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We propose a novel variational ansatz for the ground-state preparation of the Z2 lattice gauge theory
(LGT) in quantum simulators. It combines dissipative and unitary operations in a completely deterministic
scheme with a circuit depth that does not scale with the size of the considered lattice. We find that, with
very few variational parameters, the ansatz can achieve>99% precision in energy in both the confined and
deconfined phase of the Z2 LGT. We benchmark our proposal against the unitary Hamiltonian variational
ansatz showing a reduction in the required number of variational layers to achieve a target precision.
After performing a finite-size scaling analysis, we show that our dissipative variational ansatz can predict
accurate critical exponents without requiring a number of layers that scales with the system size, which is
the standard situation for unitary ansätze. Furthermore, we investigate the performance of this variational
eigensolver subject to circuit-level noise, determining variational error thresholds that fix the error rate
below which it would be beneficial to increase the number of layers. In light of these quantities and for
typical gate errors p in current quantum processors, we provide a detailed assessment of the prospects of
our scheme to explore the Z2 LGT on near-term devices.

DOI: 10.1103/PRXQuantum.5.030340

I. INTRODUCTION

Gauge theories are the mathematical formalism under-
lying the description of nature at its most fundamental
level. Their origin is motivated by the study of phenom-
ena in high-energy physics, where the Standard Model
arises as an extremely successful gauge theory that has
been tested with very high precision [1,2]. They also
appear in condensed-matter physics in the description
of emergent phenomena, where the Z2 lattice gauge
theory (LGT) arises as an effective model for high-Tc
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superconductors [3]; and in quantum information, where
some quantum error-correcting codes are deeply related
to LGTs [4]. Even if gauge theories are widely used in
modern physics, most of them can not be solved exactly,
and one has to resort to either perturbative expansions
or numerical methods to extract quantitative predictions,
especially in the case of non-Abelian local symmetries.

The perturbative approach for studying gauge theories
has been extensively developed since their origin [1,2].
However, it does not apply to phenomena that appear
at large couplings, nor in the study of the infrared limit
of some of these theories. The most notable example of
this is the quest to quantitatively understand the mech-
anism driving the confinement of quarks [5,6], which is
a nonperturbative phenomenon that historically motivated
the development of LGTs [7]. Despite the great success
of LGTs, e.g., [8], some important regimes remain inac-
cessible, as current quantum Monte Carlo techniques are
afflicted by the sign problem at finite fermion densities and
real-time dynamics [9].

The complexity of treating the non-Abelian gauge the-
ories of the Standard Model led researchers to focus on
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simpler models, either in lower dimensions and/or sim-
pler gauge groups, with the hope to identify the minimal
ingredients that lead to paradigmatic phenomena, such as
asymptotic freedom and confinement. Traditionally, the
most widely studied models have been those in (1 + 1)
space-time dimensions, such as the Gross-Neveu model
[10], the Schwinger model for quantum electrodynamics
(QED2) [11,12], or the t’Hooft model of quantum chro-
modynamics (QCD2) [13,14]. In this work, we consider
the (2 + 1)-dimensional Z2 LGT [15–20]. This model con-
tains both a confined phase and a deconfined phase that
displays topological order and long-range entanglement
[21,22]. It is also closely related to the toric code [23] and
the surface code [24–27] in the context of quantum error
correction (QEC) [28–32], where Gauss’ law appears as
an emergent superselection rule in the ground-state man-
ifold. The study of these simpler models is beneficial not
only as a prelude to the more complex LGTs but also to
develop a deeper understanding of other relevant phenom-
ena, such as high-temperature superconductivity [33] or
frustrated magnetism [34]. Additionally, they can provide
a more amenable arena to develop and benchmark new
numerical simulations.

The search for alternative approaches for the simula-
tion of LGTs, either classical or quantum, has been a very
active area of research in recent years. In the classical sim-
ulation research line, tensor networks [35,36] are a very
promising way to avoid the sign problem, although they
are only particularly efficient in situations with a limited
amount of entanglement in the ground state and low-lying
excitations. This renders them very effective for the study
of static properties of LGTs, especially in low dimensions
but limits their accuracy in predictions of real-time evolu-
tions in principle [37], due to the infamous entanglement
barrier. Also, the tensor contraction operation that is exten-
sively used in numerical algorithms is computationally
expensive in high spatial dimensions.

Quantum simulators (QSs) [38–42] offer a promis-
ing route for the study of unexplored regimes in LGTs
[35,43,44]. QSs are many-body systems that can be manip-
ulated while maintaining their quantum properties and
can be controlled to emulate the behavior of a target
model under study. There are currently several platforms
that are suitable to perform quantum simulations: cold
atoms [45,46], trapped ions [47,48], and either photonic
[49,50] or superconducting circuits [51–53], among oth-
ers. Two different approaches are mainly considered: in
analog quantum simulations, there exists a direct corre-
spondence between the Hamiltonian describing the QS
and the model that one wants to simulate. Some pro-
posals of analog QSs for gauge theories can be found
in Refs. [35,54,55] and references therein. The other
approach is a digital quantum simulation, where unitary
operations are typically chosen from a universal set of
quantum gates [56] and then composed to perform the

simulation. The literature on digital simulation schemes
for gauge theories is extensive [57–60], see also refer-
ences in Refs. [35,43,44,54]. During the current noisy
intermediate-scale quantum (NISQ) era [61], in which the
quantum devices available are still limited by the presence
of noise, it is expected that analog simulators will scale at
a faster rate, due to their higher resilience to noise [62,63].
However, the generality and eventual fault tolerance of
the digital approach may make it more useful in the long
term. It may be the case that noise-mitigation techniques
[64–68] enable digital QSs to get relevant results,
even before fault-tolerant devices are available. Both
approaches are certainly worth pursuing and each of them
can benefit from the other [69–72].

In this work, we present a dissipative variational quan-
tum eigensolver [73–80] for studying the properties of the
Z2 LGT ground state in quantum simulators. VQEs in
general are a class of quantum-classical algorithms formu-
lated in terms of a specific ansatz for the ground state of
a quantum Hamiltonian, depending on a set of variational
parameters, together with a procedure for preparing it in a
quantum device. The ground state of the considered model
is then approximated by finding the value of the variational
parameters for which the energy of the resulting state is
minimal. This is achieved through a feedback loop where
the quantum device provides the value of the energy as
the cost function, which is used by a classical optimiza-
tion algorithm to find the optimal variational parameters.
Once the optimal values of the variational parameters are
determined, the ground-state preparation part is repeated
on the QS as many times as one desires to measure relevant
observables. Even though these algorithms are heuristic
and do not provide guarantees of success, as they depend
on the adequacy of the variational family of states, they
are well suited for current NISQ devices with short circuit
depths [81–87].

Other examples of widely used variational algorithms
are the quantum approximate optimization algorithm
[88–90], the Hamiltonian variational ansatz (HVA)
[91,92], or the unitary-coupled cluster [73,93–95]. The
first of them is most widely used in the context of opti-
mization, while the others are intended for molecular and
many-body simulations, respectively. These ansätze are
known to have fundamental limits on their expressibil-
ity due to their unitary nature [96–98]. For example, the
HVA approximates an optimal adiabatic evolution from
an initial reference state to the desired ground state, but
adiabaticity is known to break down across phase tran-
sitions [97,99]. This implies that different HVA ansätze
must be used in each of the phases of the model under
consideration, limiting their performance around phase
transitions as one scales to larger system sizes. In this
regard, the amount of entanglement in unitary ansätze with
a product reference state is generally limited by a Lieb-
Robinson light-cone-like spreading, which sets limits on
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the scaling of the minimal number of variational layers
that is required as the system size grows. This is of spe-
cial importance in the vicinity of critical points, but also
when considering topologically ordered phases with long-
range entanglement, such as the Z2 LTG. We note that,
historically, considerable progress in variational meth-
ods for many-body quantum systems has been achieved
by going beyond this unitary paradigm. Notable exam-
ples are the Gutzwiller [100–102] and Jastrow-Gutzwiller
[103–105] ansätze for strongly correlated electrons, the
Jastrow-Marshall [106–108] ansatz for frustrated spin sys-
tems, or the resonating valence-bond ansatz for both
frustrated spin systems [109,110] and high-temperature
superconductivity [111,112]. These ansätze can be under-
stood as the normalized action of a nonunitary operator
on a reference state which, for a certain limiting value
of their variational parameters, acts as a projector onto
the ground state of well-understood limits of the model
under study. In addition, other well-known ansätze, such
as the algebraic Bethe ansatz [113,114] and matrix-product
states [115,116] can also be understood as the effect of a
nonunitary operation, see Refs. [117,118].

A clear example of such a nonunitary operation with
limiting projecting behavior is that of the propagator in
imaginary time and its long-time limit. The implementa-
tion of this class of ansätze has remained outside the con-
text of VQEs until recently [119–129] as, in general, they
require the incorporation of dissipative techniques into the
VQE toolbox, often requiring access to a programable
open-system dynamics [130–136] or, otherwise, ending
up in probabilistic postselected schemes that scale poorly
with system size. It is worth mentioning that it is possi-
ble to approximate imaginary time evolution using unitary
operations [119,121] but one then faces either a complex
optimization problem or must be able to implement highly
nonlocal operators. From a broader perspective, the actual
utility of VQEs, either unitary or nonunitary, is mainly lim-
ited by the noise present in NISQ devices [137]. It is thus
important to include noise in current assessments of VQEs,
assessing the possible advantages by increasing the cir-
cuit depth. This will teach us important lessons about the
realistic prospects of NISQ VQEs.

The dissipative VQE proposed in this work addresses
the limitations of the unitary HVA and improves on
the required circuit depth to accurately capture the
confinement-deconfinement transition of this LGT. This is
achieved by introducing a nonunitary operation together
with a deterministic implementation scheme with a circuit
depth that does not scale with lattice size. We will show
that this reduction in depth is essential to achieve reason-
able results when performing the variational algorithm in
the presence of circuit-level noise.

The article is structured as follows: in Sec. II, we briefly
review the pure Z2 LGT and define our notation. We
extend this short review and present some observables

used to benchmark the variational ansatz in Appendix A.
In Sec. III, we present our dissipative VQE and its
implementation in the circuit model. We analyze the per-
formance of the dissipative variational ansatz (DVA) in
the absence of noise in Sec. IV. Here, the results of a
state-vector simulation of the ground-state preparation pro-
cess are presented and compared with exact diagonaliza-
tion. We also discuss how the DVA accounts for relevant
observables, and perform a finite-size scaling analysis to
show the accuracy of the ansatz around the critical region.
These results showcase the superior performance of our
nonunitary DVA in comparison to the unitary HVA. In
Sec. V, we investigate the effect of circuit-level noise in
both the DVA and HVA. We determine the variational error
thresholds p� for an �-layer ansatz, which determines the
level of physical error rates p < p� that must be attained
such that a deeper ansatz with more than � layers becomes
beneficial in the presence of gate errors. We show that,
under realistic noise conditions, our nonunitary DVA out-
performs the unitary HVA. We also discuss a postselection
scheme to detect certain errors and improve further the
performance of our DVA.

II. THE Z2 LATTICE GAUGE THEORY (LGT)

The pure Z2 LGT [15–17,20] is one of the better-suited
models for the first implementations of LGT QSs on NISQ
devices. Despite its simple structure, this LGT is not triv-
ial at all: it contains two distinct phases connected by a
phase transition that is not characterized by any local-
order parameter [15,138]. One of these phases is confining,
while the other one has long-range entanglement and topo-
logical order, as indicated in Fig. 1(c). The long-range
entanglement introduces a lower bound on the minimal
depth � of any unitary circuit intended to prepare the exact
ground state of this deconfined phase: it must scale with the
size of the lattice � ∼ O(d) [140,141]. Besides this inher-
ent complexity, understanding the properties and real-time
dynamics of this gauge theory coupled with matter fields at
finite densities still poses many open questions that would
benefit from a QS.

Let us start with a brief review of the Z2 LGT to
introduce the main concepts and set our notation. In
Appendix A, we extend this material and present some
observables used as a benchmark for our VQE proposal.
We consider the Hamiltonian formulation [142] of the pure
Z2 gauge theory on a two-dimensional spatial lattice. As
illustrated in Fig. 1(a), the gauge degrees of freedom are
located on the links of the lattice, labeled (n, i). The vec-
tors n ∈ Zdx × Zdy denote the vertices of the lattice and
i ∈ {x, y} indicates the axis of the unit vector {x, y} con-
necting a vertex to a neighboring one. The values dx and dy
refer to the number of gauge links in the boundary of the
lattice. We consider only square lattices with surface-code-
like boundary conditions [27], as shown in Fig. 1(a), and
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FIG. 1. (a) Sketch of the pure Z2 LGT on a two-dimensional dx = 4, dy = 5 lattice with surface-code-like boundary conditions.
White circles located on the links (n, i) of the lattice represent the gauge degrees of freedom, n labeling the vertices of the lattice and
i ∈ {x, y} indicating the orientation of a link. Matter fields would be placed on the vertices but are disregarded in the pure Z2 LGT.
Plaquette operators Pn and gauge transformation operators Gn are defined in Eqs. (4) and (5), respectively. The red string in the figure
represents a dual magnetization operator, which acts as a nonlocal order parameter to label the different phases of the theory. In purple
we sketch an example of a closed Wilson loop on the lattice. (b) The variational circuit is used to prepare the ground state of the Z2
LGT. In the first layer, a partial imaginary time evolution is implemented by a coupling A(β) of an auxiliary system, which plays
the role of an environment E , to the physical qubits of the system S , which encode the gauge degrees of freedom, and subsequently
measuring the auxiliary degrees of freedom to induce effective dissipative dynamics, as shown in Eqs. (21)–(24). Depending on the
ancilla measurement outcomes, a combination of Pauli-X gates is applied to a subset S of physical qubits, X = ⊗

(n,i)∈S X(n,i), which
results in the deterministic implementation of the partial imaginary time evolution. This dissipative step is followed by a sequence of
unitary operations resembling the HVA (17) with �u layers, where UE(αk,e) = eiαk,eHE and UB(αk,b) = eiαk,bHB . (c) Phase diagram of
the Z2 LGT with confined and deconfined phases that are separated by a second-order Ising-like phase transition located at λc ≈ 3.044
[139], as revealed by a nonlocal order parameter. Confinement is present for λ < λc, while deconfinement and topological order appear
for λ > λc.

thus set dx = dy = d as the lateral distance of the square
lattice L = d, which is referred to as the code distance in
the context of QEC. Each of the N = d2 + (d − 1)2 gauge
fields is a two-level quantum system with a local Hilbert
space H(n,i) = C

2 spanned by two basis states {|0〉 , |1〉},
which encode the elements of the Z2 gauge field. In the
quantum simulation of this model, each of the local gauge
degrees of freedom is represented by a single qubit. The
full Hilbert space of the complete lattice is the tensor
product of local Hilbert spaces H = ⊗

n,i H(n,i), and the
physical subspace will be a certain superselection sector
defined below. The Kogut-Susskind Hamiltonian [142] for
the pure Z2 LGT can be defined in analogy with the QED
Hamiltonian [7] as

H = −HE − λHB. (1)

The analog of the electric energy term is

HE =
∑

n,i

X(n,i), (2)

where X(n,i) plays the role of the local electric field oper-
ator and corresponds to the Pauli-X matrix in the tensor-
product Hilbert space. Since X 2

(n,i) = 1, the electric field

energy is not quadratic but linear in the electric field, which
is a peculiarity of the Z2 gauge theory in comparison to
QED. This electric term competes with the magnetic flux
energy, which is proportional to

HB =
∑

n

Pn. (3)

The operators Pn are the Wilson plaquette operators

Pn = Z(n,x)Z(n+x,y)Z(n+y,x)Z(n,y), (4)

which correspond to the smallest gauge-invariant Wilson
loops that can be defined on the lattice [green squares in
Fig. 1(a)]. They play the role of the magnetic flux pierc-
ing each of the Np = d(d − 1) plaquettes of the lattice.
We note that the plaquette operators on the top and bot-
tom boundaries are tensor products of Pauli-Z matrices
acting only on three links. These are what we call surface-
code-like boundary conditions in analogy to what can be
found in Refs. [26,27]. Using these boundary conditions is
interesting because a degeneracy of the ground state will
emerge for λ → ∞, even for planar lattices, which is a
consequence of the nontrivial homology of the model. The
Z2 gauge transformations are generated by the so-called
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vertex operators

Gn = X(n,−x)X(n,−y)X(n,x)X(n,y), (5)

which flip the basis states of every link connected to site n.
Gauge invariance implies that every local vertex operator
commutes with Hamiltonian (1)

[H , Gn] = 0, ∀ n ∈ Zd × Zd. (6)

This commutation relation indicates that the eigenval-
ues of the vertex operators are constants of motion. The
Hermitian and involutory nature of the vertex operators
G2

n = 1 restricts their spectrum to be ±1. These eigen-
values are related to an analog of Gauss’ law in the Z2
gauge theory [17], as they correspond to the presence (−1)
or absence (+1) of a background Z2 charge at the cor-
responding lattice site n. These conserved static charges
serve to determine the different superselection sectors of
the gauge theory. Since we are considering the pure Z2
LGT, we define the physical Hilbert space as a subspace
with vanishing static charges via the constraints

Gn |ψ〉 = |ψ〉 , ∀ n ∈ Zd × Zd. (7)

The microscopic coupling λ in Eq. (1) is a real parame-
ter, the value of which shall determine the specific zero-
temperature phase of the Z2 LGT. As discussed in more
detail in Appendix A, when this coupling lies below a cer-
tain critical value λ < λc ≈ 3.044 [139], the ground state
is a short-range entangled state, which, for λ → 0, reduces
to a trivial product state

|�E〉 =
⊗

n,i

∣
∣+(n,i)

〉
. (8)

In this regime, one says that the gauge field is confining.
In contrast, the magnetic coupling dominates for λ > λc,
and one observes long-range entanglement, a topologi-
cal degeneracy, and no confinement in the ground state.
The lowest eigenstate of the magnetic term is obtained by
applying a projector onto the common +1-eigenspace of
the plaquette operators to the previous state

|�B〉 =
∏

n

1√
2
(1 + Pn) |�E〉 . (9)

Fulfilling also Gauss’ law [Eq. (7)], the state |�B〉 can thus
be interpreted as a stabilizer state in the code space of
the surface code. We will come back to this connection
in a later section. Note that |�B〉 is just one state in the
lowest-eigenvalue subspace of HB. The dimension of this
subspace depends on the topology of the surface in which
the lattice is embedded, or on the nature of the bound-
ary conditions for a planar lattice. The remaining states in

this subspace can be generated by applying strings of Z(n,i)
operators along noncontractible loops of the lattice [23].
In Appendix A we extend the discussion on the physical
Hilbert space of the Z2 LGT.

The simulation of the two-dimensional Z2 LGT is an
ideal benchmark for digital QSs, as it presents many of
the challenges that will be met in other higher-dimensional
non-Abelian gauge theories—but these are incarnated at
their simplest possible form, as the gauge degrees of free-
dom are encoded in single qubits, and the locality of the
Hamiltonian requires only local gate connectivities. In
addition, various observables can be inferred from stan-
dard projective Pauli-basis measurements, giving access to
characteristic nontrivial effects in the LGT. These observ-
ables serve as markers of the confined-deconfined phase
transition and allow one to test topological order in the
deconfined phase (see Appendix A). In analog QSs, the
implementation of the plaquette terms (4) is a bottle-
neck, as it requires access to four-body interactions, which
are typically perturbatively small [35,143–145]. Alterna-
tively, one can use the fact that the deconfining effect of
the plaquette terms can sometimes arise from energetic
considerations when including matter [146] to perform
simulations without the need to implement four-body inter-
actions [147,148]. This caveat is overcome in digital QSs
[149–152], as higher-weight terms can be obtained by
nested entangling gates. On the other hand, the number
of Trotter steps required for the full temporal evolution
with magnetic and electric terms in digital QSs typically
requires large circuit depths [153], which can be limited
by the accumulation of gate errors.

The problem of ground-state preparation for the Z2 LGT
in digital simulators has been tackled before using VQEs
[57]. However, the theoretical studies of VQEs do not
typically incorporate the fact that the gates used to build
each layer will inevitably be faulty and the errors will
propagate to other layers, proliferating due to the under-
lying non-fault-tolerant construction of the circuits. In the
following section, we present our proposal for our nonuni-
tary DVA for the Z2 LGT and show that it does improve
upon the standard HVA approach [57] both in the noiseless
and noisy regimes. Our study provides a solid foundation
for the development of scalable VQEs for lattice gauge
theories in near-term quantum devices.

III. NONUNITARY ANSÄTZE FOR GAUGE
THEORIES

A. Dissipative variational quantum eigensolvers
(VQEs)

In this section, we introduce a nonunitary variational
ansatz to approximate the ground state of the Z2 LGT. We
provide an algorithm for the deterministic preparation of
this quantum state in digital quantum computers so that it
can be used as a dissipative VQE. VQEs are a family of
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hybrid quantum-classical algorithms whose goal is to find
the eigenstates of target Hamiltonians. The basic principle
underlying these algorithms is simple: any state |ψ(α)〉 of
a quantum system different from the ground state(s) |E0〉,
and defined in terms of a set of variational parameters αk,
will have mean energy that is larger than the latter E0 [74],
such that

E(α) = 〈ψ(α)| H |ψ(α)〉 > E0. (10)

In traditional VQEs, one tries to approximate this ground
state by preparing the actual ansatz on a physical device,
which is accomplished by acting with a series of unitary
operations that depend on the set of variational parame-
ters on an easy-to-prepare reference state |ψ0〉. Each of
these unitaries is built from a set of gates that depend on a
certain parameter that can be experimentally manipulated
[151,154,155]. The resulting state is

|ψu(α)〉 = Uα�u
Uα�u−1 · · · Uα1 |ψ0〉 , (11)

where α = (α�u , α�u−1, . . . , α1) is a vector of the varia-
tional parameters in all the �u unitary layers.

Note that the product of unitary operations in Eq. (11)
is not the most general operation allowed by quantum
mechanics. It is indeed possible to define a more general
version of the VQE using �d dissipative layers

ρ(β) = Eβ�d ◦ Eβ�d−1 ◦ · · · ◦ E1
( |ψ0〉〈ψ0|

)
, (12)

each of which corresponds to a quantum channel described
by a completely positive trace-preserving (CPTP) map
[56]. These channels can be mathematically expressed by
the so-called Kraus decomposition

Eβj

(
ρ0
) =

κ∑

n=1

Kn,βj
ρ0 K†

n,βj
:

κ∑

n=1

K†
n,βj

Kn,βj
= 1, (13)

where κ is the so-called Kraus rank. For κ = 1, we have
a single Kraus operator that must be unitary, such that the
variational family of states Eq. (12) reduces to that of the
unitary VQE in Eq. (11) with β = α. For larger ranks, the
quantum channels Eq. (13) are typically used to describe
the dissipative dynamics that result from the coupling of a
quantum system to a larger environment.

As discussed in Ref. [56], given a certain Kraus rank κ ,
one can model the effect of any CPTP map with a unitary
coupling Uβj between the system and an ancillary κ-level
system {|en〉}κn=1, after tracing over the ancillary system,
such that Kn,βj = Traux{Uβj (|ψ0〉 〈ψ0| ⊗ |en〉 〈en|)U†

βj
}. In

general, after this partial trace, the evolution of the reduced
system will not preserve the purity of the initial refer-
ence state |ψ0〉. We note that the above variational family
Eq. (12) with purity nonpreserving CPTP maps departs

from a variational ground-state preparation algorithm,
where one is interested only in pure states Eq. (10). In that
respect, provided one could measure the auxiliary system
and postselect on a specific result, e.g., n = 1, the density
matrix Eq. (12) would reduce to a pure state

|ψd(β)〉 = 1
N (β)K1,β�d

K1,β�d−1 . . .K1,β�1
|ψ0〉 , (14)

where the normalization constant N (β) can be interpreted
as the postselected probability amplitude. This ancillary
method corresponds to a postselected positive operator-
valued measure [156], where the resulting individual oper-
ators are neither unitary nor orthogonal projectors. Indeed,
one could combine the unitary and postselected dissipative
dynamics to define the ansatz

|ψd(α, β)〉 = 1
N (β)

�u∏

j =1

Uαj

�d∏

k=1

K1,βk |ψ0〉 , (15)

where the products are decreasing in the layer index. One
can even intertwine the unitary and nonunitary operations,
leading to a more general pure state. We call this ansatz
the dissipative variational ansatz (DVA), and it will be the
subject of our work.

As advanced in the introduction, the motivation to con-
sider this type of VQEs is that there exists a variety of
useful ansätze in quantum many-body systems that cannot
be described by a unitary operation acting on a reference
state. Well-known examples appear in strongly correlated
electrons under the name of the Gutzwiller [100] and Jas-
trow [103] ansätze. For instance, the Gutzwiller ansatz
would fall into the class of �u = 0, �d = 1, with K1,β being
the so-called Gutzwiller operator that penalizes double
occupancies of fermions. The goal of the current work is
to explore the performance of this type of dissipative VQE
(15) in the context of the Z2 LGTs and analyze their per-
formance when the unitary and dissipative operations are
both affected by noise in NISQ devices.

Even if, in principle, such a nonunitary ansatz Eq. (15)
can be an extremely powerful calculation tool, we need to
address a crucial point: the postselection procedure. As the
number of dissipative layers �d increases, the probability
of obtaining the desired outcome from the measurement of
the ancillary system will become vanishingly small [157],
making the experimental procedure rather inefficient. This
is more daunting if one considers that, eventually, one is
interested in the thermodynamic limit of a certain quantum
many-body model, where the postselection probability of
even a single dissipative layer can also become negligible
in the limit of large lattice sizes. One of the key results of
our work is to show that, for a certain DVA of the Z2 LGT,
we can devise a feed-forward operation depending on the
outcome of the ancillary-system measurement that allows
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us to prepare the ansatz deterministically for �d = 1, arbi-
trary �u, and arbitrary system size d. We provide the details
below.

Before turning to that specific discussion, let us note
that, in a VQE, the values of the variational parameters
(α, β) are found by minimizing the expectation value of
the energy E(α, β) (10) of the resulting variational state.
The energy minimization is performed using a quantum-
classical feedback loop in which the NISQ device provides
the expectation value to a classical optimizer that uses it as
its cost function. Recently, the effectiveness of this process
has been brought into question. First of all, its variational
nature impedes the formulation of general complexity
arguments. In addition, the strong nonconvexity of the cost
function, together with the presence of Barren plateaus
[137,158,159], complicate the energy minimization pro-
cess. An interesting discussion about the complexity of
VQE training for a particular problem can be found in
Ref. [160]. It is also worth mentioning that it is possible to
formulate ansätze capable of avoiding Barren plateaus, at
least under certain conditions and, importantly, under the
idealized assumption that there are no errors. Apart from
these difficulties, researchers have empirically found cases
in which unitary VQEs can approximate ground states of
complex systems with good fidelity [57,73,81–84]. Addi-
tionally, the variational states resulting from VQEs can
be used as reference states for more resource-demanding
algorithms for ground-state preparation that have guaran-
tees of success [122,161]. In the following section, we will
show how our dissipative VQE can achieve extremely pre-
cise ground-state energy estimates without encountering
Barren plateaus, which we believe is due to the reduced
number of layers that are required and the combination of
both unitary and nonunitary operations.

B. Dissipative VQE for the Z2 LGT

We propose to use a version of the DVA Eq. (15) for the
Z2 LGT with a single nonunitary layer

|ψd(α,β)〉 =
�u∏

j =2

(
eiαj ,eHE eiαj ,bHB

)
eiα1,eHE eβHB

|�E〉
N (β) ,

(16)

where the reference state is the trivial product state Eq. (8),
the normalization constant is N (β) = (cosh 2β)Np/2, and
we recall that Np = d(d − 1) is the number of plaquettes
[see Fig. 1(a)]. This ansatz, which is gauge invariant, falls
into the class of the DVA introduced in Eq. (15), where we
assume a single dissipative layer �d = 1, and an arbitrary
number of unitary layers �u, each of which is composed by
the Trotterized construction for the Z2 gauge theory H =
−HE − λHB. The first unitary Trotter operation contains
only the electric field term Eq. (2), whereas the remaining
ones, j ≥ 2, contain both the electric and magnetic terms

with different variational parameters {αj ,e,αj ,m}. A differ-
ent way of interpreting ansatz Eq. (16) is to consider the
completely unitary HVA

∣
∣ψu,e(α,α1,m)

〉 =
�u∏

j =1

eiαj ,eHE eiαj ,bHB |�E〉 , (17)

in which the variational parameter of the first Trot-
ter component is Wick rotated α1,m �→ −iβ, such that∣
∣ψu,e(α,α1,m)

〉 �→ |ψd(α,β)〉. In Sec. IV, we demonstrate
that the introduction of the nonunitary layer in our ansatz
Eq. (16) enables the DVA to converge close to the
true ground-state energy with considerably fewer layers,
enabling it to scale to larger lattices while maintaining the
number of gates amenable for implementation. In the fol-
lowing, we provide theoretical arguments supporting these
results. For this, we first present some limitations of the
HVA, and then discuss how they can be overcome with the
introduction of the nonunitary layer.

The unitary HVA consists of applying a series of �u
Trotterized propagators on a reference state. This state cor-
responds to the ground state of one of the terms in the
considered Hamiltonian and it is assumed to be efficiently
prepared in the NISQ device. Instead of fixing the time
of evolution of each Trotter term from a fixed adiabatic
schedule and posterior discretization of time, they are left
as independent variational parameters α. The use of the
HVA for the Z2 LGT has already been thoroughly inves-
tigated in the relevant work of Lumia et al. [57], showing
that it can attain a considerable accuracy in terms of energy
and state fidelity for the electric-field-dominated phase.
This accuracy rests on the fact that this Trotter-like con-
struction can approximate an optimal adiabatic evolution,
up to errors controlled by the number of Trotter layers
(variational parameters) that one wants to consider [97].
In the particular case of Eq. (17), it simulates an adiabatic
evolution from λ = 0 up to a specific nonzero value λ > 0
considered in the minimization of the energy E(α,α1,m).
As mentioned in the introduction, any HVA faces an
important obstacle: adiabaticity breaks down when cross-
ing phase transitions, which limits the usefulness of the
HVA ansatz to a single phase for large systems. A possi-
bility discussed in Ref. [57] to go around this limitation is
to change the reference state and the Trotter order, yielding
another ansatz

∣
∣ψu, m(α,α1,e)

〉 =
�u∏

j =1

eiαj ,bHBeiαj ,eHE |�B〉 . (18)

However, one must bear in mind that a full unitary HVA
protocol for reference states with nontrivial entanglement
content can dramatically increase the circuit complexity,
as occurs for the deconfined state |�B〉 (9), which would
require a number of unitary layers that scales with the size
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of the lattice �u ∼ O(d) [140,141]. We note that, if one
chooses to use ancilla-qubit measurements, one can instead
prepare this reference state in constant depth [162], as is
known also for QEC with the surface code.

Even in this situation, a shallow HVA, Eq. (18), is now
only accurate for λ > λc and exhibits similar limitations
around the critical region of the system as Eq. (17). As
we show in Sec. IV, both HVAs fail at capturing accu-
rately the most interesting region of the Z2 LGT: the
confinement-deconfinement transition. Our proposal incor-
porates a variational dissipation into the ansatz itself, rather
than in the preparation of a reference state, and can over-
come these limitations providing a promising path towards
exploring the criticality of LGTs in near-term devices. This
is achieved through the introduction of a single non-unitary
operation K1,β = eβHB in Eq. (15), which is the Wick-
rotated version of the first Trotter step of the magnetic term
of the Hamiltonian. Expanding the nonunitary exponential
in power series and using the involutory property of the
plaquette operators P2

n = 1, the action of the nonunitary
operator in the DVA

K1,β =
∏

n

(1 coshβ + Pn sinhβ), (19)

is indeed to partially project the state |�E〉 onto the
magnetic ground state |�B〉 (9). In the limit

K1,β

N (β) |�E〉 −−−→
β→∞

|�B〉 =
∏

n

[
1√
2
(1 + Pn)

]

|�E〉 ,

(20)

this operator completely projects out all the −1 eigenstates
of the magnetic plaquettes. In the language of quantum
information, this operator becomes a projector onto the
common stabilizer subspace of the magnetic operators.
On the other hand, K1,β → 1 as β → 0, such that the
DVA interpolates between the electric Eq. (8) and mag-
netic Eq. (9) ground states. For β ∈ (0, ∞), the nonunitary
operator K1,β is not an orthogonal projector, and aims at
approximating the ground state of the Z2 LGT for arbi-
trary values of λ by allowing for a certain admixture of
magnetic π -flux plaquettes. We note that the nonunitary
operator K1,β was first considered in the works [163–165],
where it was shown that it suffices to capture a second-
order confinement-deconfinement phase transition. How-
ever, this approach overestimates the value of the critical
coupling λc = 4 and, more importantly, yields mean-field
critical exponents β = ν = 1/2 [166], which are known to
differ from those of the Z2 LGT.

In this work, we show that, by enlarging the variational
manifold with the unitary layers of Eq. (16), we can over-
come all of these limitations and get a much more accurate
DVA. In addition, we will also show in the next section
that the full DVA, including the nonunitary layer, can

be implemented deterministically using standard circuits
of quantum computation with gates between the qubits
encoding the gauge fields and ancillary qubits, which are
measured projectively yielding classical information that
is feed forwarded to apply additional single-qubit gates on
the system qubits.

C. Deterministic circuit implementation

In many near-term quantum processors, qubits are
arranged in planar geometries, which makes them suit-
able platforms to study LGTs in two-dimensional lattices.
Superconducting transmons, for example, are placed on
a chip in a fixed geometry, and tunable couplers enable
the execution of two-qubit gates between nearest neigh-
bors. Neutral atoms in optical tweezer arrays constitute
another promising platform for digital quantum compu-
tation. Hundreds of atoms can be arranged in arbitrary
geometries in two dimensions without defects [167,168]
and they can even be dynamically rearranged during a
computation [169]. Temporarily exciting atoms in Rydberg
states enable the execution of entangling gates between
qubits that may reach beyond their nearest neighbors. The
variational algorithm presented in this paper can be exe-
cuted on a quantum processor, which, besides access to
single-qubit rotations and a two-qubit gate, has the follow-
ing capabilities: (i) It can accommodate a two-dimensional
lattice of qubits with nearest-neighbor connectivity, either
directly—owing to its architectural design—or through
long-range interactions or shuttling [169–171]. (ii) It can
perform unitary operations on a subset of qubits condi-
tioned on the result of a measurement. The latter capa-
bility is necessary to implement the dissipative opera-
tion deterministically. These requirements are in close
correspondence to those needed to implement some of
the most common topological quantum error-correction
codes, especially the different flavors of the surface code
[23–25,27]. Topological states have already been prepared
in experiments with superconducting qubits as well as
in neutral atom and ion-trap platforms [53,162,169,172].
Moreover, multiple rounds of quantum error correction
have been demonstrated in the surface code using super-
conducting qubits [173–175] and in the color code with
trapped ions [176].

The implementation of the nonunitary part of the ansatz
in Eq. (16) requires the introduction of ancilla qubits. The
exact number of required ancillae depends on the qubit
connectivity and their reusability after measurements. In
a device with all-to-all connectivity and full reusability,
a single ancilla qubit in principle suffices. However, the
introduction of Np ancilla qubits is beneficial, since it pro-
vides an opportunity for parallelization and it can relax the
connectivity requirements to nearest-neighbor interactions.
In the following, we will assume access to a device in
which qubits are distributed in a two-dimensional square

030340-8



NOISE-AWARE VARIATIONAL EIGENSOLVERS PRX QUANTUM 5, 030340 (2024)

FIG. 2. Configuration of physical qubits in a quantum proces-
sor for the investigation of the Z2 LGT. White circles located on
the lattice links correspond to qubits encoding the gauge degrees
of freedom. Black and red circles represent ancilla qubits located
in the centers of the plaquettes (green squares). Ancilla qubits are
required to implement the dissipative operation shown in Fig. 3.
The red qubits represent an example of ancillae that have been
projected onto the state |1〉a in the measurement. Such excited
plaquettes must be removed by matching two of them and apply-
ing X operators to all gauge qubits along that path. Instead of
connecting two excited plaquettes, it is also possible to choose
paths that end at the right or left boundary. Thus, it is possible
to implement the dissipative operation even if an odd number of
ancillae is measured in |1〉a.

lattice, as shown in Fig. 2. The qubits representing the
gauge degrees of freedom in the Z2 LGT are located on
the links of a square lattice. Choosing this lattice to have
twice the lattice constant as compared to the physical qubit
lattice leaves qubits in the centers of the plaquettes that are
used as ancillas and free qubits in the vertices.

We propose the following scheme for the prepara-
tion of the DVA Eq. (16). Since the plaquette opera-
tors Pn commute mutually, the non-unitary propagator
in Eq. (16) can be exactly factorized as the product of
exponentials of single plaquettes [Eq. (19)]. Figure 3
shows the quantum circuit implementing the exponential
(cosh 2β)−1/2 eβPn acting on the reference state |�E〉Pn .
Step by step, the action of this circuit is as follows: the
first set of single-qubit operations prepares the physical
qubits in the state |�E〉 and rotates the ancilla by an angle
�(β) = 2 tan−1(tanhβ) around the y axis on the Bloch
sphere Ry(�) = exp{−i�Ya/2}, where Ya = iXaZa. This
rotation encodes each of the constants in front of the iden-
tity and the plaquette operator in Eq. (19). The state |ψ1〉,

indicated in Fig. 3, thus reads

|ψ1〉 =
(

|+〉a + tanhβ |−〉a√
1 + tanh2 β

)

⊗ |�E〉Pn . (21)

After that, the train of CNOTs introduces the Pn operator in
front of the state |−〉a. This is the case because each CNOT
flips the sign in front of |−〉a if the corresponding physical
qubit is in the state |1〉(n,i). This introduces a product of
Z(n,i) in front of |−〉a, which results in the operator Pn. We
obtain

|ψ2〉 = |+〉a |�E〉Pn + tanhβ |−〉a Pn |�E〉Pn√
1 + tanh2 β

. (22)

By changing back to the computational basis

|ψ2〉 = 1√
2

∑

sa=0,1

(
1 + (−1)saPn tanhβ
√

1 + tanh2 β

)

|sa〉a ⊗ |�E〉Pn

(23)

one can see how the measurement of the ancilla qubit in
|0〉a projects the gauge qubits onto the desired variational
state, which happens with 50% probability. Conversely,
if the state |1〉a is measured, the plaquette ends up in
(cosh 2β)−1/2 exp{−βPn} |�E〉Pn . In this case, the correct
variational state can be recovered by applying the operator
X(n,i) to one of the plaquette qubits. This operator flips the
sign in front of the plaquette operator upon commutation,

ℰ
| 0a⟩

| 0Pn
⟩

Initialization couplingℰ Dissipative step

| ψ2⟩| ψ1⟩

FIG. 3. Circuit implementation of the nonunitary exponen-
tial of a single plaquette acting on the electric ground state:
(cosh 2β)−1/2 eβ1Pn |�E〉Pn . S is the set of qubits encoding the
state of the plaquette qubits, while E hosts the ancilla qubit(s) that
will play the role of an environment. The rotation angle acting
over the later is �(β) = 2 tan−1(tanhβ). The classically condi-
tioned gate X(n,i) is only applied if the ancilla qubit E is projected
onto the state |1〉a in the measurement. When implementing the
full nonunitary exponential Eq. (16), the classically conditioned
operation depends on the set of all ancilla measurements, as
discussed in the main text.
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and consequently the sign in the exponential such that we
deterministically obtain

|ψd(β)〉 = eβPn

(cosh 2β)1/2
|�E〉Pn . (24)

We note that this can only be done because |�E〉 is an
eigenstate of every X(n,i) with eigenvalue +1, and is thus
left invariant after the commutation, such that the nonuni-
tary exponential can be implemented deterministically. We
remark that no postselection is necessary, which would
imply discarding half of the experimental runs for a single
plaquette. For Np plaquettes, the postselection probabil-
ity vanishes as 1/2Np in the thermodynamic limit Np �
1, showcasing the difficulty of working with nonunitary
ansätze for large quantum many-body systems. In this
respect, our deterministic protocol is crucial, as in the
absence of errors it produces the target variational state
with 100% yield.

The complete nonunitary operation K1,β , appearing in
the variational ansatz Eq. (16), is realized by repeating the
application of this circuit for each plaquette in the consid-
ered lattice. It is possible to do this in parallel using the
following strategy: (i) Execute the unitary part (without
the measurement) of the circuit of Fig. 3 simultaneously
for all plaquettes in the lattice. It is important to execute
the train of CNOT gates in the correct order such that no
physical qubit acts as the control of two CNOT gates simul-
taneously. This can be achieved, for example, by choosing
the physical qubit in the top link of the plaquettes as the
first control and then applying the remaining CNOT gates
controlled on the other physical qubits in clockwise order.
(ii) Measure all ancilla qubits in the computational basis,
store the results in a classical register, and apply operators
X(n,i) to gauge qubits along strings, which connect pairs
of plaquettes whose ancilla qubits have been measured in
state |1〉a. An example is shown in Fig. 2. These strings
are required because applying the operator X(n,i) to a qubit
flips the sign of the exponential of all plaquettes in which
that respective qubit is involved. The strings ensure that
plaquettes whose sign does not need to be corrected are
left invariant because they will receive either zero or two
sign flips. This procedure has the same overhead in terms
of quantum computational resources as a single round of
quantum error correction in the surface code [30]. The pro-
cess of finding the set of strings that correct all plaquette
signs is similar to the decoding process in the surface code.
In this case, however, the existence of a solution is guar-
anteed because the prepared state is a +1 eigenstate of the
operator acting as logical X operator in the surface code.

The implementation of the unitary operations in Eq. (16)
has already been discussed in the literature. The exponen-
tial of the electric term of the Hamiltonian eiαj ,eHE is a
simple tensor product of single-qubit rotations along the

| ψ(β)⟩

Unitary Wilson-plaquette step

FIG. 4. Circuit implementation of the unitary exponential of
a single plaquette eiαj ,mPn considered in this work. This imple-
mentation does not use an extra ancilla qubit and thus requires
an extended, but still local connectivity. An equivalent circuit
making use of an ancilla and requiring only nearest-neighbor
interactions can be found in Ref. [56].

x axis, while the implementation of eiαj ,mPn is a direct gen-
eralization of the circuits used to simulate the evolution of
Ising interactions via CNOT gates and rotations about the z
axis eiαZcZt = CNOT eiαZt CNOT, and can be found in the lit-
erature, e.g., see the circuits for the HVA in Refs. [57,177].
Figure 4 shows a possible implementation for the unitary
exponential for a single plaquette, eiαj ,mPn . The scheme
requires the sequential application of CNOT gates between
qubits of a plaquette. The gates can be chained such that
only interactions between neighboring gauge qubits are
required, which is reasonable for e.g., neutral atom plat-
forms [178]. For devices in which interactions only reach
from an ancilla qubit to the qubits of the respective pla-
quette, (i.e., nearest-neighbor connectivity), the ancilla can
be utilized to implement the required operations [56]. The
application of the unitary plaquette exponentials can also
be parallelized [57].

A complete variational circuit for the d = 3 lattice and
two variational layers is shown in Fig. 10 in Appendix B.
Parallelizing all operations yields a circuit depth of 13 per
unitary layer. Together with a circuit depth of 9 for the first
variational layer of the nonunitary operator and the electric
field unitary, yields a total circuit depth of

D = 13�u + 9, (25)

where �u is the number of unitary layers. Note that the cir-
cuit depth is independent of the lattice size. Single- and
two-qubit gates as well as measurements count as one
unit of depth. The parallel execution of gates on indepen-
dent qubits also contributes to one unit of depth. Another
relevant quantity to evaluate the complexity of the dissi-
pative variational algorithm is the number of CNOT gates
required to prepare the variational state, since these are the
main source of circuit-level noise in real platforms. For the
boundary conditions considered in this paper, the number
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of CNOT gates amounts to

#CNOTs = (dx − 1)dy(4 + 6�u)− (dx − 1)(2 + 4�u).
(26)

The fact that the dissipative variational ansatz can achieve
good performance with short circuit depths �u is crucial for
maintaining the feasibility of the variational algorithm on
real hardware, where the algorithms are essentially limited
by this metric being low enough. In the next section, we
show that high precision in the ground-state energy can
be achieved already with a single variational layer. The
depth of the corresponding circuit is certainly within the
range of what current NISQ devices can achieve, as the
short depth avoids the proliferation of errors. The analysis
of the ground-state preparation algorithm in the presence
of noise in Sec. V reveals that a small gate error rate is
required for the introduction of the first unitary layer not to
be counterproductive.

IV. NOISELESS DISSIPATIVE VQE: A
NONUNITARY ADVANTAGE

We now present results from classical state-vector simu-
lations of the ground-state preparation algorithm to analyze
the performance of the ansatz. We have performed simula-
tions investigating the ansatz in the absence and presence
of circuit-level noise. In this section, we focus on the for-
mer case. We have restricted the Hilbert space of noiseless
simulations to that defined by constraint Eq. (6), to reduce
the dimension of the Hilbert space from 2N to 2Np , so
that we gain access to larger lattices that are beyond a
brute-force exact-diagonalization approach (up to d = 5,
41 qubits). We work in the basis Eq. (A2). We first present
our results for the energy difference between the DVA and
the exactly diagonalized ground state, which can be inter-
preted as a physical figure of merit quantifying the error
of the various variational approximations (Fig. 5). We then
present data for the value of the dual magnetization, which
is the relevant nonlocal-order parameter that can capture
the nature of the confinement-deconfinement transition. As
discussed in more detail in Appendix A, the dual magne-
tization is defined along a path ∂Cn that extends from its
boundary to one of the links in plaquette Pn, as depicted in
Fig. 1(a), and reads

Mn =
∏

(n,i)∈∂Cn

X(n,i). (27)

Even with a short circuit depth � = 2, the DVA (16)
can accurately account for this dual magnetization in the
largest lattice, providing a reasonable estimate of the crit-
ical exponents of the Z2 LGT, which quantifies its perfor-
mance in the critical region of the model. We repeat the
same analysis with the unitary ansätze Eqs. (17) and (18),
and show that they exhibit large discrepancies.

(a)

(b)

FIG. 5. Ansatz error quantified by the relative energy dif-
ference between the minimum variational energy and the true
ground-state energy obtained from exact diagonalization. We dis-
play this relative error for different values of λ as the lattice size
increases with the distance d, considering two different numbers
of variational layers � ∈ {1, 2}. For d = 2, the � = 2 ansatz is
expressive enough to achieve the exact energy up to numerical
precision.

All the following results rely on our classical optimiza-
tion strategy to estimate the optimal variational param-
eters. Even though we use a standard gradient-descent
algorithm [179], we introduce an initialization strategy
that is in some sense inspired by adiabatic evolutions.
Appendix E describes such an optimization strategy. In
Appendix F, we formulate an extension of the parameter-
shift rule [180,181] for the exact computation of gradients.
We find that our optimization strategy is stable, yielding
the same results for different runs, and also showing a
better performance than random initialization.

Figure 5 shows the relative difference between the
energy obtained by the DVA (16) and the exactly diagonal-
ized ground state for increasing lattice sizes. We have con-
sidered only small total depths � = �u + 1 ∈ {1, 2} since,
as discussed in Sec. V in more detail when considering
imperfect gates in an experiment, extremely small error
rates would be required for the introduction of more lay-
ers to be beneficial. In fact, the strength of the dissipative
ansatz is that it can converge to the true ground-state
energy with few layers. The � = 2 ansatz can consistently
achieve relative energy differences well below the percent
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level for every value of λ, and for lattice sizes as large
as d = 5 (N = 41 qubits). We remark that the use of a
dissipative layer allows us to interpolate between the two
different phases of the gauge theory using only a single
reference state. In Appendix C, we show that the rela-
tive energy has a similar profile to the state infidelity,
which is a typical figure of merit used in the variational
method. There, we also compare the relative energies
achieved by the unitary approach of Ref. [57] and our
ansatz. This, combined with the results of Sec. V shows
that the dissipative variational ansatz achieves consider-
ably lower energies for the shallow depths accessible with
current and near-term devices, especially around the criti-
cal point of the model. In this respect, the performance of
the shallow dissipative variational ansatz requires focusing
on physical quantities that encode the relevant features of
the confinement-deconfinement transition. It is well known
that state fidelity has a limited predictive value in the ther-
modynamic limit of a many-body system [182]. Likely, we
note that the energy of a certain variational ansatz can show
a promising convergence to the true value even when the
state poorly reflects the critical properties of the model.

Therefore, we now turn our attention to the estimation of
the dual magnetization Eq. (27). In Fig. 6(a), we show data
obtained from the DVA with � = 2 variational layers. This
curve shows the expected behavior for the dual magnetiza-
tion, which takes values close to 1 in the confined phase,
decreasing continuously around the phase transition, and
eventually approaching 0 for increasing λ in the decon-
fined phase. The magnetization does not completely vanish
in the latter regime because we are considering reduced
lattice sizes, and boundary effects become manifest. How-
ever, one can see how, as one increases the system size,

the decay becomes more pronounced such that, in the
thermodynamic limit, one can obtain the characteristic
nonanalyticity of a second-order quantum phase transition.
Comparison with Fig. 6(b) shows that the unitary ansatz
with the same depth is not able to reproduce this behavior,
not even if the long-range entangled state |�B〉 (9) is used
as a reference state Eq. (18). We remark that, by choos-
ing the respective reference state with the lowest-energy
HVA for a specific value of λ, one obtains a discontinu-
ous magnetization curve as the lattice size increases, which
is contrary to the continuity expected from a second-order
phase transition.

On the other hand, if one sticks to a single reference
state all along the critical point following the correspond-
ing dashed lines of Fig. 6(b), continuity is maintained but
large discrepancies appear in the predicted criticality, as
we now outline. To quantify these, we perform a finite-
size scaling analysis to estimate the critical exponents of
the Z2 LGT with different methods. Table I gives a sum-
mary of the various results, offering a comparison between
the dissipative and unitary ansätze, exact diagonalization
for the same lattice sizes and boundary types, as well as
state-of-the-art Monte Carlo results that serve as a guide to
quantify the performance of each of these approaches. In
Appendix D we outline the details of the finite-size scaling
analysis used to extract these results, which clearly show
the large deviations between the predictions of the dissipa-
tive and unitary variational ansätze. The scaling analysis of
the DVA in the critical region is stable for constant depths,
giving values of the critical exponents that are close to the
expected ones. The reason is that including the dissipative
dynamics into the ansatz allows it to adaptively gener-
ate different amounts of entanglement. The unitary ansatz

(a) (b)

FIG. 6. Dual magnetization averaged over all plaquettes in the bulk of the lattice M = N−1
p ,bulk

∑
n∈bulk Mn as a function of λ predicted

by the � = 2 dissipative (a) and unitary (b) variational ansätze with the same depth: (
∣
∣φu, e

〉
, �u = 2) and (

∣
∣φu, m

〉
, �u = 1). We are

considering the minimum depth required to prepare the reference state |�B〉 for the
∣
∣φu, m

〉
ansatz, which would require dissipation.

This extra overhead results in one less unitary variational layer to maintain equal depth. The inset in (a) shows the curve collapse after
the finite-size scaling analysis (see Appendix D for details). In (b), circles (crosses) represent data obtained using the electric (magnetic)
unitary ansatz

∣
∣ψu,e

〉
(
∣
∣ψu,m

〉
). Dashed lines represent the continuation of the respective dual magnetization curves into the phase where

the respective unitary ansatz does not yield the minimum energy among the two. Large discrepancies are observed between the two
ansätze, showcasing the superiority of the proposed dissipative approach for few variational layers.
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TABLE I. Comparison between the critical exponents pre-
dicted by the DVA and HVA ansätze with � = 2 variational
layers (see Fig. 6), exact diagonalization of the systems up to
lattice size d = 5, and Monte Carlo simulations [139,183].

Dissipative Monte Exact Unitary Unitary
|ψd〉 (16) Carlo diag.

∣
∣φu,e

〉
(17)

∣
∣φu,m

〉
(18)

λc 3.24 3.04 3.06 2.56 2.09
β 0.35 0.33 0.36 0.04 −1.27
ν 0.59 0.63 0.64 −0.20 −0.40

is less effective in this respect, and its regime of accu-
racy lies well inside each of the two phases of the model,
where the entanglement present in the true ground state is
more similar to that of the reference state. In the critical
regime, a sudden change in the entanglement present in
the ground state causes the shallow unitary ansatz to lose
its predictive power about the confinement-deconfinement
phenomenon, while the dissipative one is capable of cap-
turing the essence of this transition with constant-depth
quantum circuits. In NISQ devices, due to the accumula-
tion and propagation of gate errors, the maximum number
of layers for a given qubit number will face practical lim-
itations. As discussed above, a low-depth unitary ansatz
struggles to capture the sudden changes characteristic of
phase transitions. This is generic for HVAs which, accord-
ing to generic Lieb-Robinson bounds, would require a
layer number that grows with the system size to generate
the required entanglement. Hence, sticking to a constant-
depth HVA will limit the achieved accuracies. In our case,
it prevents the dual magnetic susceptibility from diverging
as one would expect from a second-order phase transition.
This divergence fixes the value of ν (see Appendix D),
which is involved in the computation of every other crit-
ical exponent. We observe that for � = 2, this exponent
becomes negative, and in consequence, the results from the
finite-size scaling analysis using the unitary ansätze are far
from the more precise Quantum Monte Carlo data.

In Appendix C we also compare the energy achieved
with the DVA (16) and the completely unitary variational
ansätze (17) for an increasing number of layers in the d =
4 lattice. There we show that a completely unitary ansatz
starting from a product state is not able to cross the phase
transition, even with depths up to � = 4. In Appendix A,
we show the DVA data for the Creutz ratio and the topo-
logical entanglement entropy, two quantities that behave as
expected.

V. NOISY DISSIPATIVE VQE: A LAYER-NUMBER
THRESHOLD

NISQ devices are intrinsically noisy and no platform has
yet been scaled up to the point of achieving practical fault-
tolerant quantum computation. This limits the maximum
depth of feasible quantum algorithms, as longer algorithms

lead to the accumulation of more physical errors. Varia-
tional quantum circuits consisting of more layers are in
principle more expressive and yield a better approxima-
tion of the true ground state for the Z2 LGT and physical
quantities calculated from that state. On NISQ hardware,
however, one has to find a balance between a circuit that
is shallow enough to not induce too much noise and, at the
same time, sufficiently deep to prepare an accurate vari-
ational state. In this section, we investigate the effect of
noise in our dissipative VQE proposal for the Z2 LGT. To
quantify it, we use the increase in the variational ground-
state energy with respect to the value that is achieved in the
noiseless simulation as a metric. We also discuss a strat-
egy for detecting the presence of errors when measuring
the energy of the variational state that allows the detection
of some particular Pauli errors that can occur during the
ground-state preparation process.

As noted in Sec. III C, the pure Z2 LGT is closely related
to the surface code for quantum error correction. Given
a lattice of qubits as shown in Fig. 1(a), the subspace
spanned by the +1 eigenstates of all gauge operators Gn
and plaquette operators Pn has dimension two and can
therefore encode a single logical qubit. In the context of
quantum error correction, the gauge and plaquette opera-
tors are referred to as X and Z stabilizers, respectively. X
stabilizers are measured to detect Z errors on a code state
and vice versa. Any measurements that yield the value −1
indicate the presence of errors. The set of all stabilizer
measurement outcomes, known as the error syndrome, is
then used to determine a correction to be applied on the
code state [30].

States that are +1 eigenstates of all X stabilizers of
the surface code are valid physical states in the pure Z2
LGT. Since the variational ansatz investigated in this work
fulfills the gauge constraints defining the physical sub-
space Eq. (7), the eigenvalue of all gauge operators can
be measured to detect and correct Z errors arising during
the ground-state preparation process. Moreover, this can
be done in parallel to the measurement of the energy of the
variational ground state, since the terms contained in the
electric term of the Hamiltonian are also involved in the
expectation value of gauge operators. However, the correc-
tion of such errors is more subtle than in the surface code,
where Z errors need only be corrected up to a plaquette
operator Pn. Unlike in the surface code, physical states of
the pure Z2 LGT are not restricted to be +1 eigenstates of
all plaquette operators. In general, they are not even eigen-
states of the plaquettes, which means that the application
of an operator Pn produces a different valid physical state
with higher energy than the ground state. Thus, Z errors on
variational states can only be corrected if no other error
of the same weight yields the same pattern of violated
gauge operators, i.e., the same error syndrome. In contrast
to the surface code, X errors cannot be detected in the Z2
LGT by measuring plaquette operators, since plaquettes
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are only stabilizers in the limiting case λ → ∞. X errors
map physical states onto other physical states and are thus
impossible to correct within our dissipative VQE. We note
that for the boundary conditions considered in this work
[Fig. 1(a)], the gauge operators Gn involve at least three
qubits, which means that any weight-2 Z error is detectable
in lattices with size d ≥ 3. Moreover, every weight-1 Z
error has a unique syndrome and is therefore correctable,
as discussed above. In the so-called rotated surface code,
certain stabilizers involve only two qubits, and not every
weight-1 error causes a unique syndrome [184]. Therefore,
if the Z2 LGT is implemented on the lattice of the rotated
surface code, there exist uncorrectable weight-1 Z errors
and weight-2 Z errors that are not detectable.

In the following, we analyze the effect of circuit-
level noise during the preparation of variational states
on the estimated Z2 LGT ground-state energy. We per-
form numerical state-vector simulations using the Python
package PECOS [185,186]. We note that the energy min-
imization was performed in the absence of noise to avoid
introducing extra overhead in the already highly noncon-
vex optimization problem [187]. The noisy simulations are
then performed utilizing the optimal variational param-
eters found after that process. In the simulations, we
employ depolarizing noise, which is the most general noise
model for computational errors. The depolarizing channel
of strength p reads

Ep(ρ) = (1 − p)ρ + p
4q − 1

∑

i

PiρPi, (28)

with Pi ∈ {I , X , Y, Z}⊗q\{I⊗q} and q the number of qubits
the noise channel acts upon. In systems with long coher-
ence and relaxation times, errors mainly occur dur-
ing the application of gates. In our simulations, every
gate is thus followed by possible faults whereas we do
not consider errors on idling positions. Specifically, as
follows:

(a) A single-qubit gate is followed by a Pauli fault
drawn uniformly and independently from {X , Y, Z}
with probability p/3.

(b) A two-qubit gate is followed by a two-Pauli
fault drawn uniformly and independently from
{I , X , Y, Z}⊗2\{I ⊗ I} with probability p/15.

(c) Qubit initialization is flipped (|0〉 �→ |1〉) with prob-
ability 2p/3.

(d) Qubit measurements yield a flipped result (±1 �→
∓1) with probability 2p/3.

We refer the reader to Appendix E, where more details
regarding the noisy simulations can be found. In particu-
lar, we start with the state |0〉⊗N and first apply Hadamard
gates to all qubits encoding the gauge degrees of freedom
to obtain the ground state |�E〉 of the electric Hamiltonian

[cf. Eq. (2)]. We then apply variational layers, as shown in
Fig. 10 of Appendix B for the d = 3 lattice. After the state
preparation, we measure all qubits individually in either
the X basis or the Z basis. When measuring in the X basis,
it is possible to deduce the values of the gauge operators
and postselect onto states that fulfill all gauge constraints.
By doing so, we can sort out states in which detectable Z
errors occurred. Repeating the preparation procedure fol-
lowed by measurements in those two bases allows us to
calculate the energy of the variational state according to
Eq. (1). In Fig. 7(a), we compare the estimated energies of
several variational states on the d = 3 lattice in the pres-
ence of noise. We choose λ = 3.0 such that the system
is in the confined phase but very close to the phase tran-
sition at which it is most difficult to get good estimates
for the ground-state energy. One can see an expected lin-
ear scaling for large error rates. For small values of p , the
curves approach values corresponding to the energy preci-
sion, which can be reached with the respective number of
layers in the absence of circuit noise. It becomes evident
from the plot that, for low error probabilities, it is benefi-
cial to apply more variational layers. On the other hand, for
realistic noise strengths, circuits consisting of fewer lay-
ers are advantageous as there is a lower accumulation of
errors. In addition, as shown in Fig. 7(b) where we dis-
play the rejection rates associated with the aforementioned
postselection process using up to four variational layers,
errors are more likely to occur in deeper circuits with more
layers, resulting also in larger rejection rates and raising
the practical complexity of an experiment. We can now
give a specific noise-aware assessment of the optimal vari-
ational strategy in the NISQ regime, going in this way
beyond the typical theoretical discussion that focuses on
the expressivity of a variational ansatz and limitations due
to Barren plateaus in the limit of a large number of lay-
ers. We find that well before this phenomenon becomes
a limitation, one faces the fact that increasing the num-
ber of layers leads to worse variational estimates. We find
that, for error rates p larger than p1 ≈ 5 × 10−4, the single-
layer variational ansatz yields better energy estimates than
those with a larger number of layers due to its small circuit
depth and, consequently, its reduced sensitivity to errors.
For our simple noise model, error rates smaller than 10−4

are required for an ansatz with more than two variational
layers to become advantageous. We note that in state-of-
the-art neutral atom quantum processors, single-qubit gate
infidelities of p1q ≈ 3 × 10−4 have been demonstrated and
two-qubit gates were realized with error rates of p2q ≈ 5 ×
10−3 [188]. In trapped ion platforms, single- and two-qubit
gate infidelities of p1q ≈ 7 × 10−5 and p2q ≈ 3 × 10−3,
respectively, have been reported in Ref. [176]. Since the
majority of gates in the variational circuit are CNOT gates,
we expect the performance to be limited by the two-qubit
gate fidelity. For a small layer number, the limitations of
the DVA could also be dominated by measurement errors,
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FIG. 7. Variational ground-state preparation in the presence of noise: We consider the d = 3 lattice (13 data qubits and 6 ancilla
qubits) at λ = 3.0. Variational states are prepared by applying � layers of the proposed DVA in the presence of depolarizing circuit-
level noise of strength p . (a) Precision of the estimated ground-state energy: circles correspond to postselected data while crosses mark
the raw data. With a decreasing error rate, it becomes beneficial to apply more variational layers—the first layer-number threshold
p1 ≈ 5 × 10−4 is marked by a vertical line. State-of-the-art two-qubit gate error rates lie roughly at p2q ≈ 3 × 10−3, which means that
the application of a single variational layer yields the most precise ground-state energy estimate. (b) Rejection rates in the postselection
process. When all qubits are measured in the X basis, the measurement values can be used to calculate the values of the gauge operators
Gn. Whenever one of these observables is measured to be −1 we reject the run. As expected, the rejection rates are higher for more
variational layers since the probability for errors to occur grows with the circuit depth.

if these were noisier than the CNOT gates. In any of these
cases, the single-layer variational ansatz is expected to give
the most precise ground-state energy estimates in currently
available hardware platforms. As hardware and software
advances improve the gate fidelities, one will enter regimes
for which the application of more than one variational layer
becomes beneficial within NISQ. Despite the present limi-
tations, we would like to highlight that our proposed DVA
does not require a large number of layers to achieve consid-
erable accuracy in the prediction of the critical nature of the
confinement-deconfinement phase transition. As shown in
the previous section, � = 2 layers suffice to give competi-
tive predictions for systems with N = 41 qubits. Given the
increased complexity of classical simulations of 2D mod-
els, it is interesting to note that some NISQ devices already
operate with hundreds of physical qubits, and could soon
go beyond these numbers reaching for instance d = 7 and
d = 9. It should also be noted that, in contrast to other
near-term applications and use cases that require consid-
erably large numbers of T gates [189], our circuits require
only a reduced amount of non-Clifford operations corre-
sponding to the single-qubit rotations for the ancilla and
physical qubits (roughly scaling with the qubit number,
e.g., Nnc = 38 gates for d = 3 and Nnc = 74 for d = 5),
which, depending on the target error rate, would have addi-
tional overhead in terms of T gates [190]. Therefore, they
also provide an interesting application with a reasonable
resource complexity for the first application of small cir-
cuits of quantum-error-detected or corrected logical qubits,
which should allow one to decrease the logical error rate
concerning these values of p by increasing the redun-
dancy. It is in this context of logical qubits and midterm

small logical circuits that the non-Clifford gate counts are
a relevant resource estimation.

In Fig. 8, we compare the ground-state energy estimates
for the d = 3 lattice at λ = 3.0 obtained with the DVA
to the estimates from the Hamiltonian variational ansatz
in the presence of circuit-level noise. For the HVA we
investigate both cases, the one that starts the variational
state Eq. (17) preparation from the electric-field-dominated
state |�E〉 and the one which first prepares the surface-
code magnetically dominated state |�B〉 and then applies
the corresponding unitary layer Eq. (18). Panel (a) exhibits
the ratio between the energy precision obtained with each
unitary ansatz and the dissipative one. We observe that,
for state-of-the-art gate error rates, the DVA always yields
more precise energies than any of the unitary ansätze, as
evidenced by the fact that the curves always lie above 1.
This advantage in the presence of noise becomes more pro-
nounced around the error rates reported in various NISQ
devices, which thereby implicitly shows that the DVA has
a higher expressivity for a few variational layers even in
the presence of noise. We note that for p → 0, arbitrary
numbers of variational layers can be applied and thus, non-
surprisingly, the advantage of the dissipative scheme to
unitary ones regarding the energy reduces. On the other
hand, in this very regime where errors are absent, we
have shown in the previous section that one must look
beyond the ground-state energy to assess the adequacy of
the ansätze to capture the confinement-deconfinement tran-
sition. From that perspective, the dissipative approach has
a clear superior performance (see Table I). More detailed
data on the energy precision of the variational states pre-
pared with the HVA can be found in Fig. 13 of Appendix C,
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FIG. 8. Comparison of dissipative and unitary variational state preparation in the presence of circuit-level noise of strength p .
Ground-state energies are estimated for the d = 3 lattice (13 data qubits and 6 ancilla qubits) at λ = 3.0. (a) Advantage of dissipative
state preparation with respect to both unitary state preparation schemes. The number of variational layers � is chosen such that the
lowest possible energy is obtained, see panel (b). Since we examine the LGT close to the phase transition, we investigate the unitary
state preparation starting from the trivial reference state, resulting in

∣
∣φu, e

〉
, as well as the surface-code reference state, which gives∣

∣φu, m
〉
. The preparation of the surface-code state |�B〉 is conducted by measuring all plaquette operators in the presence of circuit-level

noise. At state-of-the-art two-qubit gate error rates p2q ≈ 3 × 10−3 the advantage of dissipative variational state preparation is the
largest. (b) Optimal number of variational layers as a function of the error rate p . For current gate error rates the DVA requires fewer
variational layers, resulting in a lower sensitivity to noise.

which gives further evidence that good ansatz expressiv-
ities at short circuit depth are crucial for NISQ devices,
such that the dissipative approach should be preferred to
the unitary one. We note that the simulation of noisy-state
preparation is computationally expensive, and thus we are
limited to considering the d = 3 lattice for our investiga-
tion, which already involves state-vector simulations of 19
qubits. In Sec. IV we showed that the advantage of the dis-
sipative VQE for a fixed small number of variational layers
grows with the system size. Thus, we expect that also in
the presence of noise, the advantage of the proposed ansatz
gets more pronounced for larger lattice sizes.

Let us now turn to a more detailed account of the optimal
layer numbers for VQEs in the presence of noise. We have
seen that there is a specific physical error rate below which
increasing the layer number from � = 1 to � = 2 becomes
advantageous. This is a particular instance of a variational
error threshold, which determines the error rates pL, below
which it would be beneficial to increase the number of lay-
ers �. In panel (b) of Fig. 8 and in Appendix C, we can see
how these variational error thresholds appear for all the dif-
ferent unitary and dissipative ansätze studied in this work,
which corresponds to the particular error rates in which
each of the curves shows a plateaux change. We believe
that the concept of variational thresholds should become
an important feature in the study of VQEs in the pres-
ence of noise. For instance, considering error rates slightly
below the percent level, Fig. 8(b) shows that the unitary
HVA ansatz that starts from the magnetic-field-dominated
state should not consider any unitary layer. The best it
can do is simply prepare the surface-code reference state,
which will be incapable of capturing any criticality of the
confinement-deconfinement transition. For this range of

error rates, only the dissipative and unitary electric ansätze
can have a layer, the dissipative one is superior in terms of
the attainable relative error.

In summary, in light of all these results, the most accu-
rate ground-state energy estimates can be obtained by
applying just a single dissipative variational layer for state-
of-the-art gate error rates. Future hardware improvements
can make the application of two variational layers ben-
eficial. Therefore, on current and near-future hardware
devices the dissipative VQE yields the most accurate
results.

VI. CONCLUSIONS AND OUTLOOK

In this article, we proposed a combined dissipative-
unitary approach for the study of ground-state properties
of the Z2 LGT in QSs. We have shown that this algorithm
can outperform previous unitary variational eigensolvers,
especially when scaling to larger system sizes and around
the phase transition of the LGT and already apparent with
moderate lattice sizes. Note that we use a single variational
ansatz that interpolates between the confined and decon-
fined phases to study both phases of the theory and its
critical point, contrary to the unitary HVA. The resources
required for the implementation of our scheme are in
close correspondence with the capabilities of current NISQ
devices, and the geometry of the two-dimensional Z2 LGT
leads to very natural mappings onto devices in which
qubits are arranged in two-dimensional lattices, provid-
ing both a nice benchmark for the simulators themselves
and an opportunity to explore exotic physics with these
tools. We provided a detailed analysis of the variational
ansatz prediction for quantities of physical interest, from
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which the study of confined-deconfined phase transitions
and topological phases in QSs can benefit. Furthermore,
we conducted a finite-size scaling analysis, showing that
the introduction of dissipative dynamics is beneficial, if
not required, in VQE studies of critical phenomena in
these devices. Our analysis of the ground-state prepa-
ration process in the presence of noise shows that the
good ground-state energy estimates, at small circuit depths
achievable with our ansatz, persist in noisy hardware at
current gate error rates, extending the above advantage to
realistic accounts of NISQ devices. We also discuss a post-
selection scheme that can be used to discard faulty states
when measuring the energy and other observables, which
are tensor products of X(n,i) operators.

The use of techniques related to imaginary time evo-
lution in QSs is currently a very active area of research.
In future work, it would be interesting to explore whether
one can extend the proposed combined dissipative-unitary
approach to more complex lattice gauge theories, either
containing matter degrees of freedom or more complex
gauge groups. Another open question is the preparation
of excited states, which could serve as a starting point for
simulations of dynamic scenarios. Concerning the appli-
cation of our proposal on real hardware, it would be
interesting to study the parameter optimization in the pres-
ence of circuit-level errors as well as shot noise in the
measurements. Future work could also include the investi-
gation of more sophisticated noise models, such as biased
noise. Moreover, it is an open question whether techniques
from fault-tolerant quantum computing can be applied to
directly reduce the effect of errors during the preparation
of variational states.

All codes used for data analysis are available from the
authors upon reasonable request.
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APPENDIX A: BRIEF SUMMARY OF THE Z2 LGT

The Z2 LGT has a simple structure: its gauge group is of
order two and is cyclic. Its Hamiltonian contains only two
competing terms, which are tensor products of Pauli matri-
ces. However, this does not make it a trivial model. In this
Appendix, we review some details about its Hilbert space
and phase diagram relevant to the analysis, and benchmark
of the ground-state preparation algorithm.
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The eigenstates of the Z2 LGT Hamiltonian Eq. (1) are
not analytically known in general. However, the physical
eigenstates [Eq. (6)] of each of the individual terms HE , HB
can be easily derived. They provide a basis for the physi-
cal Hilbert space of the lattice. The states |�E〉 and |�B〉
defined in Eqs. (8) and (9) are the ground states of HE , HB,
respectively. The physical eigenstates of the electric field
term consist of every possible product of plaquette oper-
ators (including the identity) acting over |�E〉, which can
be understood as the combination of various electric field
strings along closed loops on the lattice

BE = {|�E〉 , Pn |�E〉 , PnPm |�E〉 , . . . }. (A1)

This set is used as a basis in the noiseless simulations in
order not to consider gauge redundant basis states, reduc-
ing the overhead in memory. The physical eigenstates of
the magnetic term HB are obtained by acting over |�B〉
with products of electric field operators

BB = {|�B〉 , X(n,i) |�B〉 , X(n,i)X(m,i) |�B〉 , . . .}, (A2)

which can be understood as introducing each of the pos-
sible different magnetic flux excitations. These bases are,
in some sense, complementary because the ground state of
HE (HB) can be expressed as a uniform superposition of
every state in BB (BE).

The critical point of the Z2 LGT λc � 3.044 [Fig. 1(c)]
coincides with that of the classical Ising model in three
spatial dimensions. This is the case because the Hamil-
tonian Eq. (1) can be exactly mapped into that of the
two-dimensional quantum Ising model in a transverse field
through a Kramers-Wannier duality transformation [191],
which is known to belong to the universality class of the
classical 3D Ising model. In Sec. IV we provide an estima-
tion of the β, ν critical exponents of this universality class
coming from the proposed variational ansatz. The most
precise value of these critical exponents that we have found
in the literature is β = 0.3265(3), ν = 0.6301(4) [183]. On
the other hand, the nature of the phases is very different in
both models. Elitzur’s theorem [138] forbids the existence
of local-order parameters that can label the different phases
of the Z2 LGT. Instead, a couple of nonlocal-order param-
eters can achieve this goal. The first quantity resembling
the behavior of an order parameter is the expectation value
of Wilson loop operators

WC =
∏

(n,i)∈C
Z(n,i) =

∏

n∈AC

Pn. (A3)

They consist of products of Zn,i operators around a closed
loop C on the lattice [Fig. 1(a)], and can be expressed as the
product of every plaquette contained in the interior region
of the loop AC . Wilson loops are used in the LGT formal-
ism to detect the presence of confinement. The expectation

value of this operator does not behave as a usual order
parameter [192]. Instead, its scaling with the size of the
considered closed loop is different in each phase

Confined phase λ < λc : 〈WC〉 ∼ e−χAC

Deconfined phase λ > λc : 〈WC〉 ∼ e−��C .

Here, AC , �C the area and perimeter of the considered
loop, respectively. This behavior can be used to define an
ordinary order parameter. The coefficient of exponential
decay in the confined phase χ can be extracted through
the so-called Creutz ratio [193], namely

χ(l, l) = − log
〈W(l,l)〉〈W(l−1,l−1)〉
〈W(l−1,l)〉〈W(l,l−1)〉 , (A4)

where we have defined W(l,m) as a rectangular Wilson
loop of side length l × m in lattice units. The Creutz ratio
behaves as a usual order parameter [194]: returning the
coefficient of exponential decay χ > 0 in the confined
phase and vanishing χ = 0 in the deconfined one. χ is
related to the string tension in the confining phase, which
can be proven to be proportional to λ−1, and depends on
the size of the Wilson loops [193,194]. Figure 9(a) shows
the data for the Creutz ratio from the DVA in the largest
considered lattice for different values of l.

Another order parameter that we consider is the expec-
tation value of the dual magnetization 〈M 〉. The operator
M is a tensor product of X(n,i) operators along a path
∂Cn defined on the dual lattice, which extends from its
boundary to one of the links contained in plaquette Pn, as
depicted in the scheme of Fig. 1(a).

Mn =
∏

(n,i)∈∂Cn

X(n,i). (A5)

We note that the dual magnetization maps onto the spin
operator of the dual transverse-field Ising model through
the Kramers-Wanniers duality transformation [191], and
thus serves as an order parameter. In the LGT formalism,
this kind of operator is usually known as the magnetic
t’Hooft string [3].

We also note that the deconfined phase of the Z2 LGT is
a topological phase with long-range entanglement. These
are a special kind of quantum (zero-temperature) phase in
which the ground state of the system becomes degenerate
in the thermodynamic limit, such that this degeneracy can-
not be lifted through local perturbations, and depends on
the nontrivial homology that underlies the lattice model.
For instance, if the gauge theory is embedded in a torus,
the noncontractible paths around and across the hole lead
to a robust ground-state degeneracy. For the planar ver-
sion with specific boundary conditions such as the one
that we consider, one can also define noncontractible paths
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FIG. 9. (a) Creutz ratio χ(l, l) in a d = 5 lattice for different
loop sizes l. (b) Topological entanglement entropy of the subsys-
tem that is colored in the inset. The subsystem is chosen to be as
centered as possible.

connecting the opposite boundaries, leading also to a topo-
logical degeneracy [24,27]. Our choice of the boundary
conditions leading to this degeneracy without the need for
periodic boundary conditions is not by any means unique
[27], as an example, one could also choose boundary
conditions resembling the rotated surface code [27].

In topological-ordered phases, an additional manifes-
tation of the nontrivial topology appears in the Rényi
entropy. Considering the reduced density matrix of sub-
system A, which is obtained by tracing the ground-state
density matrix over the complement Ā ρA = TrĀ{|gs〉 〈gs|},
the α-th order Rényi entropy [195] is defined as

S(α)A = 1
1 − α

log2 Tr
[
ραA
]

. (A6)

It can be proven that this entropy has a universal contri-
bution [196–198], known as the topological entanglement
entropy

St = S(α)A + S(α)B + S(α)C − S(α)AB − S(α)AC − S(α)BC + S(α)ABC,
(A7)

where the subsystems A, B, and C must be defined
such that they all share a boundary. The value of the

topological entanglement entropy for the Z2 LGT can be
computed analytically in the extreme cases λ → {0, ∞},
where it takes values St ∈ {0, −1}, respectively [57,199].
For generic λ, numerical methods must be used to show
that St = 1 in the whole deconfined phase λ > λc. Remark-
ably, a possible way to infer the entanglement entropy
from a QS is to measure the second-order Rènyi entropy
for each subsystem through the randomized measurement
scheme [200–202], which provides access to the trace of
the α-th power of the reduced density matrix of any sub-
system through repeated measurements in random bases.
In Fig. 9(b) we show the topological entropy of the dissi-
pative variational state. The introduction of the dissipative
layer enables the ansatz to transition from a state with
short-range entanglement in the confined phase to a highly
entangled state in the topological phase while maintaining
a good approximation in between.

APPENDIX B: QUANTUM CIRCUIT
IMPLEMENTATION

Figure 10 shows a quantum circuit implementing two
variational layers of our proposed DVA for a d = 3 lat-
tice. The inset in the figure shows a potential embedding
of the Z2 LTG on a quantum processor. Qubits are labeled
from top to bottom. Note that the train of CNOT gates,
which preludes the measurement of the ancilla qubits can
be executed in four steps of parallel executions of two-
qubit gates, as discussed in Sec. III C. We display the CNOT
gates acting in series for clarity. Also, the latter part of the
circuit can be parallelized, as discussed in Ref. [57].

APPENDIX C: ADDITIONAL DATA ON THE DVA
PERFORMANCE

In this Appendix, we provide more details on the qual-
ity of the variational states prepared with our dissipative
variational ansatz Eq. (16) and both unitary HVA ansätze
Eqs. (17) and (18). It is important to remark that we have
used the optimization strategy outlined in Appendix E to
compute the optimal variational parameters also with the
unitary ansatz, and we have found that the unitary HVA
ansatz is more expressible than the results in Ref. [57]
show. Still, the DVA provides an advantage in terms of a
lower number of layers required to achieve good precision,
especially around the critical region of the model. The cost
of this improvement is the introduction of ancilla qubits
(up to one per plaquette in the lattice) but this overhead is
not prohibitive in realistic quantum devices as described in
Sec. III C.

In Fig. 11 we show the infidelity of the variational states
prepared with � = 2 layers of our dissipative ansatz with
respect to the true ground states of the Z2 LGT up to a lat-
tice size d = 5 in the noiseless regime. Note that the curves
look very similar to the ones in Fig. 5, which implies
that the minimum energy is equivalent to the maximum
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FIG. 10. Quantum circuit implementation of two variational layers for the d = 3 lattice, shown in the inset. The rotation angles
of the ancilla qubits are �(β) = 2 tan−1(tanhβ). The operation X is a tensor product of X operators acting on a subset of qubits
determined from the ancilla measurement outcomes. Note that many operations in the circuit can in principle be parallelized, which is
not shown here.

achievable fidelity. This check is required to ensure the
correctness of the variational method since in a topolog-
ical model the lower part of the Hamiltonian spectrum is
degenerate.

Figure 12 shows the relative energy differences between
the variational energy and the true ground-state energy for
our dissipative proposal as well as for the electric uni-
tary ansatz Eq. (17) in the d = 4 lattice with an increasing
number of layers. As expected, the dissipative ansatz con-
sistently achieves lower energies for shallow depths � < d
at every value of λ. For � ≥ d the unitary ansatz becomes
expressive enough to achieve energies comparable to the
dissipative ones in the electric phase of the model. In this
regime, the true ground state of the model is closer to
the initial product state |�E〉 and a set of unitary layers
of size comparable to the side length of the lattice can

FIG. 11. Infidelity of variational states produced with the dis-
sipative variational ansatz with � = 2 layers with respect to the
true ground states at different values of λ for increasing lattice
size. The profile of these curves is very similar to that of the
relative energy difference shown in Fig. 5 in the main text.

efficiently generate it. When both ansätze are expressive
enough, there are values of λ inside the electric phase of the
LTG for which the unitary ansatz achieves slightly lower
energies. We expect both ansätze to be equivalent in the
infinite-depth regime. In the critical region of the model, a
considerable number of layers must be introduced for this
to happen.

In Fig. 13 we show the ground-state energy precision
achieved by the unitary ansätze Eqs. (17) and (18) in the
presence of circuit-level noise in the d = 3 lattice. This
is data used for the comparison between dissipative and
unitary state preparation in Fig. 8 in the main text, and dis-
plays the consecutive variational thresholds for the error

0 5 10 15
λ
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10−3

10−1

(E
va

r
−

E
0)

/E
0

|φu,e〉 �u = 1

|ψd〉 � = 1
|φu,e〉 �u = 2

|ψd〉 � = 2
|φu,e〉 �u = 3

|ψd〉 � = 3

|φu,e〉 �u = 4

|ψd〉 � = 4

FIG. 12. Relative difference between the exact ground-state
energy and the energy achieved by the dissipative and electric
unitary ansätze for increasing number of layers and different
values of λ in the d = 4 lattice.
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(a) (b)

FIG. 13. Precision of the estimated ground-state energy for the d = 3 lattice, at λ = 3.0. Variational states are prepared by applying
� layers of the unitary ansatz starting from (a) the trivial reference state |�E〉 and (b) the surface-code reference state |�B〉. The states
are prepared in the presence of circuit-level noise of strength p . Preparing just |�B〉 corresponds to � = 0 variational layers in panel (b).

rates, which are required to increase the layer number in
each ansatz. These thresholds are expected to decrease
when considering larger lattices due to a higher number
of CNOT gates present in the variational state-preparation
circuits.

APPENDIX D: SCALING AND CORRECTION
EXPONENTS

In a quantum phase transition at zero temperature, the
characteristic energy scale of the system is the gap �

between its ground and first energy state. In a second-order
continuous phase transition like the one under considera-
tion, this quantity scales as

� ∼ |λ− λc|νz . (D1)

Here, ν and z are the correlation length and dynamical crit-
ical exponents, respectively, and λc is the critical coupling
strength in Hamiltonian Eq. (1). We note that this is only
the leading scaling and that higher-order corrections will
appear explicitly later that can play a role in small systems.
The mapping relating the Z2 LTG and the quantum Ising
model in (2+1)-dimensions indicates that z = 1 [203]. This
vanishing of the gap causes the correlation length ξ to
diverge as

ξ ∼ ξ0|λ− λc|−ν . (D2)

Similarly, the order parameter, denoted as 〈M 〉 anticipating
the use of the dual magnetization as an order parameter,
around the transition scales as

〈M 〉 ∼ M0|λ− λc|β . (D3)

In finite lattices of lateral size L = d, the correlation length
cannot take infinite values, and the characteristic length
of the system in the vicinity of the phase transition thus

becomes the size of the system L. One then makes the
following identification:

|λ− λc| ∼ ξ−1/ν ∼ L−1/ν . (D4)

Now including the aforementioned higher-order correc-
tions explicitly, substituting Eq. (D4) into Eq. (D3), one
arrives at the finite-size scaling ansatz for the order param-
eter

〈M 〉 = aL−β/ν(1 + bL−θ/ν + . . . ), (D5)

where θ is the so-called first correction exponent, which
has the value θ = 0.52 in the 3D Ising universality class
[204], and a, b nonuniversal constants. This scaling law is
valid as long as the variable

x = (λ− λc)L1/ν (D6)

is kept fixed. This implies that the critical behavior in
a finite lattice of size d should be observed around the
following values of the coupling λ:

λc(d) = λc(∞)+ a′L−1/ν(1 + b′L−θ/ν). (D7)

These expressions can be fitted to the dual magnetization
data that can be extracted from the various variational
ansätze or the exact diagonalization to extract the criti-
cal exponents of the Z2 LTG. Since we have access only
to small lattice sizes, in which finite-size effects can be
large, we do not expect to be able to attain extremely
precise estimations of the critical exponents in compari-
son to other numerical approaches of the corresponding
dual Ising models. On the other hand, the variational
approach deals with the real model and could be used to
explore other situations of interest, including other gauge
sectors, and eventually be generalized to encompass real-
time dynamics and finite-density matter. In this Appendix,
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(a)

(b)

(c)

FIG. 14. Dual magnetic susceptibilities for the (a) dissipative
ansatz, (b) the unitary magnetic ansatz with reference state |�B〉
and (c) the unitary electric ansatz with reference state |�E〉 as
a function of the microscopic coupling λ, and considering vari-
ous distances L = d with the corresponding increase in the lattice
size. In the insets, we display the maximum value of the suscep-
tibility as a function of 1/L. The slopes would give an estimate
of ν in the thermodynamic limit, discarding logarithmic correc-
tions. The dashed lines are only a guide to the eye to emphasize
the opposite trends. The dissipative ansatz captures the expected
behavior.

we use the critical exponent estimates to quantify the
advantage of the DVA against the unitary one in the study
of physical observables. We compare the performance of

(a)

(b)

(c)

FIG. 15. Finite-size scaling using data from ED and the differ-
ent variational states with the same depth corresponding to � = 2
in the dissipative ansatz. We use the exact value for the correction
exponent θ for all fits. (a) Fits for Eq. (D8), providing the esti-
mation of ν. (b) Fits for Eq. (D7), providing the estimation of λc.
We omit the curves of the unitary ansätze because the negativity
of ν leads to an unreadable plot. (c) Fits for Eq. (D5), providing
the estimation of β.

the variational ansätze against the exact diagonalization to
distinguish finite-size effects.

We first use the fact that the maximum value of the
derivative of the dual magnetization (dual magnetic sus-
ceptibility) scales with the lattice size as [205]

max
(
∂〈M 〉
∂λ

)

= a′′L1/ν(1 + b′′sL−θ/ν). (D8)
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This allows us to extract the value of the ν exponent, using
the exact value θ as a given input. The unitary HVA pre-
dicts that the peak of the magnetic susceptibility decreases
with increasing system size (Fig. 14), leading to a negative
value of ν. This contradicts what is expected in general
when performing a finite-size scaling analysis. The value
of λc is extracted by fitting the position of the maximum
derivative of ∂〈M 〉/∂λ (see Fig. 14) to Eq. (D7). Simi-
larly, β is estimated by fitting the dual magnetization data
to Eq. (D5). Figure 15 shows the results of this analysis,
including also the exact diagonalization data. The maxi-
mum value of the magnetization derivative predicted by
the unitary ansatz becomes lower causing the fit to return a
negative value of ν. The values predicted by the DVA are
reasonably close to the exact value, considering the small
lattices that are used.

APPENDIX E: DETAILS ON NUMERICAL
METHODS

1. Optimization algorithm

A critical ingredient ensuring the efficiency of VQEs is
the initialization of the variational parameters. The energy
expectation value of almost every variational ansatz is
a highly nonconvex function in the space of parame-
ters, which makes the optimization process difficult. The
energy minimization in VQEs is usually performed using
classical gradient-descent algorithms. These optimizations
converge quickly to a solution, but they can get trapped
in local minima, thus not providing the best possible
variational parameters. Even though global optimization
algorithms exist, they usually converge slowly and neither
provide guarantees of success. We have opted for design-
ing an initialization strategy for the variational parameters
that increase the probability of finding the global mini-
mum. It is based on the assumption that the value of the
optimal variational parameters must change only slightly
when λ is changed by a small δλ. When λ = 0 the refer-
ence state is already the true ground state and the optimal
value of all the variational parameters is known to be
identically zero. We then propose the strategy to find the
optimal variational parameters for increasing values of λ
outlined in Algorithm 1. Figure 16 shows a schematic of
the optimization strategy.

We empirically have found that this strategy can extract
the potential of the proposed ansatz, observing little varia-
tion among different runs and consistently providing better
results than random initialization. It is worth mentioning
that we do not take advantage of the transferability of the
variational parameters among lattice sizes that we certainly
observe, in correspondence with the results in Ref. [57],
because our strategy is good enough. In any case, this
principle could be easily included if needed.

For the simulation of the noiseless ground-state prepara-
tion process, we have performed a state-vector simulation

FIG. 16. Sketch of the optimization strategy (Algorithm 1).
Blue dots represent the set of seeds for the next batch of gra-
dient descent optimization algorithms. They are sampled from a
2L-dimensional Gaussian distribution with variance matrix σ =
diag(�,� . . .�). The positions of the minima found for each
value of λ describe a trajectory in parameter space that is not
necessarily continuous.

implemented in a Python environment using the Scipy
ecosystem [206,207]. For the gradient-descent subroutine,
we have used the implementation of the L-BFGS-B [179]
algorithm provided by this framework. This optimiza-
tion algorithm can accommodate the constraints on the
possible values of the variational parameters β1 ∈ [0, 1],

ALGORITHM 1. Optimization strategy.
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αk,βk ∈ [0, 2π ]. We distribute each of the gradient-descent
instances among the different cores of the processor we
use, it is interesting to note that this parallelization scheme
could be also used in a future implementation of this vari-
ational algorithm on a family of real quantum devices
that can be controlled by a single classical interface. We
use the following input parameters in our simulations of
the ground-state preparation process Nλ = 800, λmax = 16,
Ns = 336, � = 0.1.

2. Simulation of noisy circuits

To simulate noise during the variational state prepara-
tion, we sample 105 erroneous realizations of the prepara-
tion circuit, where random Pauli errors are sampled after
every circuit operation, as described in Sec. V of the main
text. We introduce one ancilla qubit per plaquette in the
noisy simulations. We use each circuit realization to pre-
pare a variational state and measure all qubits of this
state 100 times in the Z basis. This is done because mea-
surements of a given state are computationally much less
demanding than the preparation of a variational state. We
repeat the whole procedure for final measurements on the
X basis.

APPENDIX F: PARAMETER-SHIFT RULE FOR
GRADIENT DESCENT

Classical optimization algorithms perform many calls to
the cost function to compute gradients. This is an issue
in the context of VQEs, where the cost function is the
energy expectation value of the variational state, whose
measurement requires many repetitions of the ground-state
preparation circuit. The parameter-shift rule [180,181] is
a technique for exactly computing derivatives of expecta-
tion values to the parameters of variational states through
the measurement of a reduced set of expected values. It is
a key tool that considerably reduces the number of circuit
repetitions needed to perform energy minimization in the
quantum device. The parameter shift rule is usually pre-
sented in the context of unitary ground-state preparation,
but unitarity is not a requirement. The true prerequisite
enabling the parameter-shift rule is that all the parame-
terized operations in the ground-state preparation circuit
can be expressed as the exponential of some operator. To
present the extension of the parameter-shift rule to the vari-
ational ansatz presented in this work two cases must be
distinguished, the gradient component associated with the
parameter in the nonunitary operation β1 and the rest. The
first thing to notice in any case is that it is possible to write
the expectation value of an observable O over a variational
state as follows:

∂〈O〉
∂αk

= 2 Re
[

〈ψ(α,β)| O
∂ |ψ(α,β)〉

∂αk

]

. (F1)

The derivative of the variational ground state can be pre-
pared with a circuit very similar to that preparing the
state itself, which allows measuring the derivative of the
observable directly on the quantum computer. Notice that

∂ |ψ(α,β)〉
∂β

=
Np∑

n=0

U(α)Pn
eβHB

(cosh 2β1)
Np/2

|�E〉

− tanhβ |ψ(α,β)〉 (F2)

∂ |ψ(α,β)〉
∂αk,b

=
⎡

⎣
Np∑

n=0

O(k+1,L)(α)eiαkHE (iPn)

× eiγkHBÕ(1,k−1)(α̃,β)

⎤

⎦ |�E〉 (F3)

∂ |ψ(α,β)〉
∂αk,e

=
[
∑

n,i

O(k+1,L)(α)(iX(n,i))eiαkHE

× eiγkHBÕ(1,k−1)(α,β)

]

|�E〉 . (F4)

With U(α) the set of unitary operations contained in the
variational ansatz and Õ(1,k−1)(α̃, β̃) the set of operations
in layers 1 to k. Equations (F1)–(F4) imply that the gra-
dient of the expectation value of an observable computed
over the proposed variational state can be exactly com-
puted from 4Np + 2N expectation values. That is, two per
term contained in the sums above. These expectation val-
ues are measured over states that can be prepared with
circuits almost identical to those generating the ground
state. Just a single extra unitary is introduced after the
kth layer of the ansatz. The expression for the derivatives
to the parameters associated with the unitary operations
is identical to what can be found in the literature [208].
The derivative to β1 is almost identical but the normal-
ization factor of the nonunitary operation causes the last
term to appear in the first equation. However, since this
term is directly proportional to the variational state itself,
no extra expectations value must be measured to take it
into account. The number of expectation values that one
must measure to estimate all the components of the gra-
dient scales with the lattice size, one must take this into
account because at some point, estimating the gradient
through finite differences can become more efficient.
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