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The classical simulation of highly entangling quantum dynamics is conjectured to be generically
hard. Thus, recently discovered measurement-induced transitions between highly entangling and low-
entanglement dynamics are phase transitions in classical simulability. Here, we study simulability
transitions beyond entanglement: noting that some highly entangling dynamics (e.g., integrable systems
or Clifford circuits) are easy to classically simulate, thus requiring “magic”—a subtle form of quantum
resource—to achieve computational hardness, we ask how the dynamics of magic competes with mea-
surements. We study the resulting “dynamical magic transitions” focusing on random monitored Clifford
circuits doped by T gates (injecting magic). We identify dynamical “stabilizer purification”—the collapse
of a superposition of stabilizer states by measurements—as the mechanism driving this transition. We find
cases where transitions in magic and entanglement coincide, but also others with a magic and simulabil-
ity transition in a highly (volume-law) entangled phase. In establishing our results, we use Pauli-based
computation, a scheme distilling the quantum essence of the dynamics to a magic state register subject
to mutually commuting measurements. We link stabilizer purification to “magic fragmentation” wherein
these measurements separate into disjoint, O(1)-weight blocks, and relate this to the spread of magic in
the original circuit becoming arrested.
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I. INTRODUCTION

The efficient simulation of generic quantum systems
is conjectured to require a quantum computer [1]. How-
ever, the boundary between what can and cannot be
efficiently simulated on a classical computer is a subtle
issue [2–12]. The exponential dimension of the Hilbert
space might naively suggest that an efficient simulation
algorithm would be impossible in all but the most trivial
of cases. Many recent experimental and theoretical efforts
have confirmed the ability of random quantum circuits to
generate output distributions that are exponentially com-
plex to replicate classically [11–15]. Remarkably however,
there exist examples of quantum dynamics that permit effi-
cient classical simulation. For example, it is possible to
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use matrix product states (MPSs) for efficiently simulat-
ing states with low entanglement [2,3], Gaussian fermionic
states for free-fermion dynamics [16,17], and the stabi-
lizer formalism for Clifford dynamics [18,19]. Delineating
the boundary between quantum systems that do or do not
permit efficient classical simulation can provide a greater
understanding of the transition between quantum and clas-
sical dynamics and also expose the regimes in which future
quantum computers could display an advantage.

Entanglement is a resource for quantum advantage. The
existence of sharp transitions in the amount of entan-
glement generated by a quantum circuit [20] suggests
the existence of a similar transition in classical simula-
tion complexity. One mechanism for such entanglement
transitions is via midcircuit “monitoring” measurements,
mimicking the coupling of the system to an environment
[21–27]. In the highly entangled phase, “volume-law” scal-
ing of the entanglement entropy (EE) is generated by
the unitary gates in the circuit. In the low-entanglement
phase, randomly introduced monitor measurements sup-
press entanglement, resulting in an “area-law” scaling.

The computational complexity of classically simulat-
ing this dynamics using MPSs is directly linked to EE
[27–30]. In the area-law regime, MPSs allow one to keep
track of the system’s state via polynomial-time (in the
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system size) classical computation, as opposed to
exponential-time computations in the volume-law regime.
However, Clifford dynamics, which can be highly entan-
gling, can still be classically simulated efficiently. This
suggests there may be simulability transitions stemming
from a quantum resource other than entanglement.

An important such resource is “magic” [31–41]. This,
broadly, quantifies how far a state is from the orbit of the
Clifford group, if starting from a computational basis state.
Despite its importance, little is known about any magic-
based simulability phase transition in monitored random
quantum circuits. Evidence exists for transitions in magic
in certain random quantum circuits [42–47], and magic
has been studied in many-body states [48–59], but the
connection to simulability transitions, or the relation to
entanglement transitions is not yet understood.

In our work, we demonstrate a simulability phase tran-
sition driven by the dynamics of magic in the circuit,
and show that this transition is related to but separate
from the entanglement transition. We consider a (1+1)D
model involving random 2-qubit Clifford gates, non-
Clifford T gates, and single-qubit monitor Z measurements,
cf. Fig. 1(a). Clifford gates along with the T gate form a
universal gate set for quantum computation [32]. Hence,
our model interpolates between classically simulable and
universal circuits, controlled both by the level of T-gate

(a)

(b) (c)

FIG. 1. (a) Monitored random Clifford + T circuit with n
qubits and depth D. Random 2-qubit Clifford gates (orange rect-
angles) form a brickwork architecture. T gates (red squares) and
monitoring Z measurements (green circles) are applied to indi-
vidual qubits between layers of Cliffords with probabilities q and
p , respectively. The circuit ends with a complete set of computa-
tional basis (i.e., Z) measurements. The aim is to sample from the
output probability distribution. Panels (b) and (c) illustrate PBC:
a t-qubit magic state register subject to mutually commuting
Pauli measurements. Each of these PBCs are equivalent to some
circuit as in (a), with t T gates. (b) In an easy phase, the mea-
surements can be done in parallel on size O(1) blocks of magic
states: the magic remains fragmented after the measurements. (c)
In a hard phase, most measurements belong to a size O(n) (for
t ∝ n) block: the magic is diffused by the measurements.

doping and the rate of measurements. This provides a toy
model for the dynamics of quantum computers and other
quantum systems, which can be used to probe the barrier
between high and low complexity regimes.

One can classically simulate a quantum circuit in time
scaling exponentially only with the number of non-Clifford
gates (injecting magic) and not with the number of qubits
[34]. However, as we shall note, for this exponential scal-
ing (and hence computational hardness) to set in, locally
injected magic must be able to spread in the system. To
assess this in our Clifford+T circuits, we use Pauli-based
computation (PBC) [34]. This distills a Clifford circuit
with t T gates into a t-qubit magic state register subject
to mutually commuting measurements; this strips away all
the classically efficiently simulable aspects, thus capturing
the dynamics’ true quantum essence.

We take t to scale at least as the number n of qubits;
this allows for regimes with exp(n) runtime for classically
simulating PBC [34] (hard phase). However, as we shall
show, measurements may reduce this runtime to poly(n)
(easy phase), with a “magic transition” at a critical moni-
toring rate. In the easy phase, measurements fragment the
magic state register into pieces whose size does not scale
with n, cf. Fig. 1(b). This fragmentation can be linked to
the spread of magic in the original circuit (which we cap-
ture with a “causal cone of magic”) becoming arrested by
a mechanism we dub dynamical “stabilizer purification,”
where sufficiently frequent measurements keep projecting
the system into a stabilizer state. We show that entangle-
ment and magic transitions may coincide, but also show
that the latter can, strikingly, also occur in a volume-
law phase. This shows that changes in the dynamics of
magic alone, without a change in entanglement, can drive
simulability transitions.

II. SUMMARY OF THE MAIN RESULTS

Before providing our detailed analysis, we summarize
our main results and the structure of the paper.

A. Simulability transition, stabilizer purification and
magic fragmentation

Here, we outline dynamical magic transitions and
describe stabilizer purification and magic fragmentation.
The transition is introduced in Sec. IV in detail and its
mechanism is thoroughly discussed in Sec. V.

We study a model of random Clifford gates interspersed
with random monitoring Z measurements and non-Clifford
T gates, shown in Fig. 1(a). Such circuits are generi-
cally hard to classically simulate, which we here define
as weak simulation: [60] sampling from the distribution
of computational basis measurements in their final state.
Nevertheless, we find that a certain “runtime proxy” for
classically simulating these circuits via PBC (see Sec. III)
undergoes a transition at a critical monitoring rate: below

030332-2



DYNAMICAL MAGIC TRANSITIONS... PRX QUANTUM 5, 030332 (2024)

this rate the circuits are hard to classically simulate using
PBC, while above it they become easy to simulate.

PBC produces a simplified circuit that is equivalent,
up to efficient classical processing, to the original circuit.
The PBC circuit acts on a “magic state register” (MSR),
see Figs. 1(b) and 1(c), with each magic state stemming
from implementing a T gate in the original circuit. PBC
then involves performing a series of mutually commut-
ing measurements on the MSR. To classically simulate
MSR measurements, one decomposes the initial product
of magic states into a superposition of stabilizer states and
simulates a Clifford circuit for each stabilizer state. The
number of stabilizer states entering the superposition is
called the stabilizer rank of the state; for t magic states
this is believed to scale as 2αt, where α > 0 is a constant
[34,61,62]. We choose the parameters of our model such
that the expected value of t—and hence the size of the
MSR—scales as poly(n).

The supports of the MSR measurements are crucial
for the definition of the simulability proxy for the magic
transition. Without monitoring measurements, the magic
injected by the T gates generically spreads and this leads
to MSR measurement operators developing support on a
large fraction of the MSR [Fig. 1(c), Secs. III B, V A 1,
and Appendix C]. In this case, simulation is hard because
one has to consider at least 2αpoly(n) stabilizer states. Con-
versely, mechanisms that make the MSR measurements
local may allow for simulating local (n-independent-sized)
blocks of the MSR separately [Fig. 1(b)], leading to easy
simulation, since there are poly(n) blocks altogether. In
this case, when the MSR measurements can be separated
into disjoint O(1)-sized MSR blocks we say magic frag-
mentation (MF) occurs (or, more precisely, persists, since
the MSR started out as fragmented before the measure-
ments). The MSR measurements thus either fragment or
diffuse the initial magic in the MSR, and the presence
of MF suggests that the spread of the magic inserted
by the corresponding T gates became arrested in the
original circuit.

A key mechanism for the dynamics of magic is the com-
petition between T gates and measurements. In the original
circuit, T gates tend to increase the stabilizer rank of the
time-evolved state, while monitors tend to decrease it by
projecting single qubits onto a stabilizer state. From the
PBC perspective, the T gates increase the MSR, while
monitors tend to both reduce the MSR stabilizer rank and
localize the supports of MSR measurements. We present
numerical evidence for the existence of and transition
between the corresponding two MSR regimes in Sec. IV.

Measurements may eventually lead to the collapse of a
complex superposition of stabilizer states to a single one.
We call this dynamical stabilizer purification (SP) owing
to its similarity to dynamical purification [63]. SP defines
a mechanism for arresting the spread of magic, and in PBC,
we shall indeed show that it can cause MF, and thus, can

drive the magic transition. In Sec. V, we exemplify this via
a simplified model where T gates are temporally separated
enough such that the monitors after a T gate project onto
a stabilizer state before the next T gate occurs; this is an
example of SP. Converting this to PBC, we find that the
magic states for the successive T gates are each subjected
to their own single-qubit measurement. Thus, in this case,
we see how SP in the original circuit leads to MF in PBC.
Therefore, it is appealing to search for regimes where the
assumptions of the simplified model are met since these
regimes would reveal easy phases. We outline two such
regimes in the following subsections.

B. Uncorrelated monitoring

Here, we summarize how the SP probability is set by the
EE in a model where monitors are sampled independently
from T gates. We overview the implications for a simula-
bility transition and provide some regimes where the magic
and entanglement transitions coincide or differ.

As we shall show, the entanglement can set the proba-
bility to stabilizer purify: for stabilizer states, volume- or
area-law scaling of the entanglement entropy implies most
stabilizer generators are delocalized or localized, respec-
tively (cf. Appendix D). Using this, we shall show that
a single T gate is stabilizer purified with high probability
in exp(n) time or O(1) time in the volume- and area-law
phase, respectively (see Sec. V C and Appendix D).

This will allow us to show that the entanglement and
the magic transitions can coincide. We focus on a regime
with one T gate occurring in every poly(n) time steps
(i.e., circuit layers). In this case, in the area-law phase,
as the magic from each T-gate stabilizer purifies in O(1)
time, the T gates are sufficiently far apart to enable SP one
T gate at a time. The area law thus implies easy PBC sim-
ulation. In contrast, in the volume-law phase, there are not
enough monitors to SP: T gates occur every approximately
poly(n) time steps but each requires exp(n) time to sta-
bilizer purify; hence, we expect a hard PBC phase since
the stabilizer rank in the original circuit blows up, magic
spreads (as we argue in Sec. V A and Appendix C), and the
MSR measurements are delocalized. We find remarkable
agreement between these expectations (see Sec. V D) and
numerical simulations of the runtime proxy (see Sec. IV),
which confirm the link between entanglement and magic
transitions in this regime.

However, there are other regimes where the transitions
are distinct. As we shall show, the area law can also
set in without PBC becoming easy. Consider the regime
with O(n) T gates injected into the circuit at every time
step. This introduces T gates at a rate higher than that
at which each of them is stabilizer purified, making SP
exponentially unlikely. Thus, the stabilizer rank in the
original circuit blows up and the MSR measurements are
delocalized, so the PBC simulation is hard, regardless of
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the EE. Using a mapping to percolation (cf. Sec. III C,
Appendix E), we show that the simulation by PBC does
eventually become easy, but this is because the (final state
relevant parts of the) circuit itself gets effectively discon-
nected, and this happens well after area-law EE sets in
Ref. [27]. We perform numerical simulations of the run-
time proxy that agree well with these expectations (see
Sec. V D 2).

While these results already show that the relation
between entanglement and magic transitions can be subtle,
they might suggest that classical simulability in monitored
Clifford+T circuits depends only on entanglement: in the
regimes discussed, PBC was hard in the volume-law phase
and once an area law sets in, one can use MPSs (regardless
of the hardness or ease of PBC) for efficient classical sim-
ulations. As we next discuss, however, magic transitions
can also happen in the volume-law phase.

C. T-correlated monitoring

To push the magic transition into the volume-law phase,
we introduce correlations between T gates and monitoring
measurements. It is amusing to interpret this scenario as
there being a monitoring observer whose aim is to make
classical simulation as easy as possible by measuring a
fraction of the qubits per circuit layer, and who may have
some (potentially limited) knowledge of the locations of
the T gates. Their best strategy is to attempt to measure
immediately after T gates. If we consider the extreme case
with the observer having as many monitors as T gates and
perfect knowledge of where T gates occurred, then the state
is stabilizer purified after each layer. Indeed, this is an
“easy” point in parameter space regardless of the amount
of entanglement and even for O(n) T gates injected per
layer. Remarkably, an entire easy phase can emerge within
a volume-law entangled phase.

To turn this into a simulability transition within the
volume-law phase, we can use as a control knob the infor-
mation the observer has about where the T gates are in
spacetime. Mathematically, this amounts to using the con-
ditional probability of applying a monitor, given that a T
gate was present, as a control parameter. Focusing within
the volume-law phase and in the regime where O(n) T
gates are applied per layer, we expect to find a phase tran-
sition from the previously found hard phase (cf. Secs. II B
and V D 2, corresponding to a zero-knowledge observer)
to an easy phase as the observer’s knowledge increases.
We provide numerical simulations of the runtime proxy in
Sec. VI, which agree well with this expectation.

D. Outline

The rest of the paper is organized as follows. In Sec. III,
we present our circuit model, review PBC, and comment
on the link between the dynamics of magic and the weights
of PBC measurements. We then introduce a runtime proxy

for classically simulating PBC, and define a corresponding
order parameter. We also outline how a mapping to perco-
lation can identify blocks in the original circuit amenable
for separate simulation. In Sec. IV, we provide numerical
evidence that a magic transition exists at a critical moni-
toring rate. In Sec. V, we propose SP as a mechanism for
this transition, showing how it removes magic from the
circuit and how this relates to MF in PBC. In Sec. VI,
we introduce the T-correlated monitoring model where a
dynamical magic transition can occur within a volume-law
phase. Finally, in Sec. VII, we discuss our findings and
future directions.

III. QUANTUM CIRCUIT MODEL AND ITS
SIMULATION

A. Monitored Clifford+T circuits

We shall consider Clifford + T quantum circuits acting
on n qubits and with depth D, taking D = poly(n). The
circuit architecture is shown in Fig. 1(a). The Clifford
gates are 2-qubit gates in a brickwork pattern; each gate
is chosen randomly from a uniform distribution over the 2-
qubit Clifford group C2 [64]. Between each Clifford layer,
we randomly apply the non-Clifford T = diag(1, eiπ/4) ∼
e−iπZ/8 gate to each qubit with probability q (which may
be a function of n). We also apply projective monitor-
ing Z measurements to certain qubits between the Clifford
layers. (We could alternatively perform X or Y monitor
measurements; we do not expect this would change the
results obtained.) Monitoring not only alters the state of the
system but, by retaining measurement outcomes, it main-
tains a record of the state’s evolution. The last step of
the circuit is a complete set of computational basis mea-
surements. We are interested in the difficulty of simulating
these final measurements, i.e., sampling from the circuit’s
output distribution.

We consider two different models for the way in which
qubits are monitored. In the first, each qubit is measured
in between Clifford layers with probability p [Fig. 1(a)]
irrespective of the preceding T gates. We term this the
“uncorrelated monitoring model.” In the second, we con-
sider correlated T gates and measurements, which can also
be viewed as a monitoring observer who performs pn mea-
surements per circuit layer at locations of their choosing.
The aim of this observer is to make the final computa-
tion as simple as possible. In the uncorrelated monitoring
model, the observer is unaware of the locations of the T
gates, whereas in the alternative “T-correlated monitoring
model,” they have this information and can use it to facili-
tate their task. In this latter model, the spacetime locations
of monitors and T gates become correlated.

We are interested in how p and q influence the hard-
ness of classically sampling from the output probability
distribution, i.e., weak simulation [14]. Our main focus
is the role of magic, thus the deviation from stabilizer
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simulability; we assess this by developing a classical run-
time estimate CPXPBC (cf. Sec. III B) for exactly weakly
simulating a typical quantum circuit using PBC. Our pri-
mary interest is whether CPXPBC scales exponentially (hard
phase) or polynomially (easy phase) with n. Next, we
review PBC and how it enables us to distill the essential
quantum core of the simulation.

B. Pauli-based computation, magic spreading, and the
runtime proxy

For Clifford + T circuits, PBC provides a natural
method for classical simulation [34]. PBC is a quantum
computational model that can efficiently sample from the
output distribution of a quantum circuit involving poly(n)
Cliffords and t = poly(n) T gates. It requires only the abil-
ity to do up to t commuting Pauli measurements on t qubits,
prepared in a suitable initial state, along with poly(n)
classical processing. When performing quantum compu-
tation, PBC thus distills the essentially quantum parts of
the problem and uses a quantum processor for these, while
offloading the classically efficiently doable parts to a clas-
sical computer. By the same logic, PBC also provides a
route to classically simulating a circuit in a time that scales
only as exp(t) rather than exp(n), a considerable advantage
for circuits dominated by Clifford gates. Here, we summa-
rize the process of converting a Clifford + T circuit into
PBC and the classical simulation of the latter.

To convert a monitored quantum circuit [including final
measurements, cf. Fig. 1(a)] into a PBC circuit, one begins
by replacing all T gates with “magic state gadgets” [31],
simultaneously introducing t ancilla qubits, each in a
so-called magic state:

|A〉 = 1√
2

(|0〉 + eiπ/4|1〉) . (1)

The magic state gadget is a procedure involving only Clif-
ford gates and measurements, acting on the target qubit
and a single ancilla magic state. This gadget is shown in
Fig. 2(a). It involves the measurement of the joint parity
operator ZcZa, where Zc is the Pauli operator acting on
the target (computational) qubit, and Za is that acting on
the ancilla qubit. The measurement is then followed by the
action of the following Clifford gate:

U = exp
(
−i
π

4
ZcXa

)
∈ C2, (2)

where Ck is the k-qubit Clifford group. If the measurement
outcome is +1, then S† is next applied to the target qubit.

After replacing all t T gates with the above gadgets,
we have two registers: an n-qubit computational register
and a t-qubit MSR. The circuit acting on these two reg-
isters now involves Clifford gates, gadget measurements
(GMs), monitoring measurements and final “output” mea-
surements, see Fig. 2(b) for an example. Our simulation
goal is to sample the output measurement outcomes.

We further simplify this circuit by commuting each Clif-
ford gate past all measurements, which are thus updated
M �→ C†MC for Clifford gate C and original measure-
ment operator M . Once the Clifford gate is commuted
past all measurement operators, it no longer affects the
final output distribution and so can be deleted. The set of
measurements can then be restricted, with only poly(n)-
time classical processing time [34,65] (see Appendix A
for review), to a mutually commuting subset that acts
nontrivially only on the MSR. Therefore, the original com-
putational register can be deleted and we are left with at
most t commuting measurements performed on t magic
states. The simulation of the initial circuit can be replaced
by the simulation of these MSR measurements [and the
poly(n)-time classical processing], cf. Fig. 2(c).

(a) (b)

(c)

FIG. 2. Pauli-based computation (PBC) for the quantum circuit in Fig. 1, cf. Sec. III A. (a) Magic state gadget applying a T gate
to qubit c in state |ψ〉c while consuming ancilla qubit a in state |A〉a. The gadget involves measuring ZcZa, followed by applying
U = exp (−iπZcXa/4) and, depending on the measurement outcome, applying S†. (b) The monitored circuit from Fig. 1 (acting on
the computational register Rn) but with magic state gadgets, shaded red, replacing T gates (the circuit up to the first three T gates
is shown). Rt is the register of magic states. Gadget measurements are preselected to −1 for simplicity, so no adaptive S† gates are
required. (c) The PBC resulting from the circuit in (b) is a series of commuting measurements acting only on Rt.
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With PBC defined, we can now link the easy and hard
phases in Figs. 1(b) and 1(c) to the dynamics of magic
in the original circuit. We first note that the hard regime
requires magic to spread; in other words, operator spread-
ing is a requirement for multiqubit MSR measurements to
build up. This could be due to the spreading of T gates,
supplying an intuitive path for magic spreading; but this
can also be combined with the spreading of stabilizers pre-
ceding a T gate since nonlocal stabilizers can allow for a
T gate’s magic to instantly delocalize (see Sec. V A 1 for a
further discussion). For a monitor or output measurement
to couple to multiple T gates, and hence be able to yield
multiqubit MSR measurements, it must be in the causal
future of the magic injected by these T gates, as detailed
in Sec. V A 1. Since the T gates occur randomly, coupling
O(n) of them to a measurement requires spatial opera-
tor spreading, and thus locally inserted magic to spread.
The role of monitors is to interrupt the spreading of magic
(and thus the creation of increasingly complex stabilizer
superpositions). This is the essence of how SP can arrest
the dynamics of magic and lead to MF, as we shall see
in Sec. V.

To characterize this competition with an order param-
eter, we must first describe how one classically sim-
ulates PBC. This involves evaluating the probabilities
P(m) for measurement outcomes m = (m1, . . . , mk) at any
time step k ≤ t. By computing P(m1), then P(m2|m1) =
P(m2, m1)/P(m1), etc., one can flip coins with appropriate
biases to simulate the PBC measurements [34]. Therefore,
we wish to evaluate 〈A|⊗t�m|A〉⊗t for �m = ∏k

j =1
1
2 (1 +

mj Mj ), where the Mj are the commuting PBC measure-
ments. By decomposing |A〉⊗t into a low-rank sum of
χt stabilizer states, one can perform these evaluations in
O(t3χ2

t ) = poly(t)2O(t) time [34,61,62].
If the MSR can be partitioned (as is the case for MF),

this can speed up and parallelize this classical computa-
tion. Let us suppose we split the measurements into the
largest number K of subsets Ri (i = 1, . . . , K) with the con-
straint that no measurement in Ri has support overlapping
with the support of any measurement in Rj �=i. That is, if
we let Sup(Ri) be the union of the supports of all mea-
surements in Ri, then Sup(Ri) are mutually disjoint sets.
Let ti = |Sup(Ri)| be the size of Sup(Ri), where

∑
i ti ≤ t.

Now evaluating the measurement probability for time step
k involves evaluating a probability for each MSR partition
P(m1, . . . , mk) = ∏K

i=1 Pi(k), where

Pi(k) = 〈A|⊗ti
∏

j : j ≤k
Mj ∈Ri

1 + mj Mj

2
|A〉⊗ti . (3)

Thus the runtime in evaluating the probability becomes

O
(

K∑

i=1

|Ri|t3i χ2
ti

)

=
K∑

i=1

poly(ti)2O(ti) (4)

since there are |Ri| measurements in subset i, each of
which acts on ti qubits. This quantity is exponential only
in the parameters ti, not necessarily in t. Note that if each
ti = O(1), corresponding to a magic fragmentation regime
(cf. Sec. II A), then the entire computation can be executed
in poly(n) time.

Therefore, we define the following runtime proxy that
captures the exponentially scaling part of the above run-
time for simulating the PBC:

CPXPBC =
K ′∑

i=1

2ti . (5)

Here, we restrict the sum to the K ′ ≤ K MSR partitions Ri
that support at least one of the final output measurements
since computing the probabilities for gadget measurements
is trivial and we do not need to calculate the monitor
measurement probabilities since their outcomes are given
(cf. Appendix A). This runtime proxy differs from the
actual runtime by poly(n) prefactors and also by O(1) fac-
tors in the exponents. However, we are interested only
in the efficiency of PBC-based classical simulation, i.e.,
whether the runtime scales polynomially or (at least) expo-
nentially with n. This is indeed captured by the scaling
of CPXPBC.

We define the order parameter in terms of the typical
value of CPXPBC among random circuit realizations:

log CPX
(typ)
PBC/t ≡ ERQC [log(CPXPBC)/t] , (6)

where ERQC is the expectation value over the uniformly
distributed Clifford gates and the randomly placed moni-
tor measurements and T gates. In a hard phase (no MF),
we expect CPX

(typ)
PBC = exp(t), thus, the order parameter

would be O(1) and positive. In an easy phase (with MF),
we expect CPX

(typ)
PBC = poly(n), hence, the order parameter

would vanish as n → ∞ since t = poly(n).
We emphasize that, by measuring the “unfragmented”

magic in PBC, Eq. (6) accounts for the fraction of the
potentially present magic (t) structured such that it results
in classically hard to simulate PBC (as n is increased).
In terms of magic dynamics, unlike existing global magic
measures, one can view Eq. (6) as a proxy for the fraction
of injected magic that can spread in the original circuit.

C. Circuit cluster selection and percolation

For frequent enough monitors, only a small part of the
entire circuit history suffices for simulation. Projectively
measuring a qubit makes the previous state partially irrel-
evant for simulation: as an extreme case, if all qubits are
monitored at the same time step t0, then determining the
final state requires simulating only the evolution after t0.
Thus, monitors disconnect the circuit temporally. Simi-
larly, separable Clifford gates (i.e., those 2-qubit gates of

030332-6



DYNAMICAL MAGIC TRANSITIONS... PRX QUANTUM 5, 030332 (2024)

the form C1 ⊗ C2 for C1, C2 ∈ C1) disconnect the circuit
spatially by allowing for the simulation of neighboring
qubits in parallel, cf. Appendix E 1. Therefore, we can sim-
plify the simulation by mapping our circuit architecture
from Fig. 1(a) to a percolation model (cf. Appendix E 2),
and focusing on circuit clusters connected to the final-
time boundary. The numerical experiments for computing
CPXPBC from Secs. IV, V D 2 and VI use this optimization
procedure, i.e., they apply the PBC procedure only on the
relevant circuit clusters.

This percolation model sets an upper bound for
the critical monitoring rate of a simulability transition
(cf. Appendix E 3). The size and depth of the selected cir-
cuit clusters directly sets the runtime for using exact tensor
network (TN) contraction to sample from the output distri-
bution [4]. Above a critical monitoring rate pTN

c � 0.48,
the size and depth of the clusters are O(1); thus clas-
sically simulating the circuit by TN contraction is easy.
Indeed, the finite size of the clusters also results in the PBC
method being efficient for any value of q. Therefore, pTN

c
sets an upper bound for a simulability phase transition. In
Secs. IV and VI, we shall study settings where such a tran-
sition occurs at pc < pTN

c , while in Sec. V D 2, we describe
settings where the bound is saturated.

Note that our use of percolation theory differs from
Ref. [66], which focuses on state complexity. As Ref. [66]
notes, this can be distinct from the complexity of weak
simulation, which our percolation mapping (accounting for
separability in C2) assesses.

IV. MAGIC TRANSITIONS WITH
UNCORRELATED MONITORING

Before discussing, in Sec. V, the mechanism behind
the dynamical magic phase transitions we study, we first
describe the CPXPBC transition that occurs in the uncorre-
lated monitoring model: we show results from numerical
simulations of the runtime proxy CPXPBC, for fixed qD =
O(1) [implying t = O(n)], and show that MF is linked
with the magic transition. We describe the setup of the
numerical experiment, discuss the results, and highlight
where the mechanism based on SP from the next section
will come into play.

The original circuits in our setups, subsequently
expressed as PBC, follow Fig. 1(a). We perform the clas-
sical part of PBC, as detailed in Appendix F, to find the
set of PBC measurements. From this set, we infer the sizes
of the MSR blocks and the runtime proxy CPXPBC. For con-
creteness, we take D = n, however, any D = poly(n) depth
circuit should generically yield the same results.

We find a MF-driven magic phase transition at pc ≈
0.159, a value consistent with a simultaneous entanglement
transition [22,67]. Below pc (hard phase), the distribu-
tion of MSR block sizes is (shallowly) peaked at a value
set by the total MSR size t ∼ qDn, cf. Fig. 3(a), inset.

(a)

(b)

FIG. 3. Dynamical magic phase transition for fixed qD =
O(1) coinciding with the entanglement phase transition. (a) The
MSR is fragmented into O(1) blocks for p > pc ≈ 0.159 while it
has an O(n) size block for p < pc. The inset more closely shows
the histogram of block sizes averaged over 300 realizations. (b)
The order parameter log CPX

(typ)
PBC /t vs measurement probability p .

The error bars, showing the standard error of the mean (SE), are
imperceptible. The order parameter drops from a finite value for
p < pc to zero for p > pc (it remains zero up to p = 1 but this
is not shown). The inset shows the finite-size scaling collapse
characteristic of a continuous magic phase transition.

Above pc (easy phase), this distribution becomes peaked
at unit block size, with a tail decaying to zero (faster for
larger p) in an n-independent manner, cf. Fig. 3(a). The
order parameter is nonzero for p < pc and vanishes for
p > pc, cf. Fig. 3(b). Using finite-size scaling [68,69], we
find pc = 0.159 ± 0.001. The inset of Fig. 3(b) displays
the corresponding scaling collapse, signaling a continuous
phase transition [68,70] as a function of p .

These results illustrate, firstly, that MF occurs upon
increasing p , driving the system to the “easy” phase with
vanishing order parameter (for n → ∞). Secondly, noting
that pc is consistent with the critical value pEE

c = 0.154 ±
0.004 for the entanglement transition in Clifford circuits
[22,67] [with the slight deviation possibly attributable to
the t = O(n) T gates] we see that magic and entangle-
ment transitions can co-occur. As we shall argue, this
co-occurrence is due to the tight link, for qD = O(1) with
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uncorrelated monitoring, between SP and entanglement.
We studied other qD = O(1) values, finding similar results
(see Appendix G).

The key concept for understanding the appearance of
MF and the coincidence of CPXPBC and EE transitions is
SP. We shall see in the next section that SP causes MF
and drives the simulability transition and that, for fixed
qD = O(1), an area-law entanglement phase leads to SP.

V. MAGIC TRANSITIONS VIA STABILIZER
PURIFICATION

Here, we present SP as a mechanism behind the
magic transition described in the previous section. The
overall picture of this mechanism is: in an easy phase,
each T gate has its magic annihilated before the next one
is applied; whereas in a hard phase, magic from many T
gates accumulates. Our aim is to calculate the probabil-
ity that the magic introduced by a T gate can be removed
by monitors before further T gates would be applied. If
this probability is high, then the evolved state is constantly
stabilizer purified, leading to an easy phase. This probabil-
ity depends on the temporal separation of T gates and the
monitoring probability.

We compute this probability by starting from a simpli-
fied model, then progressively refining it until it captures
most features of the uncorrelated monitoring model. In
Sec. V A, we study how a single monitor removes the
magic of a single T gate (or reduces the magic from a
small number of T gates) in both the original and the PBC
circuits. In Sec. V B, relating these two perspectives, we
argue that SP leads to MF and hence a magic transition. In
Sec. V C, we calculate the probability to stabilizer purify
and explain how it relates to the entanglement phases. In
Sec. V D, based on the SP probability, we interpret the
magic transition for uncorrelated monitoring described in
Sec. IV. In Sec. V E, we describe how SP implies that sta-
bilizer simulation of the original circuit (rather than the
PBC circuit) is also easy.

A. Stabilizer-purified T gate

Here, we explore the constraints a monitor has to sat-
isfy to remove the magic introduced by a single T gate.
We assume that the system had been in a stabilizer state
|ψ〉 before the T gate acted and that T|ψ〉 is a nonsta-
bilizer state, i.e., that T splits |ψ〉 into a superposition
of two stabilizer states. The monitor is a Pauli measure-
ment M (absorbing in it the Cliffords between T and the
monitor), with projector � and study the conditions for
�T|ψ〉 being an (unnormalized) stabilizer state, i.e., for
SP. More details on the following considerations are in
Appendix B.

In this first simplified model, we shall consider |ψ〉 as
a random stabilizer state on n qubits, with stabilizer group
S = 〈s1, . . . , sn〉, where si for i = 1, . . . , n are a complete

set of stabilizer generators, uniquely specifying |ψ〉 by
si|ψ〉 = |ψ〉. Without loss of generality, we take T to act
on the first qubit, T = T1, and that Z1 anticommutes with s1
(if it commuted with all si then T1|ψ〉 would be a stabilizer
state). Then T1|ψ〉 = c+|ψ+〉 + c−|ψ−〉, where |ψ±〉 are
stabilized by groups S± = 〈±Z1, g2, . . . , gn〉, respectively,
where gi are updated generators (i.e., gi = si if [Z1, si] = 0
and gi = s1si if {Z1, si} = 0).

The resulting state can be interpreted as an encoded state
of a stabilizer quantum error-correcting code [71], with sta-
bilizer group G = 〈g2, . . . , gn〉 and logical operators Z1 and
s1; these mutually anticommute but commute with all gi
for i = 2, . . . , n. The single logical qubit of this code is in
a magic state. The only way for M to yield a stabilizer
postmeasurement state is to measure the state of the logi-
cal qubit. That is, M must belong to one of the following
cosets (up to an irrelevant sign):

Z1G, s1G, is1Z1G. (7)

We prove this in Appendix B 2.
Consider what happens in PBC in the three cases

of Eq. (7). After replacing the T gate with a gad-
get and commuting the gadget Cliffords past M (which
already absorbed the circuit Cliffords between T1 and
the monitor), we are left with the following sequence
of measurements:

(1) Gadget measurement (GM) of operator Z1Za, where
Za acts on the ancilla qubit.

(2) Updated monitor measurement M ′ = U′†MU′ where
U′ = (S†

1)
(1+m)/2U with m the gadget measurement

outcome and U the gadget Clifford from Eq. (2).
Equation (7) implies that M ′ is in one of the fol-
lowing cosets (up to a sign):

Z1G, s1XaG, is1Z1XaG. (8)

As noted, Z1 anticommutes with s1, which stabilized the
initial state |ψ〉. Therefore, according to the PBC pro-
cedure, we replace the GM with a Clifford gate V =
exp(λ(π/4)Z1Zas1) for λ = ±1 chosen uniformly at ran-
dom (see Appendix A). We then commute this V past the
updated monitor measurement.

In the first case from Eq. (8), V does not commute with
the updated monitor and so updates it to an operator from
coset s1ZaG (up to a sign). In the second case, V commutes
with the updated monitor and hence leaves the measure-
ment operator unchanged. In the final case, V does not
commute with the measurement and so updates it to an
operator from the coset iXaZaG (up to a sign).

As can be seen, in all cases, the final result is that the
monitor measurement (updated by the gadget Cliffords and
by V) commutes with all members of S , the stabilizer
group of the initial state |ψ〉. Therefore, it is retained in
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the PBC: it becomes a single-qubit measurement on the
ancilla magic state, projecting it into a stabilizer state (see
Appendix B 2 for more details).

1. Causal cone of magic: linking magic spreading to
stabilizer purification and complexity

Consider a circuit with a single T gate and the small-
est set of spacetime locations outside of which a monitor
cannot SP the T gate for any choice of subsequent Clifford
layers. While the detailed structure of this set depends on
that of the logical operators, its convex hull forms a causal
cone extending from the smallest interval IA containing the
union A of the supports of minimum-width logical opera-
tors in s1G, cf. Fig. 4 (see also Appendix C). We call this
cone the causal cone of magic (CCM) and IA the cone’s
apex. The T gate’s forward lightcone is always within this
CCM, as intuitively expected. However, the CCM can be
broader; it may have a nonzero-width apex since the magic
from the T gate can instantly delocalize and thus SP may
occur from measurements elsewhere than the T gate’s sup-
port; in particular, |ψ+〉 and |ψ−〉 may be distinguished,
and hence SP can occur from monitors, throughout the
support of the most local members of s1G (these toggle
between |ψ+〉 and |ψ−〉) and it is this support that sets A.
Measuring qubits outside the CCM however cannot SP.
Thus such measurements preserve the magic injected by
the T gate. In this way, the CCM characterizes how magic
from a T gate can spread.

The CCM can also be used to link magic spreading to
multiqubit measurements in PBC and hence to CPXPBC. To
illustrate this, consider two T gates, Tk and Tl, that both
inject magic into the circuit, thus yielding two CCMs. The
state TkTl|ψ〉 encodes two logical qubits, k and l, associ-
ated through the gadgets to ancilla ak and al, respectively.
We assume that there are no measurements in the cir-
cuit layers between the T gates, for simplicity. Consider a
computational basis measurement (monitor or final output)

FIG. 4. Causal cones of magic of two T gates, extending from
the apexes IA and IA′ (black segments) for A and A′ (bold
red lines), respectively. A later measurement (green circle) can
acquire support on the ancillas of both T gates only if it is in the
overlap of the causal cones.

in some layer after the second T gate. For this measurement
to be retained in PBC it must commute with all stabilizer
generators and hence, to be nontrivial, it must measure a
logical operator. By the definition of the CCM, this can be
a two-logical-qubit operator, thus coupling ak and al, only
if it is in the intersection of both CCMs. (See Appendix C
for further details.) If there were monitor measurements,
or such choices of Cliffords after the T gates, that arrest the
spread of magic from the apexes into the CCMs such that
the logical operators’ supports cannot develop an intersec-
tion, this would prevent the appearance of multiqubit MSR
measurements. Thus, the buildup of magic from both T
gates in the original circuit due to operator spreading is
required for a buildup of the complexity in PBC.

B. SP leads to MF

Here, we outline how SP leads to MF, using a second
simplified model building on the above picture. We shall
consider a circuit with an input stabilizer state acted on by
poly(n) circuit blocks. Each of these blocks has poly(n)
depth, O(1) T gates randomly placed between Clifford
gates and projective measurements. The main assumption
of this second simplified model is that after each block, the
state of the system is a stabilizer state. Importantly, some-
thing akin to this picture resembles the easy-to-simulate
phases in our models, cf. Secs. V D and VI.

A simple argument shows that stabilizer purifying the
T gates from each block before the next one occurs
yields size O(1) MSR measurements in the PBC. First we
prove the following:

Theorem 1. The output of a monitored Clifford+T cir-
cuit (acting on arbitrary initial stabilizer state) is a stabi-
lizer state if and only if the output of the corresponding
PBC is a stabilizer state.

Proof. Consider a magic measure M obeying the fol-
lowing properties: (i) M(|ψ〉) = 0 if and only if |ψ〉 is a
stabilizer state, (ii) M(C|ψ〉) = M(|ψ〉) for any Clifford
gate C and (iii) M(|ψ〉 ⊗ |φ〉) = M(|ψ〉)+ M(|φ〉).
Such a measure exists [40].

We show that this measure is unchanged upon convert-
ing a Clifford+T circuit with monitors into a PBC. Observe
that after replacing a T gate with a gadget and applying
that gadget to the target qubit, the result is that the tar-
get qubit has a T gate applied to it and the ancilla qubit
ends in an eigenstate of Ya (this can be seen by commut-
ing the gadget Clifford U before the gadget measurement).
Hence, the state after application of a gadget is altered only
by the addition of stabilizer states. Therefore, the value of
the magic measure is unchanged if we apply magic state
gadgets instead of T gates, owing to properties (i) and (iii)
above. After this, we commute all Cliffords past all mea-
surements to the end of the circuit and delete them; using
property (ii), this does not alter the magic of the final state.
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We then go through the list of measurements and replace
any measurement that anticommutes with a previous one
with a random Clifford gate, commuting that to the end
of the circuit and deleting it as well. This replacement
produces the corresponding postmeasurement state of the
replaced measurement (see Appendix A) and hence does
not change the magic in the system. Similarly to above,
commuting this Clifford past remaining measurements and
deleting it does not change the magic of the state either.
We can then restrict all measurements to the MSR without
changing anything about the final state. Since the com-
putational register now remains untouched in its initial
stabilizer state, deleting it does not affect the magic of the
final state [properties (i) and (iii)]. This leaves only the
PBC, after whose measurements on the MSR, the magic
of the final state is the same as that of the final state of the
original circuit. Hence, if the output of the original circuit
is a stabilizer state, so too is the output of the PBC, and
vice versa [property (i)]. �

Since each circuit block in the second simplified model
is itself a monitored Clifford+T circuit and it ends in a sta-
bilizer state, the ancillas introduced in that circuit block all
end up in a stabilizer state too, from Theorem 1. After the
first block, suppose k ancillas have been introduced. Then
the measurements introduced in the first block translate to
PBC measurements that project those k ancillas to a stabi-
lizer state. For the next block, we can view these k states
as part of the block’s initial stabilizer state, thus reducing
the effective MSR size for this block to t − k where t is the
total number of T gates in the initial circuit. Thus all sub-
sequent measurements of the PBC act trivially on the first
k ancilla qubits.

Proceeding in this way, the measurements from each
circuit block correspond to PBC measurements that act
trivially on all ancillas apart from those introduced within
that block. But because, by assumption, there are only
O(1) of these ancillas introduced in each block, the mea-
surements that project them into a stabilizer state must also
have O(1) weight. That is, the SP of the original circuit
corresponds to MF of the PBC.

C. Stabilizer-purification probability and time

Here, with the aid of a third simplified model, we
outline the calculation of the SP probability, link it to
entanglement and introduce the SP time.

As above, we shall consider a circuit with poly(n) circuit
blocks, cf. Fig. 5. However, now we assume each block
has only one T gate, at its start. The T gate is followed
by a depth-d brickwork of 2-qubit Cliffords with monitor
Z measurements between each Clifford layer occurring on
each qubit with probability p . We dub this circuit block a
T-circuit-block (TCB). The full circuit has as input a sta-
bilizer state, then TCBs in succession. By t = poly(n), this
model is a cartoon for our uncorrelated monitoring model

FIG. 5. Illustration of the third and final simplified model
introduced in this section. A depth-d T-circuit-block (TCB) is
illustrated (top). It involves a T gate (red box) being applied
to input state |ψin〉, followed by random monitor measurements
(green circles) and random 2-qubit Clifford gates. Measure-
ments occur between Clifford layers on each qubit with prob-
ability p . The model involves k TCBs applied to initial state
|0〉⊗n (bottom).

for fixed qD; see also Sec. V D 1. (Here, we do not assume
that the output of a TCB is a stabilizer state.)

SP is guaranteed if each of the TCBs purify the magic
introduced by their T gate, i.e., if they output a stabilizer
state. If so, we can use the argument from Sec. V B to show
that MF occurs. To study when this applies, we shall esti-
mate the stabilizer-purification time τSP, the characteristic
depth such that for d � τSP a TCB is a T purifier, i.e., it
almost surely purifies its T gate, provided its input |ψin〉 is
a stabilizer state. The first step for this is finding the TCB’s
corresponding SP probability.

1. Stabilizer-purification probability

We assume that T|ψin〉 is not a stabilizer state. Like in
Sec. V A, the state encodes one logical qubit (in a magic
state) with logical operators Zi and s1, where s1 stabilized
|ψin〉 and the T gate acts on qubit i (see Sec. V A). If bulk
monitors SP, they measure the state of this logical qubit.
The SP probability of a TCB has contributions from mon-
itors immediately after the T gate, and from monitors in
subsequent layers of the TCB,

PSP(d) = P(d∗ = 1)+ P(d ≥ d∗ > 1), (9)

where d∗ ≤ d is the depth at which SP occurs. Here

P(d∗ = 1) = 1 − (1 − p)w0 ≡ p1 (10)

for some number of qubits w0 that, if measured, result in
SP. w0 ≥ 1 since monitors are Z measurements and Zi is a
logical operator [cf. Eq. (7)] while w0 ≤ |A|, with |A| the
cardinality of the set A defining IA (cf. Sec. V A 1) since
outside of A the monitor cannot SP. In subsequent layers,
monitors on any qubit in the T gate’s CCM have some
probability to stabilizer purify. To simplify our estimate,
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we replace this CCM by a strip of width w around qubit i;
setting w = n or w = 1 shall give upper and lower bounds
on P(d ≥ d∗ > 1), respectively.

We now focus on the kth layer of the TCB and take s̃1
and Z̃i to be the logicals s1 and Zi time evolved to this
layer by Cliffords and measurements, and G = 〈g2, . . . , gn〉
the code’s stabilizer group at this layer. (That is, unlike in
Sec. V A, we now forward-evolve operators to the mon-
itor, instead of backward evolving the monitor to the T
gate.) Using now these operators in Eq. (7), computing
the SP probability involves assessing the probability that
a monitor Zj belongs to one of the SP-favorable cosets.

To assess this, we must consider the number γj of
generators needed to express Zj. This is where entangle-
ment properties enter. We summarize the result, based on
Ref. [72], in Theorem 2, which we prove in Appendix D.

Theorem 2. For a pure stabilizer state, one can choose
stabilizer generators such that a single-qubit Pauli operator
Mj on qubit j is expressible as

Mj =
γj∏

i=1

gαi
i gβi

i , (11)

up to a ±1 or ±i prefactor, where gi are stabilizer gener-
ators, gi are corresponding destabilizers,[73] αi,βi = 0, 1,
and the number γj of generators needed satisfies

γj = 2SvN(j )+ O(1), (12)

where SvN(j ) is the von Neumann entanglement entropy of
the subsystem with qubits 1, . . . , j − 1.

Using Theorem 2 (setting Mj = Zj ), we find that moni-
tor measurement operator Zj is expressible in terms of γj
generators and their corresponding γj destabilizers. Dif-
ferent monitors may have different γj . Here, we focus on
a regime with a volume- or area-law SvN(j ); thus, each
γj has the same scaling with the system size n. We shall
be interested in this scaling thus we take γj = γ for all
j = j1, . . . , jw for simplicity (taking γ = maxj γj or γ =
minj γj allows for probability bounds).

We assume the monitor is a uniformly random choice
from these 22γj − 1 operators; this becomes increas-
ingly true upon increasing k. Counting the SP-favorable
cases conditioned on previous measurements not stabilizer
purifying—a monitor cannot stabilizer purify if a previous
one already has—thus yields (see also Appendix D)

PSP(Zj | d∗ ≥ k) = 3
2

2γj

4γj − 1
. (13)

Continuing for all the pw potentially purifying moni-
tors in the kth layer, approximating γj = γ , and thus

denoting PSP(Zj | d∗ ≥ k) = 3
2

2γj

4γj −1
≡ f , we find (see also

Appendix D)

P ≡ P(d∗ = k| d∗ ≥ k) ≈ 1 − (1 − f )pw , (14)

conditioned on previous layers not stabilizer purifying.
(The result is k independent since we took constant w.)

From P(d∗ = 1) = p1, and in terms of the exact value of
P we have P(d∗ = k) = (1 − p1)P(1 − P)k−2 for k ≥ 2.
Hence, from

P(d ≥ d∗ > 1) =
d∑

k=2

P(d∗ = k) (15)

we have the exact relation

PSP(d) = p1 + (1 − p1)
[
1 − (1 − P)d−1] (16)

= 1 − (1 − p1)(1 − P)d−1, (17)

using which we can estimate PSP(d) via Eq. (14).

2. Stabilizer-purification time and entanglement

As d becomes large, Eq. (16) implies 1 − PSP(d) ∝
e−�d, with decay rate � = − ln(1 − P). This allows
us to define the stabilizer-purification time τSP = �−1.
By Eq. (14),

τSP ≈ −1
pw ln(1 − f )

, f = 3
2

2γ

4γ − 1
, (18)

where we recalled the definition of f .
We can now use τSP to assess what area- and volume-

law EE implies about there being T purifiers and thus SP.
We shall use Theorem 2 to infer the scaling of γ and thus
of τSP with the system size n.

In a volume-law phase, SvN(ρB) ∝ |B| for any subsys-
tem B and the subsystems relevant to Theorem 2 have
|B| ∝ n. Thus, γ ∝ n, and

τSP ∼ exp(n)
pw

. (19)

Therefore, using 1 ≤ w ≤ n, we conclude τSP = exp(n)
in the volume-law phase. Thus, as each TCB has depth
d = poly(n) [otherwise D �= poly(n)], finding T purifiers
is unlikely, and, over the full circuit, magic accumulates.

Conversely, in an area-law phase, SvN(ρB) = O(1) for
any contiguous subsystem B; thus, γ = O(1). Hence, by
w0 ≤ w ≤ n, we find that τSP = O(1/w0) is at most a con-
stant: we have τSP = O(1) and τSP = O(n−1), for w0 =
O(1) and w0 = O(n), respectively. Now, as each TCB
has depth d = poly(n) � O(1), it is almost sure that each
TCB is a T purifier, thus magic cannot accumulate.
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These scalings of τSP with n in area- and volume-law
phases match that of the (entropy) purification time in
Ref. [63] for pure and mixed phases, respectively.

3. Numerical test

We test our predictions for the SP time via a numeri-
cal experiment. We take a circuit on n qubits (initialized
in a computational basis state) that consists of (i) a depth
n2 brickwork of random 2-qubit Clifford gates and mon-
itors and then (ii) a TCB of varying depth d with random
2-qubit Cliffords and monitors. Monitors are sampled inde-
pendently with probability p . The circuit block before the T
gate generates a random stabilizer state (|ψin〉 in our above
construction, cf. Fig. 5) with volume- or area-law entan-
glement depending on p , while the TCB probes whether
SP occurs. Specifically, we are interested in numerically
estimating � and thus τSP = �−1.

Our simulations agree with the expectations: in a
volume-law phase (e.g., for p = 0.1 < pEE

c ≈ 0.16 as in
Fig. 6) we find that 1 − PSP(d) decays exponentially with
d and that � ∼ exp(−n) (Fig. 6 inset), both consistent
with Eq. (19). Conversely, in an area-law phase (e.g., for
p = 0.2, 0.4 > pEE

c as in Fig. 7) we find that PSP(d) satu-
rates to 1 in a depth d independent of n and decreasing with
p , as predicted by Eq. (18) with γ = O(1).

D. SP probability implications for CPXPBC

In this section, having built some intuition for τSP, we
focus on its implications for magic transitions for fixed q
or qD. We revisit the numerical results suggesting a tran-
sition for fixed qD from Sec. IV and use SP to explain
them. Then, we present numerical results suggesting the
absence of a simulability transition for fixed q below the
percolation threshold, and show that this is expected from

FIG. 6. Stabilizer-purification probability PSP(d) as a function
of TCB depth d for p = 0.1 (volume-law phase), with SE as error
bars. The dashed lines are fits of ce−�(n)d to 1 − PSP(d), which
agree with the analytical considerations. Inset: dependence of the
decay rate �(n) on system size n. The fit exp(−n) (orange dashed
line) agrees well with our theory.
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FIG. 7. Stabilizer-purification probability PSP(d) as a function
of TCB depth d for p = 0.2 (left) and p = 0.4 (right), so in the
area-law phase. (Error bars: SE.) In both panels, PSP(d) saturates
to 1 in a depth d independent of the system size n and decreasing
with larger p , which matches our expectations.

our analytical considerations. These also suggest that SP
is the leading mechanism for MF and the existence of a
magic transition.

1. Fixed qD

Let us first consider fixed qD = O(1). For concreteness,
we take D = cna to leading order in n, with a > 0 and
c a constant. Since q is the spacetime density of T gates,
each T gate is typically the sole occupant of an O(1/q) =
O(na) spacetime volume. Let us define the expected radius
of one of these regions to be rexp = O(na/2). We also
define the expected number of layers between T gates
as dexp = O(na−1). Since these capture the separation
between causally connected T gates for w0 = O(1) and
w0 = O(n), respectively, we expect the simplified model
from Sec. V C to apply with d = dexp for w0 = O(n), and
with d = rexp for w0 = O(1). We use this to show that, for
uncorrelated monitoring and fixed qD = O(1), we expect
a magic transition, evidenced by CPXPBC, coinciding with
the entanglement transition.

In the volume-law phase, τSP = exp(n) � D [Eq. (19)].
Therefore, since dexp/τSP = exp(−n), magic from many
T gates spreads and builds up in the system before any
one of them could have its magic removed by moni-
tor measurements; PBC features a MSR block of size
∝ qDn ∝ n to simulate (cf. proof of Theorem 1), thus a
hard phase.

Conversely, the area-law phase has τSP = O(1/w0). We
can focus on cones with constant-width apex since sta-
bilizers are generically local [74]. Hence, we apply the
model from Sec. V C with d = rexp and τSP = O(1), thus
d/τSP = O(na/2). Hence, for n � 1 and a > 0, each T
gate is individually stabilizer purified independently of
all other T gates. Thus, the magic from the T gates
in the bulk of the circuit is rapidly purified; in PBC
these contribute O(1)-weight MSR fragments. The magic
in the final state comes only from the approximately
qnτSP = (qD)nτSP/D = O(n1−a) T gates within τSP from
the end of the circuit. These T gates are typically spacelike
separated from each other (for constant w0), thus in PBC
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they yield O(1)-weight MSR fragments (see Sec. III B).
Thus, MF occurs, leading to an easy phase.

Hence, we expect EE and magic transitions to coincide
in this regime. The mechanism presented here explains
the magic transition discussed in Sec. IV: we have argued
SP drives MF, which is related to an easy phase in terms
of CPXPBC. We identify τSP as the emergent time scale
generalizing a correlation length for the transition out of
the easy phase, where τSP diverges upon approaching the
transition as p → p+

c .

2. Fixed q

As we now explain, for fixed q = O(1) and uncorrelated
monitoring, we expect no magic transition below the per-
colation transition pTN

c (for p > pTN
c we find an easy phase;

cf. Sec. III C and Appendix E). In each circuit layer, qn =
O(n) T gates occur on average, and these increase the num-
ber of logical qubits encoded in the corresponding effective
stabilizer code up to O(n). We focus on p < pTN

c in the
area-law phase with q suitably small such that the apexes
of the CCMs of the T gates do not overlap (a hard phase
in this regime would suggest one for larger q, or smaller p ,
or both). Since rexp = O(1/√q) = O(1) here, rexp/τSP =
O(1) does not increase with n, thus, a finite fraction of
T gates are not stabilizer purified and can compound their
magic in the MSR. Hence, we generically expect O(n) log-
ical qubits to build up and persist throughout the evolution,
and a MSR block of size approximately qDn = poly(n) on
which to simulate measurements, leading to a hard PBC
phase irrespective of EE [75].

We next show numerical evidence for a hard phase for
p < pTN

c , focusing on the circuits in Sec. IV, but now with
qD ∼ D. As shown in Fig. 8(a) and its inset, although
the distribution of MSR block sizes shifts towards lower
values as p increases, it remains peaked at a block size
proportional to the total MSR size t = poly(n); this sug-
gests MF does not occur. Looking at the simulability order
parameter, we observe it crosses over from a hard and
volume-law entangled phase to a hard and area-law entan-
gled phase at p ≤ pEE

c ≈ 0.17 (the Haar-random value
[67]), cf. Fig. 8(b) and its inset. Even though the order
parameter significantly decreases in the area-law phase, it
remains finite upon increasing n; the hardness of simula-
tion persists until pTN

c = 0.48. These results suggest that
(i) the absence of SP leads to no MF and no magic tran-
sition for p < pTN

c , and (ii) the magic and entanglement
transitions are distinct.

E. SP implications for direct stabilizer simulations

While thus far we mostly linked SP to PBC simulations,
here we explain that SP also implies easy stabilizer sim-
ulations for the original circuit. Concretely, we show that
if at most O(log n) T gates occur per layer, and the magic

(a)

(b)

FIG. 8. Absence of a magic transition for fixed q below the
percolation threshold pTN

c = 0.48. (a) Both in the volume- and
area-law phase, the distribution of magic state register block sizes
suggests a typical size of at least O(n), leading to a hard phase.
The inset more closely shows the histogram of block sizes aver-
aged over 300 realizations. (b) The order parameter log CPX

(typ)
PBC /t

vs measurement probability p (with SE as error bars), where
the runtime proxy for simulating a circuit by the PBC method
is CPXPBC, and t is the number of T gates. The order parame-
ter remains finite as the entanglement transition is encountered,
and it increases with n even in the area law below the percola-
tion threshold. The inset shows data closer to the entanglement
transition, suggesting the absence of a magic transition.

from each T gate is stabilizer purified in O(1) time (or vice
versa), then stabilizer simulation is easy.

Consider a circuit as that from Fig. 1(a). Under our
assumptions, at any point in the time evolution, the T gates
whose magic has not yet been stabilizer purified encode
O(log n) logical qubits. This implies that, at any point, the
system is in a superposition of exp[O(log n)] = poly(n)
stabilizer states; keeping track of these via stabilizer meth-
ods over depth D = poly(n) takes poly(n) classical run-
time and memory. Hence, by simulating the time evolution
via stabilizers, we efficiently find the exact state |ψout〉
before the final computational basis measurements. As
|ψout〉 is a superposition of poly(n) stabilizer states, weak
or strong simulation can be done efficiently.
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VI. T-CORRELATED MONITORING

We next discuss a model where correlations between T
gates and monitors facilitate SP, thus enabling a magic
transition within a volume-law phase. Thus, the magic
transition is now a simulability transition, occurring with-
out a phase transition in EE.

We shall use the T-correlated monitoring model (see
Sec. II C) with the circuit depicted in Fig. 1(a). In this
model, we consider the conditional probability p+ =
P(Zj |Tj ) of applying a Zj monitor given there is a T gate
Tj on qubit j directly preceding it, and the conditional
p− = P(Zj |no Tj ) for there being no directly preceding Tj .
The probability of a T gate is still P(Tj ) = q independently
for each qubit j , and we still have

P(Zj ) = p+q + p−(1 − q) = p , (20)

independently for each qubit, for the total probability of
applying a monitor Zj . However, we can now have p+ �=
p−: monitors can be correlated with T gates. [For p+ =
p−, Eq. (20) implies p+ = p− = p and we recover the
uncorrelated monitoring model from Sec. IV.]

In what follows we parameterize p+ = p− + α, with α
independent of q, and take α ≥ 0. (In terms of a monitoring
observer, cf. Sec. II C, this expresses the aim to stabilizer
purify the T gates; α < 0 would mean monitoring while
trying to avoid SP.) From Eq. (20) we have p− = p − αq,
thus we recover p− = p as q → 0, i.e., the correct limit
without T gates (p+ plays no role for q = 0). From 0 ≤
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FIG. 9. Dynamical magic phase transition for T-correlated
monitoring. The probability for applying a T gate is q = 0.01,
while for monitors, it is p = 0.08, and α parametrizes their corre-
lation. As p < pEE

c ≈ 0.16, the system is in a volume-law phase.
We plot the order parameter log CPX

(typ)
PBC /t, with SE as error bars.

The order parameter drops from a finite value for α < αc to zero
(as n → ∞) for α > αc. The inset shows a finite-size scaling
collapse revealing the critical αc = 0.633 ± 0.003, well below
the perfect monitoring value αmax = (1 − p)/(1 − q) ≈ 0.93 for
p = 0.08, q = 0.01.

p± ≤ 1 we find 0 ≤ α ≤ min(1 − p/1 − q, p/q). For con-
creteness, we focus on p ≥ q; in this case the upper bound
is αmax = 1 − p/1 − q.

We start with the limits α = 0 and α = αmax. For α =
0, we recover the uncorrelated monitoring model from
Sec. IV. If p < pEE

c , i.e., the system is in a volume-law
phase, then α = 0 yields a hard to simulate phase for any
nonzero q, cf. Sec. V D. For α = αmax, we find p+ = 1.
This “perfect monitoring” limit is easy to simulate since
the magic from each T gate is immediately stabilizer
purified in each monitoring round. This holds for any q
[provided q ≤ p , as required for α = (1 − p)/(1 − q) to
be consistent], including in the volume-law phase.

As we reduce α from αmax, we expect an easy to simu-
late phase to persist, at least for sufficiently small q, even
if q is n independent. To test this, we perform a numeri-
cal experiment similar to that in Sec. IV, now focusing on
the volume-law phase. Our numerical results, illustrated
in Fig. 9 for p = 0.08 and q = 0.01, suggest that both
easy and hard phases are stable, and there is a magic tran-
sition, which is now a simulability transition, separating
them, despite the system being in the volume-law phase.
The phase transition is continuous, as corroborated by the
scaling collapse, cf. Fig. 9 inset. We find a critical value
of α = αc = 0.633 ± 0.003, well below αmax ≈ 0.93 for
p = 0.08 and q = 0.01.

VII. DISCUSSION AND OUTLOOK

We have studied how the dynamics of magic in random
monitored Clifford+T circuits impacts classical simulabil-
ity and, in particular, how monitoring measurements may
lead to the spreading of magic becoming arrested (and
indeed magic being removed) by a process we dubbed
stabilizer purification (SP). We used PBC to quantify the
role of magic in classical simulabilty, and identified magic
fragmentation (MF), linked to SP, as the key phenomenon
behind the transition from hard to easy PBC phases. Con-
cretely, we showed that SP implies MF in a simplified
model in Theorem 1, argued how this extends to our cir-
cuit model, and provided numerical evidence supporting
these claims; this leaves the establishment of a more for-
mal link between SP and MF in a broader class of circuits
as an interesting problem for the future.

The dynamics of magic, and the concepts of SP and
MF, open new avenues for investigating phase transitions
in the complexity of simulating quantum circuits beyond
the paradigm of entanglement. Here, we showed that they
can lead to a simulability transition within a volume-law
entangled phase (as exemplified by T-correlated monitors),
but also found scenarios where the magic transition occurs
within an area-law phase (fixed q) or it coincides with
the entanglement transition (fixed qD). While approximate
simulation is always possible in an area-law phase owing
to MPS methods [2,3], exact efficient simulation requires

030332-14



DYNAMICAL MAGIC TRANSITIONS... PRX QUANTUM 5, 030332 (2024)

the Hartley entropy to obey an area law [5], which occurs
only above the critical probability we have called pTN

c
(cf. Appendix E 4). By varying the number of T gates
in our model, one could interpolate between Clifford and
universal circuits, potentially approaching Haar-random
circuits (since circuits with more T gates can form higher
unitary k designs [76]). Taking the perspective of a
monitoring observer introducing the correlations between
T gates and measurements, it would be intriguing to study
how much steering [77] and learning [78] capacity the
observer has.

The metric CPXPBC, behind our simulability order
parameter, is also a magic metric. It is not a magic mono-
tone however (since it can increase under Clifford gates);
instead it quantifies the amount of magic that has spread in
the circuit. This spread is essential for quantum advantage.
To illustrate this with an extreme example, consider the
state |ψ〉 = (T|+〉)⊗n. Some magic metrics would indicate
there is an extensive amount of magic in |ψ〉, yet sampling
from its output distribution—requiring only n independent
coin tosses—is clearly a classically easy problem. The
problem is easy because in |ψ〉 the magic from each T
gate is localized to its respective qubit. The metric CPXPBC,
by capturing the (de)localization of magic, identifies such
cases as classically efficiently simulable. By detecting the
magic that can yield quantum advantage, we may view
CPXPBC as a metric for “operational magic.”

This metric also avoids the postselection problem
of measurement-induced phase transitions [79–83] since
CPXPBC does not depend on the measurement outcomes:
if the outcome of a midcircuit monitor is changed, this can
at most change the signs, but not the structure, of measure-
ment operators in PBC, hence leaving CPXPBC unaffected.
Also, CPXPBC of a circuit instance can be computed classi-
cally in poly(n, t) time; hence, the order parameter could
be used as a diagnostic of magic transitions, and for
qD = O(1) also of entanglement transitions, accessible to
classical simulators.

The stabilizer impure phase can be interpreted as
a nonstabilizer state encoded in a dynamically gener-
ated stabilizer code [23,63,84]. As we saw in Sec. V A,
already a single T gate can yield such an encod-
ing, provided it increases the stabilizer rank. Clifford
gates and measurements, which do not stabilizer purify,
dynamically modify this logical subspace by updating
the stabilizer generators. Monitors that stabilizer purify
act as logical errors decreasing the logical subspace’s
dimension; thus, they compete with the encoding T
gates. This picture proved fruitful for our discussion,
and it would be interesting to see whether a quantum
error-correcting code perspective would allow statistical
mechanical mappings [85–89], that could give a com-
plementary understanding of the dynamics of magic,
SP, and magic transitions. Such a mapping might allow
one to contrast the universality class of the magic

transition to that of entanglement. These may prove to
be the same for uncorrelated monitoring with qD = O(1),
since the values of pc ≈ 0.159 and ν ≈ 1.23 we found are
consistent with those for entanglement transitions in
Clifford circuits [67].

We may also view T gates as coherent errors on an
encoded stabilizer state [42,88–93]; from this viewpoint
magic is a coherent, pure-state analog of the entropy that
would come from Pauli channels. This suggests inter-
esting directions in the entropy-purification settings [63].
In particular, in our setups magic is injected throughout
the time evolution; this does not directly correspond to
the original dynamical purification setup [63], where all
entropy is injected at the start (i.e., the input is a maximally
mixed state). Although the purification and entanglement
phase transitions were found to coincide in (1+1)D and
(2+1)D for Clifford circuits [63,94,95], where they can be
mapped to the same statistical mechanics model [24,96],
these two transitions might generically differ. Building on
our settings, it would be appealing to attempt separating
the purification and EE transitions by having a pure input
state and dynamically mixing the state (i.e., decreasing the
state’s purity midcircuit).

Entanglement in the MSR can also display signatures
of the dynamics of magic in the original circuit. Consider
the entanglement in the MSR after all the monitor mea-
surements. If MF occurs, then this final MSR state has
nonoverlapping O(1)-weight measurements; when these
are local (as they are for magic states ordered lexicograph-
ically following how T gates occur, and by SP such that the
original circuit regularly has layers with stabilizer output),
the MSR obeys the area law: the MSR is in an area-law
stabilizer state, possibly tensored with a local O(1)-sized
unmeasured MSR block. Conversely, if MF does not occur,
the MSR is expected to obey a volume law since most mea-
surements have support on an extensive number of magic
states. This suggests that magic and entanglement transi-
tions may be unified if one focuses on the entanglement
properties in the MSR. Exploring this is another interesting
direction for the future.

Note added. Independently of this work, Fux, Tirrito,
Dalmonte, and Fazio [97] also studied magic and entan-
glement transitions in a similar setup. Using a different
approach, they also find that these transitions occur for
different p in general. However, their approach suggests
separate transitions also for qD = O(1) with uncorrelated
monitoring, whereas in that case we find simultaneous
transitions, cf. Secs. IV, V D and Appendix G.
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APPENDIX A: DETAILS OF THE PBC METHOD

In this Appendix, we provide details for the PBC method
we use for simulating our Clifford + T circuits (acting on
an n-qubit register Rn), which is based on Refs. [34,65].
Specifically, we explain how measurements can be
restricted to act only nontrivially on the magic state
register (Rt).

As explained in Sec. III B, we start with a monitored cir-
cuit with random Clifford gates and t applications of the T
gate. We then replace all T gates with magic state gadgets,
each using a magic state ancilla |A〉 to inject the T gate
into the circuit (Fig. 2). After doing this, we commute all
Clifford gates past all measurements, performing updates
M �→ C†MC for measurement operators M and Clifford
gates C. Once the Clifford gates are thus commuted to the
end of the circuit, they can be deleted.

Let Mi denote the measurement operators resulting from
this process. To this set of measurements we also add a
series of “dummy measurements” to the start of the cir-
cuit, which are simply Z measurements on all qubits in
the computational register. Owing to the initial state |0〉⊗n

of this register, these dummy measurements produce out-
comes +1 with certainty. Let S = 〈Z1, . . . , Zn〉 denote the
group generated by these Z operators.

The entire list of measurements can be restricted to the
magic state register in the following way. For each nontriv-
ial measurement operator Mi, let Mi = PiQi, where Pi (Qi)
only has support on Rn (Rt). We begin with M1.

First, suppose P1 commutes with all previously per-
formed measurements (which are simply dummy measure-
ments). Then P1 belongs to either ±S . If Q1 = 1 the
measurement outcome is deterministic and can be com-
puted efficiently classically. If Q1 is nontrivial, then Q1
has the same measurement statistics as the entire opera-
tor M1 (up to a potential change of sign). Hence M1 can
simply be replaced with ±Q1 without altering the mea-
surement statistics or postmeasurement state, with the sign
determined by M1 belonging to S or −S .

Second, suppose P1 anticommutes with some Zk ∈ S .
In this case, it is simple to see that outcomes M1 = ±1
each occur with probability 1/2; thus we can simulate its
measurement with an unbiased coin with outcome λ1 ∈
{+1, −1}. Instead of performing the measurement of M1,
we can enact the Clifford gate Vλ1 = exp(λ1(π/4)M1Zk) =

1√
2
(1 + λ1M1Zk). This maps the initial state of Rn ⊗ Rt to

the postmeasurement state associated with M1 = λ1, since

Zk stabilizes the initial state. After having performed this
replacement, we commute Vλ1 past all remaining measure-
ments in the circuit (thereby updating them to other Pauli
measurements) and then delete it.

We proceed similarly for all measurements. For each
(updated) Mi we first check if this measurement operator
is independent of any previously performed measurements
(including the dummy measurements). If Mi is equal (up to
a sign) to a product of previous measurements, we need not
perform the measurement of Mi explicitly. Instead its mea-
surement outcome is deterministic and can be computed
efficiently classically. We then check if it anticommutes
with any previously performed measurements. If not, it
can be restricted to Rt for the same reason as above. If
so, it can be replaced by some Vλi with λi ∈ {+1, −1}
chosen uniformly at random, as above. If it anticom-
mutes with previous measurement N with outcome σ , we
choose Vλi = exp(λiσ(π/4)MiN ). Vλi is commuted past
all remaining measurements and deleted.

After proceeding in the same way for all Mi, we end
up with a set of measurements restricted to the register
Rt. We can now delete the computational register Rn,
which no longer features in the circuit. Rt is composed of t
qubits. The measurements resulting from the above pro-
cedure all commute since anticommuting measurements
were replaced by Clifford gates. Therefore, we end up with
at most t commuting (adaptive) measurements needing to
be performed on Rt.

1. Runtime of classically simulating a PBC

Naively the runtime of the classical simulation of the
PBC will be O(t3χ2

t ) for each measurement in the final
PBC being simulated [34], plus the time it takes to cal-
culate the next measurement in the PBC from previous
measurement outcomes and check if it is independent from
previously performed measurements [which is a poly(t)-
time task]. While we are ultimately concerned with the
exponential part of the simulation runtime, we first note
some simplifications that could be made to the simulation,
which will come into play for our numerical simulations.

Suppose there are k measurements in the PBC. Let k =
kg + km + ko where we have kg of the final measurements
resulting from original gadget measurements (GMs), km
resulting from monitoring measurements and ko from out-
put measurements (OMs). Simulating a monitored circuit,
we assume we know the outcomes of the monitoring mea-
surements already and merely wish to sample from the
output distribution of the OMs. Furthermore, it can be seen
that GMs have equal probabilities 1/2 for outcomes ±1. So
these two types of measurements from the circuit, if they
are retained in the PBC, have output probabilities that do
not need to be calculated. We only need to perform non-
trivial, possibly exponentially scaling calculations for ko
of the k measurements.
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APPENDIX B: DETAILS ON
STABILIZER-PURIFIED T GATE

In this Appendix, we prove some of the statements used
in Sec. V A.

1. Nonstabilizer superposition

Here, we show why the nonstabilizer state T|ψ〉 can be
decomposed as a superposition of (at least) two stabilizer
states |ψ±〉 with S± = 〈±Z1, g2, . . . , gn〉.

A useful result of Ref. [32] is that a single-qubit state
|φ〉 = a0|0〉 + a1|1〉 with |a0| = |a1| = 1/

√
2 is a stabi-

lizer state if and only if the phase difference between a0
and a1 is a multiple of π/2, that is arg(a1/a0) = m(π/2)
with m = −3, . . . , 3.

Let us consider the overlaps between initial stabi-
lizer state |ψ〉 with S = 〈s1, . . . , sn〉 = 〈s1, g2, . . . , gn〉 and
|ψ±〉. Note that we can use for |ψ〉 also the genera-
tors g2, . . . , gn, which commute with both s1 and ±Z1.
Since these are pure states, we have |〈ψ |ψ±〉|2 = Tr(ρρ±),
where ρ(±) = |ψ(±)〉〈ψ(±)|. Writing the density matrices of
pure stabilizer states in terms of their generators, we find

Tr(ρρ±) = Tr

⎡

⎢
⎣

⎛

⎝
n∏

j =2

1 + gj

2

⎞

⎠

2

1 + s1

2
1 ± Z1

2

⎤

⎥
⎦ (B1)

= 1
4

Tr

⎛

⎝
n∏

j =2

1 + gj

2

⎞

⎠ = 1
2

≡ |a±|2. (B2)

Thus, we have |ψ〉 = a+|ψ+〉 + a−|ψ−〉 with |a±| =
1/

√
2. But since |ψ〉 is a stabilizer state, there exists a

Clifford unitary U such that

U|ψ〉 = (a+|0〉 + a−|1〉)⊗ |0〉⊗n−1, (B3)

which is also a stabilizer state. The observation from the
paragraph above implies the phase difference between a+
and a− must be a multiple of π/2.

Let us consider the action of the T gate on |ψ±〉 that acts,
without loss of generality, on the first qubit. The T gate
can be decomposed as T1 = α1 + βZ1 with α + β = 1
and α − β = eiπ/4. Since the generators g2, . . . , gn com-
mute with Z1, the action of the T gate depends only on the
first generator ±Z1 yielding T|ψ+〉 = |ψ+〉 and T|ψ−〉 =
eiπ/4|ψ−〉. Hence, we find

T|ψ〉 = c+|ψ+〉 + c−|ψ−〉 (B4)

with c+ = a+ and c− = eiπ/4a−, so the phase difference
arg(c−/c+) = mπ/2 + π/4 is not a multiple of π/2. Since
|ψ±〉 are stabilizer states with identical generators apart
from the sign of the first one, there exists a Clifford unitary

V such that

VT|ψ〉 = (c+|0〉 + c−|1〉)⊗ |0〉⊗n−1. (B5)

Assuming T|ψ〉 is a stabilizer state would imply VT|ψ〉
is also a stabilizer state. However, due to the phase dif-
ference between c+ and c− this cannot be true. Thus, we
have shown that T|ψ〉 is a nonstabilizer state, which can
be written as a superposition of |ψ±〉.

2. Monitor form and its retainment

Here, we prove the claim that a monitor measure-
ment only stabilizer purifies a T gate if the corresponding
“logical qubit” is measured. We also consider the PBC
procedure for this scenario of a single T gate and a
monitor M more closely.

a. A monitor produces a stabilizer state if and only if it
measures the state of the logical qubit

Here, we show that if a T gate has produced a non-
stabilizer state, then a subsequent measurement can only
remove the injected magic by measuring this logical qubit.
That is, it must be a measurement in one of the cosets
from Eq. (7). It is clear from the result of Appendix B 1
that measuring Z1, s1 or is1Z1 collapses the superposition
into a stabilizer state (note s1|ψ±〉 = |ψ∓〉). Measuring,
for example, Z1g for g ∈ G instead of Z1 does not change
anything since g is a stabilizer of both |ψ±〉.

To show the converse, note that if a measurement M
anticommutes with any g ∈ G, the postmeasurement state
is nonstabilizer. For example, suppose {f , g2} = 0. Then
measuring operator f on state |ψ±〉 and obtaining out-
come λ results in a state with stabilizer group Sλ± =
〈±Z ′

1, λf , h3, . . . , hn〉, where hj = gj if [f , gj ] = 0 and
hj = gj g2 otherwise, and similarly Z ′

1 = Z1 if [f , Z1] = 0
and g2Z1 otherwise. Hence, after measuring f on state
T|ψ〉, we obtain state c+|ψλ

+〉 + c−|ψλ
−〉 for states |ψλ

±〉 sta-
bilized by Sλ±, respectively. This state is not a stabilizer
state. Therefore, a measurement M that produces a stabi-
lizer state needs to be in the centralizer of G but it cannot
be a member of G (otherwise the measurement does not
change the state); in other words, it is a logical operator
with respect to stabilizer group G.

b. The monitor measurement is retained in PBC as a
single-qubit measurement of the magic state

We now consider in more detail what happens in the
PBC procedure when a single T gate is stabilizer purified
by a monitor M , i.e., when the logical qubit introduced by
that T gate is measured. As before, we replace the T gate
with a gadget and introduce an ancillary magic state. We
also introduce dummy measurements of all operators in
S (the stabilizer group of the initial state) that precede all

030332-17



BEJAN, MCLAUCHLAN, and BÉRI PRX QUANTUM 5, 030332 (2024)

other operations. We begin with the case in which the mon-
itor commutes with the gadget measurement Z1Za. In this
case (assuming the monitor measures the logical qubit), it
follows from the above that M = ±Z1g for some g ∈ G.
Let us see that this measurement is retained in the PBC
circuit as ±Za.

The gadget contains Clifford gates U = exp(−i(π/4)
Z1Xa) and potentially S†

1. Commuting these past the mon-
itor does not change it, since M = ±Z1g commutes with
both of these gates. The GM from the gadget is Z1Za. We
know it anticommutes with s1; thus it is replaced by some
V = exp(λ(π/4)Z1Zas1) for λ = ±1 chosen at random.
Commuting V past M results in measurement operator
±s1gZa, and restricting this updated operator to the MSR
(since it commutes with all the dummy measurements in
S) yields a retained monitor ±Za.

If the monitor M anticommutes with the GM Z1Za, we
showed that M = ±s1g or M = ±is1Z1g. We now show
that it is retained in the PBC as either ±Xa or ±Ya.

First, suppose that the gadget measurement outcome is
−1 so that the S†

1 gate is not included. Then commut-
ing U past M results in an updated monitor measurement:
±iZ1s1gXa or ±s1gXa, see Eq. (8). Commuting V (see
above) past this measurement results in ±gYa or ±s1gXa,
respectively. These measurements commute with all S and
so may be restricted to the magic state register: they are
retained in the PBC as either ±Xa or ±Ya.

Second, suppose that gadget measurement outcome is
+1, so that the gate S†

1 is included, the monitor M =
±s1g or M = ±is1Z1g is updated first to ±is1Z1g or ±s1g
respectively, before U and V are commuted past this mea-
surement. Therefore, the measurement is retained in PBC
as either ±Xa or ±Ya.

APPENDIX C: DETAILS OF THE CAUSAL CONE
OF MAGIC

In this Appendix, we consider the causal set and cone of
a T gate in more detail than in Sec. V A 1.

1. Definition and SP implications

We consider one T gate acting on qubit 1 of the |ψ〉 sta-
bilized by S = 〈s1, . . . , sn〉. Let T = T1 inject magic due to
{Z1, s1} = 0. The state T1|ψ〉 represents a logical qubit in a
magic state encoded by a stabilizer code [71]. This code
has stabilizer group G = 〈g2, . . . , gn〉 and logical opera-
tors Z1 and s1, where gi = si if [si, Z1] = 0 or gi = s1si if
{si, Z1} = 0.

We are interested in the minimal set of spacetime points
outside of which a monitor measurement cannot SP the
time-evolved state for any choice of the Clifford layers
after the T gate. We call this set the causal set of a T gate.
A measurement M stabilizer purifies the state T1|ψ〉 if it
measures the logical qubit; hence, M must be in one of the

cosets (up to a sign) Z1G, s1G, s1Z1G. cf. Appendix B 2.
Thus, the spatial structure of the logical operators from
Z1G, s1G, and s1Z1G determines that of the causal set.

We can sidestep the possibly intricate spatial structure
of the causal set, inherited from the logical operators, by
defining a causal cone as the convex hull of the causal set.
We call this causal cone the causal cone of magic (CCM).
We first define the apex of the CCM, and then explain how
this apex extends causally. Note that each member of s1G
and s1Z1G has nonzero support on qubit 1 since s1 anti-
commutes with Z1. We take the most local (i.e., minimal
width in periodic boundary conditions) members of s1G;
we then take the union of these most local supports and call
that union A. (Note that A includes qubit 1.) Each member
of Z1G and s1Z1G has nonempty support on A since they
anticommute with each member of s1G. Putting all these
together, we conclude that any Pauli operator whose sup-
port does not intersect A is guaranteed not to be a logical
operator. We define the CCM’s apex IA as the smallest
interval containing A.

Subsequent (non-SP) circuit layers will update the sta-
bilizers and logical operators and this can lead A to expand
up to the extent allowed by the Clifford circuit’s brick-
work structure. The corresponding causal extension of IA
defines the CCM. The CCM captures the essence of magic
spreading while avoiding technical complications arising
from the causal set of a T gate.

2. PBC implications

We further show that a monitor or outcome measure-
ment P can acquire support on the ancillas of two T gates
only if it lies in the intersection of their CCMs.

We consider two T gates acting on qubits 1 and j ,
respectively. We assume that there is no monitor in the lay-
ers between them, calling C the combination of Clifford
gates between them. They both add magic only if

{s1, G1} = 0 and {g2, G2} = 0, (C1)

where s1 and g2 are distinct stabilizers of |ψ〉, G1 = Z1Za1
and G2 = C†Zj Za2C are the GMs at the time of the T1
gate. Since both T gates add magic, Z1 and Zj are not in
the stabilizer group at the corresponding T gate’s layer,
hence neither GM is retained in PBC; both are replaced
by a Clifford gate V1,2, cf. Appendix A.

Going through the PBC procedure, P is updated by com-
muting past it not only the Cliffords in the circuit but also
U1, V1, U2, and V2. The measurement acquires support on
ancilla ai only if it anticommutes with Ui, or Vi, or both;
hence, the measurement must overlap with Ui or Vi, and
thus have a nonempty support in the CCM of the T gate
corresponding to the ancilla ai. Therefore, P acquires sup-
port on both ancillas only if P is in the intersection of
both CCMs.
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APPENDIX D: BULK MONITOR SP
PROBABILITY

In this Appendix, we derive the probability of moni-
tors in the bulk of the T-circuit-block, i.e., not immediately
after the T gate, to stabilizer purify, in more detail than
outlined in Sec. V C 1.

1. Proof of Theorem 2

Here, we derive Theorem 2, which we reproduce for
convenience.

Theorem 2. For a pure stabilizer state, one can choose
stabilizer generators such that a single-qubit Pauli operator
Mj on qubit j is expressible as

Mj =
γj∏

i=1

gαi
i gβi

i , (D1)

up to a ±1 or ±i prefactor, where gi are stabilizer genera-
tors, gi are corresponding destabilizers, [100] αi,βi = 0, 1,
and the number γj of generators needed satisfies

γj = 2SvN(j )+ O(1), (D2)

where SvN(j ) is the von Neumann entanglement entropy of
the subsystem with qubits 1, . . . , j − 1.

Proof. Using a construction from Ref. [72], one can
always separate the generators of a stabilizer state accord-
ing to a bipartition with subsystems B and C as (i) local
generators in B, (ii) generators straddling the cut, and (iii)
local generators in C. Two other useful results of Ref. [72]
are that the minimum number of generators straddling the
cut between B and C is twice the entanglement entropy
across the cut 2SvN(ρB) = 2SvN(ρC), and

SvN(ρB) = |B| − |SB|, (D3)

where |B| is the size of subsystem B and |SB| is the number
of generators supported only on B.

For the following, define a destabilizer ḡi of generator gi
of stabilizer group S to be a Pauli operator that anticom-
mutes with gi and commutes with all other generators gj �=i
of S . Note, for a (gi, gi) pair, an alternative destabilizer can
be defined to be igigi.

We turn to Mj and consider two choices of bipartitions
of the qubits. First, we put the entanglement cut on one side
of j and call subsystem B, which includes qubits j , . . . , n.
Then Mj can overlap only with the 2SvN(ρC) generators
straddling the cut and with those confined to subsystem B
since j is absent from subsystem B.

Second, we put the cut on the other side of j and call
subsystem C′ the subsystem without j , i.e., C is reduced

to C′ with |C′| = |C| − 1 qubits. SC′ differs from SC by
operators that are either fully supported on qubit j or those
that act nontrivially on qubit j and some other qubit(s) in
C′. But we can ensure that there are only at most three
such operators, since there are only three nonidentity Pauli
operators acting on qubit j, and any two generators gi and
gk that act with the same Pauli operator on qubit j can
be replaced by gigk, which acts as the identity on qubit j.
Therefore, |SC′ | = |SC| − O(1). M does not feature in any
element of SC′ so Mj could have featured in only O(1)
of SC’s generators, i.e., those that are not also genera-
tors of SC′ . This leads to Mj overlapping with at most γj
generators where

γj = 2SvN(ρC)+ O(1). (D4)

The Pauli Mj is expressible in terms of these γj gener-
ators and their γj destabilizers. All the other generators
(i.e., the B and C′ generators) do not have j in their sup-
port and thus cannot feature in Mj by themselves. Hence,
in the expression of Mj in terms of stabilizer generators
and destabilizers, the B and C′ generators can enter at most
as tails tied to the destabilizers featuring in Mj . This is in
order to cancel the destabilizer combination’s support in
subsystems B and C′. (Note B and C′ destabilizers cannot
enter since Mj cannot flip B and C′ generators due to not
being in their support.) However, if these tails including B
and C′ generators are needed, we can redefine the BC gen-
erators such that the tails are removed. Thus, relabeling
the generators and destabilizers entering in Mj for brevity
(since these were not necessarily the first γj generators of
the state to be stabilizer purified) yields

Mj =
γj∏

i=1

gαi
i gβi

i , (D5)

up to a ±1, ±i prefactor, and αi,βi = 0, 1. �

2. SP probability

First, we compute the SP probability of a single moni-
tor. Consider the two states |ψ±〉, which differ only in the
stabilizer ±g̃1. The favorable cases, which lead to SP are

(i) Zj = g1

γj∏

i=2

gαi
i , (D6)

(ii) Zj = g1

γj∏

i=1

gαi
i , (D7)

assuming g̃1 ∈ {g1, . . . , gγj } and denoting without loss of
generality g1 = g̃1. In case (i), one of the two states |ψ±〉
is incompatible with the measurement, while in case (ii),
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both postmeasurement states are the same. Hence, count-
ing how many combinations of α and β lead to SP due to
the monitor Zj , excluding the identity, yields

PSP(Zj | d∗ ≥ k) = 3
2

2γj

4γj − 1
(D8)

conditioned on previous monitors not stabilizer purifying.
Second, we compute the SP probability from all moni-

tors in a single layer, say the kth. Different monitors may
have different γj s. Here, we focus on a regime with a
volume- or area-law scaling of the EE SvN(j ). Thus, each
γj has the same scaling with n, that is γj = cj n + O(1) or
γj = cj , with constants cj , for volume- or area-law scaling,
respectively. Since we shall be interested in the scaling
of the SP time with n, we may simplify the calculations
by setting the same cj and O(1) correction for each γj ;
thus γj = γ for any j = j1, . . . , jw where w approximates
the total number of qubits in the layer where monitors can
potentially SP (see main text). The SP probability for the
first monitor in the layer conditioned on the previous layers
of monitors not stabilizer purifying is given by Eq. (D8);
using γj = γ , we denote it as f ≡ 3

2 (2
γ /4γ − 1). Simi-

larly, the probability for the second monitor in the layer
to stabilizer purify and the first one not to, conditioned on
previous layers not stabilizer purifying is (1 − f )f . Con-
tinuing for all the pw potentially purifying monitors in the
kth layer, the SP probability for this layer, conditioned on
previous layers not stabilizer purifying, is

P ≡ P(d∗ = k| d∗ ≥ k) (D9)

≈
pw∑

i=1

f (1 − f )i−1 = 1 − (1 − f )pw. (D10)

Third, we compute the bulk monitors SP probability by
considering the SP probability for each layer. Similarly to
monitors in the same layer, we can treat different layers
of monitors as independent apart from the SP condi-
tional. Using P(d∗ = 1) = p1 from Eq. (10), we find the
probability for the kth layer to SP, with k = 2, . . . , d

P(d∗ = k) = (1 − p1)(1 − P)k−2P . (D11)

Thus, we find (for d � 1 in the last step)

P(d ≥ d∗ > 1) =
d∑

k=2

P(d∗ = k) (D12)

= (1 − p1)
[
1 − (1 − P)d−1] (D13)

≈ (1 − p1)
[
1 − (1 − f )pwd] . (D14)

APPENDIX E: SPACETIME PARTITIONING

In this Appendix, we show how the simulation task for
each quantum circuit instance can be reduced to simulating

a set of smaller circuits by using the structure of monitor-
ing measurements and 2-qubit Clifford gates. We denote
this procedure spacetime partitioning, and map it to an
inhomogeneous bond percolation model. Using the map-
ping to percolation, we find a critical monitoring rate pTN

c ,
which marks a phase transition in the simulability by an
exact TN contraction. A critical monitoring rate pPBC

c of
a CPXPBC transition is upper bounded by this pTN

c , that
is pPBC

c < pTN
c . This upper bound can be interpreted as

the analog of the Hartley entropy transition, which upper
bounds the von Neumann entropy transition [27].

1. Spacetime partitioning of the circuit

Monitors partition the circuit temporally by projecting
the state of a qubit and making the previous state par-
tially irrelevant—e.g., in the extreme case of monitoring
all the qubits simultaneously at an intermediate time t0, the
final state can be reconstructed solely from the monitoring
outcomes and the circuit after t0.

Separable Clifford gates partition the circuit spatially.
C ∈ C2 is separable if

C = u1 ⊗ u2, (E1)

where u1, u2 ∈ C1. The classification of the Clifford group
reveals [101,102] that only 576 of the |C2| = 11520 gates
are separable, yielding a separability probability σ = 0.05.
Other C ∈ C2 can be decomposed as

C = (u1 ⊗ u2) U (v1 ⊗ v2) , (E2)

where U ∈ {SWAP, CX1,2, CX1,2CX2,1} and ui, vi are in sub-
sets of C1 [101,102]. Nonseparable gates in C2 coin-
cide with possibly entangling—depending on the input
state—gates. Consider a state |ψ〉 with Schmidt rank m
for a bipartition A of the system |ψ〉 = ∑m

i=1 ci|iA〉|iB〉. The
entanglement (or von Neumann) entropy is bounded by the
zeroth Rényi (i.e., Hartley) entropy SA = S(TrB|ψ〉〈ψ |) ≤
S(0)A = log m. Consider the operator-Schmidt decomposi-
tion [103] of a 2-qubit gate U acting at the boundary of the
bipartition U = ∑r

i=1 Qi ⊗ Ri where Qi, Ri are single-qubit
operators and the Schmidt number r ≤ 4 (by the Hilbert-
space dimension of single-qubit operators). U can increase
the Schmidt rank at most r times: for |φ〉 = U|ψ〉 we have

|φ〉 =
m∑

i=1

r∑

j =1

ci(Qj |iA〉)(Rj |iB〉) =
mr∑

k=1

μk|k̃A〉|k̃B〉. (E3)

Eq. (E2) features CX1,2 = |0〉〈0| ⊗ 1 + |1〉〈1| ⊗ X and
SWAP = 1

2 (1 ⊗ 1 + X ⊗ X + Y ⊗ Y + Z ⊗ Z). The Sch-
midt numbers are 2 for CX1,2 and 4 for SWAP and CX1,2CX2,1.
While CX is more commonly considered as a possibly
entangling gate, let us illustrate that SWAP can also increase
entanglement across a given bipartition. Consider two
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Bell pairs on a bipartite system |ψ〉 = 1
2 (|00〉 + |11〉)A ⊗

(|00〉 + |11〉)B, which has S(ρA) = log 1 and a maximum
EE across any bipartition Smax = log 2. Applying SWAP
on qubits A2 and B1 yields |φ〉 = SWAP|ψ〉 with |φ〉 =
1
2

(|0A10B1〉+|1A11B1〉
)⊗ (|0A20B2〉+|1A21B2〉

)
, which has

the density matrix TrB|φ〉〈φ| = 1
414 with maximum EE

across any bipartition Smax = log 4.
Henceforth, we shall regard 2-qubit Clifford gates as

either possibly entangling and nonseparable (r = 2, 4) or
nonentangling and separable (r = 1). (Two-qubit gates
cannot have r = 3 [104].)

2. Mapping to inhomogeneous bond percolation

In order to keep track of the spacetime regions of
a circuit that fully determine the output state, we note
the circuit architecture corresponds to a honeycomb lat-
tice, as depicted in Fig. 10(a): gates and qubit lines
correspond to vertical and oblique bonds, respectively.
The spatial and temporal independence of two regions is
modeled by cutting the bonds connecting the respective
regions. The spacetime partitioning mechanisms described
in Appendix E 1 can induce such independence: monitors
cut oblique bonds, while r = 1 gates cut vertical bonds.
The probabilistic nature of bond cutting suggests a link to
inhomogeneous bond percolation.

It is inhomogeneous since vertical and oblique bonds
are broken with different probabilities, σ ≡ 1 − p0 and
p ≡ 1 − p1 = 1 − p2, respectively, where {pi}2

i=0 are the
bond occupancy probabilities. It is known that the Hart-
ley entropy S(0) of a subsystem can also be mapped to
a bond percolation problem; for a brickwork circuit as
in Fig. 1(a), but with generic 2-qubit unitaries instead of
Clifford gates, percolation is on the square lattice [27].
The monitored Clifford + T circuits we consider lead to
a honeycomb percolation problem instead because, unlike
for circuits with Haar-random 2-qubit gates, the r = 1
gates arise with nonzero probability [105]. By the relation

(a) (b)

FIG. 10. (a) Equivalent circuit and honeycomb lattice unit
cells. Separable gates and monitors, respectively, break vertical
and oblique bonds; this leads to bond percolation on the honey-
comb lattice with bond probabilities p0 = 1 − σ and p1 = p2 =
1 − p . (b) Bond percolation lattice corresponding to a circuit as
in Fig. 1(a). The percolation picture is blind to T gates.

between entangling properties and r for C2 gates, comput-
ing S(0) for our circuits also maps to the same honeycomb
percolation problem, but as we next discuss, honeycomb
percolation also leads to CPXTN. We define CPXTN as a run-
time proxy for simulating a quantum circuit by an exact
tensor network contraction.

3. CPXTN from percolation

a. Cluster TN contraction runtime CPX
(CC)
TN

To study CPXTN, we first consider the clusters connected
to the final time boundary of the percolated lattice; we
dub these clusters circuit clusters (CCs). We focus on
these clusters as only these enter the simulation of final
measurements. Our rough runtime estimate for contracting
the TN corresponding to a CC with maximal width s and
depth d is

CPX
(CC)
TN ≡ 2min(s,d). (E4)

The min(s, d) dependence is because the TN for a CC can
be contracted either in the temporal or spatial directions,
with the runtime scaling exponentially in the number of
legs of the TN at each stage of the contraction [4]. This
number of legs will be roughly either s or d, depending
on the direction of contraction. The idea of exploiting the
shallowest dimension of a quantum circuit in (2 + 1)D was
also used in Ref. [7] to assess the simulability of shal-
low circuits. CPX

(CC)
TN neglects any poly(s, d) prefactors and

O(1) prefactors in the exponent; it merely aims for an esti-
mate of whether CPXTN may scale exponentially with the
system size. In particular, CCs with min(s, d) = O(log n)
have CPX

(CC)
TN = poly(n), so they are efficiently simulable.

However, CPX
(CC)
TN gives only a sufficiency estimate: e.g.,

for q = 0 (i.e., a Clifford circuit) CCs of any s and d are
efficiently simulable, yet CPX

(CC)
TN may suggest otherwise.

b. Spacetime percolation and CPXTN

In our random quantum circuit problem, CPXTN is a mea-
sure for typical quantum circuits, hence, it depends on the
typical CCs, including their width and depth. On top of the
standard bond percolation model, we need two additional
features: (i) a wall-like boundary for the final time, mak-
ing the lattice semi-infinite in the thermodynamic limit,
(ii) properties of clusters connected to this boundary, i.e.,
of CCs. The spacetime percolation (STP) model features
both of these [106].

We next use some results from percolation theory to
characterize the critical point based on the clusters’ prop-
erties. The 2D critical surface in the 3D parameter space
p = (p0, p1, p2) ∈ [0, 1]3 of STP is the same as that of stan-
dard bond percolation on the same lattice [106]. For the
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(a)

(b)

FIG. 11. Comparison of CPXTN and S(0) clusters. Both (a),(b)
represent the late time τ > τ ∗ part of the quantum circuit; the
right boundary represents the final state. Gray regions are perco-
lation theory clusters; of these those touching the final state are
the CPXTN clusters. S(0) clusters require choosing subsystems A, B
in the final state and are bounded by the corresponding minimal
cuts, in green and blue, respectively. (a) Hard phase, p < pTN

c .
The CPXTN cluster is the infinite percolating cluster, while each
S(0) cluster is finite with minimal cut closed in the bulk. (b)
Easy phase, p > pTN

c . The CPXTN clusters (with boundary high-
lighted in orange) again differ from the S(0) clusters by not being
restricted to subsystems A, B.

honeycomb lattice, this is where the combination

κ�(p) = p0 + p1 + p2 + (1 − p0)(1 − p1)(1 − p2)− 2
(E5)

is vanishing κ�(pc) = 0 [107]. Since p0 = 1 − σ = 0.95
is fixed in our model and p1 = p2 = 1 − p , we find a crit-
ical monitoring rate pTN

c � 0.48. The percolating phase
κ�(p) < 0 and the κ�(p) > 0 phase correspond to the
hard and easy to simulate phases (using TN contraction),
respectively; henceforth, we refer to these as easy (p >
pTN

c ) and hard (p < pTN
c ).

Hard phase. For p < pTN
c , there exists with overwhelm-

ing probability an infinite cluster percolating through the
lattice [108], as depicted in gray in Fig. 11(a), which is

the only CC with a significant CPX
(CC)
TN . It has min(s, d) =

O(n), thus, implying the hardness (i.e., the exponen-
tial scaling with n of CPX

(CC)
TN ) of simulation by TN

contraction. CCs with min(s, d) = O(1) may also occur
but their CPX

(CC)
TN is negligible compared to that of the

infinite cluster.
Easy phase (p > pTN

c ). We define the radius of a CC with
width s and depth d as

rad(CC) ≡ s + d. (E6)

In this phase, also called the subcritical percolation phase,
there exists λ > 0 such that the probability for a CC to have
a radius larger than k satisfies [109]

Pp [rad(CC) ≥ k] ≤ e−λk, ∀ k > 0, (E7)

for bond probabilities p. Strictly speaking, this was derived
for hypercubic lattices in D ≥ 2 dimensions [109]. How-
ever, by the universality of bond percolation in 2D [110],
we expect this result to extend to the honeycomb lattice.

We first consider the average runtime,

CPX
(avg)
TN ≡ Ep

[
∑

CC

CPX
(CC)
TN

]

(E8)

=
∞∑

r=1

Pp [rad(CC) = r] CPX
(CC)
TN , (E9)

where in Eq. (E8) the sum is over the CCs of a certain
realization, while in Eq. (E9) the sum is over the radius
values of any CC. Despite the exponential suppression of
large CCs, without knowing λ (as a function of p and k),
CPX

(avg)
TN cannot be argued to be poly(n) due to CPX

(CC)
TN itself

exponentially increasing in r.
We can, however, consider the typical CPXTN instead,

defined as

log CPX
(typ)
TN ≡ Ep

[
∑

CC

log CPX
(CC)
TN

]

(E10)

=
∞∑

r=1

Pp [rad(CC) = r] log CPX
(CC)
TN . (E11)

This can be shown to be finite by successive bounds

log CPX
(typ)
TN =

∞∑

r=1

Pp [rad(CC) = r] log
(
2min(s,d))

≤
∞∑

r=1

Pp [rad(CC) = r]
r
2

(E12)
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≤
∞∑

r=1

Pp [rad(CC) ≥ r]
r
2

(E13)

≤ 1
2

∞∑

r=1

e−λrr = O(1), (E14)

where we applied Eq. (E7) in the last line. Hence,
CPX

(typ)
TN = O(1): these circuits are easy to simulate [111].

We focused on CCs due to our focus on final mea-
surements. Including simulating monitoring measurements
would require considering also bulk clusters; the conclu-
sions would be similar: the hard phase we found cannot
become easy by having to simulate more measurements
and since κ�(pc) = 0 is set by bulk percolation, and since
there are at most poly(n) clusters [taking D = poly(n)], the
easy phase would remain efficiently simulable.

4. S(0) and CPX clusters

a. S(0) clusters

As discussed in Appendix E 2, assuming all 2-qubit
gates are not separable implies the bond percolation model
is on a (rotated) square lattice. Paths are defined on the
dual lattice. Each step of a path comes with a cost of 0
(or 1) if the crossed bond is empty (or filled). Monitored
qubit lines in the quantum circuit, regarded as timelike
bonds, correspond to empty bonds.

The Hartley entropy of a subsystem A, denoted by S(0)A =
log rank(ρA), corresponds to the “minimal cut,” which con-
sists of the minimal-cost path(s) starting at the boundaries
of A at the final time [112]. The above cost of 0 or 1 comes
from the logarithm of the bond dimension of the qubit line:
0 = log 1 if the qubit is monitored or 1 = log 2 otherwise.
Note the bound S(0)A ≤ log (dimHA) = |A|, where |A| is the
subsystem size.

When no monitors are present, starting from a pure state,
at small enough time τ , the minimal cut consists of two
boundaries spanning the entire time interval [0, τ ]. How-
ever, at late times there is a discontinuous transition to a
single curve closing in the bulk [112]. This transition can
be understood from the above bound on S(0)A . The minimal-
cut structure remains the same in the presence of monitors,
with a preference for crossing monitored bonds.

Considering the Clifford gates’ structure, the bond per-
colation model is on a honeycomb lattice. Paths are now
defined on the triangular dual lattice. Each step of a path
comes with cost 0 (or 1) for a monitored (or not) timelike
crossed bond, or with cost log r = 0, 1, or 2 for a spacelike
crossed bond replacing a gate with Schmidt number r. The
minimal cut is defined similarly with the additional feature
of moving across spacelike bonds.

The dynamics of interest is in the late-time limit τ >
τ ∗ ∼ n [112], where the saturation time τ ∗ ∼ n scaling
comes from having a pure input state [113]; hence, the

relevant clusters for S(0) are those bounded minimal cuts
closed in the bulk. Note that there can exist more than one
minimal cut for a given subsystem, i.e., multiple cuts with
the same minimal cost, which might be nonzero.

b. Comparing CPXTN and S(0) clusters

Circuit clusters selected for an exact TN simulation
of the output state have boundaries consisting of strictly
zero-cost paths [114]. These clusters are spacetime regions
causally connected to the final time state.

In contrast to the S(0) clusters, where each choice of an
arbitrary subsystem A determines a minimal cut, which
defines the S(0)A cluster, the CPXTN clusters are set solely
by the circuit and split the system into a set of causally
disconnected subsystems.

Let us consider the distinction between CPXTN and S(0)

clusters in the late-time behavior of interest, as depicted
in Fig. 11. In the hard phase (p < pTN

c ), from percola-
tion theory, we know there exists a unique infinite cluster
spanning the entire circuit, which corresponds to the dom-
inant CPXTN cluster required for the exact TN simulation
of the final state. The minimal cuts for S(0) close in the
bulk since we are in the late-time limit. Thus, there is a
qualitative infinite versus finite distinction between CPXTN
clusters and S(0) clusters in the hard phase. In the easy
phase (p > pTN

c ), again from percolation theory, several
CPXTN clusters are close to the final time boundary. Min-
imal cuts for S(0) tend to follow the boundaries of CPXTN
clusters due to their zero cost; however, they are forced to
close at the ends of the subsystem for S(0). This constraint
prohibits CPXTN clusters and S(0) clusters from being iden-
tical in the general case despite their significant overlaps in
the easy phase.

Although the clusters for S(0) and for CPXTN differ, the
common underlying percolation model yields the same
critical monitoring probability pc � 0.48 for both quanti-
ties. The specific effective percolation model of S(0) is the
directed polymer in a random environment (DPRE) [112].
In contrast, for CPXTN, the specific model is an extension
of STP, which considers only clusters with radius scaling
faster than log(min(D, n)), cf. Appendix E 3 b.

APPENDIX F: RUNTIME PROXY NUMERICAL
ALGORITHM

In this Appendix, we discuss the algorithm used for
computing the MSR block sizes and runtime proxies for
the classical simulation of a monitored circuit using PBC.

We begin by producing a realization of the random cir-
cuit with a fixed set of Clifford gates from C2 and locations
of monitors and T gates. We also construct the equiva-
lent percolation lattice instance based on the separability of
each gate and the monitors, cf. Fig. 10(a). Using this perco-
lation lattice, we select the CCs by starting at each vertex
on the final time boundary and then we add the neighboring
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ALGORITHM 1. Computation of MSR blocks and runtime
proxy.

vertices connected to it. We retain clusters with both size
and depth larger than log n since they are the only ones
that are (potentially) hard to simulate. (For the finite sizes
tested, this did not produce significant changes in CPXPBC.)

The CCs can have boundaries that intersect qubit lines at
multiple locations. That is, a qubit can be measured at two
points within a cluster, with the gates occurring between
those measurements not included in the cluster. This makes
the circuit clusters inadequate for the PBC procedure. We
reconnect each circuit by a procedure dubbed stitching.
The qubits intersected by a boundary may be monitored
with outcome λ1 = ±1, left idle, then reintroduced in the
circuit by a monitor with outcome λ2. If λ2 = λ1, then
the qubit line between the monitors is directly connected;
however, if λ2 = −λ1, then a Clifford X gate is inserted
between the monitors to flip the qubit, since both monitors
are Z measurements.

The stitched circuits corresponding to CCs are amenable
to the PBC procedure. As discussed in Sec. III B and
Appendix A, this is started by commuting all Clifford gates
to the end of the circuit, which leads to a list of updated
measurements MmtsList. Next, we describe how these
updates can be implemented for random Cliffords.

A measurement is a Pauli operator on n qubits

P = pX x1
1 Zz1

1 . . .X
xn

n Zzn
n , (F1)

which can be represented as a binary vector of length 2n of
the form [x1 . . . xn|z1 . . . zn] and a Boolean phase p (since P
must be Hermitian). A Clifford gate C on n qubits is fully
determined by a set of n stabilizers s1, . . . , sn and a set of n
destabilizers d1, . . . , dn, where each (de)stabilizer is a Pauli
operator [19,65,115] satisfying

[
si, sj

] = [
di, dj

] = 0 for any i, j , and (F2)
[
si, dj

] = {si, di} = 0 for i �= j . (F3)

Hence, a Clifford can be represented as a 2n × 2n Boolean
matrix called its stabilizer table (and n Boolean phases)
with each row being the vector of the corresponding
(de)stabilizer. The (de)stabilizers of C can be thought of
in terms of the action C has on single-qubit operators, i.e.,
di ≡ X C

i = CXiC† and si ≡ ZC
i = CZiC†. The stabilizer

table of random Clifford C can be efficiently generated;
thus, by searching for all Xi, Zi, which are present in P, one
finds the updated measurement after commuting C past P

PC = C†PC = p d̃x1
1 s̃z1

1 . . . d̃
xn
n s̃zn

n , (F4)

where d̃i, s̃i are the (de)stabilizers of C†.
The update of a Pauli operator Mj by a register entan-

gling gate U = exp (−i(π/4)PiXai) is solely dependent on
the commutation relations with the GM Pi. The stabilizer
table of the Clifford U is not easily accessible, but one
can (group) multiply the vectors corresponding to the Pauli
measurements iPi, Mj , Xai if {Pi, Mj } = 0.

The stabilizer table representation of two measurements
can be further used to check their commutation rela-
tions efficiently. We use this to reduce MmtsList to a
set of mutually commuting, independent measurements
FinalList. Initially, FinalList consists of dummy Zi mea-
surements with i = 1, . . . , n. If a measurement P2 with
outcome λ2 anticommutes with a measurement P1 ∈ Final-
List with outcome λ1, then it is replaced by a normalized
projector V = (λ1P1 + λ2P2)/

√
2. The Clifford gate V is

commuted to the end of the circuit. The update of a mea-
surement Q → Q̃ = V†QV subsequent to P2 can be turned
into (group) multiplications of the Pauli operators depend-
ing on the commutation relations of Q with P1 and P2.
Conversely, if a measurement commutes with all previ-
ous elements of FinalList, then we check whether those
measurements fully determine it. This independence check
is the bottleneck of the algorithm requiring O(t3) time
[116,117]. Then, independent measurements are appended
to FinalList.

We further separate the measurements from FinalList
into sets with disjoint supports {R̃a}. One can always “quo-
tient out” single-qubit measurements since they commute
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with higher-weight support measurements, thus, generat-
ing additional sets with one element. Other measurements
with small support are not guaranteed to lead to more
disjoint sets, but one can still optimize over equivalent
FinalLists. Finally, using the optimal choice {Ri}, we find
the MSR block sizes and CPXPBC, cf. Eq. (5).

APPENDIX G: ADDITIONAL qD = O(1)

NUMERICS

Here we provide further numerical results for fixed
qD = O(1) in the uncorrelated monitoring model. We
focus on circuits with qD = 2.0 and depth D = n with
n ≤ 512 qubits. Compared with the qD = 0.1 data,

(c)

(a)

(b)

FIG. 12. Dynamical magic phase transition for qD = 2.0 con-
sistent with a simultaneous entanglement transition. (a) The
order parameter log CPX

(typ)
PBC /t (with SE as error bars) versus

measurement probability p . As n increases, the order parame-
ter approaches a nonzero value for p < pc while it approaches
zero for p > pc. The inset shows the window in which differ-
ent n curves cross. Significant finite-size effects persist up to
at least n = 256, precluding the accurate extraction of a criti-
cal monitoring rate and critical exponents. (b) Single-parameter
finite-size scaling collapse, yielding pc = 0.109 ± 0.065. (c) The
order parameter versus system size n at fixed p = 0.18. For
intermediate sizes (the data show n ∈ {8, 16, 32, 64}) the order
parameter seems to increase with n; it requires n ≥ 128 (the
data show n ∈ {128, 180, 256, 360, 512}) for the large-n decrease
expected for the area-law regime to set in.

cf. Fig. 3, we observe strong finite-size effects, cf. Fig. 12.
(See the end of this Appendix for an interpretation.)

An indication of the strength of finite-size effects is the
drift in curve crossings in Fig. 12(a). This makes the accu-
rate extraction of the critical monitoring rate pc and critical
exponents particularly challenging.

As we did for qD = 0.1, we start with the scaling ansatz

[
log CPX

(typ)
PBC/t

]
(p , n) = n−β/νG

(
(p − pc)n1/ν) , (G1)

where G is a universal scaling function. Performing a
finite-size scaling collapse [68–70] using this is shown in
Fig. 12(b); the fitted parameters agree within error bars
with the qD = 0.1 results (see Sec. IV), however these
error bars are now considerably larger.

A possible origin of the drift in crossings, and hence
these large fitting error bars, are irrelevant scaling vari-
ables. For simplicity, we consider incorporating the leading
irrelevant variable, leading to the ansatz [118–120]

[
log CPX

(typ)
PBC /t

]
(p , n) = n−β/νF(ρn1/ν , uny), (G2)

where ρ = p − pc is the relevant variable (hence 1/ν > 0)
and u is the irrelevant variable (hence y < 0). For small
values of arguments in F , one can recast Eq. (G2) as an
ansatz with shift and renormalization corrections [118]

[
log CPX

(typ)
PBC/t

]
(p , n) = n−β/ν(1 + cn−ω)

× f
(
(p − pc)n1/ν − bny) ,

(G3)

where b, c, and ω are not universal. Using this ansatz,
we find y = −0.46 ± 1.96 consistent with u being irrel-
evant (the least uncertain y was obtained with fixed
c = 0); however, the accuracy of the pc,β, ν estimates does
not improve. Hence, while these corrections should be
included, they are still insufficient for an accurate extrac-
tion of pc. This limitation, present despite the considerable
system sizes accessible to our simulations, is indicative of
the strength of finite-size effects for qD = 2.0.

To further illustrate the strength of finite-size effects,
in Fig. 12(c) we plot the n dependence of log CPX

(typ)
PBC/t,

focusing on p = 0.18, i.e., we work in the area-law phase
slightly above the entanglement transition. log CPX

(typ)
PBC/t

seems to increase for a considerable range of n (up to
n = 64 among the data points shown) before the large-n
decrease expected for the area-law phase sets in (as it does
for n ≥ 128 for the data shown).

The strong finite-size effects can be informally explained
by noting that the entanglement-based interpretation of
the expected behavior of log CPX

(typ)
PBC/t rests upon the

applicability of the simplified model from Sec. V C.
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This suggests that suppressing finite-size effects requires
d/τSP in Sec. V D 1 to surpass a certain threshold. Focus-
ing on the area-law phase, note that for qD = η and
D = O(n), we have rexp/τSP = O(√n/η) for the typi-
cal constant-width apex of the CCM. [For the atypical
O(n) width apex, we have dexp/τSP = O(n/η) if w0 =

O(n).] Thus, we find that an M -fold increase of η implies
an M -fold increase in the value of n required to sup-
press finite-size effects. In particular, for qD = 2.0, we
would need 20 times larger systems to study the transi-
tion than for qD = 0.1 to get comparable data to those in
Fig. 3.

APPENDIX H: TABLE OF SYMBOLS (TABLE I)

TABLE I. Main symbols used in this work. We indicate the context in which they appear and what they denote.

Context Notation Meaning

n Number of qubits
D Total depth of circuit

Circuit model p Midcircuit measurement probability
q T gate probability

Sec. III A t Total number of T gates in a circuit
C Clifford gate

U(U′) (Adaptive) Clifford gate inside a T gadget
V Normalized projector arising in PBC, which is a Clifford gate

Pauli-based Mi or Pi ith measurement operator, i.e., a Hermitian Pauli operator
computation (PBC) Rn(Rt) Register of computational (magic ancilla) qubits

χt Stabilizer rank of the state |A〉⊗t

Sec. III B CPXPBC Runtime proxy of simulating a circuit by PBC
Appendix A ti Size of the ith partition of the magic state register

log CPX
(typ)
PBC /t Simulability order parameter of a typical circuit instance

S ,S± (G) Stabilizer group of a pure (non)stabilizer state,
With generators si (gi) and destabilizers si (gi)M Generic magic measure

d Depth of T circuit block (TCB)
d∗ Depth of TCB at which SP occurs

PSP(d) Probability of a TCB to SP (by depth d)
p1 ≡ P(d∗ = 1) Probability of a TCB to SP at depth d = 1

Stabilizer {Mj , {measurement operator on the j th qubit,
purification (SP) γj , Number of (de)stabilizers potentially entering the expression of Mj ,

SvN(j )} von Neumann entropy across a cut located (without loss of generality) to the left
of qubit j}

Sec. V f ≡ P(Zj |d∗ ≥ k) Probability to SP due to Zj conditioned on no previous SP event
Appendices B and D P ≡ P(d∗ = k|d∗ ≥ k) Probability to SP at depth k conditioned on no SP at smaller depths

w Width of the region containing potentially stabilizer purifying monitors
� Decay rate of 1 − PSP(d) with depth d
τSP Stabilizer purification time; τSP = �−1

rexp Expected radius of a spacetime volume occupied by one T gate
dexp Expected depth separation between T gates

P(Zj ) or P(Tj ) Probability to apply a Z measurement or a T gate on qubit j
T correlated p+ = P(Zj |Tj ) Probability to apply a Z measurement conditioned on
circuit model Having applied a T gate on qubit j

p− = P(Zj |no Tj ) Probability to apply a Z measurement conditioned on
Sec. VI Not having applied a T gate on qubit j

α = p+ − p− Partial knowledge parametrization

p = (p0, p1, p2) Vector of bond probabilities on a honeycomb lattice
Mapping to σ = 1 − p0 Probability of a vertical bond to be broken
spacetime percolation rad(CC), s, and d Radius, maximal width, and depth of a circuit cluster (CC)

CPX
(CC)
TN Runtime proxy for an exact tensor network (TN) contraction of a CC

Appendix E CPX
(avg)
TN Mean TN runtime proxy of a circuit at fixed p

CPX
(typ)
TN Typical TN runtime proxy of a circuit at fixed p
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[100] We define a destabilizer ḡi of generator gi of stabilizer
group S to be a Pauli operator that anticommutes with gi
and commutes with all other generators gj �=i of S [19].

[101] A. D. Córcoles, J. M. Gambetta, J. M. Chow, J. A.
Smolin, M. Ware, J. Strand, B. L. T. Plourde, and M. Stef-
fen, Process verification of two-qubit quantum gates by
randomized benchmarking, Phys. Rev. A 87, 030301(R)
(2013).

[102] S. Bravyi and D. Maslov, Hadamard-free circuits expose
the structure of the Clifford group, IEEE Trans. Inf.
Theory 67, 4546 (2021).

[103] M. A. Nielsen, C. M. Dawson, J. L. Dodd, A. Gilchrist,
D. Mortimer, T. J. Osborne, M. J. Bremner, A. W. Harrow,
and A. Hines, Quantum dynamics as a physical resource,
Phys. Rev. A 67, 052301 (2003).

[104] W. Dür, G. Vidal, and J. I. Cirac, Optimal conversion of
nonlocal unitary operations, Phys. Rev. Lett. 89, 057901
(2002).

[105] The square lattice of Ref. [27] is recovered for p0 = 1, i.e.,
for vanishing probability of r = 1 gates; then no vertical
bonds are ever cut and contracting these bonds to single
points reduces the honeycomb to the square lattice while
retaining its connectivity.

[106] G. Grimmett, Probability on Graphs: Random Pro-
cesses on Graphs and Lattices (CUP, Cambridge, 2018),
2nd ed.

[107] G. R. Grimmett and I. Manolescu, Inhomogeneous bond
percolation on square, triangular and hexagonal lattices,
Ann. Probab. 41, 2990 (2013).

[108] G. Grimmett, Percolation (Springer, New York, 1999),
2nd ed.

[109] C. Bezuidenhout and G. Grimmett, Exponential decay
for subcritical contact and percolation processes, Ann.
Probab. 19, 984 (1991).

[110] G. R. Grimmett and I. Manolescu, Universality for bond
percolation in two dimensions, Ann. Probab. 41, 3261
(2013).

[111] A similar bounding scheme yields CPX
(avg)
TN ≤∑∞

s=1 e(2−λ)s,
which is why more knowledge about λ, and a more accu-
rate runtime proxy, is needed for a conclusion about
runtime.

[112] A. Nahum, J. Ruhman, S. Vijay, and J. Haah, Quantum
entanglement growth under random unitary dynamics,
Phys. Rev. X 7, 031016 (2017).

[113] For a maximally mixed input state, the saturation time is
τ ∗ ∼ n2/3 [121].

[114] For open boundary conditions, crossing the system’s
temporal edge has zero cost [see the top CC in
Fig. 11(b)].

[115] T. J. Yoder, A generalization of the stabilizer
formalism for simulating arbitrary quantum circuits,
2012, https://www.scottaaronson.com/showcase2/report/
ted-yoder.pdf (unpublished).

[116] F. C. R. Peres and E. F. Galvão, Quantum circuit compila-
tion and hybrid computation using Pauli-based computa-
tion, Quantum 7, 1126 (2023).

[117] Çetin Kaya Koç and S. N. Arachchige, A fast algorithm
for Gaussian elimination over GF(2) and its implemen-
tation on the GAPP, J. Parallel Distrib. Comput. 13, 118
(1991).

[118] K. S. D. Beach, L. Wang, and A. W. Sandvik, Data col-
lapse in the critical region using finite-size scaling with
subleading corrections, arXiv:0505194.

030332-29

https://doi.org/10.1103/PhysRevLett.126.060501
https://doi.org/10.1103/PhysRevLett.130.220404
https://doi.org/10.1038/s41586-023-06505-7
https://arxiv.org/abs/2305.20092
https://doi.org/10.1103/PRXQuantum.5.020347
https://doi.org/10.22331/q-2021-10-19-564
https://doi.org/10.1063/1.1499754
https://doi.org/https://ems.press/journals/aihpd/articles/1146536
https://doi.org/10.1103/PhysRevB.103.104306
https://doi.org/10.1103/PhysRevLett.131.060603
https://doi.org/10.1103/PhysRevResearch.6.013137
https://doi.org/10.1088/2058-9565/aa9a06
https://doi.org/https://www.nature.com/articles/s41534-018-0106-y
https://doi.org/10.1103/PhysRevA.99.022313
https://doi.org/10.1088/1367-2630/ab8e5c
https://doi.org/10.1103/PhysRevB.104.155111
https://doi.org/10.1103/PhysRevB.106.214316
https://doi.org/10.1103/PhysRevB.104.104305
https://arxiv.org/abs/2312.02039
file:www.csd3.cam.ac.uk
file:www.dirac.ac.uk
https://doi.org/10.1103/PhysRevA.87.030301
https://doi.org/10.1109/TIT.2021.3081415
https://doi.org/10.1103/PhysRevA.67.052301
https://doi.org/10.1103/PhysRevLett.89.057901
https://doi.org/10.1017/9781108528986
https://doi.org/10.1214/11-AOP729
https://doi.org/10.1007/978-3-662-03981-6
https://doi.org/10.1214/aop/1176990332
https://doi.org/10.1214/11-AOP740
https://doi.org/10.1103/PhysRevX.7.031016
https://www.scottaaronson.com/showcase2/report/ted-yoder.pdf
https://doi.org/10.22331/q-2023-10-03-1126
https://doi.org/10.1016/0743-7315(91)90115-P
https://arxiv.org/abs/0505194


BEJAN, MCLAUCHLAN, and BÉRI PRX QUANTUM 5, 030332 (2024)

[119] L. Wang, K. S. D. Beach, and A. W. Sandvik, High-
precision finite-size scaling analysis of the quantum-
critical point of s = 1/2 Heisenberg antiferro-
magnetic bilayers, Phys. Rev. B 73, 014431
(2006).

[120] K. Slevin and T. Ohtsuki, Corrections to scaling at the
Anderson transition, Phys. Rev. Lett. 82, 382 (1999).

[121] S. Sang, Z. Li, T. H. Hsieh, and B. Yoshida, Ultrafast
entanglement dynamics in monitored quantum circuits,
PRX Quantum 4, 040332 (2023).

030332-30

https://doi.org/10.1103/PhysRevB.73.014431
https://doi.org/10.1103/PhysRevLett.82.382
https://doi.org/10.1103/PRXQuantum.4.040332

	I.. INTRODUCTION
	II.. SUMMARY OF THE MAIN RESULTS
	A.. Simulability transition, stabilizer purification and magic fragmentation
	B.. Uncorrelated monitoring
	C.. bold0mu mumu TTTTTT-correlated monitoring
	D.. Outline

	III.. QUANTUM CIRCUIT MODEL AND ITS SIMULATION
	A.. Monitored Cliffordbold0mu mumu +T+T+T+T+T+T circuits
	B.. Pauli-based computation, magic spreading, and the runtime proxy
	C.. Circuit cluster selection and percolation

	IV.. MAGIC TRANSITIONS WITH UNCORRELATED MONITORING
	V.. MAGIC TRANSITIONS VIA STABILIZER PURIFICATION
	A.. Stabilizer-purified bold0mu mumu TTTTTT gate
	1.. Causal cone of magic: linking magic spreading to stabilizer purification and complexity

	B.. SP leads to MF
	C.. Stabilizer-purification probability and time
	1.. Stabilizer-purification probability
	2.. Stabilizer-purification time and entanglement
	3.. Numerical test

	D.. SP probability implications for CPXPBC
	1.. Fixed qD
	2.. Fixed q

	E.. SP implications for direct stabilizer simulations

	VI.. bold0mu mumu TTTTTT-CORRELATED MONITORING
	VII.. DISCUSSION AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: DETAILS OF THE PBC METHOD
	1.. Runtime of classically simulating a PBC

	. APPENDIX B: DETAILS ON STABILIZER-PURIFIED bold0mu mumu TTTTTT GATE
	1.. Nonstabilizer superposition
	2.. Monitor form and its retainment
	a.. A monitor produces a stabilizer state if and only if it measures the state of the logical qubit
	b.. The monitor measurement is retained in PBC as a single-qubit measurement of the magic state


	. APPENDIX C: DETAILS OF THE CAUSAL CONE OF MAGIC
	1.. Definition and SP implications
	2.. PBC implications

	. APPENDIX D: BULK MONITOR SP PROBABILITY
	1.. Proof of Theorem 2
	2.. SP probability

	. APPENDIX E: SPACETIME PARTITIONING
	1.. Spacetime partitioning of the circuit
	2.. Mapping to inhomogeneous bond percolation
	3.. CPXTN from percolation
	a.. Cluster TN contraction runtime CPX(CC)TN
	b.. Spacetime percolation and CPXTN

	4.. bold0mu mumu S(0)S(0)S(0)S(0)S(0)S(0) and bold0mu mumu CPXCPXCPXCPXCPXCPX clusters
	a.. S(0) clusters
	b.. Comparing CPXTN and S(0) clusters


	. APPENDIX F: RUNTIME PROXY NUMERICAL ALGORITHM
	. APPENDIX G: ADDITIONAL bold0mu mumu qD=O(1)qD=O(1)qD=O(1)qD=O(1)qD=O(1)qD=O(1) NUMERICS
	. APPENDIX H: TABLE OF SYMBOLS (TABLE [t1]I)
	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000700065006e007400720075002000740069007001030072006900720065002000640065002000630061006c006900740061007400650020006c006100200069006d007000720069006d0061006e007400650020006400650073006b0074006f00700020015f0069002000700065006e0074007200750020007600650072006900660069006300610074006f00720069002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f0062006500200050004400460020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020006e00610020006e0061006d0069007a006e006900680020007400690073006b0061006c006e0069006b0069006800200069006e0020007000720065007600650072006a0061006c006e0069006b00690068002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


