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Quantum simulation traditionally relies on unitary dynamics, inherently imposing efficiency constraints
on the generation of intricate entangled states. In principle, these limitations can be superseded by nonuni-
tary, dynamic circuits. These circuits exploit measurements alongside conditional feed-forward operations,
providing a promising approach for long-range entangling gates, higher effective connectivity of near-term
hardware, and more efficient state preparations. Here, we explore the utility of shallow dynamic circuits
for creating long-range entanglement on large-scale quantum devices. Specifically, we study two tasks:
controlled-NOT gate teleportation between up to 101 qubits by feeding forward 99 midcircuit measure-
ment outcomes, and the preparation of Greenberger–Horne–Zeilinger states with genuine entanglement.
In the former, we observe that dynamic circuits can outperform their unitary counterparts. In the latter, by
tallying instructions of compiled quantum circuits, we provide an error budget detailing the obstacles that
must be addressed to unlock the full potential of dynamic circuits. Looking forward, we expect dynamic
circuits to be useful for generating long-range entanglement in the near term on large-scale quantum
devices.
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I. INTRODUCTION

Quantum systems present two distinct modes of evolu-
tion: deterministic unitary evolution, and stochastic evo-
lution as the consequence of quantum measurements. To
date, quantum computations predominantly utilize unitary
evolution to generate complex quantum states for informa-
tion processing and simulation. However, due to inevitable
errors in current quantum devices [1], the computational
reach of this approach is constrained by the depth of the
quantum circuits that can realistically be implemented on
noisy devices. The introduction of nonunitary dynamic
circuits, also called adaptive circuits or LAQCC (local
alternating quantum classical computation) circuits [2],
can not only implement more general quantum channels,
but may also be able to overcome some of these limitations
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by employing midcircuit measurements and feed-forward
operations. As classical computation and communication
are viewed as essentially free compared to quantum oper-
ations, such conditional operations are a necessary ingre-
dient for quantum error correction (see, e.g., Ref. [3]). In
the near term, dynamic circuits present a promising avenue
for generating long-range entanglement, a task at the heart
of quantum algorithms [4,5]. This includes both imple-
mentation of long-range entangling gates that, due to local
connectivity among the qubits in many quantum platforms,
can require deep unitary quantum circuits, and preparation
of many-qubit entangled [6,7] and topologically ordered
quantum states [8–16].

From a physical standpoint, the entanglement needs
to propagate across the entire range between the qubits.
Given that the entanglement cannot spread faster than its
information light cone [17,18], entangling two qubits that
are a distance n apart requires a minimum two-qubit gate
depth that scales as O(n), and even when assuming all-
to-all connectivity, the generation of entanglement over
n qubits necessitates a minimum two-qubit gate depth
of O(log n). Thus, the task becomes challenging when
applying only unitary gates. Using dynamic circuits, the
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spread of information can be mostly conducted by classical
calculations, which can be faster and with a higher fidelity
than the quantum gates, and long-range entanglement can
be created in a shallow quantum circuit [19–21], i.e., the
depth of quantum gates is constant for any n.

While dynamic circuits have been explored in small-
scale experiments [22–26], only recently have there been
experimental capabilities on large-scale quantum devices.
However, most demonstrations (with the exception of, e.g.,
Refs. [27–30]) have utilized postselection [31] or postpro-
cessing [32,33] instead of feed forward to prepare entan-
gled states. Such approaches enable the study of properties
of the state prepared in isolation, but have limited applica-
bility when the state preparation is part of a larger quantum
information processing task.

Here, we explore the utility of shallow dynamic cir-
cuits for creating long-range entanglement on large-scale
superconducting quantum devices. In Sec. II, we demon-
strate an advantage with dynamic circuits by teleporting
a long-range entangling controlled-NOT (CNOT) gate over
up to 101 locally connected superconducting qubits. We
also discuss how this approach can be generalized to
more complex gates, such as the three-qubit Toffoli gate.
Then, in Sec. III, we prepare a long-range entangled state,
the Greenberger–Horne–Zeilinger (GHZ) state [6], with a
dynamic circuit. We show that—with a composite error
mitigation stack customized for the hardware implementa-
tion of dynamic circuits—we can prepare genuinely entan-
gled GHZ states, but fall short of state-of-the-art system
sizes achieved with unitary gates due to hardware limita-
tions. We predict conditions under which dynamic circuits
should be advantageous over unitary circuits based on our
error budget calculation.

II. CNOT GATE TELEPORTATION

The limited connectivity between qubits in many quan-
tum computational platforms can result in the compilation
of nonlocal unitary circuits into deep and error-prone uni-
tary circuits. A potential solution is the use of shallow
dynamic circuits. The crucial ingredient for such proto-
cols is long-range CNOT gates from the first to nth qubit,
as shown on the left in Fig. 1(a). In the following, we
demonstrate a regime under which dynamic circuits enable
higher-fidelity long-range CNOT gates via gate teleporta-
tion. We first describe the dynamic circuit and compare
to its equivalent unitary counterpart. We argue, using a
simple error budget, that there exists a regime in which
the dynamic circuit implementation has an advantage over
the unitary one; see Fig. 1(b). Then, using up to 101
qubits on a superconducting processor, we demonstrate a
crossover in the fidelity of CNOT gate teleportation, where
dynamic circuits perform better for entangling qubits over
longer ranges; see Fig. 1(c). This gate teleportation scheme
enables an effective all-to-all connectivity in devices with

a more limited connectivity, such as those on a heavy-
hexagonal lattice. By using some of the qubits as ancillas
for measurement and classical feed-forward operations,
the ancilla qubits form a bus that connects all system
qubits with each other. Therefore, by sacrificing some
of the qubits in a large device with limited connectivity,
we gain effective access to an all-to-all connected device
with fewer qubits; see Fig. 1(d). As this effective all-to-all
connectivity limits the parallelization of gates, the orange
system qubits could be sacrificed as ancilla qubits as well
to further parallelize gate execution with increased con-
nectivity. In addition, a clever compilation could increase
parallelization, as, e.g., shown in Fig. 10 in Appendix E,
where a long-range controlled-controlled-Z (CCZ) gate
could be implemented with two feed-forward operations
rather than teleporting all six CNOT gates separately.

We describe the dynamic circuit for CNOT gate tele-
portation, shown on the right in Fig. 1(a) and derived in
Appendix A 1. Importantly, this dynamic circuit can be
straightforwardly extended for any number of qubits n
(where n is the number of ancillas) such that the depth
remains constant for any initial states |ϕ1〉 (|ϕ2〉) of the
control (target) qubit. We expect the error to be dominated
by the n midcircuit measurements, n + 1 CNOT gates par-
allelized over two gate layers, and idle time mostly over
the classical feed-forward time. Note that in this particular
realization, each of the n ancilla qubits between the two
system qubits must be in state |0〉. Therefore, during the
course of the gate teleportation, the ancillas cannot also be
used as memory qubits, further motivating the division of
qubits into system and sacrificial ancilla qubits in Fig. 1(d).

We also present an equivalent, low-error unitary coun-
terpart in the middle of Fig. 1(a). (In Appendix B, we
propose several different unitary implementations of the
long-range CNOT gate. Based on experimental results, as
well as the noise model described in Appendix G that
gives rise to the error budget described in Appendix B 2,
we select this one.) In this unitary realization, the sys-
tem qubits are connected by a bus of ancilla qubits that
are initialized in and returned to the |0〉 state, just as
in its dynamic counterpart. In our particular compilation,
throughout the execution of the circuit, qubits that are not
in the |φ1〉 or |φ2〉 state are in the |0〉 state. Doing so
minimizes both decoherence and cross-talk errors intrin-
sic to our superconducting qubit design, as heuristically we
learned that the noise affecting our qubits is primarily lim-
ited to amplitude damping, dephasing, and ZZ cross-talk
errors on neighboring qubits, which implies essentially no
idling errors on qubits in the |0〉 state. Therefore, relative
to the dynamic version, there is no error due to idle time or
midcircuit measurements, although there are about 4 times
more CNOT gates.

A summary of the error budgets for the dynamic and uni-
tary circuits is presented in Fig. 1(b). Based on this table,
we expect that dynamic circuits should be advantageous
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(a)

(b) (d)

(c)

FIG. 1. Teleporting a CNOT gate for long-range entanglement. (a) Left: circuit for a long-range CNOT gate spanning a one-
dimensional (1D) chain of n qubits subject to nearest-neighbor connections only. Middle: equivalent unitary decomposition into
implementable CNOT gates; circuit depth O(n). Right: equivalent circuit employing measurements with feed-forward operations;
circuit depth O(1). If the postmeasurement state is unused, feed-forward operations can be handled in postprocessing, eliminating
the need for their experimental implementation. Yellow regions indicate the idle time during CNOT gates on other qubits as well as
during measurement and feed forward (which is denoted by duration μ). (b) Error model inputs for unitary, measurement-based, and
dynamic-circuit CNOT protocols comprise the total number of nonzero idle-block times, CNOT gates, and additional measurements. (c)
Experimental results, where dynamic circuits offer improved fidelity for CNOT gate teleportation across a qubit chain �10 qubits. (d)
Map of a 127-qubit heavy-hexagonal processor, ibm_sherbrooke, overlaid with system configurations for long-range gate tele-
portation across a locally connected bus. To establish an effective all-to-all connectivity, we show one possible strategy of dividing
the qubits into system (purple and orange) and sacrificial ancilla (turquoise and blue for extra connections) qubits. To parallelize gate
execution with increased connectivity, orange qubits can be used as ancillas. We show how a particular long-range CNOT gate can be
implemented through an ancilla bus marked as turquoise spins.

over unitary circuits if the additional n midcircuit measure-
ments in the dynamic circuit introduce less error than the
3n extra CNOT gates in the unitary circuit, assuming that n
is large enough such that the idling error μ incurred dur-
ing measurement and classical feed forward in the dynamic
circuit is relatively small. Importantly, we should note that
these error analyses only consider the gate error on the
two respective qubits, but not the error introduced on other

qubits, which we expect to be much larger in the uni-
tary case due to the linear depth. Thus, the constant-depth
dynamic circuit might be even more advantageous than
what we can see from the gate fidelity.

To determine the experimental gate fidelity, let our ideal
unitary channel be U(ρ) := UρU† and its noisy version
be Ũ(ρ) := U [�(ρ)], where � is the effective gate noise
channel and ρ is a quantum state. The average gate fidelity
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of the noisy gate is Favg(U , Ũ) = ∫
dψ Tr[U(ρψ)Ũ(ρψ)],

where the Haar average is taken over the pure states ρψ =
|ψ〉 〈ψ |. This fidelity can be faithfully estimated from Pauli
measurements on the system, using Monte Carlo process
certification [34,35], as detailed in Appendix C 2.

The results from a superconducting quantum processor
are shown in Fig. 1(c). The implementation details can be
found in Appendix D 1. As expected, for a small num-
ber of qubits n � 10, the unitary implementation yields
the best fidelities. However, for increasing n, it converges
much faster to the fidelity of a random gate (0.25) than
the dynamic circuit implementation, which converges to a
value slightly below 0.4. These align well with the error
budget analysis in Appendix B 2 and the noise model pre-
dictions depicted in Appendix G. Note that, in the limit of
large n, the fidelities of the measurement-based scheme are
limited by the Z and X corrections on |φ1〉 and |φ2〉 [see
Fig. 1(a)]. A straightforward derivation using this noise
model shows that the minimum possible process fidelity
due to only incorrect Z and X corrections (without the
fixed infidelity from the idle time and CNOT gates) is 0.25,
which converts to a gate fidelity of 0.4.

The measurement-based protocol with postprocessing
performs slightly better than the dynamic circuits as the
former does not incur errors from the classical feed for-
ward, allowing us to isolate the impact of classical feed
forward from other errors, such as the n + 1 intermediate
CNOT gates and midcircuit measurements. Note, however,
that the postprocessing approach is generally not scalable
if further circuit operations follow the teleported CNOT
gate due to the need to simulate large system sizes, fur-
ther emphasizing the advantage of dynamic circuits as
errors rooted in classical feed forward are reduced. Over-
all, we find that CNOT gates over large distances are more
efficiently executed with dynamic circuits than unitary
ones.

In Appendix E we show that these ideas can be gener-
alized to teleporting multiqubit gates, such as the Toffoli
or CCZ gate. Compiling them more efficiently than simply
implementing multiple teleported CNOT gates, we expect
their shallow implementation with dynamic circuits to be
even more advantageous over their unitary counterpart,
especially for large n.

III. STATE PREPARATION: GHZ

Dynamic circuits can also be used to prepare long-range
entangled states. A prototypical example is the GHZ state
[6], shown schematically in Fig. 2(a). While it can be
created using only Clifford gates and thus can be simu-
lated efficiently on a classical computer [36], it becomes
nonsimulatable when followed by a sufficient number of
non-Clifford gates in a larger algorithm, or when inserted
as a crucial ingredient in, e.g., the efficient compilation of
multiqubit gates [37,38].

Here, we show that GHZ states with long-range entan-
glement can be prepared with dynamic circuits. Although
we do not see a clear advantage of dynamic circuits over
unitary ones in this case, we provide a detailed description
of the challenges that must be addressed to realize such an
advantage.

For preparation of a GHZ state on a 1D n-qubit chain,
in Fig. 2, we show the equivalence between the unitary
circuit (left) and dynamic circuit (right). (For a detailed
derivation, see Appendix A 2.) Notably, the unitary equiv-
alent has a two-qubit gate depth that scales as O(n) with
quadratically increasing idle time and n − 1 total CNOT
gates, while the depth of the dynamic circuits remains
constant with linearly increasing idle time, 3n/2 − 1 total
CNOT gates, and n/2 − 1 midcircuit measurements [see
Fig. 2(c)]. The dynamic circuit incurs less idle time and
fewer two-qubit gate depths at the cost of increased CNOT
gates and midcircuit measurements. Therefore, we expect
dynamic circuits to be advantageous for large system sizes
n and low errors in the midcircuit measurement. For a more
detailed analysis of the error budget, see Appendix F 1.

We explore whether current large-scale superconduct-
ing quantum devices enable an advantage with dynamic
circuits for preparation of the entangled GHZ state. To effi-
ciently verify the preparation of a quantum state σ , we use
the Monte Carlo state certification that samples from Pauli
operators with nonzero expectation values, as implemented
in Ref. [31] and described in detail in Appendix C 1. As the
n-qubit GHZ state is a stabilizer state, we can randomly
sample m of the 2n stabilizers {Si}i=1,...,2n and approximate
the fidelity by F = (1/m)

∑m
k=1〈Sk〉σ + O(1/√m).

The experimental results of GHZ state preparation with
unitary and dynamic circuits are shown in Fig. 2(d). They
all include measurement error mitigation on the final mea-
surements [39]. The implementation details can be found
in Appendix D 2. On the left, we show the results with-
out dynamical decoupling. In the unitary case, we observe
genuine multipartite entanglement, defined as state fidelity
F > 0.5 [40], within a confidence interval of 95% up to
seven qubits with a rapid decay in fidelity with increas-
ing system size mainly due to errors in two-qubit gates
and ZZ cross-talk errors during idling time [41]. As these
errors are mostly coherent, they lead to an oscillation of
the fidelity such that it increases again for higher qubit
numbers. To suppress the coherent ZZ errors we apply
dynamical decoupling (DD) pulses, as described below.

In the dynamic case, we observe genuine entanglement
up to six qubits. Here, we do not find a crossover point after
which dynamic circuits have an advantage over unitary cir-
cuits. We attribute the performance of dynamic circuits to
several factors, including the fact that the current imple-
mentation results in an average classical feed-forward time
that scales with the number of potential midcircuit mea-
surement bitstring outcomes, which itself grows exponen-
tially with system size. This limitation appears because the
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(a)

(c)

(d)

(b)

FIG. 2. Preparing long-range entangled states. (a) Illustration of a GHZ state with chosen qubit spins (spheres) in a superposition
of “all up” and “all down” polarizations (arrows), overlaid on a quantum processor. (b) Circuits to prepare an n-qubit GHZ state
using either a unitary (left) or dynamic (right) circuit. For a 1D qubit chain, the depth of the unitary (respectively, dynamic) circuit
scales as O(n) [respectively, O(1)]. If the final state is not directly used, the feed-forward operations can be implemented in classical
postprocessing on the output bits (classically controlled-X gates and resets can be omitted). Yellow regions indicate the idle time
during CNOT gates on other qubits as well as during measurement and feed forward (which is denoted by duration μ). (c) Error model
inputs for the GHZ preparation circuits. The model incorporates the noisy components of the circuits: nonzero idle circuit periods
(yellow), the number of CNOT gates (pink), and the number of midcircuit measurements (green). These parameters are used to derive
an error model that yields a lower bound on the protocol fidelity, shown in the following panel. (d) Fidelity of preparing the GHZ state
on quantum hardware using unitary, measurement-based postprocessing, or dynamic circuits in the absence or presence of dynamical
decoupling (DD). Data shown with dots. Theory curves based on the error model parameters of panel (c) shown with dashed lines.

switch operator is currently testing each possible case of
measurement outcomes sequentially, so on average checks
half of the cases until it finds the correct one. With our
future control software we expect to implement the correct
feed-forward operations in constant time. By reducing the
error induced by idle time during classical feed forward,
we expect dynamic circuits to surpass unitary circuits at
� 10 qubits—we can see this by studying the postpro-
cessing case, which is equivalent to the dynamic circuit
implementation except that the classical logic is executed
in postprocessing, not during execution of the quantum
circuit itself.

On the right of Fig. 2(d), we show the results using
DD [42,43]. We observe improved fidelities for both the
unitary and dynamic circuit cases, but not for the post-
processing case as there is little error induced by idle

times to quench with dynamical decoupling in the first
place. For the unitary case, we observe genuine multipar-
tite entanglement up to 17 qubits, more than twice as many
compared to the unmitigated unitary case. This result is
close to the state of the art on superconducting quantum
processors and is limited by the fact that we do not lever-
age the 2D connectivity of the device, as in Ref. [44].
While the fidelities are improved with DD for dynamic
circuits, the improvement is less dramatic. We attribute
this difference to two reasons. First, the unitary circuit has
a quadratic idling error term in contrast to a leading lin-
ear term for dynamic circuits, resulting in comparatively
smaller improvement for dynamic circuits with dynami-
cal decoupling. Second, with the current controls, we are
not able to apply DD pulses during the classical feed-
forward time, which is the main source of idling error

030339-5



ELISA BÄUMER et al. PRX QUANTUM 5, 030339 (2024)

in the dynamic circuit. As in the unmitigated case, we
observe rapid decay of the fidelity with increasing system
size. This can again be partially attributed to exponential
growth of the classical feed-forward time. In the future, we
expect to reduce this scaling to a constant, in which case
we expect drastically improved performance and genuine
entanglement up to about 15 qubits. Still, however, we do
not expect to observe an advantage with dynamic circuits
for preparation of GHZ states over unitary ones. To realize
an advantage with dynamic circuits, we require a scenario
where the quadratically scaling idle error of the unitary
circuit dominates over sufficiently small CNOT and mid-
circuit measurement errors; see Appendix F 2 for a more
detailed analysis. We anticipate these conditions can be
realized through a combination of hardware improvements
and the extension of error mitigation techniques, such as
probabilistic error cancelation [45,46], toward midcircuit
measurements.

IV. CONCLUSION AND OUTLOOK

Dynamic circuits are a promising feature toward over-
coming connectivity limitations of large-scale noisy quan-
tum hardware. Here, we demonstrate their potential for
efficiently generating long-range entanglement with two
useful tasks: teleporting entangling gates over long ranges
to enable effective all-to-all connectivity, and state prepa-
ration with the GHZ state as an example. For CNOT gate
teleportation, we show a regime in which dynamic cir-
cuits result in higher fidelities on up to 101 qubits of a
large-scale superconducting quantum processor. We leave
incorporating this more efficient implementation of long-
range entangling gates as a subroutine in another quantum
algorithm to future work; potential studies can include sim-
ulating many-body systems with nonlocal interactions. As
we demonstrate theoretically, gate teleportation schemes
can be extended beyond CNOT gates to multiqubit ones,
such as the CCZ gate. Its experimental implementation is
also a promising project for the future. For state prepara-
tion, based on both unmitigated and mitigated hardware
experiments, we expect to see the value of dynamic circuits
once the classical postprocessing becomes more efficient
and the midcircuit measurement errors can be reduced.
We plan on revising the experiments as soon as these
capabilities are available. We anticipate that further exper-
iments with dynamic circuits and the development of noise
models describing them will be vital contributions toward
efficient circuit compilation, measurement-based quantum
computation, and fault-tolerant quantum computation.
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APPENDIX A: CIRCUIT DERIVATIONS

In the following we show the circuit equivalences of
the CNOT gate teleportation [Fig. 1(a)] and the GHZ state
preparation [Fig. 2(b)]. We are not claiming any novelty
with this “proof,” but just wanted to show the reader how
to derive them in an illustrative way. Before, let us start
with some features that we will be using.

(a) The Bell state (|00〉 + |11〉)/√2 can be illustrated
as a so-called “cup,” as shown in Fig. 3(a), We can
move gates along wires including along the cup, as
in Fig. 3(b).

(b) Principle of deferred measurement: a controlled
gate followed by a measurement of the controlled
qubit results in the same outcome as first perform-
ing the measurement and then applying a classically
controlled gate as in Fig. 3(c).

(c) While CNOT gates commute when they are condi-
tioned on the same qubit or have the same target
qubit, we get an extra gate when they act on the
same qubit differently, as shown in Fig. 3(d).

1. Long-range CNOT gate

In Fig. 4 we illustrate a derivation of the CNOT gate
teleportation, as exemplified for seven qubits, which can
be straightforwardly extended to an arbitrary number of
qubits. In the following, we provide explanations for each
step of the derivation, labeled by roman numerals in the
figure.

(i) In the first step, we observe that entangling, measur-
ing, and resetting the ancilla qubits does not affect
the circuit.

(ii) We insert CNOT gates that would cancel each other.
From now on we omit writing down the reset of the
ancilla qubits following the measurement.

(iii) We move the pink CNOT gates along the Bell
states to the respective qubits above. Also, we add
Hadamard gates to flip the direction of the orange
CNOT gates (except for that at the bottom). Note
that we can omit the Hadamard gates right before
the measurements, as they are not affecting the other
qubits anymore.

(iv) By moving the bottom orange CNOT gate “up” along
the Bell state and passing a pink CNOT gate, we get
the extra purple CNOT gate.

(v) Moving the new purple CNOT gate “up” along the
Bell state, an extra gate appears that cancels with
the initial long-range CNOT gate when pushed to the
left (and then it is controlled on state |0〉, so can be
omitted as well).
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(a)

(b)

(c)

(d)

FIG. 3. Useful circuit identities that are used in the illustrative derivation of the CNOT gate teleportation and GHZ state prepara-
tion: (a) Bell state representation as “cup”, along which we can move gates as shown in (b). (c) Principle of deferred measurement.
(d) Commutation relation for CNOT gates.

(vi) Now we make use of the principle of deferred
measurement.

(vii) In a final step we merge the classically conditioned
gates. The orange ⊕ correspond to XOR gates, i.e.,
addition mod 2. We also represented the initial Bell
states again with their circuit representation.

2. GHZ state preparation

In Fig. 5 we have illustrated a derivation of the GHZ
state preparation, exemplary for seven qubits, but it can
be straightforwardly extended to an arbitrary number of
qubits. In the following, we provide explanations for each
step of the derivation, labeled by roman numerals in the
figure.

(i) Pushing every second CNOT gate to the very right
introduces the extra pink CNOT gates.

(ii) We can omit CNOT gates that are conditioned on
state |0〉.

(iii) As every second qubit is only involved at the very
end, we can use those before and reset them.

(iv) A Bell state followed by a CNOT gate results in two
uncorrelated qubits in states |+〉 and |0〉.

(v) We move the pink CNOT gates along the Bell states
to the respective qubits above (they commute with
the other CNOT gates they are “passing”).

(vi) Pushing the pink CNOT gates to the left through the
purple CNOT gates introduces the extra orange CNOT
gates.

(vii) We make use of the principle of deferred measure-
ment.

(viii) In a final step we merge the classically condi-
tioned gates. As the classical calculation can be
done extremely fast compared to quantum gates,
we draw it as a vertical line. The orange ⊕ corre-
spond to XOR gates, i.e., addition mod 2. We also
represented the initial Bell states again with their
circuit representation.

APPENDIX B: CNOT CIRCUITS

1. Unitary variants

In order to compare the dynamic circuit implementation
to a solely unitary one, let us first consider different unitary
strategies that might be more or less powerful in different
regimes.

a. Strategy I: ancilla-based implementation

We can consider a similar setting as for dynamic circuits,
where we place the system qubits in a way that they are
connected by a bus of empty ancilla qubits. In this case,
we need to swap the system qubits towards each other and
back, so that the ancillas are empty in the end again. The
swaps can be simplified since the ancillas are empty in the
beginning. Here we can divide into different scenarios.

(i) Circuit Ia. To minimize the number of CNOT gates,
we could swap the controlled qubit all the way to
the target qubit and back, which results in the circuit
depicted in Fig. 6. Here, a lot of gates cancel, so,
given n ancilla qubits, the number of CNOT gates is
2n + 1. However, here the idle time of the qubits
while they are not in state |0〉 equals n2 + 2n times
the CNOT gate time.

(ii) Circuit Ib. In order to decrease the idle time, we
could essentially swap both the controlled qubit and
the target qubit halfway and back, as illustrated in
Fig. 6 (similar to some circuits presented in Refs.
[47,48]). In that case, less gates “cancel,” so, for n
ancilla qubits, we get 3n + 1 CNOT gates, but the idle
time reduces to n2/4 + n times the CNOT gate time.

(iii) Circuit Ic. If we wanted to reduce the idle time
even further, it might be beneficial to not cancel the
CNOT gates in scenario 1b, but keep them to bring
the swapped qubits back to state |0〉, as shown in
Fig. 6. In that case, we have essentially no idle time
(as qubits in state |0〉 are not prone to idling errors).
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FIG. 4. Graphical derivation for reducing a long-range CNOT gate into gate teleportation executed with measurements and feed-
forward operations, i.e., a dynamic circuit. Roman numerals indicate sequential step numbers described in main text.

Here, the number of CNOT gates increased to 4n + 1
though.

b. Strategy II: SWAP-based implementation without
ancillas

This is the case that happens if we just feed our circuit
to the transpiler. Here we do not use any ancilla qubits, but
only system qubits and apply swaps to move them around.
The qubits can be at a different location in the end, so we do
not need to swap back. The corresponding circuit is shown
in Fig. 6. In this case we require 3ñ + 1 CNOT gates and the
idle time is 3

2 ñ2 − 2ñ times the CNOT gate time. However,
it is important to note here that the number of qubits lying
between the two qubits of interest ñ is on average much
shorter than the number of ancillas between two system
qubits in the first scenario. Considering the connectivity
illustrated in Fig. 1(c), the relation is approximately n =
2ñ + 3.

2. Error budget

Let us now compare the regimes in which we expect the
different implementations to be most useful to demonstrate
the benefit of dynamic circuits. In Appendix G we derive

a simple noise model that allows us to compute the com-
bined effect of different sources of decoherence as a single
Pauli noise rate:

λtot = tidleλidle + NCNOTλCNOT + Nmeasλmeas. (B1)

In Lemma 1 below we show that the final process fidelity
is loosely lower bounded by e−λtot . The quantity λtot
combines the following noise sources.

(a) The total amount of time tidle that qubits spend idle
within the circuit, and a conversion factor λidle that
quantifies the strength of decoherence. Time tidle is
expressed in multiples of the CNOT gate time (i.e.,
tidle = 3 for three CNOT gate times). The time for
a midcircuit measurement, including the additional
time waiting for feedback, is defined as μ times the
time for a CNOT gate.

(b) The total number of CNOT gates NCNOT and an
average Pauli noise rate λCNOT per CNOT gate.

(c) The total number of midcircuit measurements Nmeas
and an average Pauli noise rate λmeas per measure-
ment.
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FIG. 5. Graphical derivation for the preparation of a GHZ state by converting its canonical but deep unitary circuit into a constant-
depth circuit utilizing measurement and feed-forward operations—a dynamic circuit. Roman numerals indicate sequential step numbers
described in the text.

In Table I, we have summarized the error budget for each
of the cases.

Comparing the different unitary cases it becomes clear
that, for large n, the unitary implementation Ic will be
the best, as all other implementations have an error in the
idling time that scales quadratically. This might be slightly
counterintuitive, as it tells us that the extra 2n CNOT gates
required for implementation Ic compared to implemen-
tation Ia are worthwhile not being canceled, as the full
swap leaves the other qubits unentangled, resulting in a
drastically decreased idling error, and as even without mea-
surement and feed forward, it can still be beneficial to
use ancilla qubits and thereby increase the distances. For

small n, we need to keep in mind that, for the SWAP-based
implementation (unitary II), the number of involved qubits
ñ is smaller than the number of qubits n needed for the
same task in the ancilla-based implementation. Given the
qubit division illustrated in Fig. 1(d), we achieve a ratio
of 31 qubits connected to the bus, 30 qubits not con-
nected to the bus, and 66 bus qubits, which is a ratio of
roughly 1:2 for all-to-all connected qubits to bus qubits.
Respecting the rescaled errors, unitary II would be the
most promising implementation for small n. In addition
to the CNOT errors and idling errors, for dynamic cir-
cuits, we also need to consider the error from the addi-
tional measurements, as well as a constant term μ that
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FIG. 6. Comparison of the different unitary implementations of a long-range CNOT gate. While the circuits in panels (Ia), (Ib), and
(Ic) realize ancilla-based implementations, the circuit of panel (II) realizes a SWAP-based implementation without ancillas. The shaded
regions indicate idle periods that accumulate errors.

comes from the idling error during measurement and feed
forward.

Given this rough error analysis in Table I, we can infer
that, for large n, dynamic circuits will be beneficial if
the measurement of n qubits introduces less error than 3n
CNOT gates, that is, when λmeas < 3λCNOT. A sketch of
how the fidelities for the different cases decrease with n
is illustrated in Fig. 7. Note that these error analyses only
take into account the error on the involved qubits though.
Also considering the fact that there are potentially a lot of
other m qubits “waiting” for this operation to be performed
would add another idling error of m(2n + 1). So the fact
that dynamic circuits can perform entangled gates between
arbitrary qubits in constant depth instead of linear depth
with only unitary operations speeds up the whole algorithm

and therefore might be much more powerful than what we
can see in the error on the respective qubits.

APPENDIX C: ESTIMATION OF THE STATE AND
GATE FIDELITIES USING MONTE CARLO

SAMPLING

1. State fidelity

In order to determine the fidelity of the experimentally
prepared quantum state, denoted σ , we employ the Monte
Carlo state certification method, which was introduced in
Refs. [34,35]. We first briefly review the notion of fidelity
between two quantum states.

TABLE I. Comparison of the error budgets of the unitary and dynamic circuit implementations in terms of the idle time, number of
CNOT gates, midcircuit measurements, and two-qubit gate depth. Note that, as the number of involved qubits ñ needed for the unitary
implementation II is in general much smaller, we rescale it for the error budget with the relation n ≈ 2ñ + 3.

Case tidle NCNOT Nmeas Two-qubit gate depth

Unitary Ia n2 + 2n 2n + 1 0 2n + 1
Unitary Ib n2/4 + n 3n + 1 0 2n + 1
Unitary Ic 0 4n + 1 0 2n + 1
Unitary II 3

4 ñ2 − 3
2 ñ 3ñ + 1 0 3

2 ñ + 1
Unitary II with normed n ≈ 3

16 n2 − 15
8 n + 45

16 ≈ 3
2 n − 2 0 ≈ 3

4 n − 5
4

Dynamic circuits 2μ+ 2 n + 1 n 2 + μ, or O(1)
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FIG. 7. Comparison of the process fidelities of the different
unitary implementations as well as the dynamic circuit imple-
mentation considering the error budget indicated in Table I.
In this figure we use μ = (tmeas + tfeed forward)/tCNOT ≈ 3.65,
λidle = 0.03, λCNOT = 0.02, and λmeas = 0.03.

a. Quantum state fidelity

Let us introduce the Uhlmann-Jozsa state fidelity
between two general quantum states ρ and σ . These
objects are elements of the space of valid density oper-
ators associated with the system Hilbert space, H, i.e.,
ρ, σ ∈ D(H). Assuming that one of them is a pure state
σ = |φ〉 〈φ|, we can simplify the general expression as

F(ρ, σ) := [
Tr

(√√
ρσ

√
ρ
)]2

= 〈φ|ρ|φ〉
= Tr[ρσ ]. (C1)

If ρ is also a pure state ρ = |ψ〉 〈ψ |, the expression reduces
to a simple overlap F(ρ, σ) = |〈ψ |φ〉|2. We note that some
authors define the square root of this as the fidelity.

b. Pauli decomposition

To connect to experimental measurements, let us
decompose the quantum sates in the standard Pauli basis.
The set of all Pauli operators on n qubits {I , X , Y, Z}⊗n

forms an orthogonal Hermitian operator basis. The inner
product in operator space L(H) between two Pauli oper-
ators Pi, Pj ∈ L(H) is 〈Pi, Pj 〉 = Tr(PiPj ) = dδij , where
the dimension of the pure-state Hilbert space d :=
dimH = 2n. In terms of this basis, any quantum state
ρ ∈ D(H), can be decomposed into

ρ =
4n−1∑

i=0

〈Pi, ρ〉
〈Pi, Pi〉Pi = 1

d

4n−1∑

i=0

ρiPi, with ρi

:= 〈Pi, ρ〉 = Tr(Piρ),

where the Pauli expectation value of the state with respect
to the ith Pauli operator is ρi—an easily measurable quan-
tity. We can similarly define the expectation values of
the Pauli operator Pi with respect to the prepared state
σ and the desired state ρ as σi := 〈Pi〉σ = Tr(σPi) and
ρi := 〈Pi〉ρ = Tr(ρPi), respectively.

c. Fidelity in terms of Pauli expectation values

The state fidelity between the measured σ and ideally
expected pure ρ state [see Eq. (C1)] in terms of the Pauli
decomposition of each is

F(ρ, σ) = Tr[ρσ ] =
∑

i

ρiσi

d
=

∑

i

ρ2
i

d
σi

ρi
, (C2)

where σi is an experimentally measured expectation value
and ρi is a theoretically calculated one. Given this, we can
now define the relevance distribution r(Pi) := ρ2

i /d, such
that F(ρ, σ) = ∑

i:ρi 	=0 r(Pi)(σi/ρi).

d. Random sampling of expectation values

When sampling m random operators {Pk}k=1,...,m accord-
ing to the relevance distribution r(Pk) and determining
their expectation values σk, the estimated fidelity F̃ :=∑m

k=1 σk/ρk approximates the actual fidelity F with an
uncertainty that decreases as 1/

√
m. Note that there is also

an uncertainty in estimating each σk, where, for an additive
precision ε, roughly (ερk)

−2 shots are required.

e. Random sampling of GHZ stabilizers

As the GHZ state is a stabilizer state, for each n, there
are exactly 2n nonzero Pauli operators Pi that each have
eigenvalue ±1. Note that some stabilizers of the GHZ
state have a minus sign, e.g., −YYX . For the n-qubit GHZ
state, by defining the set of stabilizers {Si}i=1,...,2n , we can
express the fidelity in terms of only expectation values on
the stabilizers

F(ρ, σ) = 1
2n

2n
∑

i=1

〈Si〉σ . (C3)

This expression can be approximated by randomly sam-
pling m of the 2n stabilizers, defining the unbiased estima-
tor F̃ = (1/m)

∑m
k=1〈Sk〉σ = F + O(1/√m), which con-

verges with the number of random samples chosen to the
ideal fidelity.

2. Gate and process fidelity

Similarly to the state fidelity, we use the Monte Carlo
process certification following Ref. [35] to determine the
average gate fidelity of our noisy CNOT gate.
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a. Average gate fidelity

Consider the case in which we want to implement
an ideal gate U(ρ) := UρU†. However, instead, we can
implement only a noisy gate Ũ(ρ) := U [�(ρ)], where �
is some effective noise channel and ρ is a quantum state.
What is the gate fidelity of noisy Ũ relative to the ideal U?
For a single given pure state ρ = |φ〉 〈φ|, the state fidelity
of the output of the ideal and noisy channels is

F(U , Ũ ; ρ) = {
Tr

[√√
U(ρ)Ũ(ρ)

√
U(ρ)]}2

= Tr[U(ρ)Ũ(ρ)]
= Tr[ρ�(ρ)], (C4)

which can be used to obtain the average gate fidelity
devised by a uniform Haar average over the fidelity of the
ideal and noisy output states, with ρψ = |ψ〉 〈ψ |,

Favg(U , Ũ) =
∫

dψ F(U , Ũ ; ρψ)

=
∫

dψ Tr[U(ρ)Ũ(ρ)]

= Tr
[ ∫

dψ |ψ〉 〈ψ |�(|ψ〉 〈ψ |)
]

. (C5)

To estimate Favg(U , Ũ), we use the process (or entan-
glement) fidelity as a more experimentally accessible
quantity.

b. Process fidelity

Compared to the gate fidelity, the process fidelity is
more readily estimated. It can in turn serve as a direct
proxy to the gate fidelity. To make the connection,
recall that the Choi-Jamiolkowski isomorphism [49] maps
every quantum operation � on a d-dimensional space
to a density operator ρ� = (I ⊗�) |φ〉 〈φ|, where |φ〉 =
(1/

√
d)

∑d
i=1 |i〉 ⊗ |i〉. For a noise-free, ideal unitary chan-

nel U and its experimental, noisy implementation Ũ , the
process fidelity Fproc is the state fidelity of the respective
Choi states ρU and ρŨ :

Fproc(U , Ũ) := F(ρU , ρŨ ). (C6)

From this fidelity, the gate fidelity can be extracted using
the following relation derived in Ref. [50]:

Fgate(U , Ũ) = dFproc(ρU , ρŨ )+ 1
d + 1

. (C7)

c. Estimating the process fidelity

As described in Ref. [35], instead of a direct implemen-
tation of (I ⊗ Ũ) |φ〉 〈φ| followed by measuring random

Pauli operators on all qubits, we follow the more practical
approach, where Ũ is applied to the complex conjugate of a
random product of eigenstates of local Pauli operators Pi ⊗
Pj , followed by a measurement of random Pauli operators
Pk ⊗ Pl. This leads to the same expectation values

ρijkl := Tr[(Pi ⊗ Pj ⊗ Pk ⊗ Pl)(I ⊗ U) |φ〉 〈φ|]
= Tr[(Pk ⊗ Pl)U(Pi ⊗ Pj )

∗]/d. (C8)

The operators are then sampled according to the relevance
distribution

rijkl := r(PiPj PkPl) = ρ2
ijkl

d̃
. (C9)

Note that d̃ corresponds to the dimension of the Choi state,
i.e., here d̃ = 16. For�(ρ) = CNOTρCNOT†, there are only
16 combinations of Pauli operators with a nonzero expec-
tation value ρijkl: ρijkl = −1 for PiPj PkPl ∈ {YYXZ, XZYY}
and ρijkl = 1 for the remaining 14. Thus, the relevance dis-
tribution is uniform amongst those with r = 1

16 and we
can just take the average expectation value of those 16
operators.

APPENDIX D: EXPERIMENTAL DETAILS

1. CNOT gate teleportation

We perform the long-range gate teleportation experi-
ments on ibm_sherbrooke, a 127-qubit superconduct-
ing quantum processor. The line of 101 qubits chosen for
the experiments is indicated in Fig. 8(a). The cumulative
distribution of their T1 and T2 coherence times as well as
of their different error rates are shown in Figs. 8(b) and
8(c), with the corresponding median values also indicated.
The two-qubit gate time is 0.5 µs, the readout time 1.2 µs,
and the feed-forward time roughly 0.7 µs.

2. GHZ state preparation

We perform the GHZ state preparation experiments on
ibm_peekskill, a 27-qubit superconducting quantum
processor. The line of 21 qubits chosen for the experiments
is indicated in Fig. 9(a). The cumulative distribution of
their T1 and T2 coherence times as well as of their dif-
ferent error rates are shown in Figs. 9(b) and 9(c), with
the corresponding median values also indicated. The two-
qubit gate time is 0.6 µs, the readout time 0.9 µs, and the
feed-forward time roughly 0.7 µs.

APPENDIX E: TOFFOLI OR CCZ gate

Dynamic circuits can also be applied to more efficiently
compile multiqubit gates. As an example, we describe how
the CCZ or Toffoli gate up to two single-qubit Hadamard
gates can be implemented by optimizing multiple tele-
ported CNOT gates. Compilation of the unitary circuit on
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(a)

(c)

(b)

Time (μs)

FIG. 8. Implementation details. In (a), we show the device layout of ibm_sherbrooke, with the 101 qubits chosen for our
dynamic circuits marked in black. In (b) and (c), we plot the cumulative distribution function (CDF) of the T1 and T2 coherence times,
the single-qubit gate (SX), readout (Meas.), and two-qubit echoed cross-resonance gate (ECR) error rates of the chosen qubits, as well
as the corresponding median values.

a 1D chain of n + 3 qubits using CNOT gates naïvely
requires a two-qubit gate depth of O(n). Using dynamic
circuits, we can implement this long-range entangling gate
in shallow depth. Naïvely, one could successively imple-
ment each CNOT gate of the typical Toffoli decomposition
[shown at the top of Fig. 10(a)] using the gate teleporta-
tion described previously. However, involving an ancillary
qubit between the three system qubits to merge the tele-
ported gates, as shown at the bottom of Fig. 10(a), allows
for a more efficient implementation with the dynamic cir-
cuit; see Fig. 10(b). In total, this formulation requires n + 1
measurements, n + 6 CNOT gates, and five feed-forward
operations divided across two sequential steps. Notably, as
most qubits are projectively measured early in the circuit,
the idling error should be low. Thus, we expect this shallow
implementation with dynamic circuits to be advantageous
over its unitary counterpart, especially for large n.

APPENDIX F: ERROR ANALYSIS FOR GHZ
STATES

1. Error budget

As in Appendix B 2, we leverage Eq. (B1) to estimate
the total noise λtot of a quantum circuit as motivated by
the model discussed in Appendix G. There, we show that

e−λtot gives a lower bound on the process fidelity of the cir-
cuit. For GHZ states however, we are interested in the state
fidelity, so the bound from Lemma 1 no longer applies in
a rigorous sense. However, we find that the same model
can still provide useful intuition if we accept that the
model parameters λCNOT, λmeas no longer have a direct
interpretation in terms of worst-case Pauli-Lindblad noise
or a combination of amplitude- and phase-damping noise,
respectively. See Appendix G for details.

For the unitary approach, we require n CNOT gates to
entangle n qubits. For simplicity, we assume (and imple-
ment) only a one-dimensional connectivity chain in our
protocols and the following numbers correspond to an even
number n (only constant terms change when considering
odd n). To minimize the idling time, we start in the middle
and apply CNOT gates simultaneously towards both ends.
This leads to an idle time of n2/4 − 3

2 n + 2 times the CNOT
gate time, as displayed in Table II. In the dynamic circuit
approach we require 3

2 n − 2 CNOT gates in total, while the
idling time is μn/2 + 1 times the CNOT gate time, where
μ corresponds to the measurement and feed-forward time
(as a multiple of the CNOT gate time). However, here we
also need to consider the errors of the additional n/2 − 1
measurements. As the error coming from the CNOT gates
and the measurements is usually substantially larger than
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(a)

(c)(b)

Time (μs)

FIG. 9. Implementation details. In (a), we show the device layout of ibm_peekskill, with the 21 qubits chosen for our dynamic
circuits marked in black. In (b) and (c), we plot the cumulative distribution of the T1 and T2 coherence times, the single-qubit gate
(SX), readout (Meas.), and two-qubit controlled-X (CX) error rates of the chosen qubits, as well as the corresponding median values.

the error from the idling time, we expect that, for small n,
the standard unitary preparation succeeds. However, as the
idling time there scales as O(n2) in contrast to all errors
in the measurement-based approach scaling only as O(n),
we expect a crossover for large n, where the implemen-
tation with dynamic circuits will become more beneficial.
The error budget is summarized in Table II.

2. Expected crossover for lower midcircuit
measurement errors

In Fig. 11 we determine the expected crossover in per-
formance from unitary to dynamic circuits for varying mid-
circuit measurement and CNOT gate errors. We use the val-
ues of tidle, NCNOT, and Nmeas shown in Table II to predict
how many qubits are required to see and the state fidelity
at the crossover, or where the performance of dynamic cir-
cuits becomes higher than that of its unitary counterpart, as
a function of the midcircuit measurement errors. Note that
in this noise model we assume that we can eliminate all
ZZ errors by applying dynamical decoupling. We keep the
idling error constant at λidle = 0.001 and consider different
CNOT errors λCNOT ∈ {0.001, 0.01, 0.02}. We can reach a

fidelity > 0.5 for a CNOT error of λCNOT = 0.01 with mid-
circuit measurement errors λmeas � 0.003 and for a CNOT
error λCNOT = 0.001 with midcircuit measurement errors
λmeas � 0.012

APPENDIX G: PAULI-LINDBLAD NOISE MODEL

In this appendix we present a simple framework for
computing lower bounds on fidelities using the Pauli-
Lindblad noise model discussed in Ref. [46]. Pauli-
Lindblad noise channels have several nice properties that
we can use to simplify calculations, and also allow us to
reduce estimates of the noise properties of our hardware to
relatively few parameters.

Normally, Pauli-Lindblad noise is the workhorse
of probabilistic error cancelation—an error mitigation
scheme that leverages characterization of noise in order
to trade systematic uncertainty for statistical uncertainty.
But we are more interested in using Pauli-Lindblad noise
as a tool for capturing the behavior of fidelity as a func-
tion of circuit size with an appropriate balance of rigor and
simplicity.
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(a)

(b)

FIG. 10. CCZ gate with a (a) unitary circuit and (b) dynamic circuit over long ranges.

As such, our central goal in this section is to develop
mathematical tools that allow us develop a Pauli-Lindblad
representation of various noise sources such as decoher-
ence and gate noise and to find a method to combine all
of this noise into a fidelity for the entire process. In partic-
ular, we aim to give a justification for modeling noise via
the quantity λtot as in Eq. (B1). This is achieved by Lemma
1 below, which states that e−λtot gives a lower bound on the
process fidelity.

We leave the majority of our mathematical exposition
without proof for sake of brevity, but present the proof of
Lemma 1 at the end of this appendix.

1. Pauli-Lindblad noise

Pauli-Lindblad noise is a quantum channel defined as
follows. Let P be the n-qubit Pauli group modulo phase,
and consider some P ∈ P . Then, for some noise rate λ ∈
R

+, the noise channel �λP is given by

�λP(ρ) = (1 − ω)ρ + ωPρP†, where ω := 1 − e−2λ

2
.

(G1)

TABLE II. Comparison of the error budgets of the unitary and dynamic circuit implementations in terms of idle time, the number of
CNOT gates, midcircuit measurements, and two-qubit gate depth.

Case tidle NCNOT Nmeas Two-qubit gate depth

Unitary n2/4 − 3n/2 + 2 n − 1 0 n − 1
Dynamic circuits 1 + μn/2 3n/2 − 2 n/2 − 1 3 + μ, or O(1)
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FIG. 11. Noise-model predictions that indicate how many qubits are required to see a crossover and what the corresponding fidelity
would be as a function of the midcircuit measurement errors.

This is essentially applying P with probability ω. Pauli
noise channels also have a representation as time evolu-
tion with respect to a simple Lindbladian: for P ∈ P , let
LP(ρ) := PρP − ρ. This way �λP = eλLP .

The main justification for why we can restrict to Pauli
noise channels is twirling. Conjugating an arbitrary noise
channel by a random Pauli matrix yields a channel that is
always expressible as a product of Pauli noise. Although
our experiments do not feature twirling, even for untwirled
circuits, we expect the Pauli-Lindblad noise to capture the
first-order noise behavior.

Another reason why we expect our noise model to only
capture the behavior to first order is that we assume that the
noise rates are the same for all qubits. All CNOT gates and
idle times are assumed to contribute the same amount of
noise. But this is not a realistic representation of our hard-
ware—in actuality different qubits have different coherence
times and gate qualities also vary. When we consider
circuits on many qubits, we expect these differences to
average out.

Let � be a quantum channel. Then let �̃ be its Pauli-
twirled version given by

�̃ := 1
|P|

∑

P∈P
P�(PρP)P. (G2)

For Q ∈ P , twirled channels �̃ satisfy �̃(Q) = cQQ for
some coefficients cQ. For every �̃, there exist noise rates
λP for P ∈ P/{I} such that �̃ = ∏

P �
λP
P . These noise rates

satisfy

cQ = exp
{

−2
∑

P

(λP · 1PQ=−QP)

}

. (G3)

A central convenience of Pauli noise channels is that
they do not interfere with each other when propagated:
Pauli noise channels commute, �λP

P �
λQ
Q = �

λQ
Q �

λP
P , and the

noise rates can be added together when the Pauli operator
is the same, �λ1

P �
λ2
P = �

λ1+λ2
P .

2. Combining noise channels into a single fidelity

Say we are trying to compute the overall amount of
noise in a particular quantum circuit that has been appro-
priately twirled. Gates and the idle time of the qubits all
contribute some amount of Pauli noise. We propagate all of
the Pauli noise to the end of the circuit, thereby removing
any noise that does not affect certain midcircuit measure-
ments. Finally, we must tally up the noise Pauli operators
on the resulting quantum state.

One metric for measuring the error on the final state is
the trace distance, or diamond norm if we are considering a
channel. For a single Pauli noise source, we have the sim-
ple relation that, for any P, we have |�λP − I |� = 1 − e−2λ.
To generalize this to multiple Pauli operators, a simple
approach could be to just apply the triangle inequality to
all of the different Pauli operators. But, it turns out we can
do much better using the following bound on the process
fidelity.

Lemma 1. Consider a channel � = ∏
P �

λP
P for some

rates λP. Then Fproc(�,I) ≥ exp(−∑
P λP).

This bound is still pretty loose, but it is very simple and
does better than adding up diamond norms. This can be
seen by, for example, looking at the channel

∏N
i=1 �

c/N
Pi

.
Lemma 1 gives Fproc ≥ exp(−c), while adding up dia-
mond norms and converting them to a fidelity bound gives
Fproc ≥ 1 − 1

2 N (1 − e−2c/N ). The latter is looser for N ≥
2 and for any c.
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Lemma 1 also has the key advantage that it makes com-
putation of the overall noise rate very simple: just add up
all the noise rates. This allows us to simply tally the total
idle time and count the number of CNOT gates to obtain the
total amount of noise, as in Appendix B 2.

An issue with using Lemma 1 is that it becomes increas-
ingly loose in the limit of large

∑
P λP. The quantity

exp(−∑
P λP) vanishes in this limit, but, in general, we

have Fproc(�,�′) ≥ 1/d for all�,�′. When we have only
one source of Pauli noise �λP then not even the lower
limit of 1/d can be reached as λ → ∞. Unfortunately,
we see no way of overcoming this limitation while pre-
serving the mathematical elegance of this tool: we would
like to simply consider the quantity

∑
P λP. The reason for

this shortcoming is that we do not account for cancela-
tions between Pauli errors—we discuss the details of the
derivation at the end of this appendix.

Another limitation of this analysis is that it completely
ignores crosstalk. Every gate is assumed to behave inde-
pendently. Assuming independent errors corresponds to a
worst-case analysis analogous to the union bound, so we
would expect the bounds resulting from Lemma 1 to still
roughly capture average error from crosstalk by accounting
for it as T2 dephasing noise, an error that we include when
modeling experiments without dynamical decoupling.

3. Propagating noise to the end of the circuit

Next, we discuss how to move all the noise sources to
the end of the circuit. This is particularly easy since we
are considering Clifford circuits. Once all the noise is in
one place, we can use Lemma 1 to combine it into a single
fidelity.

With U · := U · U† as before, an elementary calcula-
tion shows that U�λP = �λU(P)U , so Pauli-Lindblad noise
propagated through a unitary Clifford circuit is still Pauli-
Lindblad noise.

Our circuits also feature several adaptive gates, propa-
gation through which can be achieved as follows. Let�disc
be the channel that traces out the first of two qubits. Then
�disc�

λ
P⊗Q = �λQ�disc. Similarly, let �corr,P be the channel

that measures the first qubit and applies a correction P onto
the second qubit. If P and Q commute then �corr,P�

λ
Q⊗R =

�λR�corr,P. Otherwise, �corr,P�
λ
Q⊗R = �λPR�corr,P.

Now that we have established how to move noise to
the end of the circuit and to tally it into a bound on the
fidelity; all that remains is to show how to bring various
noise sources into Pauli-Lindblad form.

4. Decoherence noise

We begin with decoherence noise that affects idling
qubits. We consider depolarizing, dephasing, and ampli-
tude damping noise.

Conveniently, depolarizing and dephasing noise are
already Pauli noise channels. A depolarizing channel

�dep,q replaces the input ρ with the maximally mixed state
with probability 1 − q:

�dep,q(ρ) = qρ + (1 − q)
I
2n . (G4)

We find that �dep,q = ∏
P∈Pn/{I} �

λ
P with q = exp(−4nλ).

The phase damping process is given by the Lindbladian
with L0 = |0〉 〈0| and L1 = |1〉 〈1|:

Lph =
∑

i∈{0,1}
LiρL†

i −
1
2
{L†

i Li, ρ}. (G5)

Since Lph = 1
2 (ZρZ − ρ), it satisfies eλLph = �

λ/2
Z . We can

easily compute λ from a phase damping experiment: since
〈+|�λ

damp(|+〉 〈+|) |+〉 = 1
2 (1 + e−λ), we have λ = t/T2.

The amplitude damping channel is not a Pauli-Lindblad
channel, and must be twirled in order to bring into Pauli-
Lindblad form. The amplitude damping process Ldamp is
given by L = |0〉 〈1| with

Ldamp(ρ) = LρL − 1
2 {L†L, ρ}. (G6)

If we let�λ
damp := eλLdamp then we have �̃λ

damp = �
λ/4
X �

λ/4
Y .

Similarly, λ can be obtained from an amplitude damp-
ing experiment: since 〈1|�λ

damp(|1〉 〈1|) |1〉 = e−λ, we
straightforwardly have λ = t/T1.

If we have both dephasing and amplitude damping
noise, we can combine the two together as follows. For
some T1, T2, consider the combined noise channel�t

noise =
exp(tLdamp/T1 + tLph/T2). Then

�̃t
noise = �

t/4T1
X �

t/4T1
Y �

t/2T2
Z . (G7)

This follows from the fact that Ldamp and Lph commute.

5. Noise from unitary gates

In principle, we could perform experiments, as in Ref.
[46], to determine the exact Pauli rates for each unitary, as
is necessary for probabilistic error cancelation. However,
two-qubit gates like the CNOT gate have 15 noise parame-
ters corresponding to the 42 − 1 nontrivial two-qubit Pauli
operators. For our purposes, we would prefer to model
CNOT noise using just a single number.

One approach could be to just assume that the CNOT
noise is simply depolarizing noise. In this case, all 15 Pauli
noise rates are equal and can be connected to the process
fidelity. Say that we aim to implement an ideal unitary
U, but our hardware can only implement Ū = U�dep,q up
to a known fidelity F(U , Ū). Then q = [4nF(U , Ū)− 1]/
(4n − 1).

However, it turns out that spreading out the error uni-
formly over all the Pauli operators is rather cumbersome
because it requires propagating every possible Pauli error.
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A more tractable approach is to just consider the worst-
case Pauli error. In that case, For any unitary U and P ∈ P ,
we have F(U ,U�λP) = (1 + e−2λ)/2.

6. Conclusions

We have derived a rigorous justification for a rather sim-
ple strategy for deriving theoretical predictions of noisy
superconducting quantum hardware. Expressions for noise
as a function of circuit size can be derived simply by
counting the amount of idle time, CNOT gates, and the
number of midcircuit measurements. The model has very
few parameters, which are simply the Pauli-Lindblad noise
rates corresponding to each of these operations (sometimes
per unit time). These different noise rates are added up and
converted to a fidelity via Lemma 1.

The advantage of a rigorous derivation is that we can
directly see the ways in which this model fails to tightly
capture the actual error. A central issue is that Lemma 1
does not take into account cancelation between various
noise sources, causing the fidelity to approach zero in the
limit of a high rate. This is despite the fact that the worst
possible process fidelity is nonzero. Another oversimplifi-
cation is that we do not capture the fact that not all possible
Pauli noise rates can affect a given observable. We also
cannot capture correlations between errors, as may be the
case with crosstalk, and instead take a worst-case approach
reminiscent of the union bound. All of these reasons indi-
cate that this model should produce relatively loose lower
bounds.

Proof of Lemma 1. Say that �(ρ) = ∑
P,Q cP,QPρQ.

Then Fproc(I ,�) = Fproc(I , �̃) = cI ,I .
The proof proceeds with two loose lower bounds that

notably fail to capture cancelations between different error
sources. Given � = ∏

P �
λP
P , recall that �λP

P (ρ) = (1 −
ωP)ρ + ωPPρP†. Expanding out �, we see that

cI ,I ≥
∏

P

(1 − ωP) =
∏

P

1 + e−2λP

2
. (G8)

Next, observing that (1 + e−2x)/2 ≥ e−x for x > 0,

· · · ≥
∏

P

e−λP = exp
(

−
∑

P

λP

)

. (G9)

This completes the proof. �

7. Convergence to 0.4

In the main text, we remarked that the fidelities of
the measurement-based CNOT experiments converge to a
value slightly below 0.4, as is observed in Fig. 1(c). As
discussed, this is due to the structure of the measurement-
based circuit in Fig. 1(a). While the circuit also experiences

infidelity on the top and bottom qubits due to the idle
time and some CNOT gates, the only infidelity that actu-
ally scales with n is due to incorrect Z and X corrections
on the top and bottom qubits, respectively.

We can model this noise as �λZI
ZI �

λIX
IX in the limit of large

λZI , λIX , in which case ωZI ,ωIX approach 1/2. We proceed
as in Eq. (G8). Since these Pauli errors cannot cancel, the
calculation is exact:

Fproc(I ,�λZI
ZI �

λIX
IX ) = cI ,I = (1 − ωZI )(1 − ωIX ) = 1/4.

(G10)

This converts to Fgate(I ,�λZI
ZI �

λIX
IX ) = [4Fproc(I ,�λZI

ZI �
λIX
IX )

+ 1]/(4 + 1) = 0.4.
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