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We introduce binary randomized benchmarking (BiRB), a protocol that streamlines traditional RB by
using circuits consisting almost entirely of independent identically distributed (IID) layers of gates. BiRB
reliably and efficiently extracts the average error rate of a Clifford gate set by sending tensor-product eigen-
states of random Pauli operators through random circuits with IID layers. Unlike existing RB methods,
BiRB does not use motion reversal circuits—i.e., circuits that implement the identity (or a Pauli) opera-
tor—which simplifies both the method and the theory proving its reliability. Furthermore, this simplicity
enables scaling BiRB to many more qubits than the most widely used RB methods.
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I. INTRODUCTION

Randomized benchmarking (RB) [1–21] is a family of
protocols that assess the average performance of a quan-
tum processor’s gates by running random circuits. RB
experiments are ubiquitous, yet the most widely used
RB protocols have important limitations that are caused
by the kind of random circuits they use. Most RB pro-
tocols use motion reversal circuits that, if run with-
out errors, implement the identity (or a Pauli) operator
[1,4–6,9,10,16,18] [Fig. 1(a)]. This makes errors easily
visible: each RB circuit, when run perfectly, always out-
puts a particular bit string, so the observation of any other
bit string implies that an error occurred. However, ran-
dom motion-reversal circuits must end with an inversion
subroutine that undoes the preceding layers. The inversion
subroutine causes challenges for RB theory [1,6,7,21–25]
as well as practical problems. In most existing RB tech-
niques—including standard Clifford group RB (CRB) [6]
and its streamlined variant direct RB (DRB) [18]—the size
of the inversion subroutine grows quickly with the number
of qubits [26–28] [see Fig. 1(a)], severely limiting their
applicability outside of the few-qubit setting [1,3,18].
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In this work, we demonstrate that motion-reversal cir-
cuits are not required for reliable RB by introducing binary
randomized benchmarking (BiRB). BiRB is an efficient
and scalable protocol for estimating the average error rate
of a Clifford gate set. BiRB’s circuits [Fig. 1(b)] consist
of d IID layers of gates and two layers of single-qubit
gates, for state and measurement preparation, and the mea-
surement results are processed to obtain a binary-outcome
Pauli measurement result. BiRB works because the aver-
age fidelity of highly scrambling random circuits decays
exponentially in depth [18,21,23] and, for Clifford cir-
cuits, this fidelity can be efficiently estimated using random
local state preparations and measurements [29,30]. Our
method’s local state preparation and measurement enables
benchmarking of many more qubits than most existing
RB techniques—including CRB and DRB—as shown in
Fig. 2). Furthermore, we show that BiRB is more accu-
rate than mirror RB (MRB) [1,21], which is the only other
scalable RB protocol for Clifford gate sets.

BiRB connects RB and cross-entropy benchmarking
(XEB) [31–34], another form of randomized benchmark.
In contrast to RB, XEB uses random circuits consisting
solely of IID (composite) layers of gates—these layers are
typically sampled from a universal gate set, but a scalable
form of XEB using Clifford gate sets has also been intro-
duced [34]. While XEB circuits have no overhead from
subroutines, in practice XEB decay curves exhibit non-
exponential behavior at low depths for some Markovian
error models, and therefore measuring a reliable error rate
requires circuits with at least O(n) depth [35]. The exact
circuit depths required for exponential decay depend on
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(a)

(b)

FIG. 1. RB without motion reversal. (a) Standard RB methods
use motion-reversal circuits, which make errors easily visible but
add complexity and limit scalability. (b) BiRB reliably estimates
average gate error rates without motion reversal by tracking a
single stabilizer of a random product state through a random cir-
cuit. (c) Results from CRB, DRB, and BiRB on ibm_hanoi
show that BiRB is more scalable than both CRB and DRB. DRB
estimates the same error rate as BiRB (r�), and we find that their
error rates are consistent, providing evidence for the reliability of
BiRB.

the connectivity and gate set and must be estimated numer-
ically for each distribution of layers benchmarked, adding
additional complication to performing XEB. This issue
arises in part because XEB estimates the fidelity of ran-
dom circuits using the (linear) cross entropy, which is not
an accurate fidelity estimator for general Markovian noise
models [33,36]. BiRB shows how to add minimal over-
head to circuits of IID layers to obtain a provably reliable
RB protocol.

The remainder of this paper is structured as follows. In
Sec. II we introduce our notation and review the existing
results on which our method relies. In Sec. III we intro-
duce the BiRB protocol. In Sec. IV we present a theory of
BiRB that shows that our method is reliable: it accurately
estimates the average error rate of an n-qubit circuit layer
under assumptions commonly used in RB theory (e.g.,
Markovian errors). In Sec. V we demonstrate the reliability
of our method with numerical simulations of BiRB on gate
sets that experience both stochastic Pauli errors and (coher-
ent) Hamiltonian errors. In Sec. VI, we demonstrate BiRB
on IBM Q processors and validate it against the results of
DRB and MRB. We then conclude in Sec. VII.

II. PRELIMINARIES

A. Definitions

In this section, we introduce our notation. An n-qubit
layer L is an instruction to perform a particular unitary
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FIG. 2. BiRB and conventional RB on IBM Q. Results from
CRB, DRB, and BiRB on ibm_hanoi show that BiRB is more
scalable than both CRB and DRB. DRB estimates the same error
rate as BiRB (r�), and we find that their error rates are consistent,
providing evidence for the reliability of BiRB.

operation on those n qubits, typically specified in terms of
one- and two-qubit gates. We use U(L) ∈ SU(2n) to denote
the unitary corresponding to L. The layers we use are
randomly sampled, and we often treat a layer L as a layer-
valued random variable. We use � : L → [0, 1] to denote
a probability distribution over the set of layers L. We use
L−1 to denote an instruction to perform the unitary U(L)−1.
An n-qubit, depth-d circuit is a sequence of n-qubit layers
C = LdLd−1 · · · L2L1, where we use the convention that the
circuit is read right to left.

For a layer (or circuit) L, we use U(L) to denote the
superoperator representation of its perfect implementation,
i.e., U(L)[ρ] = U(L)ρU†(L). We use φ(L) to denote the
superoperator for an imperfect implementation of L, and
we assume φ(L) is a completely positive trace preserv-
ing (CPTP) map. A layer L’s error map is defined by
EL = φ(L)U†(L). The entanglement fidelity (also called
the process fidelity) of φ(L) to U(L) is defined by

F
(
φ(L),U(L)) = F(EL) = 〈ϕ|(I ⊗ EL

)
[|ϕ〉〈ϕ|]|ϕ〉 (1)

= 1
4n Tr(U(L)†φ(L)) (2)

= E
s∈Pn

Tr(sEL[s]), (3)

where ϕ is any maximally entangled state of 2n qubits [37],
and Pn is the set of all n-qubit Pauli operations with ±1
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global sign. Throughout, we use the term “(in)fidelity” to
refer to the entanglement (in)fidelity. The polarization is a
rescaling of fidelity given by

γ (φ(L),U(L)) = γ (EL) = 4n

4n − 1
F(EL)− 1

4n − 1
(4)

= E
s∈P

∗
n

Tr(sEL[s]), (5)

where P
∗
n = Pn \ {±In}, and In denotes the n-qubit iden-

tity operator. We say that a state |ψ〉 is stabilized by a
Pauli operator P if P|ψ〉 = |ψ〉. An n-qubit stabilizer state
|ψ〉 is a state that is stabilized by exactly 2n Pauli opera-
tors. Equivalently, a stabilizer state is a state that can be
prepared from |0〉⊗n using only Clifford gates [26]. The
stabilizer group of a stabilizer state |ψ〉 is Sψ = {P ∈ Pn |
P|ψ〉 = |ψ〉}. We use S∗

ψ to denote all nonidentity elements
of the stabilizer group, i.e., S∗

ψ = Sψ \ {In}.

B. �-distributed random circuits

BiRB uses �-distributed random circuits [1,18,21,23],
which we now review. �-distributed random circuits con-
sist of n-qubit layers of gates sampled from a distribution
�(L) over a layer set L. In this work, we restrict L to con-
tain only Clifford gates. These circuit layers can be chosen
to consist of a processor’s native gates, or simple combi-
nations thereof, thus eliminating the need for complicated
compilation.
�-distributed random circuits are also used in DRB

and MRB [1,18,21,23]. DRB and MRB are reliable if
� satisfies certain conditions, and these same conditions
are required for BiRB to be reliable. We require that the
circuits generated by layers sampled from � are highly
scrambling, meaning that for all Pauli operators P, P′ 	= In,
there exists constants k 
 1/ε and δ 
 1 such that

1
4n E

L1,...,Lk
Tr(P ′U(Lk · · · L1)PU(Lk · · · L1)

−1) ≤ δ + 1
4n .

(6)

Here, P[ρ] = PρP and P ′[ρ] = P′ρP′ are Pauli superop-
erators, L1, . . . , Lk are �-distributed random layers, and ε
is the expected infidelity of an �-distributed random layer
[21,23]. Informally, this condition means that an error is
locally randomized (i.e., its basis is randomized over the
X , Y, and Z bases) and delocalized across multiple qubits
before a second error is likely to have occurred. While we
require that k 
 1/ε for our theory, this condition on k can
be relaxed when n � 1, because errors that occur on spa-
tially separated qubits in close succession cannot cancel at
all (see Refs. [21,23] for details).

C. The RB error rate

BiRB’s output is an error rate r� that quantifies the
error in random n-qubit layers sampled from �. BiRB’s

r� closely approximates an independent, physically moti-
vated error rate ε�—which is closely related to the average
layer infidelity—introduced in Refs. [21,38] and reviewed
here. ε� is defined by the rate of decay of the fidelity
of �-distributed random circuits. The expected fidelity of
depth-d �-distributed random circuits Cd is given by

F̄d = E
Cd

F
(
φ(Cd),U(Cd)

)
. (7)

The scrambling requirements on � (see Sec. III A) ensure
that F̄d [Eq. (7)] decays exponentially, i.e., F̄d ≈ Apd

RC + B
for constants A, B, and pRC. The average error rate of layers
sampled from � is then defined as [21,38]

ε� = 4n − 1
4n (1 − pRC). (8)

This rescaling of pRC is used because pRC corresponds
to the effective polarization of a random layer in an
�-distributed random circuit—i.e., the polarization in a
depolarizing channel that would give the same fidelity
decay—so ε� is the effective average infidelity of a layer
sampled from�. When stochastic Pauli errors are the dom-
inant source of error, ε� is approximately equal to the
average layer infidelity,

ε� = 1 − E
L∈L

F(φ(L),U(L)), (9)

but this is not true more generally because gate infidelity is
not “gauge-invariant”—see Refs. [21,22,24,38] for details.

D. Direct fidelity estimation

Our protocol can be interpreted as an application of
direct fidelity estimation (DFE) [29,30] to varied-depth
random Clifford circuits, so we now review DFE for the
special case of Clifford circuits. Consider a Clifford cir-
cuit C and an imperfect implementation of that circuit
φ(C) = U(C)EC, where EC denotes the overall error map
of the circuit. Using Eq. (5), the polarization of EC can be
written as

γ (EC) = E
s∈P

∗
n

Tr(sEC[s]) (10)

= E
s∈P

∗
n

Tr(sU(C)†φ(C)[s]) (11)

= E
s∈P

∗
n

Tr(s′φ(C)[s]), (12)

where s′ = U(C)sU(C)† is a Pauli operator that can be effi-
ciently computed classically [26], because C is a Clifford
circuit. Equation (12) implies that polarization of EC can be
efficiently estimated as follows: (1) sample Pauli operators
uniformly from P

∗
n, (2) for each sampled Pauli operator s,

apply φ(C) to s and measure the evolved Pauli operator
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s′, and (3) average the measurement results. It is not phys-
ically possible to directly apply φ(C) to a Pauli operator
s (Pauli operators are not valid quantum states), but DFE
simulates doing so by applying φ(C) to randomly sam-
pled eigenstates of s. BiRB also uses this approach, but,
unlike DFE, BiRB is robust to state preparation and mea-
surement (SPAM) error. BiRB separates SPAM error from
gate error by applying DFE to variable-depth circuits and
extracting gate error from the rate of decay of the polar-
ization—as in cycle benchmarking [39] and Pauli noise
learning techniques [40–42].

III. THE BINARY RB PROTOCOL

We now introduce BiRB circuits (Sec. III A) and the
BiRB protocol (Sec. III B).

A. Binary RB circuits

We now state the procedure for constructing BiRB cir-
cuits [Fig. 3(b)]. Each BiRB circuit first generates an
eigenstate of a random Pauli operator s, then applies a
depth d random circuit, and then ends with a measure-
ment of the evolved Pauli operator s′. A width n, bench-
mark depth d, �-distributed BiRB circuit is a circuit C =
Ld+1Ld · · · L1L0 that begins with preparing |0〉⊗n and ends
with a computational basis measurement, and has layers
sampled as follows:

(1) Sample a uniformly random n-qubit Pauli operator
s ∈ P

∗
n and a uniformly random state |ψ(s)〉 from the

set of tensor-product stabilizer states stabilized by
s. L0 is a layer of single-qubit gates that prepares
|ψ(s)〉.

(2) L1, L2, . . . , Ld are layers sampled from �. These
layers form the core circuit, which is a depth-d �-
distributed random circuit.

FIG. 3. Each BiRB circuit is constructed by (1) generating a
random nonidentity Pauli operator s, then constructing a circuit
consisting of (2) a layer of single-qubit gates generating a +1
eigenstate of a random Pauli operator s, (3) d layers of Clifford
gates randomly sampled from some distribution�, and (4) a final
layer of gates that transforms the evolved Pauli operator (s′) into
a tensor product of Z and I Pauli operators (sC, represented by
bit string t). The result of a computational basis measurement
(bit string b) is used to compute a 1 (“success”) or −1 (“fail”)
result by comparing it to the bit string t.

(3) Ld+1 is a layer of single-qubit gates that transforms

s′ = U(Ld) · · · U(L1)sU(L1)
−1 · · · U(Ld)

−1 (13)

into a tensor product of Z and I operators.

The circuit has an associated “target” Pauli operator

sC = U(Ld+1)s′U(Ld+1)
−1. (14)

If implemented without errors, the bit string b output by C
will correspond to a +1 eigenstate of sC, i.e., sC|b〉 = |b〉.

Step (1) can equivalently be formulated as (i) sampling
a random unsigned Pauli P, (ii) picking a random tensor-
product stabilizer state that is an eigenstate of P. Sampling
from both +1 and −1 eigenstates ensures accurate fidelity
estimation when there are nonunital errors in the circuits
(see Sec. IV).

There is not a unique choice for either the initial layer
(L0) or the final layer (Ld+1) of gates in BiRB circuits.
These layers may be chosen deterministically or at random
from the set of all possible layers of single-qubit Clifford
gates satisfying the criteria above. In our simulations and
experiments, we choose to randomize L0, but this is not
required for our theory. There will always be a possible
final layer satisfying the requirements in step (3). We can
construct such a layer as follows: let s′ = ⊗n

i=1 s′
i, where

s′
i denotes the single-qubit Pauli operator acting on qubit

i. On qubit i, apply H if s′
i = X , apply HS† if s′

i = Y, and
apply I if s′

i = I or Z.

B. Binary RB protocol

The BiRB protocol is similar to other RB protocols: run
BiRB circuits, compute a figure of merit for the circuits
of each benchmark depth, then fit an exponential decay. A
BiRB experiment is defined by a layer set L, a sampling
distribution �, and the usual RB sampling parameters (a
set of benchmark depths d, the number of circuits K sam-
pled per depth, and the number of times N each circuit is
run). Our protocol is the following:

(1) For a range of integers d ≥ 0, sample K �-
distributed BiRB circuits with benchmark depth d,
and run each circuit N ≥ 1 times.

(2) For each circuit C, estimate the expected value 〈sC〉
of the target Pauli observable sC from the computa-
tional basis measurement results. Then, compute the
average over all circuits of benchmark depth d,

¯f d = 1
K

∑

Cd

〈sC〉. (15)
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(3) Fit ¯f d to an exponential,

¯f d = Apd, (16)

where A and p are fit parameters. Then compute [43]

r� = (4n − 1)(1 − p)/4n. (17)

In Appendix B, we show that the number of circuits per
depth (and therefore the total amount of data) required by
our protocol to estimate r� to within a fixed relative uncer-
tainty is independent of n. For a fixed total number of shots
per depth KN , it is statistically optimal to maximize the
number of random circuits K and set N = 1. However,
typically N > 1 for practical reasons—e.g., because of the
time cost of generating and loading many distinct circuits
onto the processor. See Refs. [44–46] for more detailed
statistical analyses of RB protocols.

Note that if L is chosen to be the set of all n-qubit
Clifford gates and � is the uniform distribution, then we
obtain a version of standard RB (i.e., RB of the Clifford
group) without an inversion gate. See Appendix A for fur-
ther discussion of this variant of BiRB, whose reliability
can be proven using the unitary 2-design twirling theory
that underpins the theory of standard RB [6,7].

IV. THEORY OF BINARY RB

We now show that the error rate measured by BiRB [r�,
Eq. (17)] is a close approximation to the average layer error
rate ε� [Eq. (8)]. In Sec. IV A we show that BiRB estimates
the expected fidelity of depth-d �-distributed circuits. In
Sec. IV B, we show that this quantity decays exponentially
in d, which allows us to conclude that the BiRB error rate
is approximately the average layer error rate, i.e., r� ≈ ε�.

A. Relating measurement results to circuit
polarizations

We start by showing that ¯f d [Eq. (15)] is approxi-
mately equal to the expected polarization [Eq. (4)] of an
error map consisting of the composition of (1) the error
map of a depth-d �-distributed random circuit, and (2)
an error map absorbing all SPAM error. We then argue
that the contribution of SPAM errors is approximately
depth independent and can be factored out, so that ¯f d
equals the polarization [Eq. (4)] of the error map of a ran-
dom, depth-d �-distributed random circuit, multiplied by
a d-independent prefactor.

We consider a BiRB circuit C with benchmark depth
d and gate-dependent error channels on L1, L2, . . . , Ld,
i.e., φ(L) = ELU(L). We model the error on L0 and
state preparation as a gate-independent global depolariz-
ing channel E0 directly after L0. We model the error on

Ld+1 and readout as a single gate- and measurement-
independent global depolarizing channel Ed+1 occurring
directly before Ld+1. Therefore, the superoperator repre-
senting the imperfect implementation of the circuit C is
given by

φ(C) = U(Ld+1)Ed+1ELdU(Ld) · · · EL1U(L1)E0U(L0).
(18)

We first rewrite the error in the circuit in terms of the core
circuit’s error map. We have

φ(C) = U(Ld+1Ld · · · L1)EtotU(L0), (19)

where U(Ld+1Ld · · · L1) = U(Ld+1)U(Ld) · · ·U(L1), and
Etot = Ed+1EL1,...,LdE0 for

EL1,...Ld = U(L1)
−1 · · ·U(Ld)

−1ELdU(Ld) · · · EL1U(L1).
(20)

Now we show that ¯f d is the expected polarization of Etot. ¯f d
is the expectation value of circuit C’s target Pauli operator
sC [Eq. (14)] averaged over all benchmark depth-d BiRB
circuits, i.e.,

¯f d = E
L1,...,Ld

E
s∈P

∗
n

E
|ψ(s)〉

Tr(sCU(Ld+1 · · · L1)

× Etot[|ψ(s)〉〈ψ(s)|]), (21)

where |ψ(s)〉 = U(L0)|0〉⊗n is a uniformly random state
from the set of all tensor-product states stabilized by s.
Substituting in sc = U(Ld+1 · · · L1)[s], Eq. (21) becomes

¯f d = E
L1,...,Ld

E
s∈P

∗
n

E
|ψ(s)〉

Tr(sEtot[|ψ(s)〉〈ψ(s)|]). (22)

We now average over |ψ(s)〉. To do so, we first expand the
initial state |ψ(s)〉 in terms of its stabilizer group:

¯f d = 1
2n E

L1,...,Ld
E

s∈P
∗
n

E
|ψ(s)〉

Tr

⎛

⎝sEtot

⎡

⎣
∑

s′∈S|ψ(s)〉

s′

⎤

⎦

⎞

⎠ (23)
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= 1
2n E

L1,...,Ld
E

s∈P
∗
n

Tr

⎛

⎜⎜⎜
⎝

sEtot

⎡

⎢⎢⎢
⎣

In + s + E
|ψ(s)〉

∑

s′∈S|ψ(s)〉
s′ 	=In,s

s′

⎤

⎥⎥⎥
⎦

⎞

⎟⎟⎟
⎠

(24)

= 1
2n E

L1,...,Ld
E

s∈P
∗
n

⎛

⎜⎜⎜
⎝

Tr(sEtot[s])+ Tr

⎛

⎜⎜⎜
⎝

s E
|ψ(s)〉

∑

s′∈S|ψ(s)〉
s′ 	=In,s

Etot[s′]

⎞

⎟⎟⎟
⎠

⎞

⎟⎟⎟
⎠

. (25)

To get from Eq. (24) to Eq. (25), we use the fact
that Es∈P

∗
n Tr(sEtot[In]) = 0 because we are averaging over

signed nonidentity Pauli operators. The symmetry proper-
ties of the set of all local +1 eigenstates of s guarantee that
the last term of Eq. (25) vanishes (see Appendix C), so that
Eq. (25) becomes

¯f d = 1
2n E

L1,...,Ld
E

s∈P
∗
n

Tr(sEtot[s]) (26)

= E
L1,...,Ld

γ (Etot). (27)

Equation (27) says that ¯f d, which is measured in our pro-
tocol, is the expected polarization of Etot. This error map
is the composition of (1) the error map of an �-distributed
random circuit and (2) the error maps of the state prepara-
tion and measurement layers. Because E0 and Ed+1 are (by
assumption) global depolarizing channels, we have

¯f d = γ (E0)γ (Ed+1) E
L1,...,Ld

γ (EL1,...,Ld). (28)

If E0 and Ed+1 are stochastic Pauli channels (but not nec-
essarily global depolarizing channels), or if EL1,...,Ld is
a stochastic Pauli channel, then Eq. (28) holds approxi-
mately. Specifically,

¯f d = γ (E0Ed+1) E
L1,...,Ld

γ (EL1,...,Ld)+ O(εSPAMεL1,...,Ld),

(29)

where εSPAM is the infidelity of E0Ed+1 and εL1,...,Ld is the
infidelity of EL1,...,Ld [47]. The size of the O(εSPAMεL1,...,Ld)

term is determined by the amount of error cancellation
between E0Ed+1 and EL1,...,Ld in expectation [1]. At low
depths d, this correction term is small because εL1,...,Ld is
small, and at depths d � k [where k is the small constant
in Eq. (6)], this term is small because the scrambling con-
dition for �-distributed random layers implies that errors
in that circuit are randomized and spread over many qubits.
Equation (29) relies on the assumption of stochastic Pauli
errors, and randomized compilation theory [48] implies
that this can be enforced by (1) choosing � so that the

distribution of U(L) is invariant under left and right mul-
tiplication by Pauli operators, and (2) randomizing Ld+1
and L0. However, in practice, we find that these conditions
on BiRB’s circuits are not required, because �-distributed
circuits rapidly scramble errors. This makes error cancel-
lation negligible after constant depth k [23], implying that
Eq. (28) hold to a good approximation for all kinds of small
Markovian errors.

B. Deriving the exponential decay model

Our theory so far shows that ¯f d [Eq. (15)] is equal
to the polarization of depth-d �-distributed random cir-
cuits multplied by a depth-independent prefactor. Recent
work [1,21,23] has shown that the polarization of �-
distributed random circuits decays exponentially—from
which it follows that r� ≈ ε�—given the scrambling con-
dition [Eq. (6)] that we require of� and L. This is because
Eq. (6) implies that errors within�-distributed random cir-
cuits cancel with negligible probability, which implies that
the polarization of the BiRB core circuit is closely approxi-
mated by the product of the polarizations of its constituent
layers [the error in this approximation is O (dε(δ + kε)),
which is negligible for small δ, where δ is as defined in
Eq. (6) [21]]. Because the polarizations of �-distributed
layers approximately multiply, ¯f d decays exponentially,
i.e.,

¯f d ≈ Apd (30)

for some A and p , and r� ≈ ε�.
Here, we give an alternative, complementary proof that

¯f d decays exponentially, which uses the “L superchan-
nel” framework from Refs. [23,24] and is similar to the
most accurate theories for standard RB [22,24,25]. We
start by expressing ¯f d [Eq. (26)] in terms of d applica-
tions of a linear operator acting on superoperators (i.e., a
“superchannel”), given by

L(M) = E
L∈L

U(L)−1MELU(L). (31)
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When EL = I for all L ∈ L, L has two unit eigenvalues
(λ0, λ1) and all other eigenvalues (λi, i > 1) have abso-
lute value strictly less than 1 [23]. The following theory
requires that the gate errors are sufficiently small that this
gap between the unit and nonunit modulus eigenvalues is
preserved [49]. For this theory, we do not require that Ed+1
and E0 are global depolarizing channels. Equation (26) can
be expressed in terms of L as

¯f d = 1
2n E

s∈P
∗
n

Tr
(
sLd(Ed+1) [E0[s]]

)
. (32)

In our theory so far, including our definition of L
[Eq. (20)], we have used a particular representation of
the imperfect gate set—the imperfect gates are given by
{ELU(L) | L ∈ L}. However, we can express ¯f d in terms
of a different representation of these gates with identical
predictions, by performing a gauge transformation [50],
i.e., we represent the gates as {MELU(L)M−1 | L ∈ L},
where M is an invertible matrix. Below, we re-express
the gate set in a particular gauge defined in terms of L.
Let W = E1 + Eλ, where E1 and Eλ are eigenoperators
of L with eigenvalues 1 and λ, respectively (as defined
in Ref. [23], Proposition 3), and where λ is the second
largest eigenvalue of L. Using the gauge-transformed gate
set {WELU(L)W−1 | L ∈ L}, Eq. (32) becomes

¯f d = 1
2n Es∈P

∗
n Tr

(
sL̃d(Ẽd+1)[Ẽ0[s]]

)
. (33)

where

L̃[C] = L[CW]W−1, (34)

and

Ẽd+1 = Ed+1W−1 (35)

Ẽ0 = WE0. (36)

If we assume that Ẽd+1 = D̃meas, where D̃meas is a global
depolarizing channel (which commutes with all unitary
superoperators), it follows from Eq. (33) that

¯f d = γ
(
L̃d[D̃meas]Ẽ0

)
(37)

= γ
(
D̃measL̃d[I]Ẽ0

)
. (38)

Reference [23] (Proposition 3) shows that L(W) = DλW ,
where Dλ is a global depolarizing channel with polariza-
tion λ. Therefore, L̃d[I] = Dλd , which implies that

¯f d = γ (D̃measDd
λẼ0) (39)

= γ (D̃measẼ0Dd
λ) (40)

= λdγ (D̃measẼ0). (41)

Therefore, ¯f d decays exponentially in depth, at a rate
determined by λ (the second largest eigenvalue of L). Fur-
thermore, Proposition 4 of Ref. [23] implies that λ is the
average polarization of �-distributed layers computed in a
particular gauge that is defined by L.

V. SIMULATIONS

In this section, we present simulations of BiRB that
show that it reliably estimates the average layer error
rate ε�.

A. BiRB with stochastic and Hamiltonian errors

To demonstrate that BiRB accurately estimates ε� under
broad conditions, we ran simulations of BiRB with varied
error models containing stochastic Pauli and Hamiltionan
errors. We simulated BiRB on n = 1, 2, and 4 qubits with
all-to-all connectivity using the layer set consisting of all
possible n-qubit layers constructed from parallel applica-
tions of Xπ/2, Yπ/2, and CNOT gates. These layers were
sampled so that the expected density of CNOT gates in
a layer is ξ = 1

4 , and each of the two single-qubit gates
appears with equal probability.

We simulated BiRB with three types of error models
for these gates: (1) Pauli stochastic errors, (2) Hamiltonian
errors, and (3) Pauli stochastic and Hamiltonian errors. To
generate each error model, we assign each gate random
error rates specified using elementary error generators [51].
For each k-qubit gate (k = 1, 2), we specify a post-gate
error of the form eG for each of {Xπ/2, Yπ/2, CNOT}, where

G =
4k−1∑

i=1

siSi +
4k−1∑

i=1

hiHi. (42)

Here, S1,S2, . . . ,S4k−1 denote the k-qubit stochastic Pauli
error generators, and H1,H2, . . . ,H4k−1 denote the k-qubit
Hamiltonian error generators. For each error model, we
sample si and hi at random (see Appendix D for details) to
produce a range of expected layer error rates. These mod-
els contain no crosstalk errors (but our theory encompasses
error models with crosstalk errors) and no state preparation
or measurement error.

Figure 4 shows the results of these simulations. Fig-
ures 4(a)–4(c) compares the true average layer error rate
per qubit,

ε�,perQ = 1 − (1 − ε�)
1
n ≈ ε�

n
(43)

to the estimate of the BiRB error rate per qubit

r�,perQ = 1 − (1 − r�)
1
n ≈ r�

n
(44)

in each simulation, separated into the three families of error
models. Error bars (1σ ) are shown, computed using a stan-
dard bootstrap (there are error bars on ε� as well as on r�
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FIG. 4. Simulations of BiRB for gates with stochastic and Hamiltonian errors. We simulated BiRB on one, two, and four qubits with
randomly sampled error models. These error models consist of randomly sampled (a),(d) stochastic Pauli errors, (c),(f) Hamiltonian
errors, (b),(e) stochastic and Hamiltonian errors. (a)–(c) We compare the estimated BiRB error rate r� to ε�. Error bars are 1σ and are
calculated using a standard bootstrap (there are error bars on ε�, as well as r�, as ε� is estimated via sampling). (d)–(f) The relative
error δrel = (r� − ε�)/ε�, divided by its standard deviation (σrel), for each randomly sampled error model. For all error models, we
find that r� is approximately equal to ε�, and all discrepancies between r� and ε� are consistent with finite sample fluctuations.

because ε� is computed by random sampling). We observe
that for each error model, r� approximately equals ε�, as
predicted by our theory of BiRB.

The statistical uncertainty in r� (and ε�) is typically
much larger in simulations of BiRB experiments on gates
with purely Hamiltonian errors, due to higher variance
in the performance of circuits of the same depth for this
kind of error (as is the case with other RB methods). To
quantify any systematic differences between r� and ε�,
in Figs. 4(d)–4(f) we show the relative error δrel = (r� −
ε�)/ε� divided by its uncertainty σrel, which is computed
from 1σ uncertainties for r� and ε�. We see that r� is typ-
ically within 2σ of ε� for all three classes of error model.
The distribution of δrel is similar across all error models,
suggesting that BiRB is similarly reliable for all three types
of error model. Furthermore, we observe that r� does not
systematically under- or overestimate ε�. This contrasts
with the only other method for scalable RB of Clifford
gates: MRB. Simulations and theory for MRB both show
that MRB systematically underestimates ε� [1,21]. There-
fore, our results suggest that BiRB is more accurate than
MRB (although note that, unlike BiRB, MRB can scalably
benchmark non-Clifford gates).

B. Binary RB with measurement error

The simulations presented above (Sec. V A) did not
include SPAM errors, but SPAM errors are often large
in current quantum processors. Like other RB protocols,

BiRB is designed to be robust to SPAM errors—the effect
of SPAM errors is absorbed into a depth-independent pref-
actor in the exponential fit (see Sec. IV). Here, we present
simulations that demonstrate the robustness of BiRB in the
presence of SPAM errors.

We simulated BiRB on one, two, and four qubits with
single-qubit bit flip and amplitude-damping measurement
errors. These BiRB simulations used the same layer set
and sampling distribution as the simulations presented
in Sec. V A. For these simulations, we simulated BiRB
with error models in which the gates have both stochas-
tic Pauli and Hamiltonian errors with rates sampled so
that ε� is approximately the same for every error model
(see Appendix D for details). From each set of gate error
rates, we construct five error models, each of which has
a different type of measurement error. These five error
models are as follows: (1) no error on the measurements,
(2) bit-flip errors on the measurements for all n qubits,
(3) bit-flip errors on the measurements for only a single
qubit, (4) amplitude-damping errors on the measurements
for all n qubits, and (5) amplitude-damping errors on
the measurement for only a single qubit. The measure-
ment error rates on each qubit are chosen so that the
expected measurement error rate is a constant p , which
we varied over a range of values (see Appendix D for
details).

Figure 5 shows the results of our simulations of
BiRB with measurement errors. We see that the BiRB
error rate is not systematically affected by bit flip or
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FIG. 5. Simulations of BiRB with measurement errors. We simulated BiRB with five types of error models: (a),(f) no error on the
measurements, (b),(g) bit-flip errors on the measurements for all n qubits, (c),(h) bit-flip errors on the measurements for only a single
qubit, (d),(i) amplitude damping errors on the measurements for all n qubits, and (e),(j) amplitude damping errors on the measurement
for only a single qubit. (a)–(e) The relative error in r� divided by its uncertainty (δrel/σδrel ) versus the strength of the measurement
error. (f)–(j) Histograms of δrel/σδrel for each type of measurement error. We observe no evidence that r� is affected by measurement
error, which is consistent with our theory of BiRB and provides further evidence that BiRB is robust to measurement errors.

amplitude-damping error. Figures 5(a)–5(e) shows the rel-
ative error (δrel) in r�, divided by its standard deviation
(σδrel ), for all error models. We observe no systematic
change in δrel/σδrel as the strength of measurement error
(p) is varied. Figures 5(f)–5(j) show the distribution of
δrel/σδrel for all error models with each type of measure-
ment error. We see that the distributions are similar for all
types of measurement error. These simulations show no
evidence that r� is affected by measurement error, which
is consistent with our theory for BiRB.

VI. DEMONSTRATIONS ON IBM Q

In this section we present demonstrations of BiRB on
7- and 27-superconducting qubit IBM Q devices. We pro-
vide experimental evidence that BiRB works by comparing
it to two other RB protocols—DRB and MRB—that are
designed to measure the same error rate.

A. Validating binary RB in the few-qubit regime

We ran two experiments comparing BiRB and DRB. We
chose to compare the results of BiRB and DRB because
(i) DRB is designed to measure the same error rate as
BiRB, (ii) BiRB is equivalent to DRB when n = 1, and (iii)
DRB theory [18,23] shows that DRB is a highly accurate
method for estimating the average error rate (ε�). In these
BiRB and DRB experiments, each layer in the core cir-
cuit consists of randomly sampled native CNOT gates (i.e.,
CNOT gates on connected qubits) and uniformly random
single-qubit Clifford gates on all other qubits. We sampled
the two-qubit gates using the “edgegrab” sampler from

Ref. [2] with an expected two-qubit gate density of ξ = 1
4 .

In our experiment on ibm_perth, we sampled K = 30
circuits at exponentially spaced benchmark depths. In our
experiment on ibm_hanoi, we also ran CRB on up to
n = 5 qubits, and we sampled K = 60 circuits at expo-
nentially spaced benchmark depths. See Appendix E for
further details.

Figures 2 and 6(a)–6(d) show the results of these demon-
strations. In all of our BiRB experiments, we observe that
the polarization decays exponentially. The DRB and BiRB
error rates [Figs. 2(b) and 6(d)] are consistent with each
other on all qubit subsets we tested [52], which is con-
sistent with the theories for both DRB and BiRB. These
results demonstrate that BiRB is a reliable method for
measuring the average layer error rate. In Fig. 2(b) we
also compare the BiRB error rate to an ad hoc heuristic
estimate of the average layer error rate obtained by rescal-
ing the results of CRB (see Appendix E for details). The
rescaled CRB error rate is systematically higher than both
the BiRB and DRB error rates. While rescaling CRB error
rates to estimate native gate error rates is common prac-
tice [53–56], this is not typically accurate, as these results
demonstrate.

Our results demonstrate that BiRB is more scalable than
both DRB and CRB. Although DRB is more scalable than
CRB [Fig. 2], the initial (i.e., d = 0) polarization of DRB
circuits [Fig. 6(c)] still drops off rapidly with increasing
n, which is due to the O(n2/log n) gate overhead from
the stabilizer state preparation and measurement subrou-
tines [23]. The decrease in initial polarization with n for
BiRB circuits is much smaller (note that we expect some
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FIG. 6. BiRB on IBM Q processors. (a) The results of DRB and BiRB on 1–6 qubits on ibm_perth. (b) The results of MRB
and BiRB on 1–27 qubits on ibmq_kolkata. (c) DRB’s initial (i.e., d = 0) polarization decreases rapidly as a function of the
number of qubits (n), due to the random stabilizer state preparation and measurement subroutines in DRB circuits whose size grows
quickly with n [18]. In contrast, the initial polarization in BiRB decreases slowly with increasing n. (d) The BiRB and DRB error rates
(r�) are consistent on all qubit subsets. As DRB is a robust technique that is designed to measure the same error rate as BiRB, this
provides evidence of BiRB’s reliability. (e) The BiRB and MRB error rates are consistent up to n = 11 qubits, but the BiRB error
rate is systematically higher than the MRB error rate for n > 11. This is consistent with the theories of BiRB and MRB: MRB theory
[1,21] predicts that MRB’s r� slightly underestimates ε� (the average layer error rate) whereas BiRB theory predicts that BiRB’s r�
accurately estimates ε�.

decrease in polarization with increased n due to increasing
SPAM error).

B. Demonstrating the scalability of binary RB

To demonstrate that BiRB is reliable in the n � 1
regime, where DRB is infeasible, we ran BiRB and MRB
on all 27 qubits of ibmq_kolkata. MRB is designed to
measure the same error rate as BiRB (ε�) and it is also scal-
able. However, the theory of MRB shows that it slightly
but systematically underestimates ε� due to correlations
between the random layers used in MRB circuits [1,21].
MRB circuits consist of (1) a depth d/2 �-distributed ran-
dom circuit, followed by (2) its layer-by-layer inverse,
with Pauli frame randomization. MRB theory shows that
if the error rates of a�-distributed layer and its inverse are
uncorrelated, then MRB accurately estimates ε�, but that
if these error rates are correlated then MRB slightly under-
estimates ε�. In real systems, these error rates are typically
correlated.

In the BiRB and MRB circuits we ran, each randomly
sampled layer in the core circuit has the form L = L1L2,
where L1 consists of single-qubit gates on all qubits, and
L2 consists of parallel CNOT gates on pairs of connected
qubits. We sampled the single-qubit gates in L1 uniformly
from the single-qubit Clifford gates, and we sampled the

two-qubit gates in L2 using the “edgegrab” sampler [2]
with an expected two-qubit gate density of ξ = 1

4 . We ran
circuits with exponentially spaced benchmark depths and
sampled K = 60 circuits of each circuit shape.

Figure 6(b) shows the results of our BiRB and MRB
experiments on six sets of qubits. Figure 6(e) compares
the MRB and BiRB error rates for all sets of qubits we
tested. The MRB and BiRB error rates are consistent on
up to 11 qubits. For n > 11 qubits, the MRB error rate is
systematically lower than the BiRB error rate. This result
is consistent with the theory of MRB, which predicts that
MRB’s r� systematically underestimates ε�, and the the-
ory of BiRB, which does not predict a systematic under-
or overestimate of ε�. MRB theory predicts that MRB’s
underestimate of ε� is larger when the error rate of a layer
and its inverse are highly correlated [1]. We therefore con-
jecture that the observed discrepancy between the BiRB
and MRB error rates is caused by high variance in the layer
error rates in many-qubit circuits, which could occur due
to, e.g., large crosstalk error caused by some two-qubit
gates. The largest difference we observe between MRB
and BiRB is in the n = 20 qubit experiments, where the
BiRB error rate is r� ≈ 41.5% and the MRB error rate is
r� ≈ 35.7%. This discrepancy is consistent with BiRB and
MRB theory if the variance in the layers’ error rates are
sufficiently large. For example, a simple error model that
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leads to the observed BiRB and MRB error rates is one
where each layer experiences purely global depolarizing
error and half of the layers have 85% polarization whereas
the other half of the layers have 32% polarization.

VII. DISCUSSION

In this paper, we introduced BiRB, a highly streamlined
RB protocol for Clifford gate sets. Unlike most RB proto-
cols, BiRB does not use motion reversal circuits. Instead,
BiRB works by tracking a single random Pauli operator
through each random circuit—using ideas first developed
for DFE [29,30] and later leveraged by Pauli noise learning
methods [39,40,42]. This enables BiRB to scale to many
more qubits than most RB methods. Many-qubit BiRB
allows for benchmarking of large many-qubit layer sets
when individually characterizing all those layers is infeasi-
ble, and it is able to accurately capture crosstalk. We have
presented a theory for BiRB that proves that BiRB reliably
estimates the average error rate of random layers under
common assumptions used in RB theory (e.g., Markovian
errors), and we have supported this theory with simulations
and experimental demonstrations. Our results on IBM Q
processors demonstrate BiRB error rates consistent with
DRB error rates on up to six qubits, and they show that
BiRB scales well beyond the limits of DRB and standard
CRB.

BiRB enables RB on many more qubits than most exist-
ing RB protocols, but it also has advantages in the few-
qubit setting. For example, simultaneous few-qubit RB
experiments are widely used to quantify crosstalk errors
[57], but simultaneous CRB and DRB on n > 1 qubits are
complicated in practice by scheduling problems that arise
due to the variable depths of compiled subroutines [53].
In contrast, simultaneous BiRB experiments are simple to
run because the state preparation and measurement layers
in BiRB circuits are each just a single layer of single-
qubit gates. Finally, because BiRB does not rely on motion
reversal, we anticipate that BiRB can be adapted to bench-
mark operations that are not intended to be unitary. In
particular, in subsequent work we will show that BiRB can
be adapted to benchmark gate sets containing midcircuit
measurements—a computational primitive that is essential
for quantum error correction.

Circuit sampling and data analysis code for BiRB is
available in pyGSTi [58]. Data and code for the simula-
tions and IBM Q demonstrations in this work are available
upon reasonable request.

The DOE will provide public access to results of feder-
ally sponsored research in accordance with the DOE Public
Access Plan.
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APPENDIX A: CLIFFORD GROUP BINARY RB

In this Appendix, we discuss Clifford group BiRB—i.e.,
BiRB with uniformly random n-qubit Clifford layers. Fur-
thermore, we use 2-design twirling theory to show that the
expected polarization ( ¯f d) decays exponentially in depth
for Clifford group BiRB.

1. Clifford group binary RB protocol

We start by introducing the Clifford group BiRB pro-
tocol. A depth-d Clifford group BiRB circuit is a circuit
C = CdCd−1 · · · C1C0 of d + 1 random n-qubit Clifford
gates Ci ∈ Cn. The first random Clifford C0 produces a uni-
formly random n-qubit stabilizer state |ψ〉⊗n = C0|0〉⊗n.
Picking a uniformly random nonidentity element of the
stabilizer group of |ψ〉 is equivalent to picking a uni-
formly random element of P

∗
n, which allows us to do

Clifford group BiRB without the initial tensor-product state
preparation. At the end of the circuit, the evolved Pauli
operator is

s′
C = U(Cd · · · C2C1)sU(C−1

1 · · · C−1
d−1C−1

d ). (A1)

For simplicity, we will assume the ability to measure in
all Pauli bases in the following discussion, so that we do
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not need a final layer of gates to transform s′ into a tensor
product of Z and I Pauli operators. We note that the method
stated here is equivalent to BiRB as stated in the main text,
but with the first layer of gates L0 recompiled into the first
benchmarking layer (here, C0). We choose to discuss this
variant because it uses circuits consisting entirely of IID
layers.

Our protocol is the following:

(1) For a range of integers d ≥ 0, sample K circuits
CdCd−1 · · · C1C0. For each circuit, sample a random
s 	= In in the stabilizer group of U(C0)|0〉⊗n.

(2) Run each circuit C N ≥ 1 times and compute 〈s′
C〉.

Then, compute the average over all circuits of
benchmark depth d,

¯f d = 1
K

∑

Cd

〈s′
C〉. (A2)

(3) Fit ¯f d to an exponential, ¯f d = Apd, where A and
p are fit parameters. The RB error rate (scaled to
correspond to average gate infidelity) is given by

r = (2n − 1)(1 − p)/2n. (A3)

2. Extracting the RB error rate in Clifford group
binary RB

We now show that ¯f d decays exponentially in bench-
mark depth using 2-design twirling. We assume arbitrary
gate-independent Markovian error on each n-qubit Clif-
ford—i.e., φ(Ci) = EU(Ci) for all Ci. An imperfect imple-
mentation of a benchmark depth-d Clifford group BiRB
circuit is given by

φ(C) = φ(Cd) · · ·φ(C2)φ(C1)φ(C0) (A4)

= EU(Cd)EU(Cd−1) · · ·U(C1)EU(C0). (A5)

Here, we will use SC0 to denote the stabilizer group of
U(C0)|0〉⊗n. The expected polarization of a benchmark
depth d circuit is

¯f d = E
C0,...,Cd

E
s∈S∗

C0

Tr
(
s′

Cφ(C)[(|0〉〈0|)⊗n]
)

, (A6)

= E
C0,...,Cd

E
s∈S∗

C0

Tr
(U(Cd · · · C1)[s]φ(C)[(|0〉〈0|)⊗n]

)

(A7)

= E
C0,...,Cd

E
s∈S∗

C0

Tr
(
sU(C−1

1 · · · C−1
d )[φ(C)[(|0〉〈0|)⊗n]]

)
.

(A8)

Equation (A7) follows from applying the definition of s′
C

[Eq. (A1)] to Eq. (A6), and Eq. (A8) follows from Eq. (A7)

and the cyclic property of the trace. Furthermore, we have

U(C−1
1 · · · C−1

d )φ(C) = U(C−1
1 ) · · ·U(C−1

d )EU(Cd)

× EU(Cd−1) · · ·U(C1)EU(C0).
(A9)

Therefore, averaging over C1, . . .Cd in Eq. (A8) twirls
the error channels E into global depolarizing error [59].
Equation (A8) becomes

¯f d = E
C0

E
s∈S∗

C0

Tr
(

sẼd[φ(C0)[(|0〉〈0|)⊗n]]
)

, (A10)

where Ẽ = EC∈CnU(C)−1EU(C). Since E is perfectly
twirled by the n-qubit Clifford group, Ẽ is an n-qubit depo-
larizing error channel Ẽ[ρ] = γρ + (1 − γ )In/2n. Using
this result in Eq. (A10), we find that

¯f d = γ d
E
C0

E
s∈S∗

C0

Tr
(
sφ(C0)[(|0〉〈0|)⊗n]

)

+ 1
2n (1 − γ d) E

C0
E

s∈S∗
C0

Tr (sφ(C0)[In]) (A11)

= Aγ d, (A12)

where

A = E
C0

E
s∈S∗

C0

Tr
(
sφ(C0)[(|0〉〈0|)⊗n]

)
. (A13)

Therefore, ¯f d decays exponentially in circuit depth, at a
rate determined by the fidelity of E . This implies that the
Clifford group BiRB error rate is the same as the (standard)
CRB error rate.

APPENDIX B: BINARY RB STATISTICS

In this Appendix, we show that the number of cir-
cuits required for the BiRB protocol is independent of the
number of qubits n. We work in the single-shot limit, so
that each measurement result is an independent random
variable fi ∈ [−1, 1]. At each circuit depth, we compute
the estimate f̂d = (1/K)

∑K
i=1 fi of the expected polariza-

tion of benchmark depth-d BiRB circuits ( ¯f d). Hoeffding’s
inequality says that

Pr
[
|f̂d − ¯f d | ≥δ

]
≤ 2 exp

(
−1

2
δ2K

)
, (B1)

where K is the number of circuits ran. We have ¯f d ≈ Aγ d,
where γ = ELγ (EL) is the expected layer polarization.
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Replacing δ with a relative uncertainty δ = αAγ d, we have

Pr
[
|f̂d − ¯f d | ≥αγ d

]
≤ 2 exp

(
−1

2
α2A2γ 2dK

)
. (B2)

The number of circuits required to obtain an estimate of
f̄d to within relative uncertainty α with probability at least
1 − ν is therefore

K = 2 log (2/ν)
α2A2γ 2d . (B3)

Importantly, this does not scale with the number of
qubits n.

In order to obtain an accurate estimate of the decay rate
of ¯f d, we need to estimate ¯f d for at least two depths d0, d1
with d1 − d0 = O(log(1/γ̄ )). For simplicity, we take d0 =
0 and d1 = log(1/γ̄ ). We consider the simplified scenario
of estimating γ̄ using the ratio of these two polarization
estimates,

γ̄ =
(

fd1

fd0

) 1
d1

. (B4)

In order to estimate γ̄ to multiplicative accuracy β, we
need to estimate fd1 and fd0 to multiplicative accuracy
d1β/2. At depth d1, the number of shots required is

K(d1) = 8 log (2/ν)
d2

1β
2A2γ 2d1

, (B5)

and the number of shots required at depth 0 is

K(d0) = 8 log (2/ν)
d2

1β
2A2

. (B6)

APPENDIX C: STABILIZERS OF
TENSOR-PRODUCT STATES

Here, we prove the result used in Sec. IV A to go
from Eqs. (25) to (26): For any s, p ∈ P

∗
n with s 	= ±p

and [s, p] = 0, there is a bijection between tensor-product
stabilizer states |ψ(s)〉 that are stabilized by p and tensor-
product stabilizer states |ψ(s)〉 that are stabilized by −p .

To construct our bijection, we pick an ordering of the n
qubits, and we express s and p as tensor products of sin-
gle qubit Pauli operators—i.e., s = ⊗n

i=0si and p = ⊗n
i=0pi.

For any |ψ(s)〉 = L0|0〉⊗n satisfying s′|ψ(s)〉 = |ψ(s)〉, we
can create another tensor-product state

∣∣ψ ′(s)
〉 = L′

0|0〉⊗n

satisfying −p ′∣∣ψ ′(s)
〉 = ∣∣ψ ′(s)

〉
as follows: we start with

L′
0 = L0 and modify some of the single-qubit gates in L′

0.
Find the lowest index j such that sj = I and pj 	= I , if it
exists. There are two cases:

(1) Such a j exists: because pj 	= I , the gate on qubit j
produces a +1 eigenstate of some q ∈ P

∗
n. Replace

this gate in L′
0 with a gate that produces a +1

eigenstate of −q.
(2) No such j exists: if there is no j such that sj = I and

pj 	= I , then there must be a qubit j such that sj 	=
I and pj = I . The gate on qubit j produces a +1
eigenstate of some q ∈ P

∗
n. Replace this gate in L′

0
with a gate that produces a +1 eigenstate of −q. In
addition, because we know that p 	= I , there must be
some other qubit j ′ such that pj ′ 	= I , and it must be
that sj ′ = pj ′ . Suppose the gate on qubit j ′ produces
a +1 eigenstate of some q′ ∈ P

∗
n. Replace this gate

with a gate that produces a +1 eigenstate of −q′.

The new state
∣∣ψ ′(s)

〉
produced by the new layer of gate is

stabilized by s and −p , and this mapping is bijective. From
this result it follows that

∑

s′∈Sψ
s′ 	=I ,s

s′ = 0, (C1)

from which Eq. (26) follows.

APPENDIX D: SIMULATIONS OF BINARY RB

1. Binary RB with stochastic Pauli and Hamiltonian
errors

We simulated BiRB on n = 1, 2, 4 qubits with all-
to-all connectivity using layers constructed from the
gate set {Xπ/2, Yπ/2, CNOT}. The error models we use
in our BiRB simulations are defined in terms of the
stochastic and Hamiltonian elementary error generators
defined in Ref. [51]. For each k-qubit gate (k = 1, 2),
we specify a post-gate error of the form eG for each of
{Xπ/2, Yπ/2, CNOT}, where

G =
4k−1∑

i=1

siSi +
4k−1∑

i=1

hiHi, (D1)

where S1,S2, . . . ,S4k−1 denote the k-qubit stochastic Pauli
error generators, and H1,H2, . . . ,H4k−1 denote the k-qubit
stochastic Pauli error generators. For each error model,
we sample si and hi at random to produce a range of
expected layer error rates. To generate error models, we
start with an overall error parameter p that determines
the expected gate error rates in the model. We generate
models with p ∈ [0, 0.01875] for 150 evenly spaced val-
ues for the single-qubit models and p ∈ [0, 0.0750] for 150
evenly spaced values for the two- and four-qubit models.
We use p to determine the expected rates of stochastic and
Hamiltonian errors. In the stochastic Pauli error models,
we set h = 0 and s = 1.2p . In the Hamiltonian error mod-
els, we set s = 0 and h = √

8p for n = 4 qubit models,
and we set s = 0 and = √

6p for n = 1, 2 qubit models.
In the stochastic Pauli and Hamiltonian error models, we
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TABLE I. BiRB and DRB on IBM Perth. The RB error rates
from every BiRB and DRB experiment we ran on ibm_perth.

Qubit subset r� (BiRB) r� (DRB)

Q0 0.027(1) 0.0279(5)
(Q0, Q1) 0.41(1) 0.42(1)
(Q0, Q1, Q2) 0.70(2) 0.70(1)
(Q0, Q1, Q2, Q3) 1.20(4) 1.13(3)
(Q0, Q1, Q2, Q3, Q5) 2.40(9) 2.6(2)
(Q0, Q1, Q2, Q3, Q5, Q6) 3.8(2) 3.3(4)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6) 5.6(3) fit failed

generate s ∈ [0, p] at random and set h = √
2p − s. These

sampling parameters are chosen to produce models with a
similar range of per-qubit error rates across all error model
types and all values of n.

We include qubit-dependent Hamiltonian errors and
stochastic Pauli errors on each gate, with Hamiltonian error
rates sampled in the range [0,χh], and stochastic Pauli
error rates sampled in the range [0,χs], where χ = 0.1 if
n = 2, 4 and k = 1 (i.e., single-qubit gate error rates are
sampled so that their expected error rate is 1

10 the error rate
of two-qubit gates) and χ = 1 otherwise. The stochastic
and Hamiltonian errors are each split randomly across the
4k − 1 error generators.

For each error model, we run K = 100 BiRB circuits
at each depth d ∈ {0} ∪ {2j | 0 ≤ j ≤ 8}. Each layer in the
core circuit consists of randomly sampled CNOT gates and
uniformly random gates from the set {Xπ/2, Yπ/2, I} on
all other qubits. We sampled the two-qubit gates using
the “edgegrab” sampler from Ref. [2] with an expected
two-qubit gate density of ξ = 1

2 .
We also approximate the average layer error rate ε�

via sampling. We sample K = 100 �-distributed random
circuits at each depth d ∈ {0} ∪ {2j | 0 ≤ j ≤ 8} (using
the same layer sampling as described above) and deter-
mine their polarization, then fit the resulting data to an
exponential to obtain an estimate of ε�.

2. Binary RB with measurement errors

We simulated BiRB on n = 1, 2, 4 qubits with single-
qubit bit flip and amplitude damping measurement error.

These BiRB circuits used layers constructed from the
gates {Xπ/2, Yπ/2, CNOT}. In these simulations, we simu-
lated BiRB with error models in which the gates have both
stochastic Pauli and Hamiltonian errors. We generated 30
models with Hamiltonian and stochastic errors. Each error
model had randomly chosen error rates sampled so that the
expected stochastic error rate was p/2 and the expected
Hamiltonian error rate was

√
p/2, and we set p = 0.015n.

In our n = 2, 4 qubit simulations, we sampled the errors
on single-qubit gates so that their expected error rates were
approximately 1

10 of the expected two-qubit gate error rate.
From each set of gate error rates, we construct five error

models, each of which has different measurement errors.
These five error models are as follows: (1) no error on
the measurements, (2) bit-flip errors on the measurements
for all n qubits, (3) bit-flip errors on the measurements
for only a single qubit, (4) amplitude-damping errors on
the measurements for all n qubits, and (5) amplitude-
damping errors on the measurement for only a single qubit.
We define our measurement error using the single-qubit
elementary error generators SX , SY, and AX ,Y defined in
Ref. [51], and an error strength parameter pm. In our bit-
flip error models, we add the error E = epmSx immediately
before the measurement. In our amplitude damping error
models, we add the error E = epm(SX +SY+AX ,Y) immediately
before measurement. In error models with measurement
error on a single qubit, we generate error models with
60 evenly spaced values of pm ∈ [0.0001, 0.09]. In error
models with measurement error on all qubits we sample
a uniform random pm ∈ [0, 2p/n] independently for each
qubit, for 60 evenly spaced values of p ∈ [0.0001, 0.09],

For each error model, we run K = 100 BiRB circuits at
each depth d ∈ {0} ∪ {2j | 1 ≤ j ≤ 8} using the same gate
set and layer sampling distribution as in Appendix D 1. We
approximate ε� via sampling using the method described
in Appendix D 1.

APPENDIX E: DEMONSTRATING BINARY RB ON
IBM Q

1. Details of demonstration on IBM Hanoi

We ran BiRB and other RB protocols on ibm_hanoi,
ibm_perth, and ibmq_kolkata. In this Appendix,

TABLE II. IBM Perth calibration data. Calibration data from ibm_perth from the time of our BiRB demonstrations.

Qubit T1 (us) T2 (us)
Frequency

(GHz)
Anharmonicity

(GHz)
Readout

error
Pr(prep 1,
measure 0)

Pr(prep 0,
measure 1)

Readout
length (ns)

Q0 122.58 84.49 5.16 −0.34 0.019 0.018 0.020 675.56
Q1 96.44 36.20 5.03 −0.34 0.019 0.022 0.016 675.56
Q2 298.92 61.66 4.86 −0.35 0.010 0.011 0.009 675.56
Q3 170.68 179.99 5.13 −0.34 0.012 0.016 0.008 675.56
Q4 77.10 109.16 5.16 −0.33 0.012 0.011 0.012 675.56
Q5 148.18 69.49 4.98 −0.35 0.014 0.015 0.013 675.56
Q6 167.33 245.76 5.16 −0.34 0.007 0.008 0.006 675.56
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TABLE III. BiRB and MRB on IBMQ Kolkata. The RB error rates for every BiRB and MRB experiment we ran on
ibmq_kolkata.

Qubit subset r� (BiRB) r� (MRB)

Q0 0.0230(4) 0.0228(3)
(Q0, Q1) 0.245(3) 0.246(3)
(Q0, Q1, Q2) 0.65(1) 0.63(1)
(Q0, Q1, Q2, Q3) 1.71(4) 1.67(4)
(Q0, Q1, Q2, Q3, Q4, Q5) 3.9(1) 3.8(1)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7) 7.5(3) 7.5(3)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10) 12.1(6) 12.2(4)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13) 30(2) 26.0(9)
(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16,
Q17, Q18, Q19)

42(2) 36(1)

(Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10, Q11, Q12, Q13, Q14, Q15, Q16,
Q17, Q18, Q19, Q20, Q21, Q22, Q23, Q24, Q25, Q26)

53(3) 48(2)

we provide the details of our RB experiments on
ibm_hanoi. Details of our experiments on ibm_perth
and ibmq_kolkata can be found in Sec. VI.

We ran DRB, BiRB, and CRB on ibm_hanoi [Fig. 2].
For our DRB and BiRB experiments, we benchmarked a
gate set consisting of the 24 single-qubit Clifford gates

TABLE IV. IBMQ Kolkata calibration data. Calibration data from ibmq_kolkata from the time of our BiRB demonstrations.

Qubit T1 (us) T2 (us)
Frequency

(GHz)
Anharmonicity

(GHz)
Readout

error
Pr(prep 1,
measure 0)

Pr(prep 0,
measure 1)

Readout length
(ns)

Q0 126.85 24.35 5.20 −0.34 0.011 0.010 0.012 675.56
Q1 152.85 147.77 4.99 −0.35 0.014 0.013 0.014 675.56
Q2 87.82 37.07 5.11 −0.34 0.012 0.016 0.008 675.56
Q3 113.23 47.66 4.87 −0.35 0.043 0.061 0.026 675.56
Q4 120.73 104.49 5.22 −0.34 0.031 0.032 0.031 675.56
Q5 120.73 42.50 5.10 −0.34 0.027 0.026 0.027 675.56
Q6 118.32 65.44 5.20 −0.34 0.031 0.028 0.034 675.56
Q7 128.19 23.16 5.02 −0.35 0.065 0.026 0.104 675.56
Q8 171.87 193.75 4.96 −0.35 0.017 0.022 0.013 675.56
Q9 168.79 57.68 5.06 −0.34 0.155 0.165 0.144 675.56
Q10 141.42 67.37 5.18 −0.34 0.017 0.017 0.018 675.56
Q11 11.32 17.23 4.88 −0.37 0.042 0.052 0.031 675.56
Q12 140.45 54.01 4.96 −0.35 0.015 0.025 0.006 675.56
Q13 130.20 154.80 5.02 −0.35 0.011 0.012 0.011 675.56
Q14 165.62 120.93 5.12 −0.34 0.007 0.009 0.004 675.56
Q15 150.20 162.20 5.03 −0.34 0.008 0.009 0.006 675.56
Q16 88.63 63.20 5.22 −0.34 0.017 0.014 0.019 675.56
Q17 100.91 33.29 5.24 −0.34 0.006 0.007 0.004 675.56
Q18 120.14 57.40 5.09 −0.34 0.011 0.008 0.014 675.56
Q19 132.28 117.35 5.00 −0.34 0.011 0.013 0.009 675.56
Q20 135.13 155.12 5.19 −0.34 0.008 0.010 0.007 675.56
Q21 115.65 103.94 5.27 −0.34 0.005 0.005 0.005 675.56
Q22 149.22 42.50 5.12 −0.34 0.010 0.013 0.008 675.56
Q23 153.04 129.84 5.14 −0.34 0.006 0.007 0.006 675.56
Q24 136.85 30.46 5.00 −0.35 0.011 0.017 0.005 675.56
Q25 266.91 163.80 4.92 −0.35 0.007 0.011 0.004 675.56
Q26 138.55 100.89 5.12 −0.34 0.007 0.010 0.003 675.56
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TABLE V. BiRB, DRB, and CRB on IBM Hanoi. The error rates for every RB experiment we ran on ibm_hanoi. We ran CRB on
up to five qubits, we ran DRB on up to six qubits, and we ran BiRB on up to 20 qubits.

Qubit subset r� (BiRB) r� (DRB) r (CRB)

Q0 0.0224(3) 0.0222(3) 0.0318(3)
(Q0, Q1) 0.296(5) 0.300(5) 2.13(3)
(Q0, Q1, Q2) 0.456(7) 0.445(8) 10.9(2)
(Q0, Q1, Q2, Q3) 0.94(2) 0.98(3) 55(2)
(Q0, Q1, Q2, Q3, Q4) 1.61(3) 1.53(4) 99(1)
(Q0, Q1, Q2, Q3, Q4, Q5) 1.82(4) 1.9(2)
(“Q0”, “Q1”, “Q2”, “Q3”, “Q4”, “Q5”, “Q6”, “Q7”, “Q10”, “Q12”, “Q13”, “Q14”) 7.59(3)
(“Q0”, “Q1”, “Q2”, “Q3”, “Q4”, “Q5”, “Q6”, “Q7”, “Q10”, “Q12”, “Q13”, “Q14”,

“Q16”, “Q19”, “Q22”, “Q25”)
11.9(5)

(“Q0”, “Q1”, “Q2”, “Q3”, “Q4”, “Q5”, “Q6”, “Q7”, “Q10”, “Q12”, “Q13”, “Q14”,
“Q19”, “Q16”, “Q21”, “Q22”, “Q25”, “Q24”, “Q23”, “Q26”)

21.0(7)

and CNOT. Each benchmarking layer consisted of random
CNOT gates, respecting the device connectivity, and ran-
dom single-qubit gates on all other qubits. The CNOT gates

were sampled using edgegrab sampling with expected two-
qubit gate density of ξ = 1

4 . We ran K = 60 circuits at
exponentially spaced benchmark depths for each of DRB,

TABLE VI. IBM Hanoi calibration data. Calibration data from ibm_hanoi from the time of our BiRB demonstrations.

Qubit T1 (us) T2 (us)
Frequency

(GHz)
Anharmonicity

(GHz)
Readout

error
Pr(prep 1,
measure 0)

Pr(prep 0,
measure 1)

Readout length
(ns)

Q0 170.13 240.96 5.04 −0.34 0.010 0.012 0.007 817.78
Q1 119.38 125.05 5.16 −0.34 0.013 0.013 0.013 817.78
Q2 139.61 206.70 5.26 −0.34 0.014 0.018 0.010 817.78
Q3 120.10 32.35 5.10 −0.34 0.011 0.014 0.007 817.78
Q4 196.74 17.02 5.07 −0.34 0.006 0.006 0.007 817.78
Q5 148.10 186.60 5.21 −0.34 0.006 0.008 0.004 817.78
Q6 97.99 143.88 5.02 −0.34 0.024 0.027 0.021 817.78
Q7 177.40 255.79 4.92 −0.35 0.012 0.014 0.010 817.78
Q8 205.98 341.43 5.03 −0.34 0.012 0.012 0.011 817.78
Q9 96.37 208.45 4.87 −0.35 0.008 0.012 0.004 817.78
Q10 54.74 55.26 4.82 −0.35 0.020 0.021 0.020 817.78
Q11 150.80 259.36 5.16 −0.34 0.077 0.075 0.080 817.78
Q12 96.62 175.47 4.72 −0.35 0.173 0.215 0.130 817.78
Q13 241.95 274.17 4.96 −0.34 0.047 0.045 0.050 817.78
Q14 130.40 23.22 5.05 −0.34 0.009 0.011 0.007 817.78
Q15 80.32 35.15 4.92 -0.32 0.029 0.023 0.035 817.78
Q16 194.51 316.64 4.88 −0.35 0.009 0.010 0.008 817.78
Q17 152.12 66.53 5.22 −0.34 0.018 0.019 0.016 817.78
Q18 155.96 138.19 4.97 −0.35 0.012 0.017 0.006 817.78
Q19 201.17 238.68 5.00 −0.35 0.006 0.007 0.004 817.78
Q20 170.75 67.15 5.10 −0.34 0.006 0.005 0.006 817.78
Q21 128.89 31.88 4.84 −0.35 0.008 0.011 0.005 817.78
Q22 198.10 108.40 4.92 −0.35 0.011 0.012 0.010 817.78
Q23 173.22 256.72 4.92 −0.34 0.011 0.008 0.014 817.78
Q24 158.95 36.15 4.99 −0.34 0.007 0.008 0.005 817.78
Q25 158.51 47.02 4.81 −0.35 0.010 0.010 0.009 817.78
Q26 79.50 28.58 5.02 −0.34 0.008 0.010 0.006 817.78
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BiRB, and CRB. We randomized the order of the circuit
list and ran each circuit with 1000 shots.

The CRB error rate is an estimate of the average error
rate of a (compiled) n-qubit Clifford gate. To directly com-
pare the CRB error rate to the DRB and BiRB error rates,
we use a heuristic to approximate the average error of a
layer from the distribution � we used to sample the DRB
and BiRB circuits. Our estimate for the n-qubit layer error
rate is r�,est = (rn/kn)nξ , where rn is the n-qubit CRB error
rate and kn is the average number of two-qubit gates per
n-qubit Clifford.

2. RB error rates and calibration data

Here, we provide the RB error rates and device calibra-
tion data from all of our RB experiments on ibm_perth
[Tables I and II], ibmq_kolkata [Tables III and IV],
and ibm_hanoi [Tables V and VI].
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