the
SRE ground state of the HGSPT phase as products
of Hamiltonian terms, as shown in the second row
of Eq. (48).

C. Model study

From the observation above we can see that any product
of operators with the form designed in Eq. (42) auto-
matically have the form of product of Hamiltonian terms
therefore having the potential to contribute to STEE. The
only thing we need to do is to analyze the boundary
geometry that can admit such nonlocal stabilizers. In the
following sections, we will show some concrete exam-
ples of nonlocal stabilizers together with the corresponding
boundary geometries of tripartition. The possible nonlocal
stabilizers that may appear in these models extend beyond
the examples we will show below, so we will demonstrate
some typical examples only.

(1) Nonlocal stabilizers in model I. Model I (a -MSPT
model) possesses two types of subsystem symme-
tries, as mentioned in Fig. 4. Each type of subsystem
symmetry corresponds to a class of multi point
strange correlators, giving rise to a class of nonlo-
cal stabilizers with the same geometry. An example
of nonlocal stabilizers generated by the fractal-like
symmetry [Fig. 4(a)] is shown in Fig. 21(a), which
gives a ASiopo = —1 in the tripartite topological
entropy. While the symmetry is fractal-like, the non-
local stabilizer given by the symmetry has a string-
like outlook, and can be prolonged in the i direction
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FIG. 21. Nonlocal stabilizers that can contribute to Sy, in tripartition given in the figure. Red, green, and blue area is, respectively,
the partition 4, B, C. Such products of operators all have the same configuration with configuration of local operators in some certain
MPSC. Nonlocal stabilizers in this figure can contribute to a smooth linear boundary geometry (dashed line surrounding green area).
(a) Nonlocal stabilizer in model 1. (b) Nonlocal stabilizer in model Va. (c) Nonlocal stabilizer in model II. (d) Nonlocal stabilizer in
model IVb. (e) Nonlocal stabilizer in model IVa. (f) Nonlocal stabilizer in model I. (g) Nonlocal stabilizer in model Vb.
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TABLE IV. Nonlocal stabilizers in the HGSPT models that gives spurious contributions to Siop,. The MPSC configurations
Dy (q, f;x,y) that correspond to the nonlocal stabilizers are shown in the last three columns of the table.

Nonlocal Evolution
stabilizer Boundary geometry Orientation HOCA rule f Initial condition q distance L
. . O
Fig. 21(a) Smooth Horizontal Eq. (18) ( e +;3 -):—x4:—x5—¥kx(’ T ) 0
Fig. 21(f) Smooth Diagonal Eq. (18) (1) 5
X2 4 4x6
Fig. 21(c) Smooth Horizontal Eq. (21) ( T3 4t 45 47 > 0
x2S 4t S 40 a7
. . . 0
Fig. 22(a) Detached horizontally Horizontal Eq. (26) ( 1t +x6) 0
) . . 0
Fig. 22(c) Detached vertically Horizontal Eq. (26) ( a2 +x(,) 0
Fig. 21(e) Smooth Diagonal Eq. (26) (1) 5
Fig. 22(b) Mostly smooth, locally deformed ~ Vertical Eq. (29) ( i ) 4
. . xAx2 x5 4x0
Fig. 21(d) Smooth Horizontal Eq. (29) ( x5 a7 ) 0
T2 3 ot a0 7
Fig. 21(b) Smooth Horizontal Eq. (54) T+x+x2 423 +x* +x° +x° + 57 0
Fig. 21(g) Smooth Horizontal Eq. (78) 1 +x+x3 +x* +x0 +x7 0

@

3)

“4)

by appropriately tuning the initial conditions that
generates Fig. 21(a).
There also exists another type of nonlocal stabilizer
with different directions, which is generated by the
linelike symmetries [Fig. 4(b)] in the model.

The corresponding MPSC configuration Dy
(q,f;x,y) is shown in Table IV.
Nonlocal stabilizers in model II. Model II (a
II-MSPT model) possesses two types of subsystem
symmetries, as mentioned in Fig. 7. Despite the lack
of linelike symmetries, there are stringlike nonlo-
cal stabilizers that can contribute to S, in this
model. An example of nonlocal stabilizers generated
by the fractal-like symmetry [Fig. 7(d)] is shown in
Fig. 21(a), which gives a ASopo = —1 in the tripar-
tite topological entropy. The stringlike stabilizer can
be prolonged in the i direction.

The corresponding MPSC configuration Dy
(q,f; x,y) is shown in Table IV.
Nonlocal stabilizers in model III. Model III (a
CSPT model) possesses chaotic-looking subsys-
tem symmetries only, as mentioned in Fig. 9. So
far we have not found any recognizable classes
of nonlocal stabilizers that can contribute to the
TEE due to the chaotic nature of the symmetry
pattern.
Nonlocal stabilizers in model IVa. Model [Va (an
RSPT model) possesses regular subsystem symme-
tries, as mentioned in Fig. 11. There are stringlike
nonlocal stabilizers that can run along a smooth
boundary [Fig. 21(e)] and stabilizers that can fit into
more peculiar boundary geometries [Figs. 22(a) and
22(¢)].

©)

(6)

()
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The corresponding MPSC configuration D
(q,f;x,y) is shown in Table IV.
Nonlocal stabilizers in model IVb. Model Vb (an
RSPT model) possesses regular subsystem symme-
tries, as mentioned in Fig. 13. There are stringlike
nonlocal stabilizers that can run along a smooth
boundary [Fig. 22(b)] and stabilizers that can fit into
more peculiar boundary geometries [Figs. 22(a) and
22(¢)].

The corresponding MPSC configuration Dy
(q,f;x,y) is shown in Table IV.
Nonlocal stabilizers in model Va. Model Va
(Eq. (54), an FSPT model) possesses fractal-like
symmetries. Despite the lack of linelike symme-
tries, there are stringlike nonlocal stabilizers that
can contribute to Sip, in this model. An example
of nonlocal stabilizers generated by the fractal-like
symmetry is shown in Fig. 21(b), which gives a
ASiopo = —1 in the tripartite topological entropy.
The stringlike stabilizer can be prolonged in the i
direction.

The corresponding MPSC configuration Dj
(q,f;x,y) is shown in Table IV.
Nonlocal stabilizers in model Vb. Model Vb (an
FSPT model) possesses fractal-like symmetries.
Model Vb is named Fibonacci FSPT in Ref. [109],
with the update rule

f) =x"4+1+x (78)

Despite the lack of linelike symmetries [170], there
are stringlike nonlocal stabilizers that can contribute
to Siopo in this model. An example of nonlocal



ZHANG, LI, and YE

PRX QUANTUM 5, 030342 (2024)

(a) j

(©);

Nonlocal stabilizer
in Model-IVb

(d)

Nonlocal stabilizer in Model-IVa

Nonlocal stabilizer in Model-Vb

FIG. 22. Nonlocal stabilizers that can contribute to Sy, in tripartition given in the figure. Red, green, and blue area is, respectively,
the partition 4, B, C. Such products of operators all have the same configuration with configuration of local operators in some certain
MPSC. Nonlocal stabilizers in this figure can contribute to more exotic boundary geometry (dashed line surrounding green area). (a)
Nonlocal stabilizer in model I'Va. (b) Nonlocal stabilizer in model IVb. (c) Nonlocal stabilizer in model IVa. (d) Nonlocal stabilizer in

model Vb.

stabilizers generated by the fractal-like symmetry
is shown in Fig. 21(g), which gives a ASippo = —1
in the tripartite topological entropy. The stringlike
stabilizer can be prolonged in the i direction. It is
worth noticing that there are stabilizers in this model
that can fit into a staggered boundary geometry, as
shown in Fig. 22(d).

The corresponding MPSC configuration Dy (q, f;x,y) is
shown in Table IV.

VI. SUMMARY AND OUTLOOK

In this work, we find exotic SPT phases protected by
a variety of HOCA-generated symmetries. We identify
HGSPT models with both fractal and linelike symme-
tries [e.g., Eq. (17)], models with two distinct fractal
symmetries [e.g., Eq. (20)], and models with chaotic
subsystem symmetries [e.g., Eq. (23)]. These mod-
els are derived from the HOCA rule, as explained in
Sec. III. We show that the framework of HOCA naturally

encompasses these SPT phases protected by exotic sym-
metries and previously studied SSPT and FSPT phases,
and we introduce labels that classify these SPT phases
into different categories. To detect the nontrivial ground
HGSPT order, we show the necessity of introducing multi
point strange correlators, which are a generalization of the
strange correlator that involves more than two operators.
The necessity is demonstrated by proving that all two-
point onsite strange correlators are trivial in the Sierpinski
FSPT model, which is a fractal SPT model with a Sier-
pinski triangle symmetry [see Eq. (55)]. This model can
be recognized as an SPT phase generated by an order-
one CA, which can also be regarded as the simplest case
of HOCA. By examining the multi point strange corre-
lator of the given phase, we can determine the class of
the phase. Also, we have found the relation between the
multi point strange correlator and the nonlocal stabiliz-
ers resulting in spurious topological entanglement entropy,
revealing the connection between these two quantities
showing long-range behaviors in a short-range entangled
state.
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There are many interesting topics that remain unsolved.
For example, while HOCA can be used to construct
SPT models, the symmetries supported on HOCA-
generated configurations can also be utilized to build
other phases, including symmetry-breaking phases and
symmetry-enriched topological (SET) orders, where the
order-one CA case is done in Ref. [171]. Such future direc-
tions may require us to use more than one HOCA rule or
use HOCA in higher dimensions, and HOCA patterns in
these generalized conditions remain a future direction to
explore, where the order-one CA case is discussed in Ref.
[172]. Moreover, the MPSC may be mapped to the mem-
branelike order parameters in the symmetry-breaking mod-
els, of which some examples have been previously shown
in Refs. [109,162,163], showing the potential to probe
new kinds of quantum criticality in symmetry-breaking
models. Another interesting topic is whether all types of
subsystem symmetries can be generated by the HOCA
framework, and how to develop a unified notation sys-
tem to label miscellaneous subsystem symmetries. Finally,
as chaotic patterns are realized as symmetries in CSPT
ordered states, we may expect such quantum states to have
diverse applications in computer science involving chaotic
systems, such as for encryption [134]. Moreover, the multi
point strange correlators in HGSPT models can be studied
by the Monte Carlo method, where the strange correla-
tors of RSPT models have been studied in Ref. [101].
Entanglements in HGSPT models are also intriguing. For
example, whether there are spurious topological entangle-
ment entropy [154] in HGSPT models is an intriguing
problem. Whether we can probe the HGSPT order via non-
Hermitian perturbation [173] and study the non-Hermitian
entanglement in HGSPT order [174,175] are also promis-
ing future directions. It will be interesting to probe the
HGSPT in the realm of average symmetry-protected topo-
logical (ASPT) order [176,177], searching for peculiar
behaviors of HGSPT models. Besides, using the relation
between MPSC and STEE, we may probe a new way of
detecting phases of matter via entanglements with geo-
metric properties, paving the way for a general way to
characterize exactly solvable models by analyzing their
Hamiltonian terms without actually solving the model.
Finally, because of the duality between the symmetry-
breaking model and the HGSPT model, it will be inter-
esting to map the MPSC back to the symmetry-breaking
models to detect new kinds of quantum criticality.
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APPENDIX A: INABILITY OF ORDER-ONE CA IN
PRODUCING RSPT PHASES

While an HGSPT phase generated by order-one CA is
always protected by symmetries with exact self-similarity,
the symmetry pattern is not always fractal. This claim is
proved by Freshman’s dream theorem:

(1)) =a” +bP modp, (A1)

p 1s prime.

In this paper we focus on the CA rule with alphabet [,
meaning p = 2. According to Eq. (A1), for an update rule
S (x) =), Aix', we have

@ =30, ke,

i

(A2)
which means
P () = ro()f @ = o) (Z xixfzk) . (A3)

where 7;(x) is defined in Eq. (3). By picking the initial
condition 7y(x) = 1, we always get a series of self-similar
rows:

@) =y A (Ad)

The self-similarity can be confirmed by observing that
each term in 7, (x) can be 1-to-1 mapped to 7, (x) by
a scaling transformation .7
2k 2k
X — x%2, (A5)
proving the self-similarity of the CA pattern.

However, self-similarity does not always mean frac-
tal. If there is only one term in the update rule of the
order-one CA (i.e., the update rule is given by a mon-
imial with respect to x), the resulting SPT will be protected
by symmetries aligned along a line. However, these sym-
metries do not overlap with each other, and the whole
HGSPT model can be decoupled into a set of 1D cluster
models with Z, x Z, symmetry, which can be dubbed as
weak RSPT [178], being fundamentally different from a
“genuine” RSPT mentioned in this paper, or strong SSPT
mentioned in Ref. [102]. In a genuine RSPT phase, each
spin should be acted on by symmetries facing different
directions. Under such a context, we can safely claim that
order-one CA cannot generate RSPT phases. To demon-
strate this in detail, we can write down the general form of
update rule of weak RSPT:

S (x)=x9,

Symmetries in weak RSPT are always nonoverlapping,
and are all aligning along lines parallel to each other. We
explicitly draw three cases where ¢ = —1,0, 1 in Fig. 23.

q € 7. (A6)
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. (b) .

g= -1

FIG. 23.

qg=0

Two different symmetry elements in three different weak RSPT models with g =

g=1

—1,0, 1, respectively. It can be observed

that the symmetries in weak RSPT are always nonoverlapping. White cubes are the spins that the symmetry acts nontrivially on. The
figure can be compared with Fig. 11, which shows the symmetries of a genuine RSPT phase. Notice that three subfigures above are
symmetries from three different models while Fig. 11 shows four symmetries in the same model.

APPENDIX B: COMPARISON OF MODEL IVA
AND 2D CLUSTER MODEL

Model I'Va [Eq. (26)] may seem equivalent to the 2D
cluster model up to some shift of the sublattice at the first
glance, we will show in the following text that they are
actually two models with different symmetries.

To better compare the difference between model IVa
[Eq. (26)] and the 2D cluster model, we will start from the
Hamiltonian of 2D cluster model, and make some basis
transformation (Z <> X)) to fit the general expression of

(a)

I

Deformed sublamceq

FIG. 24.

HGSPT Hamiltonian:
Hcluster == § Ai - E B'»
i J

as shown in Fig. 24. Here, the A4; term is products of
four Pauli-Z operators in orange sublattice and one Pauli-Z
operator in green sublattice, and the B; term is products of
four Pauli-X operators in green sublattice and one Pauli-X
operator in the orange sublattice. The HGSPT model cor-
responds to the Hamiltonian shown in Fig. 24(c) and are

(B1)

(b) - 4 - - ~ - A4 W
L A4 A W -
L4 pA A vy 4
~ p— ey 4 w
- L4 \ 4 L4 v \ 4 L 4 L 4

2 sublattices

(a) The Hamiltonian of the 2D cluster model up to some basis transformation. Two sublattices are shown in Fig. 24(b),

where sublattice (1) are drawn in orange and gray dashed lines and sublattice (2) are drawn in green and gray dashed lines. There is
one qubit living in each site. In Fig. 24(c) we deform two sublattices back to the form of a standard 2D square lattice, similar to the

HGSPT model discussed in the main text.
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(a) 0 50 100 150 200 250
0

as(z)

FIG. 25.

qa(z)

Four patterns generated by order-two CA [Eq. (B2)] in sublattice (a). The initial conditions are shown in Eq. (B3a)~«(B3d).

White pixels are spins that the Pauli-X operator acts nontrivially on. The first two rows in each figure are determined by the initial
condition, and the rest is determined by the HOCA rule. (a) q; (x). (b) q2(x). (¢) q3(x). (d) q4(x).

generated by HOCA rule (model IVc)

-1
f(x) = (x xff 1).

Now that the 2D cluster model is equivalent to the
HGSPT model generated by rule Eq. (B2), being different
to the HOCA rule of model IVa [Eq. (26)], thus having dif-
ferent HOCA symmetries. Thus we conclude that the 2D
cluster model is not equivalent to model IVa [Eq. (26)].

Given four initial conditions:

(B2)

Qi) = (1 -?—x) (B3a)
Q@) = (?) (B3b)
am = (}). (B30)
Q) = (’f) . (B3d)

There are linelike and membranelike symmetry elements
present in the model, as shown in Fig. 25.

Another fundamental difference between two models is
the topological transitivity of the HOCA rule, as shown in
Table VII. Model I'Va have topological transitivity while
model IVc do not, indicating that two HOCA rules have
different dynamical properties.

APPENDIX C: TWO-POINT STRANGE
CORRELATORS IN MODEL VA

Now we want to diagnose whether the ground state of
the FSPT model [Eq. (55)] is a trivial SRE state or not.
Having known the degenerate edge modes of the model,
it can be predicted that there have to be nontrivial results.
First we introduce some terminologies:

. @5 ) 5 (b)
Vi = Zg/a Zij—lzifl,j—lzij > 1
OB (k) £ (a)
Alji = Xij )(iJ+1)(i+1,/+1)(ljaa
where the subscript ij denotes the coordinate of the oper-
ator, and superscript (a/b) denotes the sublattice that the
operator belongs to. The ground state to be diagnosed are
taken as
W) =[50 +al10---0), (€2)

y

where |0 ---0) denotes all qubits in the system are taken
as +1 eigenstate of o, operator. The trivial state should
contain all symmetries in the ground state, so the trivial
state is taken as
Q) = X@ =2® =1). (C3)

For FSPT states, the first problem is to specify the opera-
tor ¢, we will try a set of different operators as candidates
for ¢.

Overall results are shown in Table V. Candidates of
local operators:
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(D) ¢ =%
@) =207,
®) 6= T,

Now we do a case-by-case calculation for all candidates,
and notice that i # j is always assumed.

(1) ¢ = X @/P); There are intuitively three cases for the
ch01ce above

(@) ¢ = X,j(a), b = X (a). They are both symme-

try elements of the model, resulting that

(2] ¢y by = (€2]. (C4
The strange correlator is

CGjsi,j) = 1. (C5)

(b) ¢y —Xu(a), bijr —X (b). Only one spin in the
(b) sublattice is ﬂlpped Such a configuration

cannot appear in the ground state, which makes
CG,j;i',j)=0. (Co)

(c) ¢y =X, 1(b)’ Gy = )A(i/(;’/): Two spins in the (b)
sublattice are flipped. Such a configuration can-
not appear in the ground state either, which

makes
CG,j;i',jH)=0. (C7)

2) ¢ = ij“/ ?): There are similarly three cases here:

(@) ¢ = Z;a) , Qi = Zl(,j), Two spins in the (a)

sublattice are flipped, which is not a configura-
tion in the ground state.

CG,j;i,j) =0. (C8)

(b) ¢ = Z;a), G = Z(b) One spin in the (a) sub-

lattice is flipped, havmg zero overlap with the
ground state. Therefore, we have

C(,j;i,j) =0. (C9)

(c) ¢y = Zl@ ) i = Ly 7). No changes are made to
the trivial state |€2), s

CG,j;i',j) =1 (C10)

3) ¢ = YW D). : Using the data calculated above, we can
easily obtaln the result:

Y((l) |Q [Z(a) X(a)] |Q>

gy >y

1 PN
" (205 -2 2) 19

:_(|_|_...+__|_...+;0...0>
21

_|_|_|_...+__|_..._|_;()...()))
=—1|+---+—4---4;0---0), (Cl1)

and similarly,
VP 1Q) = <11+ +450---010---0).  (CI2)

There are overall three cases in the strange correla-
tor:

(@) ¢5 =¥, puyr =1

U b
(i W) = —(+---+—+---+
— 4100 W)
=0. (C13)
There are two spins in the (a) sublattice are

flipped, and such a configuration cannot be
found in |W). So

C(,j;i',j")=0. (C14)

b) ¢y = V", gy =¥,

ij o
(@ bydry W) = =+ =+
0---010---0) | W)
=0. (C15)
There are one spin in the (a) sublattice and one

spin in the (b) sublattice are flipped, and such a
configuration cannot be found in |W). So

C(i,j;i,j") =0. (C16)

(©) ¢y =¥, by =¥

U 2
(2l @y W) = —(+---+;
0.---010---010---0) |W)
=0. (C17)
There are two spins in the (b) sublattice are

flipped, and such configuration cannot be found
in |W). So

CGij;i,j") = 0. (C18)
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TABLE V. Strange and normal correlator in the FSPT model [Eq. (55)] with correlation number 2.

SN @ § (@ £ (@ £ (b) £ (B) £ (b) 5(a) 5(a) 5(a) 5(b) 5(b) 5(b) afb) 5/a/b)
Operator ¢ (1,/)¢ (/'.j") XX, XXy Xy Xy Zy"Zyy 2" Zyy Zj 2y ¥ Yl(J
Strange correlator C(i,j;i',j") 1 0 0 0 0 1 0
Normal correlator N(i,7;i',j") 1 0 0 0 0 1 0
To determine whether the result of the strange correla- 3) ¢ = Y(a/b) There will always spins flipped by the

tor is trivial or not, we need to compare it with normal
correlator. Now we examine the expectation value of oper-
ators in the paramagnetic phase |Q) = |+---4;0---0).
In the calculation below (2|Q2) =1 and i #j is always
assumed.

1) ¢ = X @/P). There are intuitively three cases for the
ch01ce above

(@) ¢y = XU(“), iy = )A(l.,(;',): They are both symme-

try elements of the model, resulting that

(2] @y pirjr = (€2]. (C19)
The normal correlator is
NG,j;i,j) =1 (C20)

(b) ¢ = XU(“), Gijr = X, ,(b,). Only one spin in the

(b) sublattice is ﬂlpped

N(@,j;i,j") =0. (C21)

© ¢y =X". ¢y =)A(i,(;’,): Two spins in the (b)
sublattice are flipped.

NG,j:i,j") = 0. (C22)

2 ¢=2; 7\“/"). There are similarly three cases here:

(@) ¢y —Z;a), bijr _Z(a) Two spins in the (a)
sublattice are ﬂlpped

N(G,j;i',j) =0. (C23)
(b) ¢y = Zl(la , G = Zi(,f),: One spin in the (a) sub-
lattice is flipped. Therefore, we have

N(G,j;i',j) =0. (C24)

(c) ¢y = Z,(Ib), Qi = Zi(/?: No changes are made to

the trivial state |$2), so

NG,j;i,j) = 1. (C25)

operator by orthogonality we obtain

N@G,j;i,j) =0. (C26)
Here we have shown that all two-point strange correlators
is trivial in model Va.

APPENDIX D: PROOF OF MINIMAL
CORRELATION NUMBER IN MODEL VA

Now we want to prove that it will require at least three
local Pauli operators to show nontrivial results in model Va
[Eq. (54)], and three Pauli operators must locate at three
corners of the fractal separately.

Theorem 1.

Given a set of Hamiltonian terms D = {A; }, the product
of these Hamiltonian terms act on |2) equivalently as at
least three onsite Pauli operators. The minimal case is

- X (b) o (0) o (0)

io/o z0,10+2k ig+2k, 0+2k| ), keN,

[ as] 192

AjjeD

(D1)

if and only if D form a Sierpinski fractal structure on the
lattice.

We will start with some notations.

1. Notations

In the FSPT model defined above, (a) and (b) sublat-
tice have different symmetry elements (made up of X or
Z, separately), so the action of a Hamiltonian term V;; or
Aj; on trivial state |2) will only flip spins in one sub-
lattice. Therefore, it will be convenient to consider only
one sublattice at a time, and here we will discuss (b)
sublattice, in which spins are all |0) in the trivial state
|Q2), and operators with nontrivial action on the sublat-
tice is A;. In the model, each sublattice is isomorphic
to a square lattice. For simplicity, we denote the state of
spin in (b) sublattice (]0) or |1)) and its corresponding lat-
tice site (i,/) by a matrix element s;1 ;11 = 0 or 1. All 5;
form a matrix Spin, shown in Fig. 26. Now we represent
whether a site is acted by Hamiltonian term A; or not by
a matrix Op = {0;; }. Note that we consider only the action
on (b) the sublattice only. The position of a Hamiltonian
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S41 542 543 S44

S11 S12 S13 S14 -
S21 S22 8§23 S24 -
. S s S S cee
—s Spin = 31 832 533 S34
521 8522 523 S24 S41 S42 S43 Sa4 -

831 532 533 834

S11 512 513 S14

FIG. 26. Illustration of the Spin matrix.

term is marked by the location of its local Pauli opera-
tor with the least i,j value in (b) sublattice. For example,
if Ay = )A(l.j(.b)f(ifjbjrlf(iffﬁlfflj“) acts on our state, then we
note this by 0;; = 1. An example is shown in Fig. 27. We
express the shape of Aj; by a matrix Ker = {k;} = ({ 1),
shown in Fig. 28.

We can simply generate Spin by Op and Ker:

SPING4 1 @r1) = OPuxp © Kerayo, defined as

Sy = E E 01'—m+1,j—n+1kmn mod 2,

ifi—m+1lorj—n+1<0, (D2)

ori—m+1>ao0rj—n+1>b,

then Oi—m+1j—nt+1 = 0.

Our claim above is straightforward, which is basically a
translation to the matrix language.

Finally, we denote all elements in the ith row of matrix
A = {a; } by a, and similarly j th column by a,;.

o OO
o = O
o OO

022

FIG. 27. Illustration of the Op matrix.

11
— Ker = <0 1>

FIG. 28. [Illustration of the Ker matrix.

2. Proof of Theorem 1

Lemma 1.

If Op is not null,
denote the number of nonzero values in matrix A

by N(A), then N(Spin) > 3, where Spin = Op ¢ Ker.
(D3)

Proof.

(1) First we truncate Op by deleting all null columns
and rows at the edge. We suppose that Opisaa x b
matrix after the truncation.

(2) Lemma 1.1

(a) Claim: Changing the value of an element o €
Oux, 0 F 04 from 0 to 1 will increase N (Spin)
by 1.

(b) Proof: Through direct calculation, o, (1 <i <
b) = s4+1,+1. The claim above is obvious.

(3) Lemma 1.2

(a) Claim: If o, is not null, then N (s, p+1) > 2.

(b) Proof: We examine 01p,02p, . ..,04 in order.
Through direct calculation, each nonzero value
0;» in the sequence will either increase N (4 p11)
by 2 (if 0;_1 = 0) or 0 (if 0;_15 # 0). Since
there are at least one nonzero elements, so it
follows that N (s, p+1) > 2.

(4) It follows that 0,4 and o, should contain at least one
nonzero value (otherwise it would have been trun-
cated). Note that 5,41, is completed determined by
Oux> and s, p41 by 04p. There are two cases here:

(a) oup #0: This already meets the condition
above. From Lemma 1.2 we know that
N(Spin) > N(sxpy1) = 2.

(b) 045 = 0: It means that there are at least one
nonzero value in {o|o € 04, 0 # 04} and
{olo € 04p, 0 F# 04p}. From Lemma 1.1 and
Lemma 1.2 we know that N (Spin) > 3. In this
case, Lemma 1 is proven.

(5) Lemma 1.3

(a) Claim: N(s1. Uyt — Sap1,1 — S1p41) = 1.
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(b) Proof: o0y, and o,; must be nontrivial because
of the truncation. Notice that s;; = 0;;, so
N(ss1) > 1.

(6) If case 4(a) is true, because of Lemma 1.3, we have
N(Spin) > 241 = 3. So we completed our proof
for Lemma 1.

Lemma 2.

If N(Spin) = 3,

(D4)
then Vo € 01, U0y, 0 = 1.

Proof. (1) We assume that 0,, = 0, Lemma 1.3 and
the discussion 4(b) in the proof of Lemma 1 we
know that N (Spin) > 4, so our assumption is false
and o, = 1.

(2) Lemma 2.1

(a) Claim: We call a set of nonzero matrix ele-
ments with one common index and one consec-
utive index a string, and adding any elements
to this set should makes it no longer satisfy
the definition of a string. For example, {a;; =
l,a;; =1,a;3 =1} form a string. There are
two strings in the set {a;; = 1,a;p = 1,a;3 =
0,a14 = 1}, they are separately {ai;,a;;} and
{a14}. We denote the maximum number of
strings that can be possibly defined in a set of
matrix elements 4 by S(4). We claim that if
N(Spin) = 3, then S(0.p) = 1.

(b) Proof: Through direct calculation, one string
correspond to two endpoints, flipping two spins.
So we observe that

N($xp11) = 28(04p). (D5)

To ensure that N(Spin) = 3, we require that
N(s4p+1) = 2. So it follows that S(o.p) = 1.

(3) Lemma 2.2

(a) Claim:
O1p = 1. (D6)

(b) Proof: We assume that 0;;, = 0. From Lemma
2.1 we know that if N(Spin) =3, then
N(s4p+1) = 2. Since 0y, is nontrivial and 0, =
0, we find that S(01x —015) > 1 and N(s1« —
S1p+1) > 2. In total we have N(Spin) > 4,
which is contradictory to our assumption. It
follows that 01, = 1.

(4) From Lemma 2.1 and Lemma 2.2 we immediately
see that

Yo € 04, o0=1. (D7)
(5) Lemma 2.3

(a) Claim: If N(Spin) = 3, then Vo € 014, 0 = 1.

(b) Proof: Similarly we can prove 0;; = 1 by con-
sidering S(04;) and S(o14). If there are any null
elements in oy, then it follows that S(o1,) >
2 and N(s;. — S1p41) > 3, contradicting our
assumption N (Spin) = 3. Therefore,

Yo € 014, o0=1. (D8)

(6) Combining Eq. (D7) and Lemma 2.3, we finished
our proof for Lemma 2.
|

Now we move on to prove Theorem 1.

Proof.

(1) According to Lemma 2, we already have N (s, U
Ssp+1) = 3, which means that there are already three
spins flipped by the Hamiltonian terms. If we want
to meet the condition of Theorem 1, the rest of
the Spin matrix should not occur any nonzero ele-
ments. So the rest part of Op should be selected to
ensure that there are no other spins flipped by the
Hamiltonian term Aj;.

(2) To satisfy the condition above, we observe that
condition

0jj = 0i—1; + 0;j+1 mod 2 (D9)

should be satisfied by all 0;;, 1 <i<a, 1 <j <b.
The proof is straightforward, Eq. (D9) is equivalent
tos;;j+1 = 0. We also notice that this is intrinsically
equivalent to the update rule of Sierpinski fractal
[Eq. (54)].

(3) We also observe that

021 =031 =" =04 =0g2 ="+ =0gp-1 =0,
(D10)

otherwise extra flipped spin will be generated, and
there are no way to cancel these extra spins.
(4) We already know

01l =01y ="+""=01p =03 ="=0g =1
(D11)

from Lemma 2, so we can generate the rest part
of Op by Eq. (D9). It follows that all 0;;, 1 <i <

030342-37



ZHANG, LI, and YE

PRX QUANTUM 5, 030342 (2024)

a, 1 <j < b is uniquely determined. So the prob-
lem here is to select a and b to meet the constraint

of Eq. (D10).

(5) Iterating Eq. (D9), we find a formula for a general

term foro;, i > 1,1 <j < b:

0jj = 0j—1, + Oij+1 mod 2

b
= Zoi,ul mod 2

h=j

|
8
5
a
N

1 .
= (i—l)!g(b_] + k) mod 2
(b—j+i—1)

T "

=C! mod 2. (D12)

b—j+i—1

We can see that o;; is symmetric along the counter-

diagonal by examining the variable substitution

@i.j) = @.j")

i>b+1—j (D13)

j—ob+1-1

and Eq. (D12) is invariant under the substitution:

& —i+z 1= Cb+11) ]1+_11+b+1 —j—

= CZ:/]::H/—]

= C;;jl 1 (D14)
(6) Now we can say
a=> (D15)
since

01 =03 =--=0p =0

& opp=-=0pp-1 =0, (D16)

according to Eq. (D14).

(7) Lemma 3
(a) Claim: Constraint Eq. (D10) is satisfied if and
only if

a=b=2" neN* (D17)

(b) Proof:

(i) We can consider 0y, ...,0, only because
of the symmetry.
(i1) Using Egs. (D12) and (D15), we know that

0i1 = Cla+1z = CZJ_ril—z- (DI8)
(iii) Noticing that if 0y; = 03; =--- =0, =0,

using Eq. (D9) we know that

01j—1 =02j_1=03j_1 ="+ =0nj_1 = L.
(D19)

So if a = q satisfies
011:021:~--:0a1:1, (DZO)

then a = ay — 1 satisfies Eq. (D10).

(iv) Theorem 2 (Lucas’s theorem): For non-
negative integers m and »n and a prime p,
the following congruence relation holds:

k
(’”) =11 (’") mod p,  (D21)
n im0 M
where
k k
m= Zmipi, n= Znipi. (D22)
i=0 i=0
(v) Corollary 2.1:
k k
Form = ZmiZi, n= Zni2i,
i=0 i=0
m\ .
( ) isodd <= (mm) # (0, 1),
n

Vie{0,1,2,... kb
(D23)
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(vi) To meet constraint Eq. (D20), from
Corollary 2.1 we know

m=ag+i—2, n=ayg—1,

k k
Form = ZmiZ[, n= Z n2, (D24)
i=0 i=0

(mj,n;) # (0,1).
So we need ng = n; = ---n4_; = 0, there-
fore, n=ag—1=2F ay=24+1, ke
N*,

(vii) Therefore, to satisfy Eq. (D10), we have

a=b=ay—1=2% keN* (D25)

which is what we wanted.

(8) Combining Lemma 3 and Eq. (D9), Op indeed form
a complete Sierpinski fractal, and there are three
spins flipped by the configuration of Hamiltonian
terms, lying at three corners of the fractal, which are
separately s11,51.4+1, Sa+1.4+1, finishing our proof for
Theorem 1.

APPENDIX E: REVIEW OF VARIOUS CELLULAR
AUTOMATA IN CONSTRUCTING SUBSYSTEM
SYMMETRIES

In the realm of constructing subsystem symmetries
via cellular automata (CA), there have been several
approaches that has been discovered. This includes quan-
tum cellular automata (QCA) [104,179] and matrix cellular
automata (MCA) [180]. While all of these methods utilized
CA to generate subsystem symmetries, there are distinc-
tions among the symmetries generated by different CAs.
In the sections following, we will give a brief review of
different CA approaches and compare these methods in
constructing subsystem symmetries. In short, they differ
in the type and symmetry of the spatial configuration of
the subsystem, and in the dimension and the geometry of
the background lattice. The overall comparison of these
CA approaches is given in Table VI based on the models
constructed by these CA approaches in the literature.

A quantum cellular automata (QCA) defines a map
between locally supported operators, enlarging the sizes
of their supports by an amount independent of the sizes
of the original supports. When we restrict our sight onto
qubit systems, it is natural to consider Clifford quantum
cellular automata (CQCA), which is a QCA inducing an
automorphism of the N-qubit Pauli group. By means of
projected entangled pair states (PEPS), one can construct
SPT phases protected by certain types of subsystem sym-
metries, including linelike and fractal symmetries. There

are some differences between HOCA and CQCA in terms
of constructing phases with subsystem symmetries:

(1) Types of subsystem symmetries: CQCA managed
to generate SPT phases protected by linelike and
fractal symmetries, which are all named as L-cycle
symmetries. In our notation, the CQCA method
can produce FSPT and RSPT phases. So far, CSPT
phases and MSPT phases have not been constructed
from the CQCA method as far as we know.

(2) Symmetries of the spatial configuration of subsys-
tem: As for the SPT orders protected by fractal
symmetries in Ref. [104], there are SPT orders
generated by HOCA protected by locally identi-
cal symmetry. However, the symmetry generated by
HOCA can be considered as a part of the CQCA-
generated fractal symmetry. This is because of the
unidirectional nature of the HOCA evolution, result-
ing in the lack of spatial symmetry of the HOCA-
generated symmetry. The CQCA discussed in Ref.
[104] are all symmetric, hence CQCA-generated
subsystems have spatial symmetries different form
HOCA-generated subsystems.

The matrix cellular automata (MCA) proposed in Ref.
[180] is actually an LCA over Z3 in the terminologies pro-
posed in the realm of cellular automata. The authors in
Ref. [180] used MCA to make essential use of the crystal-
lographic structure, i.e., two 3D lattices of corner-sharing
triangles: trillium and hyperhyperkagome (HHK).

APPENDIX F: MATHEMATICAL PROPERTIES
OF HOCA

In this Appendix, we give a brief review of some math-
ematical properties of HOCA, which are mainly obtained
by considering a duality between linear HOCA and lin-
ear cellular automata (LCA) proposed in Ref. [158]. We
will show there is an algorithm that can decide whether a
HOCA rule corresponding to a concrete model in the main
body satisfy a certain criteria of chaos or not, and a subset
of the HOCA rules does satisfy the criteria. Unless other-
wise specified, we consider only one-dimensional CA in
this Appendix.

1. Duality between linear HOCA and LCA over Z;

At first, we review the duality between LCA and lin-
ear HOCA. Because the duality allows us to express all
linear HOCA rules used in this paper as LCA over ZJ,
where n is the order of the original HOCA, we mainly
consider such LCA in this Appendix to utilize relevant
mathematical results.

Definition of linear HOCA (LHOCA): A linear HOCA
can be formally summarized as a structure H = (n, S, r, f),
where n > 1 is the order (also referred as memory size),

030342-39



ZHANG, LI, and YE

PRX QUANTUM 5, 030342 (2024)

TABLE VI. Comparison of several CA approaches in constructing subsystem symmetries.
CA method Lattice dimension Lattice geometry Discovered subsystem symmetries
CQCA 2D [104,179] Square [104], 11 Archimedean Fractal [104,179], Linelike [104],
lattices [179] Ribbon [179], Cone [179]
MCA 3D[180] Trillium, HHK [180] Fractal
HOCA 2D Square Fractal, Linelike, Chaotic, Mixed

S is the alphabet, r is the radius [181], f is the local rule
defined in Eq. (5). As discussed in the main body, we
mainly focus on the case S = Z;,. For latter convenience,
we represent f by a series of coefficients d; € Z,, where d,
is the coefficient of x™ term in f,11_; (x),j = 1,2,...,n
andi=—r,—r+1,...,r—1,r.

Definition of linear cellular automata (LCA): An
LCA over alphabet Z of order one isa CA L = (Z!,r.f)
where the alphabet S has been taken as Z! , the local rule
f is defined by 2r 4+ 1 matrices M_,,...,Mo,...,M, €
Mat(n, Z,,), such that the time evolution can be expressed
as follows:

f(X_r,...,X(),...,Xr)=|:ZM1"X1‘:| (F1)

i=—r

for any (X_,,...,X0,...,X,) € (Z")**!. Here a n-row
vector x; denotes the state of site i, and Mat(n, Z,,) denotes
the set of n x n matrices with elements in Z,,. Note that
we use f without any subscripts to denote the local rule of
LCA rather than a component of f.

Definition of Frobenius LCA: An LCA is said to be
a Frobenius LCA if the matrix associated to it M(x) :=
Y__, M (x is a formal variable) is in Frobenius
normal form, that is to say, it has the following form:

0 1 0 --- 0 0
0 0 1 -~ 0 0
0 0 0o --- 0 0
M(x) = . . . . . )
0 0 0O --- 0 1
Lmo(x) my(x) ma(x) -+ mu_z(x) m,_1(x)_|

(F2)

where each m;(x) is a polynomial about the formal
variable x.

Topological conjugacy of LHOCA and LCA: The
LHOCA defined by H = (n, Z,, r,f), where f is specified

by aé,j € [1,n],i € [—r,r], can be simulated by an LCA

L = (Z5,r.f), with f totally determined by f:
0 1L 0 ... O 07
0o o 1 ... 0 0
0o 0 o0 ... O 0
M() = . b (F3)
0 0 O 0 1
la) @) 4 ... a871 ajg_
and fori € [—r,7],i # 0,
ro o0 o0 ... 0 07
60 0 0 ... O 0
0 0 0 ... O 0
M, = . (F4)
0 0 O 0 0
al 2 3 a7V oan

In Ref. [158], it has been shown the above correspondence
is a topological conjugacy that preserves dynamical prop-
erties, thus we can investigate the dynamical properties of
LHOCA by considering the corresponding LCA.

2. D-chaos of LCA

In this Appendix, we consider the well-accepted notion
of chaos of discrete time dynamical system (DTDS) pro-
posed by Devaney (often abbreviated as D-chaos). In
general, the criteria of D-chaos is composed of three
components: fopological transitivity, sensitivity to initial
conditions and denseness of periodic orbits [182]. In this
subsection, we briefly review the definition of these prop-
erties for DTDS, and introduce an algorithm that can
decide whether an 1D LCA is D-chaotic or not proposed
in Ref. [183].

Definition of discrete time dynamical system (DTDS):
A discrete dynamic system is a pair (X, F) where X is a

TABLE VII. Deciding whether there are topological transitivity (or equivalently, D-chaos) in the HGSPT models mentioned in the
paper using characteristic polynomials.

Model No. I I I IVa IVb Ve Va Vb
0) 1 1 1 1 1 1+1 1 1
degy (1) 0 0 0 0 0 1 0 0
Topological transitivity Yes Yes Yes Yes Yes No Yes Yes
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space equipped with a metric d, and F is a transformation
on X, which is continuous with respect to that metric. The
dynamical evolution of a DTDS is described by an initial
state x© e X evolving as x = F/(x©), vt e N.

In the realm of 1D CA, the space X’ is taken as S%, where
S is the alphabet of the CA. Therefore, the space X repre-
sents the space of configurations at a specific time step. F
is naturally the global rule of the CA. Here we take the
metric as the standard Cantor distance

1 /

> C C
d(c, c/) — omn>s # /:
0, c=c,

where
n=min{i > 0:¢; #c orc_; #_;}.

Here ¢; denotes the state of configuration c at site i, which
is an element of the alphabet S.

Definition of topological transitivity of DTDS: A
DTDS (X, F) is said to have topological transitivity if for
an arbitrary pair of open nonempty subsets of X, In € N,
such that F"(U) NV £ @.

Definition of sensitivity to the initial conditions of
DTDS: ADTDS (X, F) is said to be sensitive to the initial
conditions if there exists € > 0 such that Vx € X, § > 0,
then there exists y € X', n € N, such that d(x,y) < § and
d(F"(x), F"(y)) > €.

Definition of denseness of periodic orbits of DTDS:
An element x € X is said to be a periodic point if there
exists a natural number n > 0 such that F"(x) = x. The
denseness of periodic orbits is the denseness of the set
composed of all such periodic points.

By definition, as a DTDS, an 1D LCA simultaneously
satisfying the above three properties is chaotic according
to Devaney’s notion [182].

3. Deciding chaos of linear HOCA

In Ref. [183], the authors proved that for 1D LCA
D-chaos is equivalent to topological transitivity, and pro-
posed an efficient method to decide whether a 1D LCA is
D-chaotic or not. Obviously, with the duality between lin-
ear HOCA and LCA, we can also use this method to decide
the chaos of linear HOCA.

Firstly, for a 1D LCA £ = (Z},,r,f ), where the local
rule f is specified by 27 + 1 matrices M_,, ..., My, ..., M,
€ Mat(n, Z,,) according to Eq. (F1), we can write down the
Laurent polynomial associated with L:

MX) = Z M.X ',

i=—r

(F5)

where X is merely a formal variable.

And then we can define the characteristic polynomial of
matrix M (X):

Xm0 = det(tl, — M (X)),

where ¢ is another formal variable, I, is the n x n identity
matrix.

In Ref. [183,184], the authors proved that a 1D LCA
L is chaotic if and only if its characteristic polynomial
xmx) (0 satisfy the following condition: when we recog-
nize xyr)(?) as a polynomial (X, X 1) of X, X!, the
greatest common divisor of the coefficients of all terms in
£(X,X ") denoted as y () has a degree smaller than 1.
Note that for alphabet S = ZJ, all coefficients can only be
0 or 1 after taking mod 2.

Finally, we obtain a general procedure to decide whether
a linear HOCA ‘'H = (n, Z;, r, f) corresponding to a model
studied in this paper is chaotic (according to Devaney’s
notion) or not as follows:

(1) Represent f by a series of coefficients aﬁ € 7,
where @, is the coefficient of x ™/ term in f,41_; (x);

(2) Recompose all @ coefficients to 27+ 1 matrices
M_,,...,My,...,M, according to Eq. (F3) and
Eq. (F4), which specifies a 1D LCA L;

(3) Write down the Laurent polynomial associated
with £ and its characteristic polynomial sy (f) =
det(¢], — M (X)), then recognize xysx)(#) as a poly-
nomial E(X, X 1) of X, X ;

(4) Compute y (¢), the greatest common divisor of the
coefficients of all terms in £(X,X '), the original
HOCA "H is chaotic when deg(y (f)) < 1, otherwise
it is not.

With this procedure, we can determine the chaotic property
of all linear HOCA corresponding to models studied in this
paper, and the results are summarized in Table VII. Com-
pared to our criterion of deciding a chaotic HOCA rule, the
algorithm proposed here is looser since many rules whose
patterns do not seem chaotic visually are decided to be
chaotic by the procedure here.

4. Deciding the sensitivity to initial conditions of linear
HOCA

Deciding the sensitivity to initial conditions of HOCA
can be done by the following procedure [158]:

(1) Find the Frobenius LCA that is topologically conju-
gate to the linear HOCA;
(2) Decide the sensitivity of Frobenius LCA.

First, we will start with some notations.

Definition (deg+ and deg™, sensitivity of polynomial).
Given any Laurent polynomial P(X) with coefficients in
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Z,+ where p is a prime and k € N (containing both posi-
tive and negative degree of X), deg*[P(X)] (respectively,
deg”[P(X)]) is the maximum degree among those of the
monomials having both positive (respectively, negative)
degree and coefficient, which is not multiple of p. If there
is no monomial satisfying the required conditions, then
deg[P(X)] = 0 (respectively, deg [P(X)] = 0). If either
degt[P(X)] > 0 or deg [P(X)] < O.

Example. Consider a polynomial P(X) over Zs = Zy:
PX)=2X34+X"4+14+X+3X24+2X3, (F6)
then deg"[P(X)] = 2 and deg [P(X)] = —1.

Theorem 2. An LCA over Z, is sensitive to initial con-

ditions if and only if there exists some i € {0, 1,...,n — 1},
such that m;(X) is sensitive, where m;(X) is the polyno-
mial at the nth row, ith column of the matrix M(X). M(X)
is defined in Eq. (F5).

Using the theorem above and the topological conjugacy
between LCA over Z;k and the HOCA over Z«, we can

decide whether a given HOCA rule is sensitive to the ini-
tial condition. All of HOCA rules mentioned in Table I is
sensitive to the initial condition. We want to further point
out that HOCA rules that can create a self-similar frac-
tal pattern is sensitive to the initial condition, argued as
follows:

(1) A necessary condition of a self-similar pattern in
2D square lattice is the scaling behavior of a sin-
gle row: There exists an infinite sequence {#;}, such
that 7, (x) = r,(x"), p € N+, p > 1. Here r(x) is
defined in Eq. (3).

(2) Suppose that the HOCA rule is not sensitive to the
initial condition, i.e., all m; (x) satisfy degfE [m;(x)] =
0, then we conclude that the radius R of the HOCA
rule is 0 immediately.

(3) The radius R of a HOCA rule determines how fast
the change of a site can propagate throughout the
system. R = 0 means that the time evolution of each
site is governed by itself only, and cannot be affected
by the sites nearby.

(4) Using the additivity of the HOCA rule we immedi-
ately obtain that if a site is at state 0 at time ¢, then it
will remain at state 0 governed by a radius-0 HOCA
rule, which contradicts our initial assumption that
the rule can produce a self-similar fractal pattern.

(5) We conclude that all HOCA rules that can generate
a fractal pattern are sensitive to the initial condition.

APPENDIX G: MATHEMATICAL DISCUSSION
ON THE VALIDITY OF TWO CRITERIA
INSEC.1IVB

Now we give an brief explanation on two criteria in
Sec. IV B. For a “regular” M = 0 pattern, we can observe
that ni,r = ngyp regardless of the dimension of the pattern
(for a regular pattern, n grows linearly with L or remains a
constant, which can be recognized as a fundamental fea-
ture of regular patterns), explaining our criterion 1. We
observe that for HOCA patterns with M =1 (i.e., fractal
patterns) there are exact self-similarity in the pattern, mak-
ing nj,r = Const. While at the same time, ng,, = 0o are
always true for a fractal pattern, explaining our criterion
2. The initial condition in the criteria above can be always
fully enumerated if the model is defined on an open slab.
The detailed proof are shown below.

As defined in Sec. III G, we label the class of a HGSPT
model by two values [Eq. (35)]:

X =1- rmln{Mﬂa

(G1)
X; = lmax{M}],

where {M} represents the set of all possible M generated
by the given HOCA rule, which at the same time deter-
mines all possible symmetry patterns for an HGSPT phase.
As explained in Sec. III G, if X, = 1, then there are reg-
ular symmetry patterns (defined as HOCA configuration
with M = 0) in the model, and X, = 0 indicates otherwise.
Similarly, if X, = 1, then there are fractal symmetry pat-
terns (defined as HOCA configuration with M = 1) in the
model, and X; = 0 indicates otherwise. Now we want to
show the following:

(1) Forany HOCA configuration .% (x,y) [Eq. (2)] with
M = 0 generated by initial condition q and HOCA
rule f, we have .4 (q,f) = 1.

(2) Forany HOCA configuration .% (x, y) [Eq. (2)] with
M =1 generated by initial condition q and HOCA
rule f, we have .4 (q,f) = 0.

Proof. First we recall the definition of M given in Eqgs.
(32)+(34):

S, — S
M = S—" (G2)
where
k+n -
4
S, (n) = li]?q sup % (G3)
—00
and
k+n .
Y4
Su(n) = lim inf%. (G4)
—00
[ |
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The key point in this proof is to see the correspondence
between n[D;(q,f)] and A(?). n[Dr(q,f)] stands for the
number of local Pauli operators in a given MPSC, and A4 (¢)
is the number of sites with state 1 in the #th row of a HOCA
pattern. First, recall that an MPSC that can detect the non-
trivial SRE ground state of HGSPT model acts as identity
on the ground state, which can further be decomposed into
products on Hamiltonian terms. If we put a Hamiltonian
term (e.g., the one made up of Pauli-X operators) on each
site with state 1 in a truncated HOCA pattern, then in the
“bulk” (opposite to boundary, to be explained below) of
the pattern all Pauli operators will cancel out by definition
of the HOCA rule. On the boundary (i.e., the first and last
n rows of the pattern), there will be generally Pauli oper-
ators that have not been cancelled out. If we are to obtain
a product of operators that acts effectively on the ground
state as products of Hamiltonian terms from a truncated
HOCA pattern by putting an Hamiltonian term on each site
with state 1, then there will be some terms on the bound-
ary of the pattern [Eq. (43) and (44)] that do not cancel
out. The number of such terms we must add is exactly the
number of operators of the MPSC that we want to con-
struct. If we truncate the HOCA pattern at row j , then such
terms will appear at row j + 1,7 + 2,...,j + n. Because
of the locality of HOCA rule (memory size n, radius R
limits the area of impact of flipping one single site), the
number of such terms (n) scales linearly with 4(¢), and can
be mutually substituted while the time step grows to infin-
ity. Therefore, S, (respectively,S;) = Const. is equivalent
to ngyp(respectively, ny,r ) = 0o, and Sy = §,, will indicate
Ngup = Nins, and Sy = 0 will be equivalent to ni,r = o(L).
Using this connection, we see that the definition of X,
and Xy is actually equivalent to the two criteria raised in
Sec. IVB:

(1) M =1 indicates that

Su _Sd :Sua

which suggests S, = Const. and S;=0. S;=0
indicates that there are an infinite sequence {¢;}
such that A4(#,) is a constant. Since the locality
of the HOCA rule, if we plug the corresponding
initial condition into ny[D;(q, )], we will obtain
niyr = Const. The claim above can be verified by
choosing the sequence {L; : L; = t; — n}, then by the
locality of HOCA rule we have that {n[D; (q,f)]}
will remain a constant. So we conclude that n;,r =
Const. On the other hand, S, = Const. indicates that
Ngyp = 00. So we have

N =—=0.
00

(2) M = 0 indicates that
Su = Sd,

which suggests S, = S; = Const. This indicates
that if we plug the corresponding initial condition
into nine[ Dz (q, )] and ng,p[Dr(q, )], we will obtain
Ninf = Ngyp = Const. So we have

N =1

APPENDIX H: MATHEMATICAL DISCUSSION
ON THE UNIVERSALITY OF HGSPT PHASES

As HOCA managed to produce a large variety of sym-
metry patterns, one may wonder if any kind of subsystem
symmetry can be generated by the HOCA approach men-
tioned in the main text. In this section we will show the
“completeness” of the HGSPT model.

Proposition. Given a pattern S(x, y) defined on an open
slab with size L, x L,, there will be at least one HOCA
rule f and initial condition q, such that the HOCA config-
uration .% (x, y) is identical to S(x,y) in the open slab. We
say any finite patterns can always be locally simulated by
an HOCA rule.

Proof. The proof of this proposition involves the topo-
logical transitivity of the HOCA rule (Appendix F 2):

A DTDS (X, F) is said to have topological transitivity
if for an arbitrary pair of open nonempty subsets U, V' in
X, then there exists a positive natural number #, such that
FrNV+#Q.

We start from a desired HOCA pattern S(x, y), and maps
it to a single-row Frobenius LCA configuration «. The
validity of this process is guaranteed by the topological
conjugacy between an order-n HOCA over Z; and an LCA
over Zj, which can be considered as a single row of Z,
vectors with n components. So this is a one-to-one map,
without losing or adding any information. Then, we select
an open set of configurations V that contains « locally,
i.e., each configuration v € V shares the same configura-
tion with o within the domain of «, and can be arbitrarily
chosen outside of the domain of «. Then, because of the
topological transitivity of the LCA rule, if we pick an LCA
rule with topological transitivity, then for any configura-
tion subset U, there exists N € N* such that 7V (U) N V #
), where F is the global rule of the LCA. Without lost of
generality, we suppose that 7V (u) € V, u € U. Then we
can map LCA configuration u back to HOCA configura-
tion uy. By selecting uq as the initial condition of HOCA
rule, we obtain the desired symmetry pattern S(x,y) in an
open slab after N steps of evolution governed by HOCA.
This finishes our proof of the proposition above. |
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Symmetry pattern

Frobenius LCA

maps to
S(z,y) IL P > configuration
with size L, x L, o
contained in
Frobenius LCA FrU)YNV #£0 Frobenius LCA

configuration subset
U

maps to

HOCA initial condition

u

—> | configuration subset
v

FIG. 29. A pictorial illustration of main idea in proof in Appendix H.

The proof indicates that any order-n HOCA rule with
topological transitivity have the ability to simulate sym-
metry patterns within an L, x L, slab with L, <n. A
pictorial illustration of the proof above is shown in
Fig. 29.
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