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Monitored quantum many-body systems display a rich pattern of entanglement dynamics, which is
unique to this nonunitary setting. This work studies the effect of quantum jumps on the entanglement
dynamics beyond the no-click limit corresponding to a deterministic non-Hermitian evolution. To this
aim, we introduce a new tool that looks at the statistics of entanglement-entropy gain and loss after and
in between quantum jumps. This insight allows us to build a simple stochastic model of a random walk
with partial resetting, which reproduces the entanglement dynamics, and to dissect the mutual role of
jumps and non-Hermitian evolution on the entanglement scaling. We apply these ideas to the study of
measurement-induced transitions in monitored fermions. We demonstrate that significant deviations from
the no-click limit arise whenever quantum jumps strongly renormalize the non-Hermitian dynamics, as
in the case of models with U(1) symmetry at weak monitoring. On the other hand, we show that the
weak-monitoring phase of the Ising chain leads to a robust subvolume logarithmic phase due to weakly
renormalized non-Hermitian dynamics.
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I. INTRODUCTION

The spreading of quantum entanglement under unitary
dynamics displays remarkable robustness and universal-
ity [1–3]. For example, in clean systems with short-
ranged interactions, the entanglement entropy is generally
expected to grow linearly in time and to saturate to a vol-
ume law [4,5]; the violation of this behavior is often taken
as a smoking gun of nonergodic dynamics [6]. On the
other hand, nonunitary processes such as quantum mea-
surements can strongly affect how entanglement spreads
throughout the system. Out of this competition, a novel
type of measurement-induced phase transition (MIPT) in
the entanglement content of the system has been discov-
ered [7–9].

Entanglement transitions due to measurements have
been studied broadly in two somewhat different settings;
on the one hand, in the stochastic dynamics encoded in a
quantum many-body trajectory describing the evolution of
the system conditioned to a set of measurement outcomes.
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In this setting, the criticality is hidden in the rare fluctua-
tions of the measurement process, probed by a nonlinear
functional of the state such as the entanglement entropy
or the purity in a dynamical purification protocol [10],
while conventional observables averaged over the noise
are usually transparent to it. This makes the theoretical
description and experimental detection of MIPT particu-
larly challenging, even though recent progress has been
made [11–13]. On the theoretical front, volume-to-area law
entanglement transitions have been reported in monitored
random circuits [14–23] and nonintegrable Hamiltonians
[24–28] with projective or weak measurements. Moni-
tored noninteracting systems, on the other hand, are not
expected to sustain a volume-law phase [29,30]. Still, a
critical subvolume phase, the origin and stability of which
are currently under debate [31–37], has been numerically
found in several works [38–48].

A different limit of the measurement problem is obtained
by postselecting atypical trajectories corresponding to spe-
cific measurement outcomes. To fix the ideas, consider,
e.g., the quantum jump (QJ) dynamics corresponding to
a photocounting monitoring protocol [49–51]: here, abrupt
random quantum jumps (clicks) intersperse the determin-
istic evolution driven by a non-Hermitian Hamiltonian,
which accounts for the measurement back action. Post-
selecting on the trajectory where no click has happened
corresponds to purely non-Hermitian dynamics. In this
limit, several works have reported measurement-induced
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entanglement transitions and highlighted their relation
with the spectral properties of the non-Hermitian Hamil-
tonian [52–63].

The relation between these two limits of the measure-
ment problem, particularly concerning the entanglement
dynamics, is not well understood. Is the no-click dynam-
ics stable enough to the inclusion of QJs, which should be
seen as irrelevant perturbations? Or, on the contrary, do
QJs completely change the entanglement structure of the
monitored system? These questions ultimately go beyond
measurement-induced transitions and touch upon the rele-
vance of non-Hermitian Hamiltonians in the description of
open quantum systems [64–70].

To understand the role of QJs and non-Hermitian evolu-
tion on the entanglement dynamics in monitored systems,
we introduce a new tool: the statistics of the entanglement-
entropy changes after and in between QJs. We show
that, on average, QJs induce an entanglement-entropy loss
while the non-Hermitian evolution causes a gain, although
the statistics display rather broad tails and fluctuations.
Using the full statistics of entanglement gain and loss, we
propose a classical stochastic random-walk (RW) model
with partial resetting for the entanglement dynamics, that
we show to reproduce the full QJ dynamics. More impor-
tantly, the entanglement gain and loss picture clarifies the
mutual role of quantum jumps and non-Hermitian evolu-
tion in the scaling of entanglement entropy in the steady
state, with direct implications for the associated MIPT.

We showcase our new method by studying three models
of monitored free fermions: the Ising chain, the monitored
Su-Schrieffer-Heeger (SSH) chain, and a model of free
fermions with U(1) symmetry. These models are inter-
esting for two reasons: first, they differ in their global
symmetry, a fact that is believed to play a critical role
in the stability of the MIPT; second, their entanglement
transition in the no-click limit has been studied in detail
[55,56]. By solving the full stochastic QJ dynamics for
these models and computing the entanglement entropy, we
show that QJs have remarkably different impacts on their
phase diagrams, as compared to the no-click limit. We
understand this difference through a detailed analysis of
the entanglement gain and loss, which reveals the crucial
role of quantum jumps in renormalizing the effective non-
Hermitian dynamics with respect to the bare no-click limit.
We show that this renormalization, or the lack thereof, can
naturally explain the different behaviors of quantum jumps
in the three models and provide a criterion for the relevance
of the no-click limit. Finally, we demonstrate how the
entanglement gain-loss picture and the associated classi-
cal model remain valid even in the presence of interactions
breaking Gaussianity.

The paper is structured as follows. In Sec. II, we review
the background material: we introduce the QJ measure-
ment protocol and the models we will consider through-
out this work as well as the quantities we will use to

characterize them. In Sec. III, we present the main quantity
of interest for this work, namely, the statistics of entan-
glement gain and loss, that we use to construct a classical
stochastic model for the entanglement dynamics. In Sec.
IV, we present several applications of this tool to the study
of MIPT in models of monitored free fermions. In particu-
lar, we use the insights from this model to discuss the role
of jumps and non-Hermitian dynamics on the scaling of the
entanglement and the MIPT. Finally, Sec. VI contains our
conclusions and future perspectives. In the appendixes, we
provide further methodological details and results relevant
for our work.

II. BACKGROUND

In this section, we summarize relevant background
material, including the quantum jump protocol to contin-
uously monitor a quantum system and its sampling via the
Monte Carlo wave-function method and the waiting-time
distribution (WTD). We then define the models we focus
on throughout the paper and the main quantities we use to
characterize their dynamics.

A. Monitoring by quantum jumps

In this work, we are interested in the dynamics of con-
tinuously monitored quantum systems [51]. The setup we
have in mind is sketched in Fig. 1, namely, a fermionic
chain where each lattice site is coupled to a measurement
apparatus that weakly and continuously monitors some
local observable of the chain. We are interested in the
dynamics of the system wave function conditioned to the
measurement outcomes, which realizes a so-called quan-
tum trajectory. Different measurement protocols give rise
to different types of stochastic evolutions. Here, we focus
on the quantum jump protocol [49,71,72], corresponding
to the experimentally relevant photocounting process and
which is described by the following stochastic Schrödinger
equation:

d|�(t)〉 = −idt

{
H − i

2

∑
i

(L†
i Li − 〈L†

i Li〉t)

}
|�(t)〉

+
∑

i

dξi

⎧⎨
⎩ Li√

〈L†
i Li〉

− 1

⎫⎬
⎭ |�(t)〉. (1)

where H is the Hamiltonian of the fermionic chain (we
will give explicit expression in Sec. II C), Li, L†

i are the
jump operators defined on each lattice site, which describe
the measurement process, and dξi ∈ {0, 1} is an incre-
ment for the inhomogeneous Poisson process with average
P(dξi = 1) = dt〈ψ(t)|L†

i Li|ψ(t)〉.
The dynamics in Eq. (1) is composed of a determin-

istic part (for dξi = 0) that corresponds to an effective
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(a)

(b)

(d)

(c)
Bipartition

FIG. 1. (a),(b) A sketch of the setup: a monitored fermionic
chain (a) evolving under the quantum jump (b) protocol, char-
acterized by a deterministic evolution driven by (a) a non-
Hermitian Hamiltonian Heff and (b) stochastic quantum jumps.
(c) The quantum trajectory: we are interested in the stochastic
dynamics of the wave function and in particular in its entan-
glement structure, as measured from the bipartite entanglement
entropy Sξ (t) [see (a) for the partition]. (d) Typical quantum tra-
jectory evolutions (ten realizations) for the entanglement entropy
and its average over the measurement noise ξ .

non-Hermitian Hamiltonian Heff given by

Heff = H − i
2

∑
i

L†
i Li (2)

and a stochastic one, the last term in Eq. (1), due to
the action of QJs. The effective Hamiltonian Heff is
non-Hermitian because of the measurement back action,
encoded in the last term of Eq. (2). Its role is to control the
dynamics in the so-called no-click limit, when no jumps
happen during the quantum trajectory, as well as the evo-
lution in between two subsequent quantum jumps. We note
that the evolution of the system is state dependent (and thus
nonlinear); see the counter-term appearing in Eq. (1), to
ensure the normalization.

The QJ evolution in Eq. (1) is solved using Monte Carlo
methods [73], either via a first-order integration scheme
that introduces an explicit discretization dt to sample the
QJs or using higher-order schemes. The former approach
has the drawback of not having a natural way to control
the accuracy of the simulation, which is instead empiri-
cally benchmarked by considering different choices of dt

and checking that there is no qualitative difference in the
disorder averages. We overcome this limitation consider-
ing a higher-order scheme that is based on sampling the
time at which subsequent jumps happen [73–75], i.e., using
the cumulative WTD, defined as

F[�, τ ] = 1 − 〈�|eiH†
effτe−iHeffτ |�〉. (3)

Specifically, we proceed by iterating the following loop.
(i) Assume a normalized state |�(ti)〉 is reached at time ti
(possibly the initial time of the dynamics, in which case
|�(ti)〉 is the initial state). (ii) Extract a random num-
ber r uniformly distributed in [0, 1] and find the random
waiting time τ for the next jump by solving the equation
r = 1 − F[�(t), τ ]. (iii) Within the time interval [t, t + τ ],
propagate the deterministic non-Hermitian evolution

|�(t + τ)〉 = e−iHeffτ |�(t)〉
||e−iHeffτ |�(t)〉|| . (4)

(iv) At time t + τ , a quantum jump occurs. As before, the
output channel is chosen splitting the [0,1] interval into
segments of size 〈�(t + τ)|L†

i Li|�(t + τ)〉 and checking
in which one a uniformly drawn random number falls. The
jump is immediate and the postmeasurement state after a
jump at site j reads

|�(t + τ+)〉 = Lj |�(t + τ)〉√
〈�(t + τ)|L†

j Lj |�(t + τ)〉
. (5)

In a nutshell, a quantum trajectory is specified as a
sequence of non-Hermitian quantum quenches inter-
spersed with discontinuous jumps [see Fig. 1(c)] that set
the initial conditions for the forthcoming integration steps.

An advantage of this approach is to directly access
the WTD or delay function [73,76,77], which encodes
the probability distribution of the times between QJs. Its
behavior will be discussed for the specific model of interest
later on in the paper.

B. Average versus conditional dynamics and
entanglement entropy

The stochastic Schrödinger equation [Eq. (1)] describes
the evolution of the conditional state, also called a quan-
tum trajectory. By averaging the density matrix ρξ (t) =
|ψξ(t)〉〈ψξ(t)| over the stochastic noise ξ in Eq. (1), one
recovers a Lindblad master equation for the average state
(This time-dependent random variable ξ is used to label the
different trajectories.) These two descriptions are equiva-
lent with regard to simple observables, which are linear
functionals of the conditional state and, indeed, quantum
trajectories are also called unravelings of the Lindblad
master equation [78]. The stochastic dynamics, however,
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contain richer information: if one is interested in quanti-
ties that are nonlinear in the state and sensitive to higher
moments of the density matrix, then averaging over the
measurement noise gives rise to physics that is not cap-
tured by the Lindblad or average state. A relevant example
is provided by the (von Neumann) entanglement entropy,
defined as [79,80]

Sξ (t) = −trA
[
ρA
ξ (t) ln ρA

ξ (t)
]

, (6)

where we have introduced a partition A ∪ B in the sys-
tem (cf. Fig. 1) and the reduced density matrix ρA

ξ (t) =
trB|�ξ(t)〉〈�ξ(t)|. Therefore, the entanglement entropy
will be a fluctuating quantity evolving stochastically (see
Fig. 1). In this work, we will be mainly concerned with the
average entanglement entropy, given by

S(t) =
∫

DξP(ξ)Sξ (t), (7)

where the average is taken over the measurement noise ξ .
In particular, we will discuss how the steady-state entan-
glement entropy scales with the size of the subsystem �.
In thermal equilibrium or for unitary dynamics, this is
known to sharply characterize the nature of a given phase
[80], depending on whether this scaling is proportional to
the volume of the subsystem (S ∼ � in one dimension) or
to its area (S ∼ const. in one dimension), possibly with
logarithmic corrections as for quantum critical states.

C. Models of monitored fermions

In this work, we consider three models of monitored
free fermions with different internal symmetries and mea-
surement operators, leading to different non-Hermitian
Hamiltonian. Furthermore, for one of these cases, we also
discuss the role of interactions breaking Gaussianity. The
first model is the quantum Ising chain in a transverse field,

HIsing = −
L∑

i=1

[
Jσ x

i σ
x
i+1 + hσ z

i

]
, (8)

which is mapped via a Jordan-Wigner transformation to

HIsing = −
L∑

i=1

[
J (c†

i ci+1 + c†
i c†

i+1+h.c.)+ h(1 − 2ni)
]

.

(9)

We choose the jump operators

Li =
√

2γ ni, (10)

corresponding to monitoring of the local density ni = c†
i ci,

and obtain the effective non-Hermitian Hamiltonian

Heff = HIsing − iγ
L∑

i=1

ni, (11)

describing a non-Hermitian Ising model in a complex-
valued transverse field [52,55,81]. We contrast the results
for the Ising case with models with U(1) symmetry.
Specifically, we consider a fermionic SSH chain with two
different sublattices A and B and Hamiltonian

HSSH = −
L∑

j =1

[
(J − h)c†

A,j cB,j −1 + (J + h)c†
A,j cB,j + h.c.

]
.

(12)

We choose the jump operators as

LA,i =
√

2γ nA,i LB,i =
√

2γ (1 − nB,i), (13)

namely, we independently and continuously monitor the
local density of particles on sublattice A, nA,i = c†

A,icA,i,
and the local density of holes, 1 − nB,i = cB,ic

†
B,i, on

sublattice B. Using these quantum jump operators, we
obtain an effective non-Hermitian Hamiltonian of the
form

Heff = HSSH − iγ
L∑

i=1

(c†
A,icA,i + cB,ic

†
B,i). (14)

This non-Hermitian SSH model has been studied in Ref.
[56]. Finally, we consider a model of one-dimensional
lattice fermions with U(1) symmetry and next-neighbor
interactions, described by a Hamiltonian

H = −
L∑

j =1

c†
j cj +1 + h.c. + V

L∑
i=1

(1 − 2ni)(1 − 2ni+1)

(15)

and monitoring of the local density by the jump operators

Li =
√

2γ ni. (16)

The associated non-Hermitian Hamiltonian reads

Heff = H − iγ
L∑

i=1

c†
i ci. (17)

We note that for V = 0, the model reduces to monitored
free fermions that have been extensively studied, while a
finite V allows us to discuss the role of many-body interac-
tions breaking Gaussianity. In both cases, we note that the
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non-Hermitian Hamiltonian associated with this problem,
Eq. (17), is special in the sense that its imaginary part com-
mutes with its real part. As such, the evolution in between
quantum jumps is unitary. On the other hand, the first two
examples have a nontrivial non-Hermitian evolution and
the entanglement transition associated with the no-click
limit has been discussed in Ref. [55,56]. The key features
of the no-click problem are summarized for completeness
in Appendix A.

III. STATISTICS OF ENTANGLEMENT GAIN AND
LOSS

In this section, we introduce the main tool that we will
use throughout this work to understand the intertwined role
of QJs and non-Hermitian evolution in monitored quan-
tum system: the statistics of entanglement gain and loss.
To simplify the presentation, we illustrate our ideas in the
context of the monitored Ising chain (defined in Sec. II C),

leaving to Sec. IV a detailed application of this tool to
MIPT in different models.

Let us consider the stochastic dynamics of the entan-
glement entropy along a quantum trajectory, plotted in
Fig. 2(a): the typical pattern is given by an evolution driven
by the non-Hermitian Hamiltonian interrupted abruptly
by a discontinuous change in entanglement entropy due
to a quantum jump. From this quantum trajectory, we
extract three bits of key information. First, the WTD of
QJs, PWT(τ ), which represents the probability density of
having a waiting time τ between QJs. As we show in
Fig. 2(b), the WTD displays a Poisson behavior, with
a rate K∞

γ ∝ γL, that gives rise to an average waiting
time τ ∼ 1/γL (see also Appendix B). Second, we extract
the changes to the entanglement entropy at each jump
event and in between the jumps (due to the non-Hermitian
evolution). As we see from Fig. 2(a), the entanglement
entropy can either increase or decrease after a QJ and,
similarly, can either grow or diminish during the time
between jumps, where non-Hermitian evolution occurs.

(b) (d) (f)

(a) (c) (e)

FIG. 2. The statistics of entanglement gain and loss. (a) The evolution of the entanglement entropy along a quantum trajectory, for the
monitored Ising chain. The dots symbolize the quantum jumps, while the evolution in between the jumps is due to the non-Hermitian
Hamiltonian. From this quantum trajectory, we extract three key quantities (see the inset): (i) the waiting times τi between QJs and
the entanglement-entropy change (ii) after a QJ 
Sqj, and (iii) in between QJs 
SnH. We then construct the corresponding histograms
shown in (b)–(d). (b) The waiting-time distribution (WTD) of QJs, PWT(τ ), where PWT(τ )dτ is the probability of having an elapsed
time between one jump and the next one in the interval [τ , τ + dτ ]. The Poissonian rate K∞

γ is the steady-state value of the back action
(for more details, see Appendix B). (c) The statistics of entanglement change due to QJs, P(
Sqj|S), conditioned on the entanglement
content S. (d) The corresponding quantity for the non-Hermitian evolution. (e),(f) The average change in the entanglement entropy due
to (e) QJs and (f) non-Hermitian evolution. These averages are obtained from the conditional distributions, P(
Sqj|S), P(
SnH|S) for
system sizes of L = 128 and thus are a function of the entanglement entropy S and in these plots we represent the dependence on the
subsystem size �.
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Given this pattern, we now ask: what are the statistics of
the entanglement-entropy change after a quantum jump
and in between quantum jumps, i.e., after an evolution step
with the non-Hermitian Hamiltonian?

To answer this question, we sample along many quan-
tum trajectories the probability density of observing a
change 
Sqj to the entanglement entropy due to QJs and
collect the resulting histogram P(
Sqj|S). Similarly, we
sample the probability density of observing a change δSnH
to the entanglement entropy due to the non-Hermitian evo-
lution, which we denote P(δSnH|S). Crucially, these are
conditional probabilities given a certain value of entan-
glement entropy S before the event. This dependence is a
key feature of our approach: the basic idea is to understand
whether QJs impact in different ways many-body states
that are highly or weakly entangled. In practice, these his-
tograms are obtained by binning stochastic events (jumps
or non-Hermitian evolution) according to the entanglement
content of the state on which they act. To be specific, we
say that a state has an entanglement content S at a time
t if for τ ∈ [t − εt, t + εt], the entanglement of a state in
that time range is such that |S(|ψ(τ)〉)− S| < εS (for given
ετ , εS).

We plot these histograms in Figs. 2(c) and 2(d) for
the monitored Ising chain. The first remarkable observa-
tion is that the QJ distribution is strongly peaked around

Sqj = 0, with broad tails, suggesting that the vast major-
ity of quantum jumps do not substantially change the
entanglement entropy. In contrast, rare quantum jumps are
responsible for more significant changes and this can also
be observed at the level of the trajectory in Fig. 2(a). The
asymmetry of the distribution is also interesting to note,
since it means that a single QJ is more likely to reduce
the entanglement entropy, even though jumps that increase
it are also possible. Finally, as we see in Figs. 2(c) and
2(d), the tails of the histogram for the QJs broaden up and
acquire a nontrivial S dependence at least for 
Sqj < 0,
indicating that highly entangled states are indeed more
fragile and prone to be affected by rare QJs. With regard
to the entanglement changes during the non-Hermitian
evolution in between quantum jumps, we see that the dis-
tribution appears centered around a slightly positive value
and with a slight asymmetry in the tails, suggesting that
the non-Hermitian evolution is primarily responsible for
the growth of the entanglement.

In the remainder of this section, we will show how, in
fact, the statistics of the entanglement changes, defined
above, control the dynamics of the average entanglement
entropy and how this can be understood in terms of a
simple phenomenological model.

A. Average entanglement gain and loss

To condense the rich information contained in the full
statistics of entanglement changes, we now focus on the

first moment of those distributions, corresponding to the
average change to the entanglement entropy due to quan-
tum jumps 
Sqj(S, �) and to the non-Hermitian evolution
δSnH(S, �). The first moments are defined as


Sqj(S, �) ≡
∫

Sqj


Sqj P(
Sqj|S) (18)

and similarly for δSnH(S, �). We emphasize that these
averages [82] depend on the value of the entanglement
entropy S and the size of the partition �, since they are
evaluated over the conditional distributions P(
Sqj|S) and
P(δSnH|S), which themselves depend on �. In Figs. 2(e)
and 2(f), we plot these first moments for the monitored
Ising chain (at a particular point of the phase diagram) for
different subsystem sizes �. In Fig. 2(f), we see that the
change due to non-Hermitian evolution is on average pos-
itive, δSnH > 0, i.e., it induces an entanglement-entropy
gain. This gain is substantial for weakly entangled states,
then decreases slowly with the entanglement content. In
Fig. 2(e), we plot the change due to QJs, normalized
with respect to the average waiting time τ . As shown in
Appendix C, this ratio remains well defined upon increas-
ing the system size L, despite the waiting time vanishing
as τ ∼ 1/L. This is consistent with the idea that a sin-
gle quantum jump can affect the entanglement entropy of
a quantity O(1/L). From Fig. 2(e), we see that δSqj/τ

is negative and decreases with S, i.e., QJs on average
induce an entanglement-entropy loss. They do so the more
the state onto which they act is entangled. Interestingly,
both averages develop a subsystem-size � dependence
above a certain threshold entanglement-entropy value. A
natural question that we address next is how these aver-
age entanglement gains and losses are connected to the
entanglement dynamics under QJs and its phase transition.

B. Classical stochastic model for entanglement
dynamics

We now present a classical stochastic model that builds
upon the entanglement gain and loss statistics discussed
in Sec. III A and gives a physical picture of the entan-
glement dynamics under QJs. In particular, we model the
entanglement evolution as a random walk with random
drift and partial resetting [43,83,84], which is sketched in
Fig. 3(a) and that we will now describe. We use the pre-
vious analysis showing that the waiting time τ between
jumps follows a Poisson law, which means that the random
variable can be expressed as τ = − log(r)/K∞

γ , where r ∈
[0, 1] is a random number drawn for each jump. Then,
during this time τ , we model the change of entanglement
due to the non-Hermitian evolution by 
SnH = τ δSnH,
where δSnH is picked with a probability P(δSnH|S) from
the previously computed conditional distribution of the
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(a)

(b) (d)

(c)

FIG. 3. The stochastic model for the entanglement dynamics. (a) A sketch depicting the entanglement dynamics as a classical
random walk (RW) with stochastic drift 
Si

nH and resetting 
Si
qj drawn from the histograms P(
SnH|Si) and P(
Sqj|Si) respectively

of Fig 2. (b) The total rate of entanglement-entropy growth obtained, for the monitored Ising chain, from the average entanglement
gain and loss, according to Eq. (20): γ = 0.2, h = 0.4. We see that the rate
(S, �) vanishes at a value S∞(�) that identifies the steady-
state entanglement (circled points). (c) A comparison between the dynamics of the average entanglement entropy obtained from the
exact quantum jump dynamics (QJ) and the phenomenological classical RW. (d) A comparison between the steady state S∞ obtained
from the stochastic model and the long-time limit of the entanglement entropy obtained from the full QJ dynamics, showing perfect
agreement.

effective non-Hermitian slopes. After time τ , the instan-
taneous QJ happens and we model the change it has on
the entanglement entropy by 
Sqj, which is drawn with a
probability P(
Sqj|S) from the corresponding probability
distribution. In both cases, the entropy S corresponds to
the entanglement before the event (i.e., before the jump
or before the non-Hermitian evolution). The probability
distributions that we use here are taken from the exact
sampling of quantum trajectories, binned according to the
entanglement-entropy content as discussed in Sec. III A.

The above stochastic process is described by the follow-
ing classical master equation for the probability of having
an entanglement entropy S at time t, that we denote Pt(S):

Pt+dt(S) = rdt
∫

Sqj

P(
Sqj|S −
Sqj)Pt(S −
Sqj)+

+ (1 − rdt)
∫
δSnH

P(δSnH|S − δSnHdt)

× Pt(S − δSnHdt) (19)

where the first term describes the jump, which adds a ran-
dom contribution 
Sqj with probability rdt × P(
Sqj|S −

Sqj), with r the resetting rate, while the second one
describes the non-Hermitian dynamics, which increase the

entanglement of a random slope δSnH with probability
(1 − rdt)× P(δSnH|S − δSnHdt).

To understand the role of the first moments of the gain-
loss distribution on the entanglement dynamics, it is useful
to derive from the master equation [Eq. (19)] a dynam-
ical equation for the average entanglement entropy, S =∫

dS S Pt(S), which reads

dS
dt

= δSnH(S, �)+
Sqj(S, �)/τ ≡ 
(S, �). (20)

This is a straightforward rate equation for the dynamics
of the average entanglement entropy S, which appear to
be controlled by a balance between the average entangle-
ment gain δSnH(S, �) and loss 
Sqj(S, �). The fact that
these gain-loss rates depend on the value of the entan-
glement entropy itself, as previously discussed, is crucial
here and results in a nontrivial flow of the entanglement
entropy with time, encapsulated in the function 
(S, �)
defined in Eq. (20). We emphasize that the key assumption
to construct the RW model for the entanglement entropy
in Eq. (19), from which Eq. (20) directly follows, is that
the rates to move depend on the value of the entangle-
ment entropy itself. While this assumption might seem
very fine tuned and it is likely not satisfied in the most
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general case, we note that it bares conceptual similar-
ity with certain random-circuit models where analogous
phenomenological dynamics for entanglement have been
discussed [85–87]. It is an interesting open question, that
we leave for future work, to understand whether in certain
limiting cases one could derive such an effective stochas-
tic dynamics microscopically. In the present case, this
assumption must be verified a posteriori with numerical
simulations, as we are going to discuss now.

In Fig. 3(b), we plot 
(S, �) for the Ising chain (at a
particular point of the phase diagram). We see that 
(S, �)
vanishes at a value S = S∞(�), which represents a fixed
point of the entanglement stochastic dynamics Eq. (20).
This fixed point is attractive, i.e., depending on the initial
condition, it is approached either from the low-entangled
branch, where 
(S, �) > 0, or from the high-entangled
one, where 
(S, �) < 0. According to our simple model,
the steady-state entanglement entropy in a monitored sys-
tem satisfies the equation


(S∞, �) = δSnH(S∞, �)+
Sqj(S∞, �)/τ = 0. (21)

This relation, which is one of the main results of this work,
has a clear and transparent interpretation: the steady-state
entanglement entropy in a monitored system is reached
when the entanglement gain due to non-Hermitian evo-
lution and the loss due to QJs perfectly balance each
other.

We can now benchmark this stochastic model for the
entanglement-entropy dynamics. First, in Fig. 3(c), we
show that it can reproduce very accurately the dynamics of
the average entanglement entropy in the monitored Ising
chain, thus capturing the entanglement transition occur-
ring in this model, as we discuss in more detail in Sec.
IV. In addition, we can extract the steady-state entangle-
ment S∞ and its subsystem-size � dependence from Eq.
(21) and compare them with the full QJ results. As shown
in Fig. 3(d), the agreement is really good both at weak
monitoring, where it reproduces the logarithmic scaling of
the entanglement entropy, and in the area law. We empha-
size that the classical stochastic model leading to Eq. (20)
is built upon the entanglement gain and loss statistics
obtained from the full QJ dynamics. Nevertheless, it still
represents a considerable simplification with respect to the
full quantum stochastic dynamics. The agreement between
the classical model and the full QJ dynamics suggests that
only few key features of the many-body state are relevant
to describe the stochastic dynamics of the entanglement
entropy, irrespective of the microscopic details, pointing
toward a sort of universal behavior of quantum jumps and
non-Hermitian evolution on entanglement. More impor-
tantly, as we will discuss in Sec. IV, it provides a new tool
to analyze and decode the scaling of entanglement entropy
in monitored systems.

IV. APPLICATIONS

In this section, we showcase the application of our new
metric, the entanglement statistics of gain and loss, to the
different models of monitored fermions introduced in Sec.
II C and their entanglement dynamics. Unless specified
otherwise, throughout this section we consider an ini-
tial product state of the form |�(0)〉 = |0, 1, 0, 1, . . . , 0, 1〉
and open boundary conditions. We fix the hopping along
the chains as units of energy and inverse time, J = 1.
Throughout this work, we consider a system of size L =
128 for free fermions and L = 14 for the interacting case.
We solve the QJ dynamics for noninteracting models
using free-fermion techniques (see Appendix F) and the
high-order Monte Carlo wave-function method, while for
interacting fermions we use exact time propagation with a
second-order Trotter expansion.

A. Monitored Ising chain

We first present our results for the entanglement-entropy
dynamics of the Ising chain under QJs, which complete
those obtained in Ref. [43,46]. In Fig. 4(a), we present the
dynamics of the entanglement entropy for a certain num-
ber of stochastic trajectories and compare to the average
value and the value obtained in the no-click limit. A first
observation is that the no-click limit follows the average
entanglement entropy quite closely and the fluctuations
appear to remain modest in size.

In Fig. 4(b), we present the scaling of the steady-
state entanglement entropy as a function of the subsystem
size �, for different values of the parameters. We see an
entanglement transition into an area law as the monitor-
ing rate is increased. The weak-monitoring phase has an
entanglement entropy compatible with a logarithmic scal-
ing. Following previous works, we extract an effective
central charge ceff by fitting the steady-state entangle-
ment entropy as S∞

� = ceff log sinπ�/L. In Figs. 4(c) and
4(d), we plot ceff as a function of γ and h. We see that
increasing either γ or h drives a transition into a phase
with ceff = 0, corresponding to an area-law scaling of the
entanglement entropy, in qualitative analogy to the no-
click limit (see Appendix A). Still, certain aspects of the
phase diagram appear to be different in the QJ case, the
most striking one being visible at large field h > 1 and
small γ , where the stochastic problem shows a subvol-
ume logarithmic scaling of the entanglement entropy in
a region in which, according to the no-click evolution,
the system should be in the area law, as already noted
in Ref. [46].

We can now use the insight from the stochastic classi-
cal model—specifically, the steady-state condition in Eq.
(21)—to break down the entanglement-entropy content of
the steady state. In particular, in Figs. 4(e) and 4(f) we
plot separately the entanglement gain δSnH and the loss
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(a)

(c) (d)

(b)

(f)

(e)

FIG. 4. The entanglement dynamics under QJ monitoring for the Ising chain. (a) A comparison among the average, trajec-
tory, and no-click evolution for measurement rate γ = 1.0 and h = 0.4. (b) The average steady-state entanglement entropy: γ =
{0.2, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 6.0]}, h = 0.4. For weak monitoring, we see a logarithmic scaling that evolves into an area law upon
increasing γ . (c),(d) The phase diagrams as obtained from the effective central charge ceff as a function of (c) γ and (d) h. (e),(f) The
steady-state entanglement balance: the average entanglement gain δSnH and loss −δSqj/τ , as a function of the average entanglement
entropy S and different subsystem sizes � (the error bars are smaller than the size of the dots): (e) γ = 0.2, h = 0.4; (f) γ = 3.0,
h = 0.4. In the weak-monitoring phase, shown in (e), both contributions scale logarithmically with sinπ�/L (see the inset), suggesting
that the QJs weakly renormalize the non-Hermitian dynamics. Both terms are independent of the subsystem size at strong monitoring
(f), leading to an area law.

−
Sqj/τ as a function of the entanglement-entropy con-
tent S across the phase diagram and for different subsystem
sizes �. According to our classical picture, the steady state
is obtained when gain and loss are balanced, correspond-
ing to a value of entanglement entropy at which the two
curves match. The scaling with subsystem size of the
two contributions tells us about the mechanism driving
the entanglement production. In, e.g., the weak-monitoring
phase [Fig. 4(e)], both contributions scale logarithmically
(see the inset) suggesting that the entanglement gain due
to the renormalized non-Hermitian dynamics shows a log-
arithmic scaling with �, as in the no-click limit at this value
of parameters. Based on these results, we conclude that in
the weak-monitoring phase, the non-Hermitian dynamics
are only weakly renormalized by QJs. In the area law on
the other side [Fig. 4(f)], both gain and loss contributions
become essentially independent of the subsystem size,
crossing in a low-entanglement region as expected from
an area law. A similar analysis can be done in the region
of weak-monitoring rate and large field (see Appendix E)
and it reveals that again for a moderate field, h ∼ 1, the

non-Hermitian dynamics seem weakly renormalized and
drive the logarithmic growth of entanglement entropy,
while for large h the non-Hermitian evolution is effectively
area law and the contribution due to QJs still has a nontriv-
ial scaling with �, which is responsible for the observed
logarithmic scaling of the entanglement entropy at large
values of the field h.

B. Monitored SSH model

We now consider the entanglement dynamics for the
monitored SSH model. In Fig. 5(a), we show the evolu-
tion of the entanglement entropy for a sample of quantum
trajectories for weak monitoring γ = 0.5, correspond-
ing to the volume-law phase of the no-click limit (see
Appendix A). At the level of single-quantum trajecto-
ries, it is already evident that QJs have, in this case, a
strong impact with respect to the no-click evolution. This
is true in particular at weak monitoring, where the no-click
dynamics display a linear growth corresponding to the
volume-law phase. Here, the stochastic dynamics induced
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(a)

(c) (d)

(b)

(f)

(e)

FIG. 5. The entanglement dynamics under QJ monitoring for the SSH chain. (a) A comparison among the average, trajectory, and
no-click evolution of the measurement rate γ = 0.5; h = 1.0. (b) The average steady-state entanglement for the monitored SSH model:
γ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 0.9, 1.5, 2.0}, h = 0.4. For weak monitoring, we see a logarithmic scaling that evolves into an area
law upon increasing γ . (c) The phase diagram as obtained from the effective central charge ceff as a function of γ . (d) A comparison
between the dynamics of the average entanglement entropy obtained from the exact quantum jump dynamics and the phenomenological
classical RW. (e),(f) The steady-state entanglement balance: the average entanglement gain δSnH and loss −δSqj/τ , as a function of
the average entanglement entropy S and different subsystem sizes � (the error bars are smaller than the size of the dots): (e) γ = 0.2,
h = 1.0; (f) γ = 1.5, h = 1.0. In the weak-monitoring phase, shown in (e), the contributions due to QJs scale logarithmically with
sinπ�/L (see the inset), while the term arising from the non-Hermitian evolution is practically � independent. In the strong-monitoring
phase, corresponding to the area law, neither contribution depends on �.

by the quantum jumps effectively suppress the entangle-
ment growth and bring the system to a stationary state that
is less entangled than in the no-click limit.

The scaling of the steady-state average entanglement
entropy for different subsystem sizes and increasing val-
ues γ is shown in Fig. 5(b). The entanglement-entropy
growth in the weak-monitoring regime is compatible with
a logarithmic law, as for the Ising model, from which we
can extract an effective central charge ceff. As we show in
Fig. 5(c), this quantity vanishes as a function of γ , indicat-
ing a transition into an area-law phase. Although affected
by the inevitable finite-size effects, our results show that
the volume-law phase of the non-Hermitian SSH is not
stable when including quantum jumps.

We now show how looking at the statistics of entan-
glement gain and loss allow us to obtain further insights
into the impact of QJs on the monitored SSH. We first
show [Fig. 5(d)] that the classical RW model with reset-
ting also perfectly captures the entanglement dynamics for
the SSH case. Then, in Figs. 5(e) and 5(f), we look at the
steady-state entanglement gain and loss, respectively, for

weak and strong monitoring. In the former case, we can
see clearly that the jump contribution depends strongly
on the subsystem size; the bigger the subsystem, the less
QJs decrease the entanglement on average. Interestingly,
the subsystem-size dependence of this contribution looks
logarithmic, as shown in the inset of Fig. 5(e). On the
other hand, the contribution of the non-Hermitian evolu-
tion depends weakly on both � and S, at least for the values
of entanglement entropy, which are allowed to be explored
by the jumps, i.e., around the crossing point, which cor-
responds to the steady-state entanglement S∞. For large
monitoring [Fig. 5(f)], on the other hand, we see that both
contributions are almost independent of � and their cross-
ing occurs in a regime of small entanglement entropy,
leading to an area-law scaling.

From this result, we conclude that for the monitored
SSH, the logarithmic growth of the entanglement entropy
at weak monitoring arises mainly due to QJs. The non-
Hermitian dynamics on the other hand, which would
lead to a volume law in the no-click limit, are strongly
renormalized by the effect of QJs and barely depend
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(a) (b) (c)

FIG. 6. The entanglement dynamics under QJ monitoring for monitored free fermions with U(1) symmetry. (a) The average steady-
state entanglement: γ = {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.4}. For weak monitoring, we see a logarithmic scaling that
evolves into an area law upon increasing γ . (b),(c) The steady-state entanglement balance: the average entanglement gain δSnH and loss
−
Sqj/τ , as a function of the average entanglement entropy S and different subsystem sizes � (the error bars are smaller than the size
of the dots): (b) γ = 0.2; (c) γ = 1.0. In the weak-monitoring phase, shown in (b), the contributions due to QJs scale logarithmically
with � (see the inset), while the term arising from the non-Hermitian evolution is practically flat. In the strong-monitoring phase,
corresponding to the area law, neither contribution depends on �. The crossing point again corresponds to the zero of 
(S, �), i.e., to
the steady-state entanglement S∞.

on the subsystem size. In Appendix D, we discuss the
dynamics from a highly entangled state to show how, in
that case, one could probe the subsystem-size dependence
in the non-Hermitian contribution—but only at large val-
ues of entropy, far above what the system can explore
under the effects of QJs in the dynamics starting from lowly
entangled initial states.

C. Fermions with U(1) symmetry and monitoring of
local density

We now present an application of the entanglement gain-
loss statistics to the case of monitored free fermions with
U(1) symmetry related to charge conservation, a problem
that has attracted large interest in the literature. Numeri-
cal investigations with different monitoring protocols have
reported a transition from a critical phase with logarith-
mic scaling of entanglement entropy to an area-law phase,
for both quantum jumps and the quantum state diffusion
(QSD) type of density monitoring [38,39]. The robustness
of the weak-monitoring subvolume phase, and hence of the
transition, has been questioned in the case of projective
measurements, where numerical evidence has supported
an area-law steady-state entanglement [31]. This result has
been theoretically understood within a replica field-theory
calculation [33], which has identified connections with the
physics of weak-localization corrections. Given this land-
scape, it is therefore interesting to discuss what types of
insights our analysis based on entanglement loss and gain
can provide. To this extent, we first show, in Fig. 6(a),
our data for the steady-state entanglement entropy ver-
sus the subsystem size, to confirm the presence of a sharp
crossover from a logarithmic scaling of the entropy to an
area law, consistent with the literature.

We then use our metric of the statistics of entanglement
gain and loss to investigate the origin of this log scaling
for weak monitoring. Specifically, in Fig. 6(b) and 6(c),
we plot the contribution to the steady-state entanglement
entropy due to QJs and to the renormalized non-Hermitian
evolution. Quite interestingly, we note a behavior very
similar to the SSH case, namely, the subvolume (logarith-
mic, see the inset) scaling of the entanglement entropy is
essentially due to QJs, while the non-Hermitian Hamilto-
nian contribution, renormalized by the jumps, is essentially
independent of �. We therefore see another case in which
the no-click limit, which for this problem would describe a
purely Hermitian evolution, is strongly perturbed by QJs.
For large monitoring, on the other hand, both contribu-
tions are independent on �, which is compatible with the
area-law scaling in Fig. 6(a).

D. Role of interactions

Finally, we conclude this section by discussing the
generality of our findings beyond the realm of noninter-
acting monitored fermions. To this extent, we consider
the same model as in the previous section (free fermions
with density monitoring) but we include a nearest-neighbor
interaction V 
= 0 (see Sec. II C). In this case, in the weak-
monitoring phase, the entanglement dynamics appear com-
patible with a volume law. Our interest here is to show
whether the entanglement gain-loss picture and the clas-
sical stochastic model also continue to work in the case of
interacting monitoring systems. In Fig. 7, we show that this
is indeed the case. In particular, we plot the histograms of
entanglement gain and loss for the interacting model and
show that the general features—in particular, the asymme-
try of the distributions and the strong peak at zero—also
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(a) (b) (c)

FIG. 7. The entanglement dynamics under QJ monitoring for interacting monitored fermions with U(1) symmetry. (a) A comparison
between the dynamics of the average entanglement entropy obtained from the exact quantum jump dynamics and the average of the
phenomenological classical RW: 200 classical trajectories are used to perform the average. The steady-state entanglement S∞ again
corresponds to the zero of 
(S, �) computed from the histograms of (b) and (c). (b),(c) The histogram of the entanglement-entropy
change (b) after a QJ 
Sqj and (c) the one in between QJs 
SnH, i.e., due to the non-Hermitian evolution.

persist in the interacting case. An intriguing finding is that,
as compared to the free-fermionic case, here the role of
the entanglement content is somewhat reversed: the proba-
bility of having a manifest entanglement change is greater
for weakly entangled states than for highly entangled ones.
This seems compatible with the expectation that the vol-
ume law is stable to the inclusion of measurements: indeed,
since entanglement production is particularly important
at low entanglement, the loss due to jumps is of lesser
significance. On the other hand, having a reduced entan-
glement loss at large entanglement content should enable
the support of a volume-law phase.

V. DISCUSSION AND IMPLICATIONS FOR FREE
FERMIONS MIPT

Our findings for the average entanglement gain and
loss have highlighted the concept of renormalized non-
Hermitian dynamics. Due to quantum jumps, which effec-
tively reshuffle the initial state onto which the non-
Hermitian Hamiltonian act, the effective non-Hermitian
dynamics is renormalized with respect to the bare no-click
evolution. While for the Ising chain the logarithmic law
phase is only weakly renormalized, quantum jumps can
strongly impact the dynamics of weakly monitored U(1)-
conserving models. In particular, in the noninteracting
case, quantum jumps completely wash away the no-click
volume-law phase. (Nevertheless, the inclusion of non-
Gaussian interactions enhances the entanglement growth
from the no-click limit, stabilizing a volume-law phase at
a low measurement rate.) Our findings therefore highlight
a fundamental difference between the weak-monitoring
phase of the Ising and the noninteracting U(1) models.
While either case, the weak-monitoring phase features a
logarithmic scaling of the entanglement entropy, the origin
behind this scaling stems from inequivalent mechanisms.
In the U(1) symmetric models, the logarithmic scaling

comes essentially from the action of the quantum jumps,
while for the Ising chain it is the result of the combined
effect of jumps and non-Hermitian evolution. This is the
same renormalization effect that we have shown to be
at play in the monitored Ising chain at intermediate and
large field values and can, therefore, naturally explain the
departure from the no-click limit.

We conclude with a discussion of the implications of
our results for the MIPT of free fermions under quantum
jumps. The irrelevance of QJs at weak monitoring in the
Ising chain points toward an important role of the non-
Hermitian Hamiltonian in this regime. This suggests that
the logarithmic phase of entanglement entropy under QJs
could possibly be stable in the large system size, as in
the no-click case [55]. This is consistent with the replica
field-theory prediction for noisy Majorana fermions under
QSD [35], although we emphasize the differences in the
measurement protocol and unitary dynamics between the
two cases. In particular, based on our numerical results,
we cannot establish whether in the Ising chain the entan-
glement scaling is also ln2(�). On the other hand, our
results for the SSH case points toward a strong effect of
QJs at weak monitoring. As we have shown, the loga-
rithmic phase found numerically is mainly due to QJs.
Their contribution is likely to saturate at large system
sizes through a mechanism similar to the weak-localization
correction [33].

VI. CONCLUSIONS

In this work, we have studied the role of quantum jumps
on the entanglement-entropy dynamics of monitored quan-
tum many-body systems. A main result is the introduction
of a new tool that looks at the statistics of entanglement-
entropy gain and loss after or between QJs. We have shown
that, quite generically, the resulting histograms display,
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particularly for the quantum jump case, a very broad distri-
bution and a typical value pinned close to zero, suggesting
that most QJs are not significantly affecting the entangle-
ment entropy controlled by rare jump events. Using the
full statistics of entanglement gain and loss, we have built
a stochastic RW model with partial resetting, which can
reproduce the full QJ dynamics of entanglement entropy.
This phenomenological model offers a new light for inter-
preting the QJ numerics. Indeed, it suggests a natural
steady-state condition for the entanglement entropy, given
by the balance between gain due to the non-Hermitian evo-
lution and losses due to quantum jumps. Remarkably, this
condition accurately reproduces the scaling of entangle-
ment entropy with subsystem size obtained by the full QJ
dynamics. Furthermore, it clarifies the origin of the differ-
ent entanglement scaling and the mutual role of jumps and
non-Hermitian evolution.

We have used this framework to decode the mechanism
controlling the entanglement dynamics and associated
MIPT for three models of monitored free fermions. The
outcome of this analysis reveals a compelling difference
at weak monitoring between the models with U(1) sym-
metry, where the renormalized non-Hermitian Hamiltonian
does not contribute to the scaling of the entanglement
entropy, and the Ising chain, where this renormaliza-
tion is not present and the no-click limit remains sta-
ble to the inclusion of QJs. Finally, we have extended
our entanglement gain-loss picture to the case of inter-
acting monitored systems. Remarkably, we have shown
that the classical RW model with resetting remains valid
and captures the entanglement-entropy dynamics quan-
titatively. The statistics of entanglement gain and loss
for interacting systems suggests that highly entangled
states are more robust to quantum jumps—the probabil-
ity of observing a rare jump that substantially changes
the entanglement entropy is smaller for high entanglement
content. This is in stark contrast with the case of Gaus-
sian states and can therefore suggests an interpretation
for the stability of the volume-law phase at weak mon-
itoring observed in numerical simulations on interacting
monitored systems [24].

We envision various follow-ups to this work. First, the
presence of an imperfect detector and dissipative inter-
action with the environment would require adapting the
statistics of entanglement gain and loss to entanglement
measures valid in open quantum systems, such as the log-
arithmic negativity or the quantum Fisher information.
Another topic of interest for the study of the statistics of
entanglement gain and loss is that of higher-dimensional
and long-range interacting systems, where nonconformal
subextensive phases [47,88] has been identified. Introduc-
ing feedback and control would drastically change the
phenomenology: these elements will include new source
and sink terms in the stochastic model. We leave these
generalizations for future work.

ACKNOWLEDGMENTS

We thank A. Biella, M. Buchhold, J. Dalibard,
M. Dalmonte, R. Fazio, A. Paviglianiti, L. Piroli, A.
Romito, P. Sierant, and A. Silva for discussions and
collaborations on related topics. We acknowledge the
computational resources of the Collége de France IPH
(Institut de Physique) cluster. X.T. acknowledges the
German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) under Germany’s Excellence Strat-
egy—Cluster of Excellence Matter and Light for Quantum
Computing (ML4Q) EXC 2004/1—Grant No. 390534769
and DFG Collaborative Research Center (CRC) 183
Project No. 277101999—project B01.

Note added.—We have recently become aware of a
related work studying the stability of the non-Hermitian
Hamiltonian for quantum state diffusion [89].

APPENDIX A: SUMMARY OF ENTANGLEMENT
DYNAMICS IN THE NO-CLICK LIMIT

Here, we briefly review the results obtained for the
dynamics of the entanglement entropy under purely non-
Hermitian evolution driven by Heff, both for the SSH and
for the Ising model, corresponding to the no-click limit
of the QJ dynamics. In both cases, the time evolution for
the entanglement entropy SnH(t) can be computed exactly
in the thermodynamic limit using free-fermion techniques
[55,56]. The results have revealed a rich phase diagram
as a function of the monitoring strength γ , which for a
non-Hermitian problem is given by the back-action term,
and the field h entering the non-Hermitian Hamiltonian. In

(a) (b)

FIG. 8. The entanglement phase diagram of the monitored
SSH and Ising models in the no-click limit, corresponding to
a deterministic non-Hermitian evolution with Heff. (a) The non-
Hermitian SSH and volume-to-area-law transition [56]. (b) The
non-Hermitian Ising chain, featuring a transition from a critical
phase with logarithmic scaling of the entanglement to an area-
law Zeno phase [55]. Note that our convention for the jump
operators in Eq. (10) leads to a rescaling of γ by a factor 1/2,
with respect to Ref. [55].
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Fig. 8, we plot the phase diagram of the two models for
completeness.

In the non-Hermitian SSH model in Eq. (14), the weak-
monitoring phase for γ < γ SSH

c (h), is characterized by an
entanglement entropy growing linearly in time, SnH(t) ∼ t,
and saturating to a stationary value that scales linearly with
the subsystem size �, i.e., SnH(t → ∞) � v�, character-
istic of a volume-law phase. This is associated with the
purely real spectrum protected by PT symmetry [56]. The
closed-form expression of v allows the complete charac-
terization of the entanglement phases. As the measurement
strength γ increases at fixed h, the prefactor v of the
volume-law scaling decreases [cf. Fig. 8(a)] until a criti-
cal value is reached when v = 0 and the system enters the
area-law scaling for the entanglement entropy. This entan-
glement transition has been shown to be directly related
to the spectral transition occurring in Heff [56]. At weak
monitoring, the non-Hermitian quasiparticle spectrum is
purely real due to the PT symmetry of Heff and as γ
increases, first the PT symmetry breaks and some quasi-
particle mode acquires a finite lifetime, which induces a
sharp decrease of v. However, it is only at γ SSH

c (h), when
all the quasiparticle modes acquire a finite lifetime, that
the system enters the area-law scaling for the entanglement
entropy.

In the non-Hermitian Ising chain in a complex trans-
verse field [Eq. (11)], the entanglement entropy has been
found for weak monitoring γ < γ

Ising
c (h) to depend log-

arithmically on both time and the subsystem size. The
corresponding effective central charge ceff, obtained from
the ansatz SnH(�) = ceff ln(�), could be obtained in closed
form [55] and has been shown to decrease as a function
of both γ and h up to the critical line γ Ising

c (h), above
which the system has been found to undergo an entangle-
ment transition into an area-law phase [cf. Fig. 8(b)]. As
for the SSH case, the entanglement transition for the Ising
chains is directly related to a transition in the spectrum of
non-Hermitian quasiparticles. The latter separates a critical
gapless phase with a vanishing imaginary part of the spec-
trum at a given point in the Brillouin zone from a gapped
phase [52].

APPENDIX B: STATISTICS OF JUMPS WAITING
TIMES

In this appendix, we discuss how QJs are distributed in
time, i.e., we compute their WTDs. This quantity has been
studied in the early days of quantum jumps, motivated by
resonance fluorescence spectra [76,90], and a multitude of
applications have been found, from solid-state quantum
information [91] to quantum transport [77,92–96] to laser
cooling [97]; it is also a key quantity in this work.

In general, computing the WTD is a nontrivial task [77].
There is, however, a special case in which this can be done
straightforwardly. Whenever the imaginary part of the

non-Hermitian Hamiltonian commutes with the real part
(and the initial state is an eigenstate of the non-Hermitian
part), then one can conclude that the norm decay is expo-
nential and therefore so is the cumulative WTD, F = 1 −
exp (−Kτ) where K = ∑

i〈L†
i Li〉. In this case, the time for

the next jump can be directly obtained as a function of a
random number r, as τ = −(1/K)lnr. Such an instance
occurs for a system with local density monitoring and
conservation of global particle number [31,38].

Here, this quantity has to be extracted numerically
but it emerges naturally from the numerical implemen-
tation of stochastic QJ dynamics beyond the first-order
Monte Carlo schemes [73]. We start by recalling that the
WTD is obtained from the decay of the norm N (t) ≡
||e−iHefft|�〉||, which reads in generalN (t) = exp(−K(t)t),
where K(t) represents the back action associated with the
non-Hermitian Hamiltonian Heff, i.e., K(t) = ∑

i〈L†
i Li〉. At

short times, the rate of decay of the norm can display fluc-
tuations (depending on the model and the initial state) that
can result in biasing of the WTD. However, at sufficiently
long times, one expects a Poisson law

PWT(τ ; t → ∞) ∼ e−K∞
γ τ , (B1)

at least for systems in which the monitoring process is local
on each site (where K∞

γ denotes the steady-state value of
K(t), which eventually depends on the monitoring rate γ ).

Our numerical analysis on the monitored Ising and SSH
models confirms the expectation that QJs are Poisson dis-
tributed. The SSH model displays more pronounced tails in
the short-time WTD, caused by fluctuations due to the ini-
tial state. Indeed, for the SSH model, the observable K(t)
driving the decay of the norm is KSSH(t) = 2γ

∑
i[nA,i(t)+

1 − nB,i(t)], where nA/B,i(t) = 〈�(t)|c†
A/B,icA/B,i|�(t)〉. At

short times, the observable KSSH(t) displays significant
temporal fluctuations due to the chosen initial condition
and the WTD shows longer tails. On the other hand, in the
Ising model, jumps try to refill empty sites and keep the
total number of particles effectively constant. Thus, K(t)
is centered around the average number of particles with
small fluctuations. A Poisson distribution of a QJ is typical
for systems in which the back-action term is a constant of
motion. Interestingly, both models feature the same aver-
age waiting time of QJs, as shown in Fig. 9(b), and given
by τ ∼ 1/γL.

APPENDIX C: SYSTEM-SIZE SCALING OF
ENTANGLEMENT LOSS

In the main text, we have introduced a classical stochas-
tic model for the entanglement-entropy dynamics, which
builds upon the entanglement gain and loss statistics. In
particular, the role of QJs is to induce an entanglement
loss that, in the stationary state, is balanced by the gain
provided by the non-Hermitian evolution, as described in
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FIG. 9. The average waiting time of quantum jumps in the
Ising and SSH models, showing perfect agreement. In both cases,
τ ∼ 1/γL.

Eq. (20). This equation divides the entanglement loss by
the average waiting time τ , which considers the instan-
taneous nature of QJs. As we have seen in Appendix B,
the average waiting time scales as 1/L, which raises the
question of the stability of the steady-state condition in
the large-system-size limit. In this appendix, we provide
evidence supporting the statement that the average entan-
glement loss due to the jump scales as 1/L, so that the ratio
with the averaging waiting time remains finite when L →
∞. In Fig. 10, we plot, for the monitored Ising chain at
representative values of the parameters, the average entan-
glement loss divided by the waiting time,
Sqj(S, �)/τ as a
function of S, �, and different system sizes. We see that the
data corresponding to different system sizes collapse onto
each other for each subsystem size �, which demonstrates
this invariance of the ratio 
Sqj/τ .

APPENDIX D: QUANTUM JUMPS FROM HIGHLY
ENTANGLED INITIAL STATES

In this appendix, we provide evidence to support the
conjecture that highly entangled Gaussian states are more

0 2 4 6
S

0.0

−0.2

−0.4

Δ
S

qj
/τ

� = 8 � = 12
� = 20

� = 32

L = 64
L = 96
L = 128

FIG. 10. The loss distribution 
Sqj/τ obtained in the Ising
model for different system sizes L = 64, 96, 128, with γ = 0.2
and h = 0.4. The distribution is invariant regarding the system
size; we observe a slight disagreement at large subsystem sizes �
in the small system L = 64, which is due to the finite-size effect.

fragile to measurements than weakly entangled ones. To
this extent, we consider the monitored SSH chain starting
from an initial condition corresponding to the long-time
limit of the associated non-Hermitian Hamiltonian, which
is known to support volume-law entangled states for small
values of γ [56]. In Fig. 11(a), we show a sample of
trajectories for the entanglement entropy, all converging
toward a steady-state value with low entanglement (and
equal to the steady state reached from a product state initial
condition). In other words, the system under monitoring
cannot sustain volume-law entanglement. In Fig. 11(b),
we plot the conditional distribution of entanglement loss
P(
Sqj, S), which now displays a broadening of its tails,
indicating that the role of jumps has become more relevant.
In particular, we see that the probability of a large entan-
glement loss due to jumps at atypical (i.e., high) entan-
glement content increases, which explains why the initial
state entanglement cannot be preserved. In Fig. 11(c), we

20 40 60
t
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7.5

S
(t

;
=

L
/ 4

)
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(b)
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P (ΔSqj| S)
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δS
nH

8 32

FIG. 11. An analysis of trajectories obtained from a highly
entangled initial state in the SSH model. (a) The entanglement
dynamics in the monitored SSH chain under QJ dynamics with
a highly entangled initial state (namely, a steady state of the
no-click limit): γ = 0.2, h = 1.0. In the inset, we show the con-
ditioned version of the distribution 
Sqj with respect to the
entanglement content when jumps happen. (b) The first moment
of the conditioned distribution δSnH as a function of the entangle-
ment content S. This quantity is obtained from these trajectories
starting from the highly entangled initial state and which allow
us to probe the large-entanglement behavior of the distribution.
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present the same analysis as given in the main text on the
first moment of the gain conditional distribution δSnH but
for this particular initial condition that allows us to probe
entanglement content of higher values. We note that in the
region of the steady state (at relatively low entanglement
S ≤ 2 delimited by the dashed line), the average entan-
glement gain from non-Hermitian dynamics is essentially
independent of the subsystem size �, a behavior similar to
what has been observed in Figs. 5(f) and 6(c) for a different
initial condition. However, as the system dynamics explore
larger values of entanglement entropy (S ≥ 2), we see
important subsystem-size effects in δSnH. This behavior is
usually hidden when starting from a lowly entangled initial
condition, because the jumps are confining the dynamics in
this lowly entangled space.

APPENDIX E: MONITORED ISING CHAIN AT
LARGE FIELD

In this appendix, we discuss a particular feature of
the monitored-Ising-chain phase diagram. Indeed, when
considering the region of weak monitoring and large trans-
verse field, deviations from the no-click limit have been
reported [40,46]. In particular, here we fix γ = 0.2 and
scan the transverse field for increasing values of h > 1,
where the no-click evolution predicts an area law for the
entanglement entropy but the QJ dynamics still shows a
logarithmic scaling. In Figs. 12(a) and 12(b), we repeat
our analysis of the average entanglement gain and loss
for different subsystem sizes �. For h = 1.0, we again
observe a strong � dependence in the QJ contribution and
the non-Hermitian one. Our steady-state condition [Eq.
(21)] predicts a logarithmic scaling for the entanglement
entropy, in agreement with the QJ simulation. Moreover,
as in the weak-transverse-field limit by breaking down the
entanglement content into gain and loss, we note that this
log phase is due to a combined effect of the logarithmic
scale of both the quantum jumps loss and the renormalized
non-Hermitian gain. Upon increasing the transverse field
to h = 4, we see that the entanglement gain due to the non-
Hermitian dynamics becomes essentially � independent, in
agreement with the no-click limit. On the other hand, the
loss due to QJs scales logarithmically with � (see the inset),
which results in a steady-state entanglement showing a log
scaling. As for the weak monitoring of the SSH model, this
logarithmic phase is solely due to the QJs.

This analysis therefore highlights two mechanisms at
play behind the deviations from the no-click limit observed
in the monitored-Ising-chain phase diagram for h > 1.
At moderate fields, there is a nontrivial renormalization
of the non-Hermitian dynamics due to QJs that leads to
a log scaling of its average gain contribution, as in the
weak-monitoring regime of the model. At larger fields,
this renormalization is instead washed away: the non-
Hermitian dynamics behaves as in the no-click limit and
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FIG. 12. The steady-state entanglement balance for the moni-
tored Ising chain with large transverse field h > 1: the average
entanglement gain δSnH and loss δSqj/τ , as a function of the
average entanglement entropy S and different subsystem sizes
�. (a) γ = 0.2, h = 1.0; The gain contribution due to the non-
Hermitian dynamics acquires a nontrivial � dependence that
scales logarithmically (see the inset). On the other hand, the
QJ loss term also scales logarithmically, which leads to a sub-
volume steady-state entanglement absent in the no-click limit.
(b) γ = 0.2, h = 4.0; For larger h, the non-Hermitian gain term
becomes � independent, as in the no-click limit. At the same time,
the QJ retains a nontrivial scaling (inset), leading to the observed
logarithmic scaling.

the logarithmic scaling of the entropy arises only from
the jumps. While our numerical results do not allow us
to draw conclusions about the large-system-size limit, the
above analysis suggests that in the absence of a nontrivial
non-Hermitian dynamics, the large-field log phase might
eventually saturate at large system sizes into an area law,
similarly to the weak-monitoring phase of the SSH model.

APPENDIX F: FREE FERMION TECHNIQUES
WITH QUANTUM JUMPS

This appendix provides details on solving the
stochastic Schrödinger dynamics using free-fermion
techniques. Since the Hamiltonian that we consider for
both models is quadratic and the monitoring process pre-
serves Gaussianity, the state |ψ〉 is entirely determined by
the two-point correlation matrix C, due to Wick’s theorem.
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We can either store the state in this correlation matrix or
use another representation based on pure states.

1. Correlation matrix

In general, to solve the Schrödinger equation in a free
fermions problem, we use Wick’s theorem to rewrite the
equation in terms of the correlation matrix

C(t) =
(

G(t) F(t)
F(t)† 1 − G(t)T

)
, (F1)

where Cm,n(t) = 〈�(t)|c†
mcn|�(t)〉 is a matrix of size 2L ×

2L and cT = (c1 c2 · · · cL c†
1 c†

2 · · · c†
L). We obtain, for

the deterministic (non-Hermitian) part when measuring the
local density, the equation [43]

dC(t)
dt

= 2i[H, C(t)] + γC�C − γ�+C�++γ�−C�−,

(F2)

where �+ = 1L ⊗ (σz + 1)/2, �− = 12L −�+ and � =
1L ⊗ σz, σz = diag(1, −1) is the Pauli matrix, and H is
defined such that H = c†

Hc.
The von Neumann entanglement of a subsystem of

size � can be extracted through the Majorana fermions
correlation matrix [43,98]. Effectively, we obtain it by
diagonalizing the matrix

A(t) =
(

GI
� + F I

� GR
� − FR

� − 1
1 − GR

� − FR
� GI

� + F I
�

)
, (F3)

with 2G�×� = GR
� + iGI

� and 2F�×� = FR
� + iF I

� , which
has an imaginary spectrum. The entanglement is given by
the formula

SA(t) = −
�∑

j =1

νj (t) ln
[
νj (t)

] + (1 − νj (t)) ln
[
1 − νj (t)

]
,

(F4)

with νj (t) = (1 − λj (t))/2, where the λj (t) are the
� eigenvalues of A(t) with a positive imaginary
part.

Jumps such that Lj ∝ nj (i.e., we measure the local den-
sity) can be implemented at the level of the correlation
matrix. For a jump on site l, we have

GJ
m,n =

⎧⎪⎨
⎪⎩

1, if n = m = l,
0, if m = l, n 
= l or m 
= l, n = l,

Gm,n − Gm,lGl,n+Fm,l(F†)n,l
Gl,l

, otherwise,

dFm,n = Gn,lFl,m − Gm,lFl,n

Gl,l
. (F5)

To avoid numerical instabilities, it is advisable to explicitly
write the zeros in the matrix update.

In this work, we implement the sampling of the WTD;
therefore, the goal is to find the time at which the jump
happens. Thus we need to be able to evaluate the decay of
the norm during the non-Hermitian evolution and find the
time for the next jump. To do so, we solve numerically the
equation

d
dt

〈�̃(t)|�̃(t)〉 = −γ 〈�̃(t)|�̃(t)〉
∑

j

Gj ,j (t), (F6)

where Gj ,j (t) is obtained by solving the
correlation-matrix equation of motion in parallel and
|�̃(t)〉 is the unnormalized wave function. Then, for each
jump, we can find by bisection the time at which the
quantum jump happens [73].

A simplification arises when the model presents a U(1)
symmetry because the conservation of the number of
particles reduces the size of the correlation matrix that we
need to consider by a factor of 2. Indeed, we only have to
consider the matrix Gm,n(t) = 〈ψ(t)|c†

mcn|ψ(t)〉 with cT =
(c1 c2 · · · cL). Here, we give the equation that can be used
for the SSH model and, for convenience, we will use a
basis respecting the structure of the bipartition A and B of
the model; thus we consider the basis in which c2k−1 = cA,k
and c2k = cB,k for 1 ≤ k ≤ L/2. In that case we obtain, for
the deterministic part (when measuring nA,i and 1 − nB,i),
the equation [43]

dG(t)
dt

= 2i[H, G(t)] + γG�G − γ�AC�A + γ�BG�B,

(F7)

where �A = 1L/2 ⊗ (σz + 1)/2, �B = 1L −�A, and � =
1L/2 ⊗ σz and H defined such that H = c†

Hc. Then, the
other methods to do the jumps apply directly.

2. Wave-function representation

When the system conserves the number of parti-
cles, as in the monitored SSH case, not only does the
correlation-matrix approach described above simplify but
one can also use a different approach based on representing
the wave function as

|ψ(t)〉 = P(t)c†
i1 · · · c†

iN |0〉 =
N∏

k=1

L∑
m=1

Um,k(t)c†
m|0〉, (F8)

where we consider N particles. Then, the U(t) matrix
can be updated through Ũ(t + dt) = e−iHeffdtU(t) [29].
Nonetheless, when Heff is non-Hermitian, the state should
be normalized. This is done by performing a QR decom-
position on Ũ(t + dt), which normalizes the state without
modifying it. The correlation matrix G(t) is then obtained
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through

G(t) = U(t)∗U(t)T with Ũ(t) = U(t)R(t). (F9)

We can implement the jumps as previously at the level of
this correlation matrix, as in Eq. (F5). In the case of the
SSH model, we are also considering jumps of the form
Lj ∝ 1 − nj and in that case the update of G(t) is such that

GJ
m,n =

⎧⎨
⎩

0, if n = m = l,
0, if m = l, n 
= l or m 
= l, n = l,
Gm,n + Gm,lGl,n

1−Gl,l
, otherwise.

The jumps preserve the Gaussianity and U(1) symme-
try; thus the new correlation matrix is of the form G(t) =
U(t)∗U(t)T and thus is semidefinite-positive Hermitian,
and the kth column vector of U(t), called Uk, satisfies

G(t)U∗
k = U∗

k 1 ≤ k ≤ N . (F10)

Then, the SVD decomposition G(t) = USVDDU†
SVD gives

these eigenvectors directly and the restriction of the first N
columns with eigenvalue 1 (i.e., the N particles) gives

U(t) = (USVD)L×N . (F11)

Since the columns of USVD are orthogonal, the state is well
normalized and correctly defined. As in Sec. F 1, we need
the decay of the norm to evaluate the time at which the
jump is happening. In that case, the norm can be directly
obtained from the QR decomposition; indeed,

〈�̃(t)|�̃(t)〉 =
N∏

j =1

R(t)j ,j R(t)∗j ,j , (F12)

where R(t) is the matrix from Eq. (F9).
This kind of representation of the wave function can

be extended to the general case without particle-number
conservation. In that case, we have that [99]

|ψ(t)〉 = N exp

⎛
⎝−1

2

∑
i,j

[
(U(t)†)−1V(t)†

]
i,j c†

i c†
j

⎞
⎠ |0〉,

(F13)

where N enforces the normalization and the evolution
is given by imposing that γk(t)|ψ(t)〉 = 0 with γk(t) =∑

j V∗
j ,k(t)c

†
j + U∗

j ,k(t)cj . Now, we evolve the two matrices
U(t) and V(t) through(

U(t)
V(t)

)
= e−2iHefft

(
U(0)
V(0)

)
. (F14)

Since the evolution is non-Hermitian, the state here is
again not normalized but this can be enforced through

the factor N . Importantly, to guarantee that γk(t) is a
well-defined fermionic operator, we have to impose

{
U(t)†U(t)+ V(t)†V(t) = 1,
VT(t)U(t)+ UT(t)V(t) = 0.

(F15)

This can be done by performing a QR decomposition on

U(t) =
(

U(t) V(t)∗
V(t) U(t)∗

)
, (F16)

as proved in Ref. [35]. To implement the jump within this
framework, we can compute the correlation matrix C(t),
which is given by

C(t) =
(

U(t)U(t)† U(t)V†(t)
V(t)U†(t) V(t)V†(t)

)
. (F17)

As in the U(1) case, we then need to retrieve the state
matrix, which is done using a SVD decomposition of the
correlation matrix.
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