
PRX QUANTUM 5, 030338 (2024)

Robust Estimation of the Quantum Fisher Information on a Quantum Processor

Vittorio Vitale ,1,* Aniket Rath,1 Petar Jurcevic,2 Andreas Elben,3,4 Cyril Branciard ,5 and
Benoît Vermersch 1,6,7

1
Université Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France

2
IBM Quantum, Yorktown Heights, New York 10598, USA

3
Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA

4
Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA
5
Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France

6
Institute for Theoretical Physics, University of Innsbruck, 6020 Innsbruck, Austria

7
Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences,

6020 Innsbruck, Austria

 (Received 8 November 2023; revised 3 May 2024; accepted 15 July 2024; published 21 August 2024)

We present the experimental measurement, on a quantum processor, of a series of polynomial lower
bounds that converge to the quantum Fisher information (QFI), a fundamental quantity for certifying
multipartite entanglement that is useful for metrological applications. We combine advanced methods of
the randomized measurement toolbox to obtain estimators that are robust regarding drifting errors caused
uniquely during the randomized measurement protocol. We estimate the QFI for Greenberger-Horne-
Zeilinger states, observing genuine multipartite entanglement. Then we prepare the ground state of the
transverse-field Ising model at the critical point using a variational circuit. We estimate its QFI and inves-
tigate the interplay between state optimization and noise induced by our increasing the circuit depth.
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I. INTRODUCTION

The quantum Fisher information (QFI) is defined with
respect to a Hermitian operator A and a quantum state ρ,
and can be expressed in terms of the spectral decomposi-
tion ρ = ∑

μ λμ |μ〉〈μ| of the state under consideration as
[1]

FQ = 2
∑

(μ,ν),λμ+λν>0

(λμ − λν)
2

λμ + λν
| 〈μ| A |ν〉 |2. (1)

It plays a crucial role in various quantum phenomena,
including quantum phase transitions [2,3] and quantum
Zeno dynamics [4] and exhibits profound connections
with multipartite entanglement [5–8]. For N qubits, with
a collective spin operator A = 1

2

∑N
j =1 σ

(τ)
j [9], multipar-

tite entanglement can be certified via QFI in terms of k
producibility of the state ρ, i.e., a decomposition into a
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statistical mixture of tensor products of k-particle states
[5,6]. The QFI also has vast applications in resource theory
[10], many-body physics [11,12], and quantum metrol-
ogy [13]. In particular, for quantum parameter estimation
problems, the inverse of the QFI limits the estimation
accuracy, as given by the quantum Cramér-Rao bound
[14]; therefore, it is fundamental for identifying states
that provide sensitivities beyond the standard quantum
limit [13].

In recent years, we have seen an important effort to
try to measure the QFI in various experiments (which
we detail in Sec. II). This is of interest to test whether
a quantum device is able to generate nontrivial multipar-
tite entanglement, but also to benchmark the potential of
a quantum state for quantum metrology. In this context,
our work provides a measurement of the QFI in a large
(up to 13 qubits) quantum processor. Note that, while not
specifically designed for performing quantum metrology,
quantum processors offer, at the moment, unique capa-
bilities for estimating quantum state properties via fast,
high-fidelity projective measurements. The measurement
of the QFI is particularly useful for understanding how
metrologically relevant quantum states are affected in the
presence of unavoidable experimental noise (or what states
are more resilient), which in turn can inspire protocols
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for generating more robust quantum states in actual quan-
tum sensors. Importantly, in contrast to previous related
approaches accessing lower bounds with finite distance to
the QFI, our work provides converging estimations of the
QFI. This is particularly relevant for the type of mixed
quantum states that are nowadays accessible with cur-
rent quantum technology, as noisy quantum channels can
unpredictably alter the QFI and the previously measured
lower bounds.

Our work is an experimental demonstration of the ran-
domized measurement (RM) protocol presented in Ref.
[15], which proposes a systematic and state-agnostic way
to estimate the QFI by one measuring a converging series
of monotonically increasing lower bounds. Several practi-
cal limitations of this RM protocol have so far prevented
the experimental measurement of the QFI: (1) a prohibitive
classical-postprocessing time for reconstructing the QFI
from data, (2) gate and readout errors affecting the RM
protocol, and (3) a prohibitive required number of mea-
surements to overcome statistical errors. The present work
takes advantage of three recently developed methods to
refine Ref. [15] with respect to issues (1)–(3), and to
experimentally realize high-fidelity measurements of the
QFI. First, we use the “batch shadows” formalism [16]
to decrease the required postprocessing time by several
orders of magnitude [issue (1)]. Second, we suppress the
role of errors occurring in the RM protocol on the basis of
the experimental demonstration of robust classical shad-
ows [17–19] [issue (2)]. Finally, we apply the formalism
of common randomized (CRM) measurements [20] to sig-
nificantly reduce statistical errors compared with those in
the standard RM approach [issue (3)]. This is particularly
crucial to obtain a converging value of the QFI with robust
classical shadows, which typically require more measure-
ments than in previous approaches [17–19]. We show, in
particular, for the largest system size attainable, that the
error mitigation of the RM protocol becomes essential,
providing estimates that are compatible with theoretical
predictions and up to 3 times larger than nonmitigated
results. Note that, beyond the measurement of the QFI,
we believe that experimentally demonstrating such prac-
tical upgrades of the RM toolbox will be useful to measure
more faithfully and efficiently other important physical
properties for characterizing quantum processors, such as
entanglement entropies [21–28], negativities [29–31], and
state overlaps [32–34].

We start with a discussion that puts our results within
the framework of previous literature on QFI estimations
(Sec. II). Our approach is discussed in Sec. III, where we
elaborate on the robust randomized measurement protocol
that we implement. There, we also discuss the methods
introduced above to postprocess efficiently the collected
experimental RM data [16,20]. Finally, in Sec. IV, we dis-
cuss the experimental results where our protocol is applied
to measure the converging lower bounds of the QFI for

quantum states with up to 13 qubits, prepared on the
IBM superconducting device “ibm_prague” [35]. In par-
ticular, we consider two prototypical examples of states:
(1) the Greenberger-Horne-Zeilinger (GHZ) state and (2)
the ground state of the transverse-field Ising model (TFIM)
at the critical point [36]. Additionally, we provide more
details on our work in the Appendixes, organized as fol-
lows. In Appendixes A and B we provide the analytical
expressions for the lower bounds of the QFI, and we ana-
lyze their behavior in the presence of global depolarizing
errors. In Appendix C we give more analytical details of
our postprocessing protocol and an experimental analysis
of the noise mitigation parameters we use. In Appendix D
we investigate the noise in the platform. In Appendix E we
introduce an estimator to verify the locality of the noise
and measure it for our experimental setup. In Appendix F
we provide more results for both experiments discussed in
the main text. In Appendix G we report a numerical inves-
tigation on the statistical error of our estimators to justify
the choice of the parameters used in the experiment.

II. PREVIOUS WORK ON MEASURING
QUANTUM FISHER INFORMATION AND OUR

CONTRIBUTION

In this section we discuss previous work that estimated
the QFI and lower bounds to it. In light of these, we
describe how our work goes beyond previous contribu-
tions. In what follows, we find it useful to distinguish
measurement protocols devised in the context of quantum
metrology from the tomographic and randomized measure-
ment methods usually associated with quantum processors.
The distinction between these two classes of quantum
devices is, however, not 100% sharp, as one can, for
instance, consider performing state tomography in a small
quantum metrological device based on using local basis
transformations.

A. Quantum metrology methods

The QFI was first introduced in the context of quantum
metrology for quantifying how accurate the estimation of
an unknown parameter θ could be, and it was readily used
to show that the precision of the measurement could go
beyond the shot-noise limit (or standard quantum limit)
[13,14]. In quantum metrology, one typically considers
realizing the transformation ρ �→ ρ(θ) = e−iAθρ eiAθ for
some Hermitian operator A. The phase shift θ is then deter-
mined through projective measurements in a given mea-
surement setting, with measurement outcomes μ coming
with probabilities P(μ|θ) [13]. The corresponding uncer-
tainty �θ is bounded by the classical Fisher information
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[37,38] (CFI)

F(θ) =
∑

μ

1
P(μ|θ)

(
∂P(μ|θ)
∂θ

)2

(2)

according to the Cramér-Rao bound [1] �θ ≥ 1/
√

F(θ).
The QFI, as defined in Eq. (1), is then an upper bound to
the CFI and is obtained by maximization over all possible
quantum mechanical measurements [1].

In quantum metrological devices, one can thus estimate
a lower bound to the QFI by implementing physically the
state ρ(θ), performing projective measurements to esti-
mate P(μ|θ), and accessing the CFI F(θ) ≤ FQ using
Eq. (2) [39]. We emphasize here that only when the opti-
mal measurement setting is chosen do the CFI and QFI
coincide. The CFI was measured in the work reported in
Refs. [40,41] and has been used to show genuine multipar-
tite entanglement in GHZ states, for up to six qubits [42].
In Appendix G 1 we provide a numerical comparison of the
CFI and the QFI for noisy GHZ states. We observe that in
the presence of noise, the CFI for some fixed measurement
setting decreases much faster than the QFI as a function of
the noise strength, and thus does not represent the optimal
metrological content of the prepared state.

Apart from the CFI, various other bounds to the QFI
have been proposed and experimentally measured in the
quantum metrology context [43–48]. This includes, in par-
ticular, spin-squeezing inequalities that can be directly
extracted from measurement of expectation values of
simple quantum observables. Again, in the presence of
unavoidable experimental noise, the distance between a
given bound and the QFI is a priori unknown, and it is thus
desirable to develop complementary methods to access the
QFI directly.

B. Tomographic and randomized measurement
methods

Quantum processors such as quantum computers are
perhaps not the most natural platform for performing
parameter estimation. However, they can be used to experi-
mentally study the generation of quantum states relevant to
quantum metrology, but also to verify the presence of mul-
tipartite entanglement. In this context, one can extract an
estimate of the QFI via quantum state tomography (QST)
and via RM methods. These methods are also, in principle,
available in quantum metrological platforms, such as cold
atoms [40], but quantum processors, such as the super-
conducting platform used here, are at the moment more
suited for these tasks as they allow high-fidelity and fast
measurement (at a kilohertz rate).

QST allows us to reconstruct the state ρ from projective
measurements and, therefore, to estimate the QFI by eval-
uating Eq. (1). For an unknown quantum state, described
by density matrices of rank χ , the required number of

measurements scales as O(χ2 2N ) [49–51] and thus is
prohibitively demanding for a large number of qubits. This
method has been used to estimate the QFI for small system
sizes, up to four qubits only [52].

One can go beyond QST to access QFI in a more
scalable way. Under the assumption of thermal states,
one can measure the QFI using dynamical susceptibili-
ties [2]. For generic quantum states, one can also rewrite
or approximate the QFI in a form that is more suitable
for measurements in a quantum processor, i.e., that does
not require QST. In recent years, many studies proposed
nonlinear quantities as a function of the density matrix
that lower-bounds the QFI [53–58]. A notable experimen-
tal implementation of this approach was presented in Ref.
[59], where the study authors provide an estimate of a
lower bound to the QFI, named “sub-QFI” [58], for GHZ
states of up to four qubits using randomized measurements.
As we explain below, RM protocols require projective
measurements in a multiple measurement basis, as in QST,
but the data are processed to access directly functions of
ρ, in that case the sub-QFI. In the work reported in Ref.
[59], RMs were performed on two states ρ(θ) and ρ(θ +
dθ), giving access to G(ρ(θ), ρ(θ + dθ))/dθ2, where G is
a generalized overlap between quantum states [58]. The
protocol suffers from two important limitations: (1) it esti-
mates the sub-QFI only in the limit of small values of
dθ (dθ → 0), which therefore tends to amplify statisti-
cal errors of RMs, and (2) the distance between the QFI
and the sub-QFI can be significant in the presence of
noise.

The protocol presented in Ref. [15], which we experi-
mentally implement here, addressed these two challenges.
To be specific, we use RMs to access a converging series
of lower bounds of the QFI, i.e., not only one bound to
the QFI. In addition, our estimators do not rely on one
measuring asymptotically a relative overlap between two
states ρ(θ) and ρ(θ + dθ). This allows us to reach a
number of qubits of 13, i.e., more than 3 times the sys-
tem size that has been achieved so far with QST [52].
In Appendix F 1, we compare our experimental estima-
tions of the QFI with the estimator in Ref. [59], which
we show we can extract faithfully from a single RM
experiment.

III. ESTIMATION OF MULTICOPY
OBSERVABLES FROM NOISY RANDOMIZED

MEASUREMENT DATA

In this section we describe all the building blocks for
the estimation of multicopy observables using RM data. In
particular, we present robust estimators of the QFI and the
purity and the fidelity of a quantum state, and we detail the
postprocessing protocol needed to mitigate the noise and
reduce statistical errors.
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A. Data acquisition with randomized measurements

Our approach, illustrated in Fig. 1, comprises several
repetitions of two building blocks: (1) calibration of
randomized measurements and (2) randomized measure-
ments on the state of interest ρ. The calibration step is
used to learn and mitigate the gate and readout errors that
affect the measurements, as described in Refs. [17–19].
This relies on the ability to prepare on the experimental
platform a specific state with high fidelity. In this work, we
fix the calibration state to be |0〉 ≡ |0〉⊗N , which is pro-
ducible with high efficiency on our quantum processor.
The data collected in step (2) are then used for estimat-
ing the observables we are interested in. We call each run
of steps (1) and (2) an “iteration” of the experiment. Per-
forming consecutive iterations allows us to account for
the temporal variations in gate and readout errors. Assum-
ing that the temporal fluctuations of the errors affecting
the randomized measurement protocol for each iteration
are negligible, each calibration step captures the specific
error profile of a distinct time window within the overall
experimental run.

Let us start by recalling the randomized measurement
protocol in the absence of noise. We begin by preparing the
N -qubit quantum state ρ. Then we apply local random uni-
taries U = U1 ⊗ · · · ⊗ UN , where the local (single-qubit)
unitaries Uj (j = 1, . . . , N ) are sampled from the circular
unitary ensemble [60]. The rotated state UρU† is then pro-
jected onto a computational basis state |s〉 = |s1, . . . , sN 〉,
where sj ∈ {0, 1} for j = 1, . . . , N , by our performing a
measurement. To make the protocol robust regarding the
noise occurring in the quantum device, we apply the mea-
surement sequence described above on the states |0〉, ρ
in steps (1) and (2), respectively, in Fig. 1. As mentioned
before, the data collected from step (1) are used to mitigate
the errors induced by the noisy measurement protocol in
step (2) [17,18].

B. Assumptions on the noise affecting the randomized
measurements

The basic assumptions on the noise model for our post-
processing protocol are as follows. As in Ref. [18], we
consider a gate-independent noise channel�, applied after
the random unitaries; that is, for each chosen U, the state
ρ transforms as�(UρU†). We assume that the noise chan-
nel � is constant during each iteration i—we label it as
�(i)—and may change between each iteration. We provide
experimental evidence of the variation of the noise over
different iterations—which is remarkably captured by our
protocol—in Appendix D 1. Additionally, we assume that
the noise is local for each qubit, so that�(i) = �

(i)
1 ⊗ · · · ⊗

�
(i)
N . In Appendix E we provide and implement a method to

verify the assumption of locality of the noise, based on the
calibration data. Additionally, in Appendix F 3, we show
that tracking the variation of the noise over the different

iterations is essential to provide faithful estimations of the
QFI.

C. Robust classical shadows

The first step towards the measurement of nonlocal
observables of interest is to construct estimators of the den-
sity matrix ρ from the noisy measurements. This object,
called a “robust shadow” [18] (see also Appendix C 1), can
be defined as

ρ̃(ri)

=
∑

s

P̂(s|U(ri))

N⊗

j =1

(
α
(i)
j U(ri)

j
† |sj 〉〈sj | U(r)

j − β
(i)
j 1

)
,

(3)

where α
(i)
j = (3/(2G(i)

j − 1)) and β
(i)
j = ((G(i)

j − 2)/
(2G(i)

j − 1)). Here ri labels a unitary in iteration i
and P̂(s|U(ri)) = ∑NM

mi=1((δs,s(ri ,mi) )/NM ) is the estimated
(noisy) Born probability, where mi labels an individ-
ual measurement performed after the application of U(ri)

j ,
whose outcome is the bit string denoted s(ri,mi). The quan-
tity in Eq. (3) satisfies E[ρ̃(ri)] = ρ, where the average is
taken over the applied unitaries. This equality is necessary,
in particular, to derive the unbiased estimators of the lower
bounds of the QFI [15].

The quantity G(i)
j introduced above contains the relevant

information about the noise on qubit j in iteration i of the
measurement protocol. It is defined as

G(i)
j = 1

2

∑

sj =0,1

〈sj |�(i)
j (|sj 〉〈sj |) |sj 〉 (4)

and can be interpreted as the average “survival probability”
of the two basis states of qubit j . In the absence of noise,
G(i)

j = 1 (for all j = 1, . . . , N ), and one recovers the stan-
dard “classical shadow” [61]. In the opposite limit of fully
depolarizing noise, G(i)

j = 1/2, the coefficients α(i)j and
β
(i)
j diverge and the estimators suffer from large statistical

errors [18]. In our work, G(i)
j ∼ 0.98 (see Appendix C 3).

For each iteration i and each qubit j , G(i)
j is computed

through the experimental data collected during the calibra-
tion step. As detailed in Appendix C 2, we can define the
unbiased estimator

Ĝ(i)
j = 3

NU

∑

ri,sj

P̂(sj |U(ri)
j )P(sj |U(ri)

j )− 1, (5)

where P̂(sj |U(ri)
j ) = ∑NM

mi=1((δsj ,s
(ri ,mi)
j

)/NM ) is the esti-

mated (noisy) Born probability and P(sj |U(ri)
j ) = | 〈sj |

030338-4



ROBUST ESTIMATION OF THE QUANTUM FISHER. . . PRX QUANTUM 5, 030338 (2024)

1 2

FIG. 1. Overview of the experimental protocol and postprocessing. The experimental protocol comprises several “iterations” i =
1, . . . , NI . Each iteration consists of a calibration step (1) and the experiment on the state of interest ρ (2). From the unitaries and bit
strings recorded in step (1), we estimate the noise parameter G(i)

j [Eq. (4)], which is used for the construction of the robust shadows
ρ̃(ri) [Eq. (3)] together with the data from step (2). By integration of an approximation σ of the state ρ, all robust shadows are then
collected and averaged in batches to obtain b = 1, . . . , NB robust common randomized batch shadows ρ̂(b)σ [Eq. (12)]. These are used
to compute the multicopy observables of interest through the U-statistic estimator [Eq. (15)]. Our experiments are performed on the
IBM superconducting qubit device “ibm_prague” [35].

U(ri)
j |0〉 |2 is the theoretical (noiseless) Born probability for

a single qubit j. The information on the noise is contained
in P̂(sj |U(ri)

j ), which approaches the theoretical noisy

Born probability P�(sj |U(ri)
j ) = 〈s|�(U(ri)ρ U(ri)†) |s〉 in

the limit NM → ∞. We remark here that all our results are
compatible with the results in Ref. [18], where a slightly
different formalism was used.

D. Common randomized shadows and noise estimator

The statistical errors can be significantly reduced by one
using common randomized measurements [20] to define an
estimator with smaller variance. The central idea is to con-
struct the robust shadows integrating an approximation of
the state ρ in the form of some classical representation σ .
In practice, we consider σ to be the ideal pure state that
we intend to realize in our experiment. We build “common
randomized” shadows as

ρ̃(ri)
σ = ρ̃(ri) − σ (ri) + σ , (6)

where the term σ (ri) is constructed from σ as

σ (r) =
∑

s

Pσ (s|U(ri))

N⊗

j =1

(
3 U(r)

j
† |sj 〉〈sj | U(ri)

j − 1
)

,

(7)

with Pσ (s|U(ri)) = 〈s| U(ri)σU(ri)† |s〉. The latter is a ficti-
tious probability distribution obtained from computational
basis measurements on σ rotated by the same unitaries as
applied in the experiment U(ri), done on a classical device.
One may notice that E[σ (ri)] = σ [20]. Thus, ρ̂(ri)

σ is an
unbiased estimator of ρ, as

E[ρ̂(ri)
σ ] = ρ − σ + σ = ρ, (8)

irrespective of the choice of σ . Crucially, this procedure
enters entirely during postprocessing, thus leaving the data
acquisition in the experiment independent of it.

The same reasoning of common randomized numbers
[20] can be used to increase the statistical accuracy of the
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estimator of G(i)
j . We introduce for that the quantity

B(i)j = 3
NU

∑

ri,sj

P(sj |U(ri)
j )2. (9)

With this, we then define

Ĝ(i)j = Ĝ(i)
j − B(i)j + E[B(i)j ]. (10)

Here, Ĝ(i)j and Ĝ(i)
j have the same expectation value, but

the variance of Ĝ(i)j is smaller because Ĝ(i)
j and B(i)j are pos-

itively correlated. Observing in particular that E[B(i)j ] = 2,
see Appendix C 2, we can then write the new estimator as

Ĝ(i)j = 3
NU

∑

ri,sj

�̂P(sj |U(ri)
j )P(sj |U(ri)

j )+ 1, (11)

where �̂P(sj |U(ri)
j ) = P̂(sj |U(ri)

j )− P(sj |U(ri)
j ) is the dif-

ference between the experimentally estimated (noisy) Born
probability and the theoretical (noiseless) Born probability.
The fact that Ĝ(i)j is a more efficient estimator of the noise
term G(i)

j is shown explicitly in Appendix C 3, with the use
of our experimental data.

E. Data compression and U-statistic estimators

The last step of our protocol consists in compressing the
CRM shadows to minimize the postprocessing time. To do
so, we compress the NI estimators ρ̃(ri) into NB “robust
CRM batch shadows” [16] ρ̂(b)σ as (we assume NB divides
NI )

ρ̂(b)σ = NB

NI

bNI /NB∑

i=(b−1)NI /NB+1

(
∑

ri

ρ̃(ri)
σ

NU

)

(12)

for b = 1, . . . , NB. The latter can be used to estimate any
multicopy observable of interest, i.e., functions fn in the
form fn = Tr(O(n)ρ⊗n). Given the NB robust CRM batch
shadows ρ̂(b)σ , one can provide an unbiased estimator of the
function f̂n using U statistics [62]. This is achieved by one
replacing each copy of the density matrix in the multicopy
function fn with a different robust CRM batch shadow and
computing the average over all possible such choices. This
is explicitly expressed as

f̂n = 1

n!
(NB

n

)
∑

b1 �=···�=bn

Tr
(
O(n)ρ̂(b1)

σ ⊗ · · · ⊗ ρ̂(bn)
σ

)
, (13)

where ρ⊗n from fn = Tr(O(n)ρ⊗n) is replaced by an aver-
age over ρ̂(b1)

σ ⊗ · · · ⊗ ρ̂(bn)
σ , with b1 �= · · · �= bn. Such

estimators can be evaluated with a classical postprocess-
ing that scales with the number of elements to be evaluated

in the sum. Then it is clear that the compression of the
data from NI to NB shadows allows faster postprocess-
ing, which changes from O(N n

I ) to O(N n
B). This comes

at the expense of storing large dense matrices, albeit not
compromising the statistical performances [16]. Finally, as
thoroughly explained in Ref. [16], one has to consider that
while the statistical accuracy increases with NB, so does
also the postprocessing time. Then one has to find a value
of NB that provides a good balance between good statistical
performances and reasonable postprocessing cost.

F. Estimators of the QFI as a converging series of
polynomials

We now discuss in detail the estimators of the QFI FQ
that we use. As shown in Ref. [15], while the QFI cannot be
accessed directly by randomized measurements, as written
in Eq. (1), it can be alternatively expressed and estimated
in terms of a converging series of monotonically increasing
lower bounds Fn. For the first three orders n = 0, 1, 2, one
can write explicitly

F0 = 4 Tr(ρ
[
ρ, A

]
A),

F1 = 2 F0 − 4 Tr(ρ2[ρ, A]A),

F2 = 3(F1 − F0)+ 4 Tr(ρ2[ρ2, A]A),

(14)

where [·, ·] is the commutator. We provide the general
expression for Fn in Appendix A. Each function Fn is a
polynomial function of the density matrix (of order n +
2); such functions can now be accessed via randomized
measurements, as has been shown for entropies [21–26],
negativities [29–31], state overlaps [32–34], scrambling
[63], and topological invariants [64,65].

We define unbiased estimators F̂n for the lower bounds
Fn according to the rules of U statistics [61,62] by sum-
ming over all possible disjoint indices, as in Eq. (13). In
practice [15], for n = 0, 1, 2, one can thus write (assuming
NB > n + 2)

F̂0 = 4(NB − 2)!
NB!

∑

b1 �=b2

Tr
(
ρ̂(b1)
σ [ρ̂(b2)

σ , A]A
)

,

F̂1 = 2F̂0 − 4(NB − 3)!
NB!

∑

b1 �=···�=b3

Tr
(
ρ̂(b1)
σ ρ̂(b2)

σ [ρ̂(b3)
σ , A]A

)
,

F̂2 = 3(F̂0−F̂1)+ 4(NB − 4)!
NB!

×
∑

b1 �=···�=b4

Tr
(
ρ̂(b1)
σ ρ̂(b2)

σ [ρ̂(b3)
σ ρ̂(b4)

σ , A]A
)

.

(15)

where [·, ·] denotes the commutator and we choose NB =
10. The estimators F̂n suffer from statistical errors arising
due to the finite number of unitaries and measurements per-
formed. Even though F̂n exponentially converges to the
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true value of the QFI as a function of the order n of the
bound, the statistical error on the estimator increases with
n for a fixed measurement budget [15]. In Appendix G 3
we show the scaling of the required number of measure-
ments for a given value of statistical error E as a function
of the system size N . Accurate variance bounds for F̂n are
discussed in Ref. [15].

G. Estimators of fidelity and purity

As anticipated, the protocol presented in this work is not
restricted to the estimation of the lower bounds Fn. For
example, we can extract two other important quantities:
fidelity with respect to an ideal state, and purity. We write
here the estimators in terms of the CRM batch shadows
ρ̂(b)σ . Following Eq. (13) once again, the estimator of the
purity can be expressed as

̂Tr
(
ρ2
) = 1

NB(NB − 1)

∑

b1 �=b2

Tr
(
ρ̂(b1)
σ ρ̂(b2)

σ

)
. (16)

On the other hand, assuming that an ideal state is described
by the density matrix σ ′, one can estimate the overlap of
the latter with the prepared state ρ as

T̂r (ρσ ′) = 1
NB

∑

b

Tr
(
ρ̂(b)σ σ

′) . (17)

In the following, since we are interested in the quality
of the state preparation on the hardware, we test it by
measuring these two quantities.

IV. EXPERIMENTAL RESULTS

In this section we describe the experimental results that
were obtained on IBM superconducting processors. As
mentioned before, we consider two states: the GHZ state
in Sec. IV B and the ground state of the TFIM at the crit-
ical point in Sec. IV C. In our work, the observable under
consideration is taken to be A = 1

2

∑
j σ

z
j , where σ z

j is the
Pauli-z operator acting on qubit j .

A. Measurement budget

The full experiment is divided into a total of NI
iterations (labeled by i = 1, . . . , NI ). For steps (1) and
(2) in each iteration i, we apply the same NU = 200
local random unitaries U(ri) = U(ri)

1 ⊗ · · · ⊗ U(ri)
N , with

ri = 1, . . . , NU [66], and (for each unitary) we record
NM = 1000 measurement outcome bit strings s(ri,mi) =(

s(ri,mi)
1 , . . . , s(ri,mi)

N

)
, with mi = 1, . . . , NM .

The total measurement budget (NI NUNM ) that is
required to reach a given accuracy for an estimator depends
on the size of the system N [67]. In particular, for our
experiments, we use a total of N tot

U = NI NU = 300 · 20.5N

unitaries to obtain an estimation error of approximately
10% on the highest-order estimated lower bound of the
QFI (without exploiting any prior knowledge of the pre-
pared quantum state). Note that the higher the order, the
more measurements are needed to overcome statistical
fluctuations. Numerical investigations on the measurement
budget are detailed in Appendix G 3.

B. GHZ states

The GHZ state is a fundamental resource for various
quantum information processing tasks, including quantum
teleportation [68,69], quantum error correction [70,71],
and quantum cryptography [72]. It can be written as

|ψGHZ〉 = 1√
2

(|0〉⊗N + |1〉⊗N ) . (18)

Remarkably, GHZ states are ideal candidates for quan-
tum metrology as they saturate the value of the QFI
(FQ = N 2) and, thus, can be used to reach higher sensi-
tivities in parameter estimation that scale as approximately
N−1 (known as the Heisenberg limit), and are beyond the
standard shot-noise limit, approximately N−1/2 [5,73,74].

By implementing randomized measurements, we exper-
imentally estimate the QFI as a function of different system
sizes N and witness the presence of multipartite entangle-
ment [5,6,8]. An N -qubit pure GHZ state is genuinely mul-
tipartite entangled (GME), i.e., it cannot be decomposed
into a statistical mixture of tensor products of (N − 1)-
particle states. In general, one can use the inequality FQ >

�(N , k), with �(N , k) = �(N/k)�k2 + (
N − �(N/k)�k

)2,
to certify that a state is not k producible, i.e., that it has an
“entanglement depth” of at least k + 1 [5,6]. In this case,
it is said to be (k + 1)-partite entangled. The inequality
is particularly relevant in the presence of noise, where a
perfect pure state is not produced. Until now, fidelity mea-
surements have allowed validation of genuine multipartite
entanglement in GHZ states prepared on superconducting
qubits [75,76], 14 trapped ions [43], 18 photonic qubits
[77], and other multipartite entangled states [78–81]. Addi-
tionally, GME states can also be verified via multiple
coherences for GHZ states [82,83].

We show our experimental results in Fig. 2. As we men-
tioned earlier, with the RM framework, we can access
many interesting quantum properties from the same exper-
imental dataset. First, to test the quality of the state prepa-
ration on our quantum hardware, we extract two important
quantities—namely, the purity of the final state (Tr(ρ2))
and the fidelity (Tr(ρσ)) with respect to a pure GHZ state
σ = |ψGHZ〉〈ψGHZ|. We plot these results in Figs. 2(a) and
2(b), respectively. In each panel, the blue points denote the
experimental results when error mitigation is performed,
while the orange points correspond to the case when it
is not, i.e., we take G(i)

j = 1, α(i)j = 3 and β(i)j = −1 in
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Eq. (3). We observe clearly that the robust protocol mit-
igates the errors occurring during the measurement phase
as indicated by higher values of fidelities (between 0.85
and 0.97) and purities (between 0.8 and 0.95) compared
with the unmitigated results for the whole qubit range. In
both cases, we observe the decreasing trend of the fidelity
and the purity as a function of the system size N . This sig-
nature clearly indicates that noise is induced during state
preparation of the GHZ states as the two-qubit gate count
increases with N .

We now analyze the convergence of the lower bounds
to the QFI, in Fig. 2(c). Here we plot Fn (n = 0, 1, 2, 3)
for the GHZ state prepared on a system of N = 8 (green)
and N = 10 (violet) qubits. In the absence of noise, the
theoretical value of the QFI for a GHZ state is given by
FQ = N 2. This is plotted as a thick black line for both
N = 8 and N = 10. From the experimental results, it is
clear that the lower bounds converge not to N 2 but to a
lower value. We can understand this by considering that
the state preparation is affected by noise, as is suggested by
the measurements of purity and overlap. One simple way
of modeling this is by assuming that the system is affected
by global depolarization, turning the pure GHZ state
into ρ = (1 − pD) |ψGHZ〉〈ψGHZ| + pD 1/2N . The noise
parameter pD can be extracted from the experimental

values of the purity according to the following relation:

Tr(ρ2) = (1 − pD)
2 + 2pD − p2

D

2N . (19)

With this specific noise model, one can better understand
the convergence of the lower bounds Fn to a finite value of
the QFI as a function of the bound order n. While in the
noiseless scenario one has FQ = N 2, the theoretical value
of the QFI of the noisy GHZ state is found to be given
by [6]

FQ(pD) = N 2 (1 − pD)
2

1 − pD + 2pD/2N . (20)

For N = 8 and N = 10 qubits, FQ(pD) is 60.3 ± 0.45 and
FQ(pD) = 92.7 ± 1.83, respectively. The respective val-
ues of pD are 0.056 ± 0.007 and 0.072 ± 0.018, which are
extracted from the mitigated values of purities, i.e., 0.89 ±
0.0066 and 0.86 ± 0.017 (see Appendix B). In Fig. 2(c)
we draw FQ and FQ(pD) as solid and dashed black lines,
respectively. We observe the convergence of Fn to the val-
ues of the QFI for the extracted value of pD within error
bars of the estimations, for both values of N . As mentioned
in Sec. III E, we observe that even though Fn exponen-
tially converges to the QFI as a function of n, its statistical
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FIG. 2. Experimental results for the pure GHZ state. (a) Purity of the prepared state. (b) Fidelity with respect to the GHZ state
σ = |ψGHZ〉〈ψGHZ|. (c) Convergence of Fn as a function of n for N = 8, 10 qubits (green and violet, respectively) to the true value of
the QFI. Solid lines represent the theoretical value for pure GHZ states, and dashed lines denote the case of noise affecting the system
in the form of global depolarization. (d) F0, F1, and F2 (light to dark with circles, squares, and diamonds, respectively) as a function of
the number of qubits N . The solid line is the exact value of the QFI FQ = N 2 for pure GHZ states. The dashed blue line corresponds to
the entanglement witness �(N , k = N − 1) = (N − 1)2 above which the state is genuinely multipartite entangled. The dashed orange
line corresponds to the entanglement witness �(N , k = 5) above which we detect a state to be at least hexapartite entangled. The
details of the experimental protocol are described in Sec. IV A.

030338-8



ROBUST ESTIMATION OF THE QUANTUM FISHER. . . PRX QUANTUM 5, 030338 (2024)

error increases at a fixed measurement budget. This is
thoroughly discussed in Ref. [16].

In Fig. 2(d) we show the experimental measurements
of F0, F1, and F2 (light to dark) on the prepared GHZ
state as a function of N . The thick black line provides the
ideal scaling of the QFI (FQ = N 2) for pure GHZ states.
The dashed black line denotes the entanglement witness
�(N , k = N − 1), which scales as (N − 1)2 and above
which we can consider our prepared states to be GME. The
experimental points correspond to the measured values for
two different cases: mitigated results through our calibra-
tion step in blue, and raw data without our performing the
calibration step in orange. We observe that the mitigated
data used to estimate Fn violate the requirement for the
necessary entanglement witness to be GME for any size
N , and hence all our prepared states have an entanglement
depth k = N . Thus, we demonstrate the presence of multi-
partite entanglement through the estimation of converging
lower bounds to the QFI, whose convergence to the true
value is shown in Fig. 2(a).

Analyzing the raw data [orange points in Fig. 2(b)],
which are prone to errors during the randomized measure-
ment protocol, gives us lower estimations of the bounds.
They do not violate the genuine multipartite entanglement
threshold and do not follow the expected scaling seen for
the mitigated data points. This shows that the error mitiga-
tion in the measurement protocol is decisive and useful for
estimating the underlying properties of the prepared quan-
tum states. In the case of the analysis of the raw data, we
can assert from the witness bound FQ > �(N , k) [5,6] that
our prepared state contains an entanglement depth k = 6
for N ≥ 6. Importantly, in Appendix F 3 we show the esti-
mation of the lower bounds in the case when the calibration
[step (1) in Fig. 1] is done entirely at the beginning and
is followed by the experiment [step (2) in Fig. 1]. We
observe clearly that performing the calibration in multiple
iterations provides better results (closer to the theoretical
values) for larger system sizes, where the full experimental
duration starts to increase.

C. Ground state of the critical TFIM

While the GHZ state has a simple analytical wave func-
tion, we find it instructive to apply our protocol now on
a quantum state with a more complex multipartite entan-
glement structure. We study here the behavior of the QFI
at a critical point that presents a rich structure of multipar-
tite entanglement [3,4,84,85]. In particular, we consider the
TFIM Hamiltonian

H = −J
∑

j

σ z
j σ

z
j +1 − h

∑

j

σ x
j , (21)

where h is the transverse field and we set J = 1. It dis-
plays a quantum phase transition at h = 1 that manifests
itself as a growth of multipartite entanglement that can be

(a)

(b)

FIG. 3. Experimental results for the lower bounds of the QFI
for the ground state of the Ising model at the critical point. (a)
Sketch of the circuit used to variationally prepare the ground
state. (b) Results for F1 estimated with the robust estimator
as a function of the number of qubits N for different circuit
depth p . The solid gray line corresponds to the exact QFI value.
The dashed colored lines correspond to the theoretical value for
the given depth of the circuit p . The dashed gray line denotes
the threshold FQ = N , above which the state is entangled. The
measurement budget used is described in Sec. IV A.

witnessed by the QFI [2,85]. We use classical numerical
simulations to estimate variationally the ground state at
the critical point, optimizing the parameters of a circuit as
is done for the quantum adiabatic optimization algorithm
[36]; see Fig. 3(a). Then we study the interplay between
the depth p of the circuit realized and the approximation
of the ground state in an actual experiment. Indeed, in
recent times there has been significant interest in measur-
ing the QFI in states prepared through variational circuits
on current quantum processors [57,86,87].

The preparation of the state entails a series of uni-
tary quantum evolutions under the noncommuting terms in
Eq. (21), i.e., HA = −J

∑
j σ

z
j σ

z
j +1 and HB = −h

∑
j σ

x
j ,

that are applied to an initial quantum state |ψ0〉 [Fig. 3(a)].
The final state after p layers can be written as

|ψ(δ, γ )〉 =
p∏

l=1

e−iδlHBe−iγlHA |ψ0〉 , (22)
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where the “angles” δl and γl are variational parame-
ters used in the lth layer to minimize the final energy
〈ψ(δ, γ )| H |ψ(δ, γ )〉. The optimal parameters are found
by use of a suitable optimization algorithm. In the particu-
lar case of our target state, it has been shown that it could
be prepared exactly in p = N/2 steps, where N is the total
number of qubits [88].

In Fig. 3(b) we plot F1 for different values of the depth
p of the circuits as a function of the number of qubits
N for the robust estimator. The solid gray line represents
the exact numerical value of the QFI. The dashed colored
lines correspond to the exact value of the QFI for different
depths p = 1, 2, 3 from bottom to top. Our first observa-
tion consists in our remarking that we generate and certify
the presence of entanglement in all our prepared states
as FQ ≥ F1 ≥ N [13] within error bars for all values of
depth p and system size N . The corresponding threshold is
shown as a dashed gray line in the plot.

We observe that a larger circuit depth is not tightly
linked to a higher measured value of F1. Indeed, the
increase in the circuit depth p incorporates more noisy
gates, which reduce the fidelity of the prepared state com-
pared with that of its true target state. This results in a
decrease of the QFI estimation compromised by the noisy
state preparation, which is captured very well in Fig. 3(b).
In the ideal scenario, increasing the number of layers
should guarantee better convergence to the target state.
The effect of noise is clearly shown in Appendix F, where
we also provide the estimation of the fidelity of the state
preparation and the purity of the prepared state.

Importantly, we establish the presence of multipartite
entanglement via F1 as we violate the entanglement wit-
ness F1 > �(N , k = 2) [5,6]. This confirms the presence
of an entanglement depth k = 3 for all prepared states of
system size N > 2, as the experimental points are above
the witness depicted by the dashed dark gray line in
Fig. 3(b). Thus, our method allows us to quantify the true
metrological power in the form of generating multipartite
entanglement in our noisy prepared states. Additionally,
we remark here that we have focused on the bound F1
because it provides more reliable estimates with respect
to the other estimators (F0 and F2) even if their qualita-
tive behavior is the same. The reason behind this choice is
that F2 > F1 > F0, but the higher the order, the larger the
statistical error at fixed measurement budget, as explained
in Sec. III E. We provide the other experimental results in
Appendix F 2.

V. CONCLUSIONS

In this paper, we have provided an experimental estima-
tion of the QFI. This was achieved on a quantum processor
with up to 13 qubits on the basis of measurements of a
converging series of polynomial lower bounds. By
combining advanced methods from the randomized

measurement toolbox, we have been able to overcome
drifting gate and readout errors and obtain a robust and
unbiased estimator for the QFI.

We applied our method to two different states: GHZ
states and the ground state of the TFIM at the critical point.
For the former, our measurements are in perfect agree-
ment with theoretical predictions and allow us to witness
the presence of multipartite entanglement. With the error
mitigation procedure that we introduce here, we observed
that all our prepared GHZ states were GME. In the varia-
tional preparation of the ground state of the critical TFIM,
we use the estimated QFI to observe an interesting trade-
off. While the theoretical approximation accuracy of the
ground state increases with the circuit depth and is optimal
at depth p = N/2, the best estimation of the theoretically
predicted ground state QFI is obtained with a smaller cir-
cuit depth. We attribute this effect to noise and decoherence
increasing with circuit depth as well.

We have gone beyond previous work aiming at esti-
mating a converging series of lower bounds on the QFI
(rather than a single lower bound to it), using larger sys-
tem sizes, and obtaining a better convergence to the true
value of the QFI for the prepared state. This was possible
by our exploiting several state-of-the-art protocols under
the umbrella of randomized measurements.

We stress that our method is well suited for following the
drifting errors in the hardware as experimentally shown in
Appendix D 1. Performing a calibration at the beginning
of the whole experiment is not sufficient for taming and
understanding the errors in the randomized measurement
protocol, of which we provide evidence in Appendix F 3.

Furthermore, our approach is not limited to the mea-
surement of the QFI. Our results extend easily to obtain
robust and unbiased estimators for arbitrary nonlinear
multicopy functionals that can be expressed as observ-
ables acting on multiple copies of the quantum state. This
extends the applicability of our method beyond the QFI
and opens up possibilities for other quantum information
processing tasks, such as exploring many-body entangle-
ment phases by measuring partial transpose moments [31].
Additionally, as the robust calibration method is mem-
ory efficient, it can be performed to measure observables
such as energy estimation of the ground state of quantum
chemistry Hamiltonians prepared on large-scale quantum
devices [89,90], which can be further boosted by the
use of common randomized measurement techniques [20].
Finally, our method could be used in combination with
machine-learning approaches to learn complex phases of
matter with robust shadows [91,92].
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APPENDIX A: CONVERGING SERIES OF LOWER
BOUNDS OF THE QFI

As shown in Ref. [15], the QFI can be expanded in terms
of a Taylor series in the eigenvalues λμ of the density
matrix ρ = ∑

μ λμ |μ〉〈μ|. This reads as

FQ = 2
∞∑

�=0

∑

(μ,ν),λμ+λν>0

(λμ − λν)
2

× (1 − λμ − λν)
�| 〈μ| A |ν〉 |2. (A1)

We note that each term in the infinite sum is positive. Trun-
cating the summation at a finite value n, we thus obtain a
converging series of polynomial lower bounds Fn that can
be measured experimentally:

Fn = 2
n∑

�=0

∑

(μ,ν),λμ+λν>0

(λμ − λν)
2

× (1 − λμ − λν)
�| 〈μ| A |ν〉 |2

= 2
n∑

q=0

(
n + 1
q + 1

)

(−1)q
q+2∑

m=0

C(q)m Tr(ρq+2−mAρmA),

(A2)

where we have introduced the coefficients C(q)m = (q
m

)−
2
( q

m−1

)+ ( q
m−2

)
, with the binomial coefficients defined

such that
( q

m′
) = 0 if m′ < 0 or m′ > q. The last equality

can be proven by one injecting the eigenvalue decomposi-
tion of ρ in the right-hand side and rearranging the sums
[15].

APPENDIX B: QUANTUM PROPERTIES UNDER
GLOBAL DEPOLARIZATION

Let us consider a quantum state defined as ρ(pD) =
(1 − pD) |ψ〉〈ψ | + pD1/2N , where |ψ〉 is a pure state and
1/2N is the fully mixed state. The state ρ(pD) is mixed

with global depolarizing noise of strength pD. The distinct
eigenvalues of ρ(pD) are λ1 = (1 − pD)+ pD/2N (with
multiplicity 1) and λ2 = pD/2N (with multiplicity 2N − 1).
As shown in Ref. [6], for ρ(pD), the QFI is given [with
replacement of the eigenvalues in Eq. (1)] by

FQ = 4
(〈ψ | A2 |ψ〉 − 〈ψ | A |ψ〉2) (1 − pD)

2

1 − pD + 2pD/2N .

(B1)

Similarly, we notice that for this specific state, all nonzero
terms in Eq. (A2) are equivalent to (1 − pD)

2(pD −
2pD/2N )�. Thus, we can provide an expression for the
lower bounds Fn under global depolarization noise as

Fn = 4
(〈ψ | A2 |ψ〉 − 〈ψ | A |ψ〉2) (1 − pD)

2

×
n∑

�=0

(pD − 2pD/2N )�. (B2)

Analogously, we can also express the analytical form of
the purity for the state ρ(pD) as

Tr(ρ(pD)
2) = (1 − pD)

2 + 2pD − p2
D

2N . (B3)

Assuming this specific noise model, one can perform mul-
tiple interesting analyses with the above analytical expres-
sions. One such investigation is to better understand the
convergence of the lower bounds Fn to a finite value of the
QFI as a function of the bound order n. For this purpose,
we could use the experimentally recorded values of purity
to invert the above purity expression and extract values of
pD for a given state of interest. We perform this analysis
for the eight-qubit and ten-qubit GHZ states as shown in
Fig. 2(a). The mitigated values of purities as estimated and
shown in Fig. 2(a) are 0.89 ± 0.0066 and 0.86 ± 0.017,
respectively, which give the corresponding values of pD as
0.056 ± 0.007 and 0.072 ± 0.018 for the eight-qubit and
ten-qubit GHZ states. One can estimate easily the theo-
retical value of the QFI using Eq. (B1) under this noise
assumption. This presents an easy method to check the
convergence of the lower bounds to a finite value of the
QFI as presented in Fig. 2.

APPENDIX C: DERIVATION OF THE ROBUST
SHADOW ESTIMATOR WITH LOCAL NOISE

In this appendix we construct the robust classical
shadow estimator given in Eq. (3), equivalent to the one
presented for the first time in Ref. [18]. We consider a situ-
ation where we have performed randomized measurements
on an N -qubit state ρ, which are affected by noise. We
assume that the noise is gate independent, Markovian, and
stationary within each iteration, and that it occurs between
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the random unitaries and the measurements (not before the
unitaries). This ensures that we can model noisy random-
ized measurements as M ◦�(i) ◦ U (r), where U (r) is the
ideal unitary channel describing the application of ideal
random unitaries U(r), �(i) is the noise channel in iter-
ation i, capturing gate noise and readout errors, and M
is the measurement channel, describing an ideal compu-
tational basis measurement [18]. In addition, we assume
there is local noise, i.e., the noise channel decomposes as
�(i) = �

(i)
1 ⊗ · · · ⊗�

(i)
N and local random unitaries, i.e.,

the ideal unitary channel is realized with local unitary
transformations U(r) = U(r)

1 ⊗ · · · ⊗ U(r)
N . Here, the local

unitaries U(r)
j are sampled independently and uniformly

from the circular unitary ensemble, i.e., the Haar measure
on the unitary group U(2).

As described in the main text, we use first a calibration
protocol, equivalent to the one described in Ref. [18], to
characterize the local noise channel �(i) in terms of N
parameters G(i)

j . To perform this calibration, we assume
that the state |0〉 = |0〉⊗N can be prepared with high fidelity
in our experiment. The calibration results are then used to
build an unbiased estimator ρ̂ of the density matrix ρ—a
robust classical shadow—from randomized measurements
performed on ρ, which mitigates the noise errors induced
by �(i).

In the remainder of this appendix, we drop the super-
script i denoting the iteration of the experiment to simplify
the notation.

1. Robust shadow from randomized measurements

Under the noise assumptions described above, noisy
randomized measurements provide access to the probabil-
ity distribution of the measured bit strings s = (s1, . . . , sN ),
conditioned on the application of a local random unitary
U(r) = U(r)

1 ⊗ · · · ⊗ U(r)
N :

P�(s|U(r)) = 〈s|�(U(r)ρ U(r)†) |s〉
= Tr(ρ U(r)†�∗(|s〉〈s|)U(r)), (C1)

where � is the trace-preserving noise channel and �∗ is
its adjoint. We aim to construct an unbiased estimator of
ρ—robust classical shadow—in terms of the statistics of
P�(s|U(r)). We choose an ansatz of the form

ρ̃(r) =
∑

s

P�(s|U(r))U(r)†O(s)U(r)

=
∑

s

Tr(ρ U(r)†�∗(|s〉〈s|)U(r))U(r)†O(s)U(r)

=
∑

s

Tr1

(
(ρ ⊗ 1) (U(r)†)⊗2

× [
�∗(|s〉〈s|)⊗ O(s)

]
U(r)⊗2

)
, (C2)

with O(s) = ⊗
j Oj (sj ) being a local Hermitian operator,

which we take to be diagonal in the computational basis,
and Tr1 denoting the partial trace over the first copy of the
N -qubit system. The ensemble average over the random
unitaries U(r) yields

E[ρ̃(r)] = Tr1

[

(ρ ⊗ 1)�(2)

(
∑

s

�∗(|s〉〈s|)⊗ O(s)

)]

= Tr1
[
(ρ ⊗ 1)�(2)(Q)

]
, (C3)

with

Q =
∑

s

�∗(|s〉〈s|)⊗ O(s)

=
N⊗

j =1

⎡

⎣
∑

sj =0,1

�∗
j (|sj 〉〈sj |)⊗ Oj (sj )

⎤

⎦ =
N⊗

j =1

Qj .

(C4)

Here we used the local noise assumption [noting that�∗ =
(
⊗

j �j )
∗ = ⊗

j �
∗
j ] and �(2)(·) = E[(U(r)†)⊗2(·)U(r)⊗2]

denotes the two-copy local unitary “twirling channel” [94].
It is evaluated to

�(2)(Q) =
(

1
3

)N N⊗

j =1

((

Tr(Qj )− 1
2

Tr(Sj Qj )

)

1(2)j

+
(

Tr(Sj Qj )− 1
2

Tr(Qj )

)

Sj

)

, (C5)

with the swap operator Sj = ∑
sj1 ,sj2

|sj2〉〈sj1 | ⊗ |sj1〉〈sj2 |
acting on two copies of qubit j and 1(2)j = 1j ⊗ 1j the
identity.

The estimator ρ̃(r) is an unbiased estimator of ρ if the
average over the Haar random unitaries yields the true den-
sity matrix of the quantum state, E

[
ρ̃(r)

] = ρ. Observing
that Tr1 ((ρ ⊗ 1)S) = ρ, where S = ⊗N

j =1 Sj is the swap
operator between two copies of the entire system, we thus
find, from Eq. (C3), that the estimator is unbiased for any
state ρ if and only if �(2)(Q) = S, or equivalently, using
Eq. (C5),

(

Tr(Qj )− 1
2

Tr(Sj Qj )

)

1(2)j +
(

Tr(Sj Qj )− 1
2

Tr(Qj )

)

Sj = 3Sj for all j . (C6)

On top of the assumption that Oj (sj ) is diagonal in the
computational basis, we further assume that it is of the
form Oj (sj ) = αj |sj 〉〈sj | + βj1, with αj and βj real num-
bers that do not depend on sj . With this, we can evaluate

030338-12



ROBUST ESTIMATION OF THE QUANTUM FISHER. . . PRX QUANTUM 5, 030338 (2024)

the terms appearing in Eq. (C6) as follows:

Tr(Qj ) =
∑

sj

Tr(�∗(|sj 〉〈sj |))Tr(Oj (sj ))

=
∑

sj

Tr(�∗(|sj 〉〈sj |))(αj + 2βj )

= Tr(�(1))(αj + 2βj ) = 2αj + 4βj , (C7)

Tr(Sj Qj ) =
∑

sj

Tr(�∗(|sj 〉〈sj |)Oj (sj ))

= αj

∑

j

Tr(�∗(|sj 〉〈sj |) |sj 〉〈sj |)

+ 2βj = 2αj Gj + 2βj , (C8)

where we have used also that the noise channel is trace
preserving and Tr(SA ⊗ B) = Tr(AB). Here we have intro-
duced the quantity

Gj = 1
2

∑

sj

〈sj |�j (|sj 〉〈sj |) |sj 〉 , (C9)

which contains all the relevant information on the noise
acting on qubit j during the randomized measurement pro-
tocol, and which we interpret as the average “survival
probability” of the two basis states of qubit j . Thus, to
characterize the noise that affects the experimental proto-
col, we need only to learn how it acts on the computational
basis states |sj 〉. With the above expressions, inversion of
Eq. (C6) gives

αj = 3
2Gj − 1

, βj = Gj − 2
2Gj − 1

. (C10)

Inserting the results of Eq. (C10) into Eq. (C2), we can
finally write the estimator ρ̃ as

ρ̃(r) =
∑

s

P�(s|U(r))

N⊗

j =1

(
αj U(r)

j
† |sj 〉〈sj | U(r)

j + βj1
)

=
∑

s

P�(s|U(r))

N⊗

j =1

(
3

2Gj − 1
U(r)

j
† |sj 〉〈sj | U(r)

j

+ Gj − 2
2Gj − 1

1

)

. (C11)

In the absence of noise Gj = 1, for all j , so the usual
formula for the estimator of the density matrix from ran-
domized measurements is recovered: Oj (sj ) = 3 |sj 〉〈sj | −
1 [61,65]. For a fully depolarizing channel, on the other
hand, one gets Gj = 1/2, in which case we are not able
to extract any information by measuring the state as the
coefficients in Eq. (C10) diverge.

2. Calibration step

The parameters in Eq. (C10) rely on the estimation of
Gj . It is based on the calibration procedure described in
Sec. III A. In a nutshell, the system is prepared in a state
with high fidelity, namely, |0〉 ≡ |0〉⊗N , and the random-
ized measurement protocol is applied. We show here that
Gj can be directly linked to the random unitaries U(r) =
U(r)

1 ⊗ · · · ⊗ U(r)
N , with r = 1, . . . , NU, and the bit strings

of measurement outcomes s(r,m) = (s(r,m)
1 , . . . , s(r,m)

N ), with
m = 1, . . . , NM .

We introduce the following quantity:

Cj =
∑

sj =0,1

E

[
〈sj |�j (U

(r)
j |0〉〈0| U(r)

j
†
) |sj 〉

× 〈sj | U(r)
j |0〉〈0| U(r)

j
† |sj 〉

]
, (C12)

where |0〉 represents the calibration state of the single qubit
j and E[·] is the average over the circular unitary ensemble.
We can define an estimator as

Ĉj = 1
NU

∑

r

∑

sj =0,1

P̂(sj |U(r)
j )P(sj |U(r)

j ), (C13)

where P̂(sj |U(r)
j ) = ∑NM

m=1((δsj ,s(r,m)
j
)/NM ) is the estimated

(noisy) Born probability and P(sj |U(ri)
j ) = | 〈sj | U(r)

j |0〉 |2
is the theoretical (noiseless) Born probability. The
information on the noise is contained in P̂(sj |U(r)

j ),
which approaches the theoretical noisy Born probability
P�(sj |U(r)

j ) in the limit NM → ∞. Thus, since with our

noise model EQM[P̂(sj |U(r))] = 〈sj |�j (U
(r)
j |0〉〈0| U(r)

j
†
)

|sj 〉, we have E
[
EQM[Ĉj ]

] = Cj , i.e., Ĉj is an unbiased
estimator for Cj . Here EQM[·] is the quantum mechanical
average over the Born probabilities. We note that under the
(idealized) assumption of strictly gate-independent noise
(same noise channel �j for any U(r)

j , including the idle
gate 1j ), we could measure Gj directly from its definition,
Eq. (C9). In practice, we expect that Cj (and its esti-
mator Ĉj ) captures the actual noise acting during the
measurement stage more faithfully, as exactly the same
experimental resources are used and any weakly gate-
dependent noise is averaged (twirled) to yield approxi-
mately the same gate-independent average noise channel,
E[�U(ρ)] ∼ �(E[UρU†]). We refer the reader to more
details on gate-dependent noise in Ref. [18].

We now link Cj and the quantity Gj in Eq. (C9). We
observe that Cj can be written as
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Cj = E

⎡

⎣〈0|⊗2 U(r)
j

†⊗2

⎛

⎝
∑

sj =0,1

�∗
j

(|sj 〉〈sj |
)⊗ |sj 〉〈sj |

⎞

⎠U(r)
j

⊗2 |0〉⊗2

⎤

⎦ , (C14)

where we have used the property Tr(�(A)B) = Tr(A�∗(B)).
As in the previous section, we can express the average in
Cj over unitaries in terms of a twirling channel�(2)

j (Qj ) (a
single-qubit version of the two-copy channel� introduced
before). In this case we write the two-copy operator Q =⊗N

j =1 Qj with Qj = ∑
sj =0,1�

∗
j

(|sj 〉〈sj |
)⊗ |sj 〉〈sj |. Using

again the twirling formula in Eq. (C5) (now for two copies
of a single qubit), one obtains

Cj = 〈0|⊗2�
(2)
j

⎛

⎝
∑

sj

�∗(|sj 〉〈sj |)⊗ |sj 〉〈sj |
⎞

⎠ |0〉⊗2

= 1 + Gj

3
. (C15)

The link between Cj and Gj being clear, one can define an
estimator for Gj in terms of the one for Cj in Eq. (C13):

Ĝj = 3 Ĉj − 1. (C16)

In the absence of noise, one can check that Gj = 1 and
Cj = 2

3 , for all j = 1, . . . , N [61]. We remark here that all
our results are compatible with the results in Ref. [18],
where a slightly different formalism was used.

We discussed in Sec. III D that the statistical accuracy
of the estimator of Gj can be increased by the use of com-
mon randomized numbers [20] to define an estimator with
smaller variance with respect to Ĝj .

The enhanced estimator Ĝj is connected as well to
the quantity Cj that we access in the experiments, as in
Eq. (10). Explicitly, we write

Ĝj = 3 Ĉj − 1 − Bj + E[Bj ], (C17)

where Bj is defined in Eq. (9). Therefore the common
randomized measurement procedure enters solely into the
postprocessing. The variance of estimators obtained from
such practice was studied analytically in Ref. [20], where
it was shown that involving positively correlated random
variables, as above, indeed allows one to significantly
reduce the variance upper bounds. In the following section
we compare, on the basis of our experimental data, this
estimator with the estimator introduced in Eq. (C16).

3. Experimental comparison of the estimators
Ĝj and Ĝj

We consider the N = 13 qubit experiment performed on
the “ibm_prague” processor. We performed a calibration

of the device as described in Sec. III A and depicted in
step (1) in Fig. 1. For each iteration i = 1, . . . , NI and
for each applied unitary U(ri) (ri = 1, . . . , NU), we collect
NM = 1000 bit strings of measurement outcomes. From
the unitaries and the bit strings we compute the quantities
Ĝ(i)

j and Ĝ(i)j as defined above, which contain the informa-
tion on the local errors in the measurement protocol within
each iteration i.

In Fig. 4 we show a comparison of the two estima-
tors, for iteration i = 1 and all the qubits (j = 1, . . . , 13).
In the inset we show a comparison of the histograms of
the values that build up Ĝ(1)

j and Ĝ(1)j for the first qubit
(j = 1), where each point corresponds to an element of the
sum over r in Eq. (C13) for Ĝ(1)

j , and of the analogous

sum for Ĝ(1)j . Remarkably, we observe that the contribu-
tions to Ĝ(1)1 are much less spread than those to Ĝ(1)

1 ; in
particular, the contributions to Ĝ(1)

1 range from approx-
imately 0.6 to approximately 1.8, while the Ĝ(1)1 counts
are sharply peaked at around approximately 1. We argue
this is due to the trick of common random numbers [20]
used to define Ĝ(i)j , which in general allows one to reduce

1 2 3 4 5 6 7 8 9 10 11 12 13
j

0.92

0.96

1.00

1.04
Ĝ

(1)
j

Ĝ(1)
j

0.6 1 1.4 1.80

20

40 j = 1

co
un

ts

FIG. 4. Comparison of Gj with use of the enhanced estima-
tor Ĝj and the previous estimator Ĝj for a 13-qubit state on
“ibm_prague.” The quantities are measured according to the cal-
ibration protocol described in Sec. III A and depicted in Fig. 1.
N tot

U = NI NU = 27 000 (number of unitaries in the randomized
measurement protocol) and NM = 1000 (number of measure-
ments per unitary). In the inset we compare the estimators for
iteration i = 1, i.e., Ĝ(1)

j (blue) and Ĝ(1)j (red), for the first qubit
(j = 1) by plotting a histogram where each occurrence corre-
sponds to an element of the sum over r in Eq. (C13) for Ĝ(1)

j

and of the analogous sum for Ĝ(1)j .

030338-14



ROBUST ESTIMATION OF THE QUANTUM FISHER. . . PRX QUANTUM 5, 030338 (2024)
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)
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FIG. 5. G(i)
j as a function of the iteration i for a 13-qubit state

on “ibm_prague.” The quantity is estimated from the calibration
data of the protocol depicted in Fig. 1, with use of the estimator
Ĝ(i)j of Eq. (11). Here N tot

U = NI NU = 27 000 (number of uni-
taries in the randomized measurement protocol) and NM = 1000
(number of measurements per unitary). We present the result for
qubits j = 4, 5, 6.

the variance of the estimator. The same holds for any
qubit j .

APPENDIX D: EXPERIMENTAL RESULTS FOR
THE NOISE

In this appendix we perform an experimental analysis on
the noise in the quantum platform we use. We investigate
the time dependence of the noise, noticing huge fluctua-
tions in the quantities we use to estimate the errors, and we
observe that the most important contribution to the single-
qubit error can be identified as being caused by readout
errors.

1. Verification of the time dependence of the noise in
“ibm_prague”

We consider again the N = 13 qubit experiment per-
formed on the “ibm_prague” processor. In Fig. 5 we study
the behavior of G(i)

j [estimated through Ĝ(i)j of Eq. (11)]
as a function of the iterations i. The error in the quan-
tum device fluctuates in time, and we want to verify that
it is important to perform consecutive iterations of exper-
iments to account for the temporal variations in gate and
readout errors instead of performing a single calibration in
advance. We plot G(i)

j as a function of i for three different
qubits, labeled by j . For j = 4, 5, we observe fluctuating
events given G(i)

j as a function of the iterations i, hinting
that it is important to follow the temporal fluctuations of
the noise to provide reliable and robust estimations. This
is not the case for all the qubits; e.g., we do not see such
fluctuations for j = 6 in the plot. Similar effects have been
observed in other types of error mitigation protocol with
superconducting qubits [95,96].

2. Check on the origin of the noise

Our aim here is to study what is the most important
source of errors in the randomized measurement proto-
col. In Fig. 6 we consider a two-qubit system realized on
the “ibm_lagos” processor. We use the calibration method
described in Sec. III A and depicted in Fig. 1. To dis-
criminate between the various sources of noises, instead
of applying a single unitary U = ⊗N

j =1 Uj , we use several
layers of unitaries, given by the number η, that are sam-
pled independently and uniformly from the circular unitary
ensemble. We measure the quantity Gj as a function of the
parameter η, using the enhanced estimator Ĝj of Eq. (11).
The rationale behind this approach is as follows. We can
write the noise channel � acting during the measurement
protocol as two separate contributions: one due to errors
on the unitaries �U and one due to the readout �meas, with
� = �meas ◦�U. By applying η layers of unitaries, one
would get �(η) = �meas ◦ (�U)

η. Following the effect of
the noise as a function of η, we may be able to discrimi-
nate the contributions of �U and �meas. This idea can be
formalized on the basis of a simple noise model defined by

�U(ρj ) = (1 − pU)ρj + pU

3

∑

α

σ αj ρj σ
α
j ,

�meas(ρj ) = (1 − pmeas)ρj + pmeasσ
x
j ρj σ

x
j . (D1)

Here σα = σ x, σ y , σ z are single-qubit Pauli matrices, with
ρj being a single-qubit density matrix. The action of the
unitary gates is modeled as a depolarizing noise chan-
nel �U with parameter pU, while the readout errors are
described by bit flips that happen with probability pmeas.
The full channel �(η)(ρj ) applied on a single-qubit state
ρj gives

�(η)(ρj ) = (1 − ηpU − pmeas)ρj

+ pUη

3

∑

α

σ αj ρj σ
α
j + pmeasσ

x
j ρj σ

x
j . (D2)

We can compute explicitly the behavior of Gj at first order
in pU, pmeas � 1 and obtain

Gj (η) = 1 − 2pU

3
η − pmeas. (D3)

We observe that the unitary contribution would mono-
tonically decrease Gj as a function of η, while the read-
out error yields a fixed shift by pmeas. From Fig. 6, we
observe that Gj remains essentially constant within error
bars for different values of η, and hence increasing the
number of unitaries does not induce more noise (in terms
of the parameter Gj ) in the system. This suggests that the
most relevant contribution to the noise in the randomized
measurement protocol is due to readout errors.
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APPENDIX E: VERIFICATION OF THE VALIDITY
OF THE ASSUMPTION OF LOCAL NOISE

In this appendix we propose a method to test the assump-
tion of a local noise channel, i.e., � = ⊗N

j =1�j , that is
based on our analyzing the statistical correlations among
qubit pairs. We use the calibration data used for the miti-
gation of the QFI results on the prepared GHZ states. This

appendix is structure as follows: first we drop the assump-
tion of locality, i.e., we consider a general noise channel�,
and introduce a quantity R̃ that can be used for testing its
locality; then we provide an illustrative analytical exam-
ple in the case of crosstalk errors for two qubits; finally,
we show an experimental indication of the validity of the
assumption of locality.

1. Derivation of the estimator of locality of noise

We start by extending Eq. (C12) to measurements that act on the whole device, writing

C̃j = E

⎡

⎣
∑

sj

Tr[〈sj |�(U(r) |0〉〈0| U(r)†) |sj 〉]P(sj |U(r)
j )

⎤

⎦

= E

⎡

⎣
∑

sj

Tr[|sj 〉〈sj | Trk �=j (�(U(r) |0〉〈0| U(r)†))]P(sj |U(r)
j )

⎤

⎦ , (E1)

where E denotes the average over all local unitaries U(r)
k and again P(sj |U(r)

j ) = | 〈sj | U(r)
j |0〉 |2. The latter corresponds

to the Cj introduced in Eq. (C12) if� = ⊗N
j =1�j and can be estimated from the calibration data as explained in Sec.

C 2, according to Eq. (C13). If we average over all local random unitaries U(r)
k with k �= j (denoted as E{k �=j }), we can

exploit the twirling identity for a single-qubit operator Oj , �(1)
j (Oj ) = E[U(r)

j Oj U(r)
j

†
] = (1/2)Tr(Oj ), such that

E{k �=j }[U(r) |0〉〈0| U(r)†] = E

[
U(r)

1 |0〉〈0| U(r)
1

†]⊗ · · · ⊗ U(r)
j |0〉〈0| U(r)

j
† ⊗ · · · ⊗ E

[
U(r)

N |0〉〈0| U(r)
N

†]

= �
(1)
1 (|0〉〈0|)⊗ · · · ⊗ U(r)

j |0〉〈0| U(r)
j

† ⊗ · · · ⊗�
(1)
N (|0〉〈0|)

= 1/2 ⊗ · · · ⊗ 1/2 ⊗ U(r)
j |0〉〈0| U(r)

j
† ⊗ 1/2 ⊗ · · · ⊗ 1/2, (E2)

and write

C̃j = E

⎡

⎣
∑

sj =0,1

〈sj | �̃j (U
(r)
j |0〉〈0| U(r)

j
†
) |sj 〉 P(sj |U(r)

j )

⎤

⎦ , (E3)

where we have defined the “marginal channel” �̃j (ρj ) = Trk �=j (�(1/2 ⊗ · · · ⊗ 1/2 ⊗ ρj ⊗ 1/2 ⊗ · · · ⊗ 1/2)). Note
that if � = ⊗N

j =1�j , we obtain �̃j = �j .
Using the same reasoning as for Eq. (C15), we can average over the unitaries and use known results about two-copy
twirling channels to find an expression for C̃j :

C̃j =
∑

sj =0,1

〈0|⊗2�
(2)
j

(
�̃∗

j (|sj 〉〈sj |)⊗ |sj 〉〈sj |
)

|0〉⊗2

= 1
6

∑

sj =0,1

(〈sj | �̃∗
j (|sj 〉〈sj |) |sj 〉 + Tr[�∗

j (|sj 〉〈sj |)]) = 1 + G̃j

3
. (E4)

Here G̃j = 1
2

∑
sj

〈sj | �̃j (|sj 〉〈sj |) |sj 〉 contains the information about the single-qubit noise in terms of a marginal
channel, i.e., without the assumption of locality of the noise, and coincides with Gj in Eq. (C9) in the case � =
⊗N

j =1�j .
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We proceed in a similar way for each pair of qubits (j , j ′) of an N -qubit system in order to derive a quantity that also
contains information about crosstalk errors. In analogy with Eqs. (E1) and (E3), for two qubits we define

D̃j ,j ′ = E

⎡

⎣
∑

sj ,sj ′
Tr[〈sj , sj ′ |�(U(r) |0〉〈0| U(r)†) |sj , sj ′ 〉]P(sj |U(r)

j )P(sj ′ |U(r)
j ′ )

⎤

⎦

= E

⎡

⎣
∑

sj ,sj ′
〈sj , sj ′ | �̃j ,j ′

(
U(r)

j ⊗ U(r)
j ′ |00〉〈00| U(r)

j
† ⊗ U(r)

j ′
†) |sj , sj ′ 〉 P(sj |U(r)

j )P(sj ′ |U(r)
j ′ )

⎤

⎦

= E

⎡

⎣
∑

sj ,sj ′
〈0|⊗4 U(r)

j
†⊗2

U(r)
j ′

†⊗2 (
�̃∗

j ,j ′(|sj , sj ′ 〉〈sj , sj ′ |)⊗ |sj , sj ′ 〉〈sj , sj ′ |
)

U(r)
j

⊗2
U(r)

j ′
⊗2 |0〉⊗4

⎤

⎦ , (E5)

where we have made use of the definition of the “marginal
channel” �̃j ,j ′(ρj ⊗ ρj ′) defined as

�̃j ,j ′(ρj ⊗ ρj ′) = Trk �=j ,j ′
(
�(1/2 ⊗ · · · ⊗ 1/2 ⊗ ρj

⊗1/2 . . .1/2 ⊗ ρj ′ ⊗ 1/2 · · · ⊗ 1/2)
)

(E6)

that uses the same reasoning as for Eq. (E2). This quantity
can be estimated from the calibration data C̃j extend-
ing the estimators in Eqs. (C13) and (10) to two-qubit
measurements.

As previously done for the single-qubit quantity C̃j , we
can now explicitly average over the unitaries on the pair of
qubits (j , j ′), exploiting the appropriate twirling channel

1 3 5 7 9
η

0.96

0.98

1.00

G
j

G1

G2

FIG. 6. Gj for a two-qubit system realized on “ibm_lagos” as
a function of the number of layers of unitaries η applied to the
initial state. We use the estimator Ĝj of Eq. (11). A value compat-
ible with 1 means that the noise can be ignored. Here NU = 800
(number of unitaries in the randomized measurement protocol)
and NM = 1000 (number of measurements per unitary).

identities. In particular, we can write

D̃j ,j ′ =
∑

sj ,sj ′=0,1

〈0|⊗4�
(2)
j ,j ′
(
�̃∗

j ,j ′
(|sj , sj ′ 〉〈sj , sj ′ |)

⊗ |sj , sj ′ 〉〈sj , sj ′ |) |0〉⊗4 = 〈0|⊗4�
(2)
j ,j ′
(
Qj ,j ′

) |0〉⊗4 ,
(E7)

where we have defined Qj ,j ′ = ∑
sj ,sj ′ �̃

∗
j ,j ′
(|sj , sj ′ 〉〈sj , sj ′ |)

⊗ |sj , sj ′ 〉〈sj , sj ′ |. Here we also introduced �
(2)
j ,j ′ such

that �(2)
j ,j ′(Qj ⊗ Qj ′) = E

[
U(r)

j
†⊗2

U(r)
j ′

†⊗2
(Qj ⊗ Qj ′)U(r)

j
⊗2

U(r)
j ′

⊗2] = �
(2)
j (Qj )⊗�

(2)
j (Qj ′), which can be extended

linearly to nonproduct observables Qj ,j ′ . Using the twirling
formula in Eq. (C5) by analytical calculations, one obtains
(with implicit identity operators)

D̃j ,j ′ = 〈0|⊗4�
(2)
j ,j ′
(
Qj ,j ′

) |0〉⊗4 = 1
36
[
Tr(Qj ,j ′)

+ Tr(Sj Qj ,j ′)+ Tr(Sj ′Qj ,j ′)+ Tr(Sj Sj ′Qj ,j ′)
]

.
(E8)

We can then compute

Tr(Qj ,j ′) = 4,

Tr(Sj Qj ,j ′) =
∑

sj ,sj ′
〈sj | Trj ′[�̃∗

j ,j ′(|sj , sj ′ 〉〈sj , sj ′ |]) |sj 〉

= 2
∑

sj

〈sj | �̃j
(|sj 〉〈sj |

) |sj 〉 = 4G̃j ,

Tr(Sj ′Qj ,j ′) = 4G̃j ′ ,

Tr(Sj Sj ′Qj ,j ′) =
∑

sj ,sj ′
〈sj sj ′ | �̃j j ′

(|sj , sj ′ 〉〈sj , sj ′ |) |sj sj ′ 〉

≡ 4G̃j ,j ′ , (E9)
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where

G̃j ,j ′ = 1
4

∑

sj ,sj ′
〈sj , sj ′ | �̃j ,j ′

(|sj , sj ′ 〉〈sj , sj ′ |) |sj , sj ′ 〉 .

(E10)

Eventually, we arrive at the following expression for D̃j ,j ′ :

D̃j ,j ′ = 1
9

(
1 + G̃j + G̃j ′ + G̃j ,j ′

)
. (E11)

Estimating C̃j and D̃j ,j ′ , we have thus experimental access
to the terms G̃j and G̃j ,j ′ that contain information about the
noise channel�. Both of them are equal to 1 in the absence
of noise (G̃j = G̃j ,j ′ = 1), and if G̃j ,j ′ �= G̃j G̃j ′ , then � �=
⊗N

j =1�j , i.e., the error is not local. Thus, we introduce the
quantity

R̃ = G̃j ,j ′ − G̃j G̃j ′ (E12)

as a proxy for crosstalk effects. In particular, R̃ �= 0 wit-
nesses the presence of crosstalk in the system according to
the previous reasoning—namely, R̃ �= 0 implies that � is
not factorized. We remark here that R̃ = 0 cannot exclude
the presence of crosstalk. There exist noise channels� that
introduce crosstalk effects but satisfy the condition R̃ = 0.
In the following, we provide an example of a noise chan-
nel that could model measurement errors in simple cases
and show that R̃ is able to detect crosstalk noise contribu-
tions in this case. Furthermore, using this noise model, we
observe that such contributions are negligible compared
with the local ones.

2. Application to a two-qubit readout error model

Since the analysis presented in Fig. 6 suggests that the
error in the platform is mostly due to readout, in this
section we focus on a simple readout error model. We con-
sider the noise channel �j ,j ′ = �

(2)
j ,j ′ ◦ (�(1)

j ⊗�
(1)
j ′ ) for

two qubits (j , j ′), where

�
(2)
j ,j ′(ρj ,j ′) = (1 − pNL)ρj ,j ′ + pNLσ

x
j σ

x
j ′ρj ,j ′σ x

j σ
x
j ′ ;

�
(1)
j (ρj ) = (1 − p (j )L )ρj + p (j )L σ x

j ρj σ
x
j . (E13)

This model contains crosstalk errors with probability
pNL—namely, correlated bit flips (which could model mea-
surement errors) for qubits j and j ′—and single-qubit bit
flips with probability p (k)L , which could a priori be differ-
ent for each qubit k = j , j ′. In the low-noise limit pNL,
p (k)L � 1, at first order, one can write the noise channel

�j ,j ′ as

�j ,j ′(ρj ,j ′) � (1 − pNL − p (j )L − p (j
′)

L )ρj ,j ′

+ pNL σ
x
j σ

x
j ′ρj ,j ′σ x

j σ
x
j ′

+ p (j )L σ x
j ρj ,j ′σ x

j + p (j
′)

L σ x
j ′ρj .j ′σ x

j ′ . (E14)

Using the definitions in Sec. E 1, one gets

G̃j ,j ′ � 1 − pNL − p (j )L − p (j
′)

L , (E15)

G̃j � 1 − pNL − p (j )L , (E16)

G̃j ′ � 1 − pNL − p (j
′)

L , (E17)

which gives

R̃ � pNL. (E18)

For any small values of pL, R̃ is uniquely related to the
crosstalk probability pNL. Furthermore, R̃ �= 0 when the
nonlocal term pNL is different from zero and can be used
to detect the crosstalk noise according to the noise model
used. Hence, in the following we will use this noise model
to investigate the strength of the crosstalk error in the
quantum platform we have used in this work.

3. Experimental investigation on the platform used

Here we study the locality of the noise on the plat-
form “ibm_prague,” which we used to prepare the states
of interest and measure the QFI. We use the quantity R̃
and estimate it using the calibration data for the 13-qubit
state collected according to the indications in Sec. III A.
In Fig. 7 we show R̃ for neighboring qubits, averaged over
the iterations i = 1, . . . , NI , namely, R̃ = (1/NI )

∑NI
i=1 R̃(i).

The error bars are estimated as the standard deviation of
the mean of the different estimates. A value not compat-
ible with 0 (horizontal gray line) witnesses the presence
of crosstalk, namely, R̃ �= 0 ⇒ � �= ⊗N

i=1�i. We observe
that this is the case for the qubit pairs (4, 5), (10, 11),
(11, 12), and (12, 13).

To estimate the strength of the crosstalk with respect to
the local noise in the system, we use the noise model intro-
duced in the previous section, Eq. (E13), to compute p (k)L
and pNL from the measured values of G̃j ,j ′ and G̃j . At first
order in pNL, p (k)L —in the limit pNL, p (k)L � 1—one obtains

p (j )L � G̃j ′ − G̃j ,j ′ , (E19)

p (j
′)

L � G̃j − G̃j ,j ′ , (E20)

pNL � R̃ (E21)

by inverting Eqs. (E15)–(E18). Plugging in these equa-
tions the experimental values of G̃j ,j ′ and G̃j , one can
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(1,2) (4,5) (8,9) (12,13)
sites (j, j + 1)

0.000

0.001

0.002

R̃

FIG. 7. We estimate R̃ for neighbouring qubits (j , j ′) as ˆ̃R =
(1/NI )

∑NI
i=1

ˆ̃R(i), where ˆ̃R(i) = Ĝ(i)j ,j ′ − Ĝ(i)j Ĝ(i)j ′ . The error bars are
estimated as the standard deviation of the mean. A value not com-
patible within error bars with 0 (horizontal gray line) means that
crosstalk between the qubits is present. The measurement budget
is the one described in Sec. IV A for the calibration experiment.

compute the probability ratio pNL/p
(k)
L , which is informa-

tive of the relative strength of nonlocal noise. Such as for
R̃, the measured values of G̃j ,j ′ and G̃j are an average over
the estimates of the different iterations i = 1, . . . , NI and
their error bars are calculated as the standard deviation of
the mean. We use the estimators Ĝj and Ĝj ,j ′ discussed in
the main text and Sec. E10.

We give the experimental results for any pair of neigh-
boring qubits in Table I. We observe that in the illustra-
tive case of qubits (4, 5)—where R̃ = 0.002 signals the

presence of nonlocal noise—we obtain pNL/p
(k)
L � 10−1

for k = j , j ′. More in general, for pairs (4, 5), (11, 12),
and (12, 13), pNL is not compatible with zero within
errors. However, given that pNL/p

(k)
L � 10−1, we can

conclude that the amount of crosstalk error in our
platform would not harm the robust shadow protocol
that we use, as investigated numerically in Ref. [18].
The dominant source of error, under the assumptions
of our noise model, corresponds to local measurement
errors, which can be corrected faithfully via local robust
shadows.

APPENDIX F: FURTHER EXPERIMENTAL
RESULTS

In this appendix we study the estimator in Ref. [59] in
comparison with our bounds Fn. Then we provide more
experimental results on the quantum adiabatic optimiza-
tion algorithm (QAOA) protocol and a comparison of two
different methods of calibration—namely, calibrating the
circuit only once, at the beginning of the experiment, or
repeating the calibration in each iteration to follow the time
fluctuations.

1. Comparison with previous work in Ref. [59]

In this section, we postprocess our recorded robust RM
data to obtain another lower bound to the QFI that was pre-
viously estimated with the use of standard RM formalism.
The lower bound of interest is defined in Refs. [58,59] as a
function of the quantum states ρθ and ρθ+dθ as

FG(ρdθ ) ≡ DG(ρθ , ρθ+dθ )

dθ2 =
8
[
1 − Tr(ρθρθ+dθ )+

√
(1 − Tr(ρ2

θ ))(1 − Tr(ρ2
θ+dθ ))

]

dθ2 . (F1)

It is important to note for the above lower bound that
limdθ→0 FG(ρdθ ) = F0 [58], and estimating it requires one
to be able to distinguish between a state ρθ and its neighbor
ρθ+dθ that encode an unknown parameter θ .

In our analysis, we estimate unbiased estimators for each
of the terms on the right-hand side of Eq. (F1) according to
U statistics, as detailed in Sec. III E. The θ parametrized
state is defined as ρθ = e−iθAρeiθA, with A = 1

2

∑
j σ

(j )
z .

We consider here θ = 0 for simplicity as done in Ref. [59].
Additionally, compared with the work in Ref. [59], which
prepared experimentally the two parametrized states ρθ
and ρθ+dθ , with the robust classical shadow formalism, we
can estimate DG(ρθ , ρθ+dθ ) by performing this step clas-
sically during the postprocessing stage. We remark that
robust classical shadows defined in Eq. (3) satisfy ρθ =
E[e−iθAρ̃(ri)eiθA] with the average taken over the applied
random unitaries and measurements.

Figure 8 summarizes the analysis for our experimental
data. We consider the RM data taken after our prepar-
ing N -qubit GHZ states. Firstly, as shown in Fig. 8(a),
we estimate the modified Bures distance DG(ρθ1 , ρθ2) as
a function of dθ = θ2 − θ1 for a five-qubit GHZ state
[see Fig. 2(b) in Ref. [59] for a four-qubit GHZ state].
We then perform a polynomial fit as shown by the
solid line in Fig. 8(a). The coefficient of the quadratic
term of this fit provides an estimation of FG(ρdθ ). This
is extracted for qubit sizes ranging from 5 to 10 in
Fig. 8(b) for two different values of dθ . We observe that
FG(ρdθ=10−1) ≤ FG(ρdθ=10−4) ≤ F0 for all qubit sizes.
It is important to note that to obtain values of FG
that are comparable to F0, one has to perform the
procedure used in Ref. [59] by encoding very small
parameter shifts, which becomes extremely challenging
experimentally.
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TABLE I. Experimentally measured values of G̃j , G̃j ′ , and G̃j ,j ′ , and pNL and p (k)L (k = j , j ′) calculated according to Eqs. (E15)–(E18)
and with use of the estimators Ĝj and Ĝj ,j ′ . The number in parentheses is the numerical value of the statistical error referred to the
corresponding last digits of the result.

Pair (j , j ′) G̃j G̃j ′ G̃j ,j ′ p (j )L p (j
′)

L pNL � R̃

(1, 2) 0.9775(3) 0.9783(2) 0.9565(4) 0.0218(5) 0.0210(3) 0.0001(1)
(2, 3) 0.9783(2) 0.9873(1) 0.9661(3) 0.0212(4) 0.0122(3) 0.0002(1)
(3, 4) 0.9873(1) 0.9756(2) 0.9634(3) 0.0121(4) 0.0238(4) 0.0002(1)
(4, 5) 0.9756(2) 0.9661(4) 0.9447(5) 0.0214(5) 0.0308(6) 0.0022(1)
(5, 6) 0.9661(4) 0.9847(10) 0.9515(10) 0.0332(11) 0.0146(14) 0.0001(1)
(6, 7) 0.9847(10) 0.9754(2) 0.9606(10) 0.0148(14) 0.0240(10) 0.0001(1)
(7, 8) 0.9754(2) 0.9843(2) 0.9604(2) 0.0239(3) 0.0150(3) 0.0002(1)
(8, 9) 0.9843(2) 0.9815(2) 0.9662(3) 0.0152(3) 0.0181(3) 0.0002(1)
(9, 10) 0.9815(2) 0.9843(2) 0.9669(3) 0.0182(4) 0.0154(3) -0.0001(1)
(10, 11) 0.9844(2) 0.9863(2) 0.9713(3) 0.0149(4) 0.0129(5) 0.0005(1)
(11, 12) 0.9863(2) 0.9727(3) 0.9595(3) 0.0121(4) 0.0267(5) 0.0030(1)
(12, 13) 0.9717(3) 0.9892(1) 0.9621(3) 0.0271(4) 0.0096(4) 0.0008(1)

2. Ground state of the TFIM at the critical point

In this section we give additional experimental results
concerning the ground state of the TFIM at h = 1, prepared
with the variational circuit described in the main text. We
showed explicitly the value of the bound F1 in the main
text. In Figs. 9(a)–9(c) we show F0, F1, and F2. The lines
in Figs. 9(a)–9(c) denote the theoretical QFI for a fixed cir-
cuit depth p . In In Figs. 9(d)–9(f) we show the fidelities of
state preparation and the purity. In particular, in Fig. 9(d)
we show the fidelity with respect to the real ground state
of the TFIM at the critical point, computed with exact
diagonalization. We observe that with increasing depth p ,
the fidelity generally drops, because the greater the num-
ber of layers, the higher the noise in the system. The only
exception is the case of depth p = 2 for N = 8, the ratio-
nale being that the approximation of the ground state for
p = 1 and N = 8 is very poor, and thus even in the pres-
ence of noise, for p = 2 the prepared state is closer to
the true state. The worsening of state preparation with
increasing p is also evident in Fig. 9(e), where we plot the
fidelity with respect to the state prepared in the case of a

noiseless QAOA. The fidelity is always greater for p = 1,
but we remind the reader that the prepared state is not
faithful to the ground state of the TFIM for larger system
sizes. In Fig. 9(f) we show the purity of the prepared states.
Again we observe that it drops with increasing p due to the
presence of noise. The final state should be a pure state in
the ideal scenario, i.e., Tr(ρ2) = 1. Here we observe that
increasing the number of layers tends to decrease the purity
of the prepared state, e.g., for p = 4 and N = 8, one has
Tr(ρ2) ∼ 0.5.

3. Comparison of error mitigation protocols

In this section, we provide experimental evidence that
calibrating in iterations is more efficient than calibrat-
ing once at the beginning of the experiment. In Fig. 10
we compare the estimation of the bound of the QFI
when the calibration of the device is performed at the
beginning of the whole experimental procedure or accord-
ing to our prescriptions. We present the error-mitigated
experimental estimations of F0 and F1 (light to dark). In
Fig. 10(a) the calibration is performed at the beginning.

6 8 10
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,ρ

θ
+

d
θ
)

(a) (b)

FIG. 8. (a) Modified Bures distance DG (and quadratic fit) for a GHZ state comprising N = 5 qubits. (b) Comparison between FG
(for different values of dθ ) and the lower bound F0 as a function of the number of qubits N . The solid black line corresponds to
FQ = N 2, and the dashed black line corresponds to the threshold above which the state can be considered GME.
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FIG. 9. More experimental results on the TFIM at the critical point. (a)–(c) Results for (a) F0, (b) F1, and (c) F2. (d) Fidelity with
respect to the real ground state σ , (e) fidelity with respect to the state σopt obtained by classical optimization and experimentally
prepared through QAOA at fixed depth p , and (f) purity Tr(ρ2) of the prepared state. The results for F1 are also presented in Fig. 3(b).
The measurement protocol details are described in Sec. III A. In all plots, p is the number of layers in the circuit, i.e., the depth of the
circuit. The solid black lines correspond to the exact value of the QFI FQ. The dashed colored lines denote the theoretical value of the
QFI at fixed depth.

We observe that the robust estimation for larger system
sizes is not compatible with the approximately N 2 scal-
ing predicted by the theory, and that it does not violate
the witness of (N − 1)2 that validates genuine multipartite
entanglement. In Fig. 10(b) we present the same experi-
mental results as in the main text for F0 and F1. As already
mentioned, we observe the approximately N 2 scaling of the
QFI and witness genuine multipartite entanglement. The
discrepancy is due to the fluctuating gate and readout errors
in the quantum processors that affect the reliability of the
results when the experimental run takes a long time, i.e.,
for larger N .

APPENDIX G: NUMERICAL INVESTIGATIONS

In this appendix we study the behavior of the classical
Fisher information in comparison with the quantum Fisher
information. We investigate the scaling of Ĝj as a func-
tion of the number of unitaries NU for different values of
the readout error and the scaling of the required number of
measurements to achieve a given level of statistical error
on our highest measured bound F2. Lastly, we present a
classical numerical experiment for GHZ states prepared
without any state preparation errors.

1. Classical and quantum Fisher information
comparison in noisy GHZ states

The Fisher information is a fundamental concept in
statistics and information theory [37,38]. It measures the

amount of information that a random variable carries about
an unknown parameter when sampled from a given prob-
ability distribution and plays a crucial role in the field of
metrology. In particular, in the context of estimating an
unknown parameter θ encoded in a quantum state ρ, it has
been used to show that the precision of the measurement
could go beyond the shot-noise limit [13].

The choice of the measurement setting significantly
influences the accuracy of the estimation process. Optimal
choices are characterized by measurement results exhibit-
ing a statistical distribution that is highly sensitive to
variations in θ . Indicating as P(μ|θ) the probability of
a measurement result μ given that the parameter has the
value θ , the classical Fisher information can be written as

F(θ) =
∑

μ

1
P(μ|θ)

(
∂P(μ|θ)
∂θ

)2

. (G1)

An upper bound to the Fisher information is obtained by
one maximizing the previous equation over all possible
generalized measurements settings [1] and corresponds to
the QFI defined in Eq. (1).

Therefore, by definition, the CFI is upper-bounded by
the QFI. However, it has been readily used in quantum
experiments to prove the presence of multipartite entan-
glement or enhanced metrological sensitivity with respect
to the classical cases [40–42]. The latter is due to the fact
that it is easier to measure in general, since it does not
need the full spectral resolution of the density matrix, even
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FIG. 10. Comparison of different methods of calibration. F0 and F1 (light to dark) when (a) the calibration of the device is performed
at the beginning of the whole experimental run and (b) the calibration is performed in each iteration according to the experimental
protocol described in the main text. The measurement budget of both experiments is the same and is detailed in Sec. IV A. The solid
line is the exact value of the QFI (FQ = N 2) for pure GHZ states. The dashed black line corresponds to the entanglement witness
�(N , k = N − 1) = (N − 1)2 above which the state can be claimed to be GME.

though one is faced with the challenge of finding good
measurement observables and a good measurement basis.
In this work we proposed a method to estimate directly
the QFI that is intrinsically not affected by the choice of
the measurement basis, using a converging series of lower
bounds to it. In this section, for completeness, we perform
a comparison between the CFI, for some fixed choice of
measurement, and the QFI in noisy GHZ states.

The CFI, in this instance, can be calculated analyt-
ically. We write the GHZ state of an N -qubit system
as |ψ〉 = (|0〉⊗N + |1〉⊗N )/

√
2. We perform the evolution

under the operator U = e−iθA, with A = 1
2

∑
i σ

z
j , and we

measure the qubits along the y axis. The latter means
applying a phase gate S† = (

1 0
0 i

)† and a Hadamard gate
H = (1/

√
2)
(

1 1
1 −1

)
to the state before measurement along

the z axis. The probability of obtaining as an outcome an
N -bit string s is given by

P(s|θ) = | 〈s| (HS†)⊗N e−iθA |ψ〉 |2. (G2)

Performing the calculation, one obtains

(HS†)⊗N e−iθA |ψ〉 = 1√
2
(HS†)⊗N (e−iθN/2 |0〉⊗N + eiθN/2 |1〉⊗N ) = 1√

2N+1

∑

s

(
e−iθN/2 + eiθN/2eiπN/2eiπ |s|) |s〉 , (G3)

leading to

P(s|θ) = 1
2N

[
1 + (−1)|s|

(
cos(θN ) cos

(π

2
N
)

+ sin(θN ) sin
(π

2
N
))]

. (G4)

We observe that θ = (π/2N ) ≡ θ0, and assuming that N
is even, one gets

P(s|θ0) = 1
2N ,

∂P(s|θ)
∂θ

∣
∣
∣
∣
θ=θ0

= − N
2N (−1)|s|+N/2. (G5)

Eventually, the CFI reads

F(θ0) =
∑

s

1
P(s|θ0)

(
∂P(s|θ)
∂θ

∣
∣
∣
∣
θ=θ0

)2

= N 2. (G6)

Therefore, with this measurement scheme, the CFI reaches
the maximum possible value for a system comprising N
qubits and coincides with the QFI. We show here that in
the presence of global depolarization, the CFI (obtained
with the same, fixed, measurement as considered above)
decreases faster than the QFI, whose explicit functional
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FIG. 11. (a) QFI and CFI of the GHZ state for N = 8 qubits in the presence of global depolarization of strength pD. The points
represent the numerical results, while the dashed lines correspond to Eqs. (B1) and (G8). (b) QFI and CFI of the GHZ state simulated
with the use of “qasm_simulator.” Noise, in the form of a depolarizing channel, is added to each controlled NOT gate necessary to
prepare the GHZ state. Its strength is labeled by pD.

dependence with respect to the strength of the noise is
given in Eq. (20) and discussed in Sec. B. In the presence
of global depolarization of strength pD, P(s|θ) calculated
above is changed to (1 − pD)P(s|θ)+ pD(1/2N ), so now
one has

P(s|θ0) = 1
2N

∂P(s|θ)
∂θ

∣
∣
∣
∣
θ=θ0

= −(−1)|s|+N/2(1 − pD)
N
2N , (G7)

which leads to the following expression for the CFI:

F(θ0) = 1
2N

∑

s

(1 − pD)
2N 2 = (1 − pD)

2N 2. (G8)

With respect to Eq. (20), we observe that the CFI decays
faster [as approximately (1 − pD)

2 instead of approxi-
mately (1 − pD)] in the limit of large system sizes N . Then,
in the presence of global depolarizing noise in the system,
we can argue that the CFI is always strictly a lower bound
to the true value of the quantum Fisher information with
the fixed measurement setting considered here.

In Fig. 11 we plot numerical results for comparing the
QFI and the CFI in the presence of depolarization errors.
We consider two cases. In Fig. 11(a) we calculate those
quantities on the state defined as

ρ = (1 − pD) |ψ〉〈ψ | + pD
1

d
, (G9)

where d is the Hilbert space dimension (d = 2N ). For
the state ρ, we have analytical predictions [dashed lines
according to Eqs. (20) and (G8)] that can be compared with
numerical results according to the Hellinger method for
estimating the CFI [42]. We observe that the CFI decreases
faster than the QFI, enforcing our statement that it is
important to find a direct and reliable estimator of the QFI.

For Fig. 11(b), we prepared the GHZ state on the simula-
tor “qasm_simulator” [35] by means of a Hadamard gate
and N − 1 controlled NOT gates. On each controlled NOT
gate, we add depolarizing noise, whose strength pD we can
tune. We observe that the CFI and tze QFI both decrease,
as expected with increasing pD and the number of qubits in
the system. Also, as in the previous case, the CFI is always
strictly smaller than the QFI for any value of pD > 0.

2. Gj as a function of the number of unitaries and
readout error

In this section, we study numerically the estimator Ĝj in
Eq. (11). We use the IBM quantum simulator to provide an
estimate of the scaling of Ĝj as a function of the number
of unitaries NU in the randomized measurement protocol
in the calibration step. We induce noise in the circuit as a
readout error pmeas according to the noise model used in
Appendix D 2. In Fig. 12 we plot Ĝj for different values
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FIG. 12. Numerical simulation of the calibration protocol on
the IBM quantum simulator for a two-qubit system. We plot Ĝj
as a function of NU for NM = 1000 and differing readout error
pmeas.

030338-23



VITTORIO VITALE et al. PRX QUANTUM 5, 030338 (2024)

2 4 6 8 10
N

103

N
U

b = 8.08, a = 0.41

FIG. 13. Numerical simulations to provide the number uni-
taries NU required to estimate F2 below an error of E = 10%
for a GHZ state with respect to A = 1

2

∑N
j =1 σ

z
j . We simulate

NM = 1000 computational basis measurements per unitary. The
dashed line is an exponential fit of the type 2b+aN , highlighting
the scaling as a function of the system size N .

of pmeas as a function of NU. The estimation is compati-
ble with the theoretical values (dashed lines) within error
bars, for any value of pmeas. We observe that the error
bars on the estimation decrease with increasing NU, for
fixed NM = 1000. For the value of NU used in our experi-
mental protocol (NU ∼ 200) we observe an uncertainty of
approximately 1% on the estimation of Ĝj . Increasing the
number of unitaries used does not improve the estimation
significantly. Hence, we choose NU = 200.

3. Scaling of the measurement budget for the lower
bound F2

In Fig. 13 we provide numerical simulations to extract
the scalings of the statistical errors on our highest mea-
sured lower bounds F2. We consider an N -qubit pure
GHZ state and consider once again the Hermitian opera-
tor A = 1

2

∑N
j =1 σ

z
j . We simulate the protocol by applying

NU local random unitaries U(r), with r = 1, . . . , NU, with
NM = 1000 projective computational basis measurements
per unitary to obtain batch estimates F̂2 using NB = 10
batches. The estimation is realized with Eq. (15); however,
we do not consider here common randomized measure-
ment, i.e., we take σ = 0 in Eq. (6). The average statistical
error E is calculated by our averaging the relative error E =
|F̂2 − F2|/F2 over 100 numerically simulated experimen-
tal runs for different values of NU. We find the maximum
value of NU for which we obtain E ≤ 0.1 for different
system sizes N by using a linear interpolation function.

4. Numerical simulation of the experiment for perfect
GHZ states and readout errors

In this section, we provide the measurement of the
lower bounds via a classical numerical experiment for
GHZ states prepared without any state preparation errors
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FIG. 14. Numerical simulation of the experimental procedure,
for perfect GHZ states but including readout errors. As in
Fig. 2(d), this figure shows F0, F1, and F2 (light to dark with
circles, squares and diamonds, respectively) as a function of the
number of qubits N , where we fix as always the operator A =
1
2

∑N
j =1 σ

z
j . The solid line is the exact value of the QFI FQ = N 2

for pure GHZ states. The dashed black line corresponds to the
entanglement witness �(N , k = N − 1) = (N − 1)2. The dashed
gray line corresponds to the entanglement witness �(N , k = 5).

(perfect GHZ states). We take the same measurement bud-
get as applied in the experimental procedure (see Sec.
IV A). Here again, we consider σ = 0 in Eq. (6). Addi-
tionally, we consider that the single-qubit random unitary
operations are done perfectly and take into account only
readout errors with probability pmeas = 1.4% as recorded
for the IBM superconducting qubit device “ibm_prague”
[35]. The results are shown in Fig. 14.
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