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In this paper, we introduce an algorithm for extracting topological data from translation invariant gener-
alized Pauli stabilizer codes in two-dimensional systems, focusing on the analysis of anyon excitations and
string operators. The algorithm applies to Z, qudits, including instances where d is a nonprime number.
This capability allows the identification of topological orders that differ from the Z, toric codes. It extends
our understanding beyond the established theorem that Pauli stabilizer codes for Z,, qudits (with p being a
prime) are equivalent to finite copies of Z, toric codes and trivial stabilizers. The algorithm is designed to
determine all anyons and their string operators, enabling the computation of their fusion rules, topological
spins, and braiding statistics. The method converts the identification of topological orders into compu-
tational tasks, including Gaussian elimination, the Hermite normal form, and the Smith normal form of
truncated Laurent polynomials. Furthermore, the algorithm provides a systematic approach for studying
quantum error-correcting codes. We apply it to various codes, such as self-dual CSS quantum codes modi-
fied from the two-dimensional honeycomb color code and non-CSS quantum codes that contain the double

semion topological order or the six-semion topological order.
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I. INTRODUCTION

The topological phases of matter in gapped systems
are conceptualized as equivalence classes of physical sys-
tems. These systems are considered equivalent if they
can be continuously transformed into each other while
maintaining an energy gap above the ground-state sub-
space. A defining characteristic of a topological phase is
its stability against local perturbation. As a result, research
in this field focuses on identifying topological invariants
under continuous transformations and building models that
exhibit various invariants. To this end, numerous intri-
cate models have been studied and partially classified
across different spatial dimensions, both with and with-
out symmetries, in both condensed-matter physics [1-24]
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and quantum information [25—34]. Despite these advances,
the complete classification and comprehensive character-
ization of topological phases remain areas of ongoing
research.

A notable subset of lattice models includes generalized
Pauli stabilizer codes [35], characterized by Hamiltonian
terms composed of commuting products of generalized
Pauli operators for Z; qudits [36]. Bombin’s investiga-
tion into translation-invariant topological stabilizer codes
in two-dimensional lattices with qubit (d = 2) degrees of
freedom provided foundational insights [37]. He demon-
strated that any nonchiral topological stabilizer code, under
locality-preserving automorphisms of the operator alge-
bra, can be expressed as a direct sum of toric code sta-
bilizers and trivial stabilizers (corresponding to product
states). A widely believed conjecture [28,38,39] states
that all commuting projector Hamiltonians are nonchiral,
suggesting that the classification of translation-invariant
Pauli stabilizer codes for two-dimensional qubit sys-
tems is essentially complete. Extending this framework,
Haah applied these principles to prime-dimensional qudits
[40-43]. Given that any translation-invariant topological
general Pauli stabilizer code on such qudit systems must
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include a nontrivial “boson” [44], it is inferred that all two-
dimensional topological generalized Pauli stabilizer codes
for prime-dimensional qudits can be transformed into a
direct sum of finite copies of toric code stabilizers and triv-
ial stabilizers using finite-depth Clifford circuits. However,
the classification of generalized Pauli stabilizer models
with nonprime-dimensional qudits remains an unresolved
challenge. It is conjectured that such systems may be
equivalent to a direct sum of finite copies of trivial sta-
bilizers and condensation descendants of the Z, toric code
stabilizers [34].

The study of stabilizer codes is also crucial from the
quantum code perspective, particularly in the context of
error correction. Self-correcting quantum memory and
single-shot error-correcting codes can be constructed from
topological phases [45—52]. The error-correction capabili-
ties and thresholds are also investigated [53—64]. In these
codes, extended operators correspond to the logical opera-
tions within the code space. Recently, significant progress
has been made in the experimental implementation of
surface codes on various quantum computing platforms
[65—69]. The advancement of digital quantum comput-
ers and simulators has enabled the realization of various
topological phases on quantum devices [70—74]. Notable
examples of surface codes, including the toric code and
the color code, have been sophisticatedly designed and
analyzed. This leads to a crucial question: can we sys-
tematically extract topological information from a wide
range of quantum codes? For instance, inspired by the two-
dimensional (2D) honeycomb color code, one can develop
many new quantum codes, as shown in Fig. 1. A key chal-
lenge is the rapid determination of the properties of these
codes. Given the progress of experimental implementa-
tions, analyzing and characterizing different topological
codes becomes critical. Many characterization protocols
for ground-state wave functions or parent Hamiltonians of
different physical systems have been proposed [28,75-94].
However, the systematic study of generalized Pauli sta-
bilizer codes has been less investigated, and it would be
fruitful to explore new models that could be implemented
in near-term devices. The close relationship between cod-
ing theory and the topological phases of matter suggests
that coding theory techniques [95—102] are helpful for
the study of topological orders. This paper presents an
algorithm that efficiently identifies the topological data of
quantum codes via an algebraic method. This algorithm
aims to streamline the study of the topological properties
of generalized Pauli stabilizer codes with the assistance of
classical computers.

In summary, we provide an algorithm to determine the
topological order of generalized Pauli stabilizer codes with
Z,4 qudits in two dimensions, which applies to both prime
and nonprime d. Our method checks whether a general-
ized Pauli stabilizer code satisfies the topological order
condition. Upon confirmation, the algorithm outputs the
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FIG. 1. Six examples of self-dual CSS codes in the 2D hon-
eycomb lattice, where each vertex hosts one qubit. The first is
the 2D honeycomb color code [29], with stabilizers composed
of all Pauli X (or Z) operators on red vertices and their transla-
tions. The remaining five codes are similar but include additional
vertices in each stabilizer term. While it is established that the
2D honeycomb color code is equivalent to two copies of toric
codes [103], the broader analysis of 2D translation invariant Pauli
stabilizer models remains less clear. Our work introduces an
algorithm capable of detecting topological orders in these models
and extracting crucial information such as anyon string operators,
fusion rules, topological spins, and braiding statistics.

topological data of the input quantum code, the Abelian
anyon theory (unitary modular tensor category). This
includes identifying anyon types (simple objects), their
fusion rules, explicit string operators, self-statistics (topo-
logical spins), and braiding statistics. The functions of our
algorithm are shown in Fig. 2.

The paper is organized as follows: In Sec. 11, we review
the Pauli stabilizer codes of qudits and the theory of
Abelian anyons to motivate the development of our work.
In Sec. III, we review the Laurent polynomial formulation
of translation-invariant Pauli stabilizer codes with exam-
ples and the definition of topological data in the Laurent
polynomial framework. In Sec. IV, we provide details of
individual techniques used in the algorithm for extract-
ing topological order, including the procedure to check the
topological order condition, solve the anyon equation, and
obtain topological spins for given anyons. In Sec. V, we
discussed the workflow of the algorithm. In Sec. VI, we
apply our algorithm to various stabilizer codes defined on
qubits or nonprime-dimensional qudits and show the effec-
tiveness of this algorithm on extracting anyon string opera-
tors, fusion rules, topological spins, and braiding statistics.
Section VII analyzes the time complexity of this algorithm
and demonstrates its scaling through numerical compu-
tation. Finally, the discussion regarding connections with
other works and potential future directions is presented in
Sec. VIIIL.
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Illustration of the algorithm. We want to determine whether a given Pauli stabilizer model presents a topological order. If it

is a topological order, what are anyon string operators, braiding statistics, and fusion rules? In the first step, we record the syndrome
pattern of a single Pauli operator, which is indicated by circles, stars, squares, or hexagons representing the violations of different
stabilizers. Next, we convert syndrome patterns into the Laurent polynomial rings. Then, we use our algorithm to check whether the
Pauli stabilizer code satisfies the topological order condition. If satisfied, this algorithm can obtain the topological data of the given
model, including anyon string operators, fusion rules, topological spins, and braiding statistics.

II. PHYSICAL INTUITION

This section provides a pedagogical overview of gener-
alized Pauli operators and Abelian anyon theories in the
stabilizer formalism with the microscopic picture. Then,
we outline the workflow of our algorithm.

First, recall standard definitions of d x d generalized
Pauli matrices for a Z; qudit:

X=Y [+l z=) JNlL D)

J€EZg J €Ly

where w is defined as w := exp(27i/d). More explicitly,

0 0 0 1
1 0 0 0

y=|0 1 0 0],
0 0 --- 1 0
10 0 --- 0
0w 0 -~ 0

7=10 0 & .- 0 1, )
0 0 0 - !

X and Z satisfy the commutation relation

ZX = wXZ. (3)

For the sake of simplicity, “Pauli” will be used as a
shorthand for “generalized Pauli.”

We begin by considering a local [104] Pauli stabilizer
Hamiltonian on a two-dimensional lattice. Our initial step
is to check whether this Hamiltonian fulfills the topologi-
cal order (TO) condition [41—43,105]. The detailed math-
ematical formulation of this condition will be addressed
in subsequent sections. Briefly, the TO condition requires
that any local operator O, which commutes with all stabi-
lizers, must be a product of certain stabilizers, denoted as
O =[],4Si for a set 4. In other words, the TO condition
implies that the stabilizer group is “saturated,” i.e., no more
local operator can be added to it while commuting with
all existing stabilizers. Fundamentally, this condition indi-
cates the local indistinguishability of the ground state(s) in
a local Pauli stabilizer code that satisfies this criterion. If
the Hamiltonian exhibits a degeneracy in its ground state,
these states cannot be differentiated by any local opera-
tor. An example is the toric code [27], which illustrates
topological order with a fourfold degeneracy on a torus.
Thus, a local Pauli stabilizer code that meets the TO con-
dition is referred to as a topological Pauli stabilizer code,
which suggests the presence of topological order in this
code (which may be a trivial order).

Furthermore, given a topological Pauli stabilizer code,
our interest then lies in identifying the specific type of
“topological order” it exhibits. Topological orders in
two dimensions are categorized by “unitary modular ten-
sor categories” (UMTC) [106—110], which describe the
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properties of local excitations in the low-energy spectrum
of the Hamiltonian. It is important to note that stabilizer
models are restricted to generating Abelian anyon theo-
ries, a subset within the broader scope of UMTCs. While
UMTCs have a formal definition for general cases, this
paper will focus only on Abelian anyon theories pertain-
ing to stabilizer formalism and provide a more streamlined
description.

An anyon is a (local) violation of stabilizers on the
lattice. Given a ground state |Wg), which is in the +1
eigenstate of all the stabilizers: S;|Wy) = |Wy). However,
if a Pauli operator M is applied on the ground state, the
perturbed state might not be in the +1 eigenspace of
stabilizers: S;(M|Wy)) = ei¢f(M|\I/gs)) with ¢; € [0,27),
where ¢; depends on the commutation relation between S;
and M. This perturbed state contains an anyon labeled as
alist {¢1,..., ¢y} consisting U(1) angles [111]. So far, an
anyon is defined for a state, which is a global description.
Next, the locality plays a crucial role. If the violated sta-
bilizers (¢; # 0) are spatially far apart, e.g., created by a
long string operator M that violates only a finite number
of stabilizers near its two endpoints, we divide the stabiliz-
ers with ¢; # 0 into local patches, as the physical picture
shown in Fig. 3. Each patch can be viewed as a local
anyon, which {¢;} is referred to as the syndrome pattern.
Another way to visualize this local anyon is to extend M
into a semi-infinite [112] string, which violates only sta-
bilizers around one endpoint, where the anyon is located.
In two-dimensional topological Pauli stabilizer codes, each
instance of local violations is attributable to string oper-
ators. Nonetheless, this property ceases to be applicable
in higher-dimensional models, primarily due to the fracton
phases of matter [1,11,13,19,30]. Our method is adaptable

)

FIG. 3. The black dots label the locations where stabilizers act
as e® (with ¢ # 0) on the state. These stabilizers are labeled as
Say» Say» and so on... If these violated stabilizers are spatially far
apart, we group {S,,} into different patches and treat each patch
as a local anyon. In topological stabilizer codes, any anyon is
generated by a string operator, i.e., a product of Pauli matrices
along the string that only fails to commute with a finite number
of stabilizers near its endpoints.

to higher-dimensional topological Pauli stabilizer codes
with string operators; however, our focus is predominantly
on two-dimensional applications for the remainder of this
study.

Now, anyon types (or superselection sectors) can be
defined as equivalence classes under the equivalence rela-
tions between anyons v and v':

vi={g} ~ v = {¢}, “4)

if and only if {¢;} and {¢;} are differed by local Pauli oper-
ators. In other words, if the syndrome pattern v’ can be
achieved by applying local Pauli operators on the state with
the syndrome pattern v, two syndrome patterns v and v’
are identified as the same type. With the concept of anyon
types, we can now discuss the fusion rules. The fusion
rules of (Abelian) anyons describe the process of bringing
two anyons a and b closer to each other (via their string
operators) and identifying the composite of them as a third
anyon c under the equivalence relation Eq. (4). We express
the fusion rule as

axb=c. 5)

Also, the topological spin 6 (a) can be computed for each
anyon a, which determines the exchange statistics (by spin-
statistics theorem), e.g., boson, fermion, and semion. The
T-junction process that exchanges the positions of two par-
ticles can detect the topological spin [44,80,113—115]. Let
Y1, v2, and y3 be paths sharing a common endpoint p and
ordered counter-clockwise around p, as in Fig. 4. Then,
the topological spin 6(a) of anyon a is computed by the
expression:

W) Wy = 0wy (ws) s, (6)

where W7 is the string operator moving anyon a along
the path y;. Equation (6) represents the exchange of two
anyons [116] a;,a, can be seen as follows. Suppose that

a; is initialized at the start y,(0) of y; and a, at the

._7___>p4__7__.
71 A V3
1

Y2 |
|

FIG. 4. The exchange statistics (topological spin) of anyon a
can be computed using the formula in Eq. (6). 1, 32, and y3
are oriented paths in the lattice incident at the same position
p. The string operators W4, (W5)f, and W4 of anyon a along
paths y;, —y», and ;3 might not commute, giving the exchange
statistics 0 (a).
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start 73(0) of 3. Then (W&)Twa(Ws)T wa(ws)T w9 takes
a; from y;(0) — p — y(0), then takes a, from y3(0) —
p — y1(0), and then takes a; from ,(0) — p — 3(0).
Thus, in the end, we have exchanged the positions of a;
and a;, while all dynamical phases cancel out. By Eq. (6),
this results in the phase 6(a). In Abelian anyon theories,
the braiding statistics (e.g., the phase factors arising from
the Aharonov-Bohm effect) are completely determined by
topological spins. More precisely, let By (a, b) be the U(1)
phase of braiding anyon a around anyon b counterclock-
wise. It is related to the topological spins of @, b and a x b
by the relation

0(a x b)

Bota.0) = 56y

()

In Appendix A, we derive Eq. (7) with the definition
Wb .= WoW? and the fact that W% . are Pauli operators
that anticommute by a U(1) phase. Therefore, the complete
data for Abelian anyon theories are anyon types, fusion
rules, and topological spins.

In summary, the algorithm for extracting the topological
order from a topological Pauli stabilizer code includes the
following steps:

(1) Enumerate string operators that create anyons
around its endpoints.

(2) Classify these anyons into different types by the
equivalence relation Eq. (4).

(3) Obtain the fusion rules of anyon types.

(4) Compute the topological spin (and braiding statis-
tics) for each anyon type from its string operator.

The primary aim is to identify string operators for distinct
anyon types. This task is inherently challenging, but local-
ity and translation invariance can simplify this problem.
We focus on a finite region, designated as 4, where, due to
the finite amount of anyon types in two dimensions and
the assumption of translation invariance, all topological
data are contained inside 4 (if 4 is large enough). Anyon
string operators, fusion rules, topological spins, and braid-
ing statistics can be analyzed in this region 4. As illustrated
in Refs. [41,117], the required size I, of the region A
should be upper bounded by d x 2", where d is the qudit
dimension and r is the range of stabilizers. Our method
successfully retrieves all topological information for typi-
cal stabilizer codes with reasonable qudit dimensions and
ranges of stabilizers [118]. We obtain the syndrome pat-
tern for each single Pauli error and combine them to form a
stringlike operator, shown in Fig. 5. The naive approach of
listing all combinations of Pauli matrices will take an expo-
nential time. The approach described later in this paper
can achieve the discovery of string operators for all anyon
types within polynomial time.

l Our algorithm

g TR
’/ . o\*§ * JF * % % % i % % . * o |\
\ o . Ti \ e . }
AN 4 i€string N /
FIG. 5. Demonstration of the procedure for finding string
operators (details in Sec. IV A 2). For each single-qudit Pauli
operator P, it will locally violate stabilizer terms at different
positions denoted as black dots. Note for the general case, a
single-qudit Pauli operator X /Z may violate stabilizer terms in
multiple (can be greater than 2) positions in contrast to the toric
code where a single-qudit Pauli X /Z error violates only two sta-
bilizer terms. For example, in the Z, cases, black dots are the
stabilizer terms giving the —1 signs. If we combine the two
single-qubit errors where some of the syndromes (black dots)
are overlapped, the overlapped syndrome will be eliminated. The
goal of this procedure is to combine single-qudit Pauli operators
at different positions to form a string operator such that only the
stabilizers near the endpoints are violated.

Note that our way of classifying topological Pauli sta-
bilizer codes based on topological data is different from
Refs. [37,43], which utilize Clifford circuits to transform
a topological Pauli stabilizer code into finite copies of the
standard toric code stabilizers and trivial stabilizers. The
equivalence of Pauli stabilizer codes by the Clifford circuit
transformation is a stronger condition than the equivalence
of their topological data. For example, consider Z4 Pauli
stabilizer codes:

N N
Hl = — ZZ[, H2 = Z()(ZZ +le) (8)
i=1

i=1

Both codes have trivial topological data since each
one has the ground state as a product state [0)®" or
(10) + 12)/+/2)®N, but there is no Clifford circuit that
transforms from H; to H,. Therefore, instead of using the
equivalence of parent Hamiltonians under Clifford circuit
transformations to classify Pauli stabilizer codes, our clas-
sification is based on topological data, which are properties
of its low-energy excitations.

1. FORMULATING TRANSLATION-INVARIANT
PAULI STABILIZER MODELS

In this section, we first review the polynomial method
to formulate translation invariant Pauli stabilizer models
and demonstrate how to utilize it to derive the topological
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data in Sec. IIT A. In Sec. I1I B, we provide the polynomial
representations of various known models.

A. Review of the Laurent polynomial method on a
square lattice

The Laurent polynomial has been demonstrated to be
useful for searching 3D fracton phases [119] and error-
correcting codes [120,121], which serves as a basis for our
algorithm. In this subsection, we will review the Laurent
polynomial and how to use it to represent translation-
invariant stabilizer codes.

This section examines a scenario involving two Z,
qudits in each unit cell, exemplified by a qudit at each edge
of a square lattice. This setting is extendable to cases with
w qudits per unit cell.

Our initial step is to demonstrate that any Pauli opera-
tor, constituted by a finite tensor product of Pauli matrices
at different sites, can be represented (up to an overall fac-
tor) as a column vector over the polynomial ring R =
Zalx,y,x~',y71] [122], as established in Ref. [41]. We
assign column vectors over Z, to the (generalized) Pauli
matrices X2, Z12, X14, and Z14, depicted in Fig. 6:

X = , Zn= , Xu= AV

O —~lo o

S Ol —
—_ OO O

S Ol—= O

)

In this paper, column-vector representations of Pauli oper-
ators are denoted using curly letters. The coefficients in
these vectors correspond to their powers:

mi
mj
ﬂ s
ml

~.

P— = P = VmeZy  (10)

~ »‘\A.

The translation of operators is achieved using polynomials
of x and y to denote translations in the x and y directions,

7 8 9
d C

4 5 6
a b

1 2 3

FIG. 6. We put Pauli matrices X,, Y, and Z, on each edge.

respectively. To illustrate, translating the operator on edge
e, to edge eg [using the vector (0, 2)] or to edge esg [using
the vector (1, 1)] involves multiplying the column vector
of the operator by y? or xy, respectively:

0 0
0

253 Zyzzlz = )72 , Asg =xyXiy = % . (1D
0 0

In conclusion, any Pauli operator can be decomposed as
follows:

b1 b b
P=nX X2 XPZ)Z) 7 (12)

)
m

where 7 represents a root of unity of order 2d. After drop-
ping the overall phase 5, the corresponding column vector
for this operator is a linear combination of individual Pauli
matrices, expressed as

P = aIXCI + QZXEZ +-+ anXen
+blZe’1 —I—sze/z + by (13)

More examples are included in Fig. 7.
Next, we introduce the antipode map that is a Z-linear
map from R to R defined by

x4yt — xapb .= x4, (14)

To determine whether two Pauli operators represented by
vectors v; and v, commute or anticommute, we define the

zy’ 0
S
Al 2,2 vy’ — zy’
A7 ”L Yy —xy? + 222
- /! |
Yl o
ay
-7 ’ t O
Cdeazs ,,,7;3, ,,,,,,,, X 3
=7 72
(0,0) '

FIG. 7. Examples of polynomial expressions for Pauli strings.
The flux term on a plaquette and the XZ term on edges are shown.
The factors such as x*y? and x? represent the locations of the
operators relative to the origin.
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dot product as
V1 - vy = D] Avy, (15)

where 7 is the transpose operation on a matrix and

0 011 0

0 00 1
A=1—T—0 700 (16)

0 —1.0 0

is the matrix representation of the standard symplectic

bilinear form. For simplicity, we denote ) ) as (-- )T

The two operators v, and v, commute if and only if the
constant term of v; - v, is zero. For example, we calculate
the dot products

Xp-Zn=1, X Zu=x"y", (17)

and, therefore, X1, and Z;, anticommute, whereas Xsg and
Z14 commute (their dot product only has a nonconstant
term x~'y~!). Furthermore, the physical interpretation of
Xss - Z14 = x"'y~! is that shifting of Xs3 in —x and —y
directions by 1 step will anticommute (by the factor of w)
with Z,4.

A translation-invariant stabilizer code forms an R sub-
module [123] o such that

V1 -v2=vIAv2=0, Y, €0, (18)

i.e., a module of commuting Pauil operators. This o is
named the stabilizer module. The Hamiltonian could have
two (or more) terms per square to have a unique ground
state on a simply connected manifold, denoted as H =
— D s (S1 4+ S2) with corresponding column vectors

fl(xa)’) hl(x»Y)

_ | LG,y | ha(x,y)
S=laan|® 2= han | 1@

2(%)’) k2(x7y)

S1 and S, constitute the generators of the stabilizer mod-
ule, and will henceforth be referred to as stabilizer gener-

ators. For example, the trivial phase Hy = — ), X, is
1 0
0 1
81 = 6 B 82 = 6 9 (20)
0 0

and the standard Z, toric code Hamiltonian

X VAl
oY e — oY b
v xT vy

21
corresponds to
1 —-X 0
si= 57 s=|42 22)
0 —1+x

For general stabilizers S; and S, in Eq. (19), the commu-
tation condition in Eq. (18) implies

—8i — &2 + /181 +/282=0,
—kihy — kohy + bk + ok, = 0, (23)
—kifi — kaofa + g1 + hago = 0.
One simple solution is g =g =h; =hy =0 and f; =
—ky and f, = ky:
i 0
_ |~ |0
Sl — 01’ 82 — f2 B (24)
0 _

1

where S only has X part and S, only has Z part, rep-
resenting translation invariant CSS codes on a square
lattice.

Next, we define the excitation map for any Pauli opera-
tor P (a column vector over R) on a general Pauli stabilizer
code with stabilizer generators S, ..., S; as

E(P) = [S]'P,Sz-P,...,S;-P], (25)
which indicates how the Pauli operator violates stabilizers
Si,...,,S;. The error syndromes of a single Pauli matrix
for the generic Hamiltonian Eq. (19) with stabilizers S
and S, can be written as

(X)) =[S - X2, Sy - Xia] = [—gy, —kil,
X)) =[S X4, Sy - = , ,
(X)) = [S1 - X4, Sy - Xia] = [~ 85, — 2] 26)
€(Z2) =[S 22,8 Znl = [f1, 1]
€(2) =[S1- 214,8: - Z14] = [f 5, 12]

Each syndrome is a row vector with two entries in

Zalx,y,x~',y~!]. For a general case where the stabilizer
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group is generated by ¢ stabilizers, the syndrome would be
a row vector with 7 entries in Z4[x,y,x~!,y7!].

Given this excitation map €, the topological order (TO)
condition can be formulated as

kere = o, (27)
where o is the stabilizer module and the kernel of € rep-
resents the space of local Pauli operators commuting with
all stabilizers. This TO condition requires that if a local
operator commutes with stabilizers, this operator must be
a product of stabilizers (a column vector in the stabilizer
module). If the TO condition is satisfied, the ground-
state space is indistinguishable by any local operator. The
ground-state degeneracy on different manifolds is a part of
the topological order of Pauli stabilizer codes. More pre-
cisely, the ground-state degeneracy on a torus equals the
number of anyon types, with each ground state labeled by
an anyon string operator.

To obtain the possible anyons in this theory, for each
n > 1, we solve the anyon equation

€ (a(x, )X + B, )X +y(x,¥) 21 +8(x,y) 2Z2)
=A-=xH-,...] =0 =x", (28)

where v is a length-2 row vector, referred to as an anyon.
This anyon equation is previously sketched in Fig. 5, and
here is the precise mathematical definition in the Laurent
polynomial formalism. The physical interpretation of this
equation is that when we apply Pauli matrices Xi, Xz, Z),
and Z, at locations «(x,y), B(x,y), y(x,y), and §(x,y),
it violates the stabilizers around the origin (0,0) and the
point (n, 0) with patterns v and —v, respectively. This oper-
ator creates an anyon v at (0,0) and its antiparticle at
(n,0). Note that if v is an anyon, x*y®v is also an anyon
for all a, b € Z. In addition, an anyon solved by a partic-
ular 7 can be solved from any multiple of #n. The anyon
Eq. (28) defines the string operator that moves an anyon
in the x direction. In principle, the anyon equations should
also be formulated in the y direction. However, as noted
in Refs. [37,41], in two dimensions, an anyon inherently
possesses both x-mover and y-mover operators, allowing
it to move in both the x and y directions. Consequently,
addressing the anyon equations solely in the x direction
suffices to determine all possible anyonic excitations [124].

To check whether two anyons are of the same type, we
rely on the following equivalence relation:

v’ ~ v (V' is equivalent to v), (29)

if and only if there exist finite-degree polynomials p; (x, y),
Pp2(x,»), p3(x,y), pa(x,y) such that
v =041 y)e@d) + pa(x,p)e(Xn)

+p3(x,»)e(Z1) + palx,y)e(2y). (30)

Physically, this can be understood as two anyons are of the
same type if and only if they differ by some local Pauli
operators X1, X, Z1, Z, at locations specified by polyno-

mials py(x,y), p2(x,v), p3(x,¥), ps(x,y). Note that even if
anyon v implies the existence of another anyon x%y’v, they
do not need to be the same type. The Wen plaquette model
is an example [125].

B. Examples
1. Trivial model Hy = — ) _, X,

We first consider the trivial Hamiltonian Eq. (20). We
can easily compute

€(AX) = [0,0],
e(z) =[1,0],

€(A2) =10,0],

31
e(2,) =[0,1]. Gh

Since linear combinations of {€ (X)), €(X>), €(Z)), €(Z,)}
already generate all possible polynomials in each entry,
all anyons are equivalent to the trivial anyon vy = [0, 0].
There is only one trivial anyon in this model.

2. Standard 7.4 toric code

We analyze the standard Z, toric code Eq. (22). The
syndromes of single-qubit Pauli errors are

e(X) =[0,—-1+y],
E(Zl) = [1 _X’O]’

€(Xy) =[0,1 =X,

(32)

€(Z) =[1-y,0]
From the anyon Eq. (28), €(AX,) can generate a solu-
tion v,, = [0, 1] and general solutions [0,x%y"] Va,b € Z
(by choosing n = 1 and B(x,y) = —x**1y?). Also, €(Z))
can generate a solution v, =[1,0] and general solu-
tions [x°y?,0] Ve, d € Z. Therefore, a generic anyon can
be expressed as [x“1y?1 4+ x2ypb2 4. xeypdt 4 x2pdr 4
1

Next, we want to check whether these anyons are equiv-
alent or not. From the identity

A=x)14+x+x>+--+xFNH=1-xf (33

we have [x*p(»),...]~[p(),...] since they differ by
the polynomial factor (1 +x + x> + - - - +x*"1)p(y). Sim-
ilarly, we have €(Z,) for the y part. More precisely, we
summarize the equivalence relation

YabeZ,
Ye,delZ. (34)

[0,x°y"] ~ [0, 1],
[xy?,0] ~ [1,0],

Giving an anyon, adding polynomial factors of e(X)),
€(X),€(21),€(2,) cannot change the parity of the sum
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of coefficients [126] in each entry. We conclude that the
following four anyons are inequivalent:
vo =[0,0], v, =1[L1,0],

Um = [Oz 1]’ U = [la 1]

(35)

Note that we can choose v, and v,, as the basis anyons,
which generate the entire set of anyons. This choice is not
canonical since another choice {v,, vy} is also valid.

3. Two copies of 7 toric codes

Consider a new Hamiltonian modified from the toric
code:

X
HTC:_Z _XT_ ________ UX_
v X.i.
|
/A P
|

(36)
which stabilizers differ from Eq. (22):
1-% 0
si=150 ] s=42 G7)
0 —1 4 x?

The square lattice can be partitioned so the Hamiltonian is
exactly two decoupled Z, toric codes. It has syndromes

€(X) =[0,1—¥,
€(Z) =[1-y,0]

€(X) =[0,-1+yl,

38
E(Zl) = [1 _XZ’O]’ ( )

We focus on the Z part first and try to solve
y (6 1)e(Z1) +68(x,y)e(22) = (1 —x")v. (39)

Forn = 1, we have

xyPe(Z)) = x[1 —x%,0] = (1 — 0)[x“y? +x4+1y0, 0].
(40)

Therefore, we have anyons v;’zl = [x9p? 4 x4+1y? 0] for
arbitrary a, b € Z. For n = 2, we have

xyle(Z) =xy[1 = 2,01 = (1 —x)[xp%, 0], (41)

which gives anyons vg’jz = [xp9,0] for arbitrary c,

d € 7. Notice that all v"3" can be generated by v"5? since

n=1 __  n=2 n=2
Vyp = Vap T Viipe (42)

In fact, vf;z has already generated all possible polynomials
in the first entry. We do not need to look for n > 3 cases.

Next, we use €(Z;) and €(Z;) to find the equivalence
classes of those anyons. By some algebraic argument, there
are four inequivalent classes:

1:=1[0,0],
e :=11,0],
1= [1,0] 43)
e 1= [x,0],
erey :=[1+x,0].
Similarly, for the X part, we can solve
1:=10,0],
my :=1[0,1],
1:=1[0,1] (44)
mp = [O,X],

mymp = [0, 1 +X]

We can choose {e}, e2,m,m;} as the basis anyons for the
entire set of anyons.

4. Double semion

The double semion model [3] is an example of topolog-
ical order with a nontrivial “twist,” labeled by a 3-cocycle
in the third cohomology H>(Z,, U(1)) [4,127]. This dou-
ble semion can be realized as a Pauli stabilizer code with
Z4 qudits from condensing e?m? anyon in the standard Z,
toric code [34]. The stabilizers of this double semion code
are

dn
Xizt 7 Z?
S1 = —X—’QXTZJ S A A
X |_Z2J
|
X2
SS:ZE ‘ , Si= )|(§

(45)
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The stabilizers can be written as column vectors of

Zd[xay’xilayil]:
x—1 0
|l y—1 _ 0
Si = 1—y |’ Sy = 242y |’
—14+x | 2 + 2x
(46)
-9 0
0 2
83 = v ) 54 = 27?
L2y 0|
It has error syndromes
E(Xl) - [)_}_ 15_2.)_/_ 2505 _2x]7
€(Zy) =[-1+x,0,2,0],
€e(X) =[1—-x,-2x—-2,-2y,0],
We can find
e(X) +ye(Z) =1 —x)[—-y —Xx,—2x,0,0],
(A2) +ye(Zy) = ( =y ] 48)

2¢(Z)) = (1 -x[-2,0,0,0].

Therefore, we can get string operators in the x direction
and their corresponding anyons:
Vg = [_y - i: _2-%5 O: 0]5

vy = [~2,0,0,0]. “49)

With the anyons v, and vp, we can find that they also satisfy

€(X) —xe(Zy) = (1 = y)x+y,—2y,0,0]
=1 - y)(=xy)vs,
26(2y) = (1 =y)[-2,0,0,0] = (1 — y)vp.
(50)

Therefore, we can get the string operators in the y direc-
tion. And then, we can draw the string operators for s and
b as

(51

C. Shifted double semion

Here, we also present a variant of the double semion
code, named as the shifted double semion code, and how
to obtain the string operators of it. The stabilizers of the
shifted double semion code are

XT AR
S1i= v XT_ ______________ I_ZJ s
i ’
2
Sy =721 72
|_Z2
_____________ _XQ_
» e
53 = | ’
:El
| 2
X@
54 = _ZQ_ ____________ J
! (52)

For the double-semion code, we condense neighbored
e?m? anyons. For the shifted double-semion code, instead
of condensing neighbored e?m? anyon, we condensed e?m?
that are far away by x’, shown as S3, Sy in Eq. (52). S;
and S, generate a subgroup of the Z4 toric code stabilizer
group, which commute with condensation terms Ss, Sy.
The stabilizers of shifted double semion code be written
as polynomials

x—1 0
] v _ 0

Si = 1=y |” S 242 |
x(—1+x) 2+ 2x
- (53)
2! 0
0 2x!

S = 0|’ Sa = 2%
| 2y 0

If we set/ = 0, Eq. (53) gives the stabilizers of the double-
semion code in Eq. (46). Given the stabilizers, the error
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syndromes are

(X)) =Xy —1), -2y —2,0,—2x],
€(X) = [¥'(1 — %), —2% — 2, —2y,0],
€(Z) =[-1+x,0,2¥,0],
€(Zy) =[—1+4y,0,0,2%'].

(54)

Similar to the calculation in Egs. (48) and (50), we have

e(X) +xye(Z)) = [ —x'y, —2x,0,0],
e(X) —x'e(Z) = (1 — [y +x,-27,0,0],
2¢(Z)) = (1 —x)[—2,0,0,0],
2¢(Zy) = (1 —y)[-2,0,0,0].

(55)

This gives us the string operators for anyon s and b along
the x and y directions in Eq. (56). They generate the whole
anyon theory of {e, s, b,s} where s = s x b.

[ ------------- —/—
..... X P
wee= | :
i
_____________ — gt
[
<....X€T. .......
| ;
! (56)
ZIT
_Xle_ _____________ J b
7
|
Z
P E—
7

IV. COMPUTATIONAL METHOD

In this section, we describe how to transform the prob-
lem of finding anyon string operators in the previous
section into implementing (modified) Gaussian elimina-
tion, which is closely related to the Hermite normal form.
Computers can perform these algorithms efficiently in a
polynomial time. Later, we show that the fusion rules
of anyons can be derived from the Smith normal form
of anyon relations, and the topological spins and braid-
ing statistics of anyons can be computed from the string
operators directly.

To numerically solve the anyon Eq. (28) to obtain
anyons in a stabilizer code, the module over a polyno-
mial ring is not straightforward to work with. As standard
techniques in linear algebra, Gaussian elimination (GE)
only works for a field, and Hermit normal form (HNF)
and Smith normal form (SNF) are only applicable to
a principal ideal domain (PID), which are reviewed in
Appendix B. The polynomial ring R = Z[x,y,x~!,y~]
is neither a field nor a PID. Therefore, instead of treating
€(P) as a row vector in the module over R, we truncate the
degree of polynomials and store coefficients in the polyno-
mial as a vector over Z,. For instance, a polynomial such
asf (x,y) = 1 4+ 2x + xy + 3y? € R can be expressed as a
coefficient vector over Z,

)
o
|
|

xyoymooxy o Xy

y
0 -]

o Xl
=3
=

1 x
f=[1 2 0

—_
W
(=]
(=]

57

where each entry represents the coefficient of the corre-
sponding monomial xy” in the polynomial f(x,y). In the

rest of this paper, we denote / as the coefficient vec-
tor of the polynomial f(x,y) € R. In practice, we choose
the polynomial within x** and y**, and the monomial
x%? corresponds to the ((a + k) + (b + k)(2k + 1) + 1)th
entry in the coefficient vector for all —k < a,b < k. The
length of the coefficient vector is (2k 4 1)2. In other words,
we restrict ourselves to a finite region A4 that includes coor-
dinates (i,j) with —k <i,j <k in a plane, as shown in
Fig. 8.
Given a fixed k, we define the truncation map as

f € Zglx,y,x 1,y —>? € Z?Qkﬂ)z, (58)
The truncation size is governed by the parameter £, a large
positive integer relative to the size of the stabilizers. We
allow this truncation map to act on any a x b matrix M
over Zg[x,y,x~',y~!] by acting on each entry to expand
to a row vector with length (2k + 1)2, and by joining these
row vectors to form an a x b(2k + 1)2 matrix M over
Z,. As argued in the previous section, sufficiently large 4
allows us to recover all topological data of a Pauli stabilizer
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2k +12—2k—1 |[(2k+1)>2—2k (2k +1)2 -1 (2k +1)?
:Cky_k xky—k+1 . xkyk_l xkyk
(2k+1)2 -4k -2 [2k+1)*—4k—1 (2k+1)>—2k—3 [(2k+1)>—2k—2
mk:—ly—k: xk—ly—k—i—l S :L’k_lyk_l xk—lyk
2k +2 2k + 3 4k + 1 4k +2
:B_k+1y_k x—k+1y—k+1 0 x—k+1yk—1 z_k+1yk
1 2 2k 2k + 1
x—ky—k :C_ky_k—H 0 x—kyk—l x—kyk

FIG. 8.

The region A where the polynomials are truncated to. It contains all monomials with x** and y**. The red numbers indicate

the ordering in the coefficient vector. Any polynomial in Z4[x, y,x~!,y~!] is truncated to a length-(2k + 1)? row vector over Z,.

code. To optimize running time, we can choose a rectan-
gular region specified by the polynomial within x** and
y*k . For example, when focusing on anyon string oper-
ators in the x direction, a greater value of k, compared to
k, is preferable. For convenience, our discussion will focus
on the square area 4 and check the topological order condi-
tion, identify anyon string operators, and verify the fusion
rules, topological spins, and braiding properties of anyons
within 4.

Also, we define the translational duplicate map
TD,, that takes the input as a length-/ row vector F' =
[fi,/5, . ..fi] with each entry f; in Zg[x,y,x~',y~'] and
returns a (2m + 1) x [ matrix formed by its translations
within x=7y*m [128]:

x*}'ﬂy 7mF
)C7m+1y —mp

xm—l).}—mF
x"yTME
xfmy7m+lF
x7m+ly7m+lF

xm—ly—m+lF (59)

F — TD,(F) := Y
x"y F

xfmymF
X7m+1ymF

xm—l.ymF
xmymF

where x*y’F is the row vector multiplying x?y® to each
entry of F, i.e., xyF = [x°f1, x%h, ..., x%bf].

A. Prime-dimensional qudit [,

As a warm-up, we assume that the qudit dimension d is
a prime number to illustrate the method, and will later (in
Sec. IV B) generalize to an arbitrary integer d. Whend = p
is a prime, Z, = IF,, is a finite field, greatly simplifying the
computations.

1. Topological order condition

We check the TO condition Eq. (27) in the region A.
Given the syndrome for a single Pauli operator, we find
possible local combinations of Pauli operators such that
all syndromes are canceled. We verify that these combined
operators are in the stabilizer group.

First, we prepare a matrix consisting of error syndromes:

M, = | Pn(e(2) | (60)
TD,.(e(Z}))

TD,,(e(Z))

where the row space consists of the syndrome patterns of
local Pauli operators. Next, we perform the Gaussian elim-
ination to obtain a new matrix, denoted as GE(ﬁ 1). Each
Zero Tow in GE(ﬁl) represents a relation:

—_—

e +prXs + p3 21 + pay) =[0,0], (61)

for some polynomials pi,pa,ps.ps € Fplx,y,x~!,y71],

restricted within x*”y*"_ We denote the column vector
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O =epX) +p2 X5 + p3 21 + psZ;) and compute the
difference between the ranks of the following two matrices:

N

/\T/ ot
~ TDmI S ~ - ~—
My = /\(Q , and M? = TDm’(SlT)
D,/ (S)) oo
TD,» (82)

(62)

Note that we choose m’ > m (and still m’ < k) such that
stabilizers can cover the support of O. The rank difference
is 0 if and only if the operator O is spanned by S, S, and
their translations. To check the TO condition, we verify

that all zero rows in GE(]\7 1) correspond to a local operator
O with vanishing rank difference in Eq. (62).

2. Solving the anyon equation

To solve the anyon equation

€ (@, )X + B, )X +y(x,y) 21 +8(x,y) 2)
— (1 —x"), (63)

we perform Gaussian elimination on the following 6(2m +
1)? x 2(2k + 1)? matrix

M= | IPnlE@) (64)
_TDn(e(22) _
TD,,([(1 — ), 0]

L TD,,([0, (T =]

After Gaussian elimination, each zero row in the matrix
GE(M3) gives an anyon v in this region:

€P1Xy +p2 Xy +p3 21 + paZs)
= [ps(1 —x"), pe(1 — x")], (65)
where the anyon is v := [ps, ps].

3. Equivalence relations between anyons

In this part, we provide an algorithm to categorize anyon
types in a Pauli stabilizer model with Z, qudits. Two
anyons v and v’ are equivalent if

V' = v+ p1e(X)) + pre(Xs) + p3e(2)) + pae(2),
(66)
where pi, p2, p3, and p4 are polynomials within x"y*".
In other words, we compute the quotient space of anyons

using row vectors {€ (X)), €(X3),€(Z)),e(2,)}. To check
this, we can compute the rank difference between the two
matrices

N E e B L)
M= | =221, and M{™" := | TD,,(¢(X2))
TD,,(e(Z))) 25\

| TD,,(e(23)) |

(67)

Two matrices have equal rank if and only if the syndromes
span v — v/, which is exactly the definition of equivalence
v ~ v in Eq. (66).

Moreover, since each qudit has a prime dimension p,
any topological Pauli stabilizer code is equivalent to finite
copies of Z, toric codes. Therefore, we need only to count
the number of basis anyons that generate all anyons, to
obtain the topological order. Given the anyon set V =
{vi,v,...} solved from the anyon Eq. (28), to count the
number of basis anyons, we compute the rank difference
between

— ~ —_

U1

vy

TD,,(€(%1) »
~ _ | TDu(e(@2) T R
My = m , and Ml = w
LTDy(€(22)) ]

(68)

If the rank difference is 2k, the topological Pauli stabilizer
code corresponds to k copies of Z, toric codes.

B. Nonprime-dimensional qudit Z,

Over a ring Z,, Gaussian elimination does not work
since the multiplication inverse of an element in Z; might
not exist, e.g., the element 2 in Z4. Moreover, Z,; may con-
tain zero divisors, i.e., a nonzero element a, such that there
exists another nonzero element x € Z, satisfying ax = 0.
The element 2 in Z is again an example since 2 x 2 = 0 in
Z4. Therefore, we introduce the modified Gaussian elimi-
nation (MGE) algorithm over Z, inspired by the Hermite
normal form:

(1) Given a n x m matrix 4 over Z,;. We treat the
entries in the first column a;; Vi € {1,2,...,n} as
integers {0,1,2,3,...,d — 1} in Z. To restore the
Z, periodicity, we append a new row [d,0,0,...0]
to the bottom of matrix 4, transforming it into a
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(n + 1) x m matrix, denoted as A’. Next, we find
the greatest common divisor of its first column
{ai1,a21,...,a,1,d}, denoted as ged(a;1)q [129].
From the extended Euclidean algorithm, there exists
a linear combination:

rai +raxyy + -+ rpan + rod = ged(ai)a.
(69)

Moreover, this linear combination can be obtained
by subtracting one entry from another greater entry
from the following list repetitively,

[al,l, a1,a3l, ..., an,lad]: (70)

and the final entries are (up to reordering)
[ged(ai1)a,0,0,...,0,0]. (71)

Subtracting one entry from another and reordering
would correspond to row operations in the matrix 4'.
Therefore, we apply corresponding row operations
in the matrix 4" according to the extended Euclidean
algorithm, which transforms the first column into

[ged(a;1)a, 0,0,....,0,0]". (72)
(2) If ged(a;)qis a zero divisor, i.e., ged(a;1)s > 0 and
ged(a;1)qg x r* = 0 (mod d)

for some integer »* with 0 < r* <d —1 (WLOG,
we assume that 7* is the smallest one), we do not
perform an operation in this row [130]. If ged(a;1)q
is not a zero divisor, we multiply a proper number in
this row to make it +1.

(3) The first column and the first row are done. Repeat
the above procedures on the submatrix without the
first column and the first row.

In the original matrix 4, linear relations exist between the
row vectors; specifically, certain row vectors can be com-
bined linearly to result in the zero row vector (mod d).
These relations are crucial as they provide insights into the
connections between the row vectors. For instance, sup-
pose one row r| represents the syndrome pattern of an
anyon v, another row r, represents the syndrome pattern
of a different anyon v’, and a third row r; represents the
syndrome of a local Pauli operator P. If these rows satisfy
the relation | — r, + r3 = 0, it implies that the anyons v
and v’ are related through the local operator P, or more
specifically,

vV =v+e(P), (73)

indicating that v and v’ are of the same anyon type. Thus,
identifying all such relations between the row vectors is
essential.

We provide a concrete example of implementing the
modified Gaussian elimination algorithm on a selected
matrix 4 over Zg. The matrix A4 is given by

4 20 - v -
A=16 0 3|=|- v —|, (74)
0 7 4 - v —

where vy, vy, and v; represent the row vectors of 4. Our
goal is to derive the relations between the row vectors vy,
vy, and vs.

First, we embed this matrix over Z such that each entry
is chosen to be 0,1,2,...,7. We insert a row [8,0,0] on
the bottom:

[4|R] = )

0O AN B
SO
S b WLWO
SO O~
SO = O
S = OO
—_o O O

where the matrix R is used to track row operations during
the following process, recording how each current row is
derived from the rows in the original matrix 4 as described
in Eq. (74), including those inserted rows. The greatest
common divisor of the first column is 2, which can be
obtained from (—1) x 6 +1 x &:

42 0 [1 0 0 0
60 3 |0 1 00
07 4 10 0 1 0 (76)
20 =3 |0 -1 0 1

Subsequently, we position the last row at the top and utilize
it to eliminate entries in the other rows:

20 =3 10 -1 0 1
02 6 |1 2 0 -2
00 12 0 4 0 -3 (77
07 4 |0 0 1 0

The first row and column have been completed. From now
on, the first row will not be involved in subsequent calcu-
lations. We will continue the process by initially inserting
[0, 8, 0]:

20 -3 /0 -1 0 1 O
0 2 6 1 2 0 -2 0
0 0 12 f0O 4 0 -3 0 (78)
0 7 4 0 0 1 0 0
0 8 0 0 0 0 0 1
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The ged of the second column (except the entry in the first
row) is 1, obtained from 8 — 7:

20 =3/0 -1 0 1 0
02 6 |1 2 0 =20
00 12 0 4 0 =30 (79)
07 4 0 0 1 0 0
01 —4]0 0 -1 0 1

Next, we place the last row in the second position and use
it to cancel entries in the rows below:

20 =3 [100 —1 0
01 —4 (010 1 -1

00 14 [1 2 2 =2 =2 (80)
00 12 |0 40 =3 0
00 32 (0028 0 -7

|

2.0 =3 | 1

01 —4 | 0

coi |00 2 1

AIRI=1"9 0 o | 6

00 0 |—16

00 0 | —4

We have achieved the row echelon form for the integer
matrix A [131]. We then select the bottom-left 3 x 3 blocks
of matrix R to serve as the relation matrix resulting from
the modified Gaussian elimination:

-6 16 -—12 2 0 4

relation:= | —16 32 —-24(=1]0 0 O mod 8
-4 8 =8 4 0 0

(84)

The last three columns in R will be modulo out by Zsg,
so they play no roles in the obtained relation [132]. The
relation matrix traces the relations among v, v,, and vs as
derived from Eq. (74):

2v; 4+ 4v; =[0,0,0], 4v; =[0,0,0] mod 8. (85)
We will prove the following four theorems about the
modified Gaussian elimination.

Theorem 1. The nonzero rows in the final matrix span
the same space as the initial matrix.

Finally, we insert [0, 0, §]

20 =3 (100 -1 0 0
01 =4 010 1 -1 0
00 14 |1 22 -2 —2 0
00 12 040 -3 0 o | ®D
00 32 (008 0 -7 0
00 8 000 0 0 1

and find the gcd of the third column (except the entries in
the first and second rows) is 2, which can be obtained from
14 —12:

20 -3 /1 0 0 -1 0 O
01 -4 40 1 0 1 —-10
0o 0 2 1 -2 2 1 =20
00 12 0 4 0 -3 0 o |- &
00 32 (0 0 8 0 =70
0 0 8 0 0 0 0 0 1
Finally, we use this 2 to cancel all entries below:
0 0 -1 0 0
1 0 I -1 0
-2 2 1 -2 0
16 —12 -9 12 0 (83)
32 24 —16 25 0
8 -8 —4 8 1

(

Proof. Each procedure is reversible, and the matrix does
not lose any information. ]

Next, we present a theorem that explains how the
relations are preserved following the modified Gaussian
elimination process:

Theorem 2. All relations between the original rows can
be recovered from the zero rows resulting from the appli-
cation of the modified Gaussian elimination algorithm.

Proof. Consider a relation between the original rows
r =7 (cia;;) = 0. Because each row a,; is spanned by
the rows in the final rows 4’ (according to Theorem 1),
r = (cia;;) is spanned by rows in A’. We need to show
that the zero rows in A’ span it. This is trivial since A4’
is in the row echelon form, and if the linear combination
involves any nonzero row, the combined row will also be
nonzero. ]

Subsequently, to determine whether a row vector v is
spanned by the matrix 4, we employ the modified Gaussian
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elimination algorithm to reduce A4 to its row echelon form,
denoted as 4'. Define v©@ = v. Given v*~1, if @ [v "

where a; ; is the kth diagonal entry of 4" and v,ﬁk_l) is the
kth entry of v*~1 define

v(k—l)
p® — k=1 _ k/ ATk, —],
Ak

(86)

where A'[k, —] is the kth row of A’. Otherwise, we could
not define v® and stop this process. Note that the first &
entries of v® are 0.

Theorem 3. A row vector v of length » is spanned by
row vectors of the matrix 4 if and only if the process
defined above achieves v™.

Proof. Since, by Theorem 1, the row span of A4’ is
the same as the row span of 4, we must prove that v
is spanned by the rows of A’ if and only if the process
achieves v . We begin with the = direction. We assume
that v is spanned by the rows of 4’, so that v = v =
> o A'[i, —] for some coefficients «;. Since 4" is upper
triangular, it must be that v; = Zle oz,»a;k. Therefore,

k—1
r_ /
akak’k =V, — aiai’k.

i=1

@87

We claim that v® = v — Y% @ 4'[i, —], so that the pro-
cess indeed achieves v™. We prove this by induction.
For the base case, we use that a’l,1 | vi by Eq. (87),
so that by Eq. (86) vV =v — (vi/a} DA'[l,-]=v —
a14'[1,—]. Now for the inductive step, we assume that
v =y — Zf:ll a;A'[i, —]. Hence, vV = aay, by
Eq. (87). Then by Eq. (86) v® = v*=D — oAk, -],
which proves the inductive step.

We now prove the < direction. We assume that a; |

v,gk_l) for every k, and we thus define oy by v,gk_l) =

axdj,. Then, reversing Eq. (86), we find that v~ =
v® 4 0 A'[k, —]. Noticing that v™ must be (0, .. .,0), we
find that v = v = > o A'[i, —]. [ |

Theorem 4. The modified Gaussian elimination
algorithm on the matrix 4 over Z, is equivalent to apply-
ing the Gaussian elimination algorithm on the following

matrix over a PID Z:

(A1 A - A |
Ay A - A
1 _ Anl An2 Anm
T I )
0 d -+ 0
0 0 - d

Proof. A linear system x4 = b (mod d), forx a1l xn
row vector and b a 1 x m row vector, is encoded by the lin-
ear equation x4 + dy = b over Z, where y is a 1 x m row
vector of additional variables. The latter system is exactly
%4 = b over Z., where x is the 1 x (n +m) row vector
(x,v). It follows that if x is the solution tox4 = b (mod d)
and ¥ is the solution to ¥4 = b, then %; = x; (mod d) for
i=1,...,n [ |

1. Topological order condition

We check the TO condition Eq. (27) in the region 4.
Similar to Sec. IV A1, we prepare a matrix consisting of
syndrome pattern of local Pauli operators:

TD,,(e(Z22))

M, = (89)

Next, we perform the modified Gaussian elimination to
obtain a new matrix MGE(M ), and each zero row in
MGE(M ) corresponds to a relation:

-
ey +prXa + p3Zi + pazy) = [0,0], (90)
for some polynomials p;, p,, p3, and p4 restricted within
x*"yEm - We denote the column vector O := e(p X +
P2 + p3 21 + paZ,). However, the rank over a nonfree
module is not well defined, so the previous method of
computing rank difference in Sec. [VA'1 dgsg not apply.

Instead, we use Theorem 3 to check whether OF is spanned
by MGE(M,), where M, is defined the same as previous
Eq. (62):

/\T/
My = | P SD | 1)
TD,/(S7)

where m’ is slightly larger than m to make sure we have
included all possible stabilizers to cover the operator O.
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If all local operators O obtained from the zero rows of

MGE(]T/f 1) are spanned by MGE(]\7 »), the TO condition
is satisfied.

2. Solving the anyon equation

Gaussian elimination in Sec. IV A 2 is replaced by the
modified Gaussian elimination in this section. To solve
the anyon Eq. (63), we perform the modified Gaussian

elimination on M3:

= | IPwle@) ) (92)
_TDn(e(22)
D, ([(I =<, 0]
L TD,,([0, (T =)L

N
Each zero row in the matrix MGE(M3) gives an anyon v
in this region:

eX| + paXs +p3 21 + pay)
= [ps(1 —x"),ps(1 —x")], 93)

where the anyon is v := [ps, ps].

3. Equivalence relations between anyons

In this part, we provide an algorithm to categorize anyon
types in a Pauli stabilizer model with Z,; qudits. The equiv-
alence relation of two anyons is defined in Eq. (66). We can

T ~——

use Theorem 3 to check whether v’ — v can be spanned by

MGE(M 1), with M | defined in Eq. (89). This determines
whether v is equivalent to v'.

C. Fusion rules from the Smith normal form

In this section, we discuss how to derive fusion rules of
anyons. Assume that we have solved the anyon equation
and obtain a list of anyon V = {v;, vy, v3,...}. Many are
redundant, and we are looking for the basis anyons.

We consider the following procedure:

(1) Start with M© := MGE(M) and Ve = {}.

(2) Given MV, we use Theorem 3 to check whether v;
is spanned by M~ _If v; is not spanned by M D,
we add v; into Ve, and define M@ as M~V with
an extra row v; joined below. Otherwise, M :=
M,

(3) Repeat the previous step until running over all
anyons in V.

From the construction, it is straightforward to prove that
Veen generates all anyons in V. However, Ve, can still

be redundant. For example, consider the Z;, toric code

stabilizer, and assume that we have solved anyons
94)

V= {025 Vs Ve2ppds Vo2 135 Ves Uy Upd» Uy |,

where e and m are the basis anyons (still unknown).
According to the procedure above, the anyon set Ve, is

Veen = {V2, V2,04, V3, Ve ) 95)
These anyons are still redundant since we have
3v,2 +2v,5 ~ 0, (96)

while both 3v,2 and 2v,,3 are not the trivial anyon 0. In this
section, for convenience, we use a + b for anyon fusion
to replace the standard a x b notation in the following
steps of the Smith normal form technique. To completely
remove this redundancy, we slightly modify the procedure
above. When we add v; into Vgen, we also compute the least
multiple of v; such that it can be spanned by M~V and
record this relation. In the example above, we obtain

6v,2 ~ 0,

Ov,2 + 6v,2,4 ~ 0,

3v,2 +0v,2,4 +2v,3 ~ 0,

2v,2 — 1vz,4 + 0v,3 + 2v, ~ 0,

D)

which can be represented as the anyon relation matrix

V2 Vp2,2 Up3 Ve
6 0 0 0
M= 0 6 0 0| . (98)
30 20
2 -1 0 2

Note that row operations on M do not affect the labels of
anyons in the anyon relation matrix, but the column oper-
ations on M require the rearrangement of anyon labels on
each column. More precisely, adding column £ toj in the
relation M requires the redefinition of anyons as v; = v
and v, = (—v; + vp): '

Mi,j v; + Mi,kUk = (Ml,/ + M,-jk)vjf +Mi’kl}]/( Vi. (99)

Then, we calculate the Smith normal form (SNF) of M,
obtaining the matrices P, Q, and A4 satisfying PMQ = 4.
For M in Eq. (98), its A and Q are

1 0 0 0 1 —11 42 -8
01 0 0 0 -1 4 =2
A=10 0 12 ol° 2=l0 1 -3 o |
00 0 12 0 1 —4 1

(100)

where Q is unimodular, i.e., det Q = +1, and can be used
to determine the basis anyons after the rearrangement, fol-
lowing the redefinition of anyons in Eq. (99). The orders of
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basis anyons correspond to the diagonal elements of matrix
A. In this example, we conclude that the fusion rules are
Zy, X 71, by omitting the trivial anyons of order 1.

D. Topological spins from the T-junction process

Given the polynomial representation of stabilizers and
anyons, the topological spin of anyons can also be deduced
from the polynomial description of anyons [43]. In this
context, we reformulate the T-junction process [44,80,
113—115], as depicted in Fig. 4 and described by Eq. (6),
using polynomial formalism. Given the Pauli operators P}
and P}, represented in polynomial formalism, which facil-
itate the movement of anyon v along the x and y directions
by n, and n, steps, respectively, we define extended string
operators uy, iy, u3 as follows:

U1 — (qunx +x*(q*1)nx + ... +x*”x)P)lC1’

Uy=04y™ 4y 2 ... +y )P, (101)

Us = —(1 +x™ +x¥ 4 ... 4 x?")PY,

where U; and U; are the left- and right-moving string
operators along the x direction, respectively, and U, is the
downward-moving string operator along the y direction.
Each string has been lengthened by a factor of ¢q. Hence,
the topological spin of anyon v can be written as

. 2mi
6(v) = lim exp (7[U1, U, U3])
qA)OO

-
= qlggo exp (%[Uu U]+ [Us, Us] + [Us, U1]> ,
(102)

where [4, B] is the Z4 coefficient of x%)° in 4T AB. Note
that while anyon v is a pointlike particle, it possesses a
finite size. The limit ¢ — oo is implemented to ensure that
the T-junction process yields the correct statistics. How-
ever, in practical applications, it is unnecessary to extend
this limit to extremely high values of g. Instead, we need
only to ensure that the lengths gn, and gn, are signifi-
cantly larger than the sizes of the anyons. In this study,
we begin our calculations of the braiding statistics at g = 2
and gradually increase ¢g. Once the resulting braiding statis-
tics stabilize and become independent of ¢, we conclude
that the selected ¢ value is sufficiently large.

V. ALGORITHM FOR EXTRACTING
TOPOLOGICAL DATA

In previous sections, we discussed how to obtain string
operators by solving linear equations and how to obtain a
linearly independent anyon set by the (modified) Gaussian
elimination over fields or non-PID rings. Armed with those

techniques, we can develop an algorithm that extracts topo-
logical data from a translation-invariant Pauli stabilizer
model.

In this section, we describe the algorithm that diagnoses
and extracts anyonic statistics from the input translation-
invariant Pauli stabilizer model, which is written as vectors
of polynomials over a R = Zg[x,y,x~!,y~']. The output
of this algorithm includes the string operators of anyon
excitations, their fusion rules, topological spins, and braid-
ing statistics. Note that this algorithm is applicable to
nonprime qudit dimensions such as Zg or Zg qudits. This
algorithm involves two parts:

(1) Solve string operators for all anyon types.
(2) Obtain fusion rules and topological spins of anyons
from given string operators.

It has four adjustable parameters: the truncation degree
k for polynomials [in Eq. (58)], range of the translation
duplicate map m [in Eq. (59)], range of the longest string
Ny, N, (will be discussed in this section), the length of
extended string operators ¢ [in Eq. (101)].

In Sec. V A, we provide a detailed description of obtain-
ing anyon string operators by solving linear equations. In
Sec. V B, we discuss the second part of this algorithm to
extract topological spins and braiding statistics.

A. Extracting string operators from
translation-invariant Pauli stabilizers

A prior step of this algorithm is to check whether the
translation invariant Pauli stabilizer code has topological
order; if so, this algorithm calculates the anyon string oper-
ators. The following steps describe the routine of obtaining
anyon string operators and their fusion rules.

e Step 1: Given input S;,i = 1,...,1, a generating set
of stabilizers. Error syndromes €(X'), e(Z) can be
obtained by Eq. (26) for a given set of stabilizers S;.

e Step 2: Follow the procedure described in
Sec. IVB 1.

e Step 3: Repeat steps 3-1 to 3-3 forn, = 1,...,N,,
where N, are adjustable parameters that determine
the longest string we search in the x direction. After
we sweep from n, = 1 to n, = N,, we will obtain
the numbers of anyons for choices of n,. We will
choose the smallest value of 7n, that reaches the
maximum number of anyons.

— Step 3-1: Use the error syndromes €(X), €(Z)
and (1 — x™) to construct a matrix M 3 in the
form of Eq. (64).

— Step 3-2: Depending on prime or nonprime
d, we perform Gaussian elimination or the
modified Gaussian elimination in Sec. IVB
on the matrix M3;. We obtain the relationship
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between its rows. Hence, we get the coefficients
(o, B,y,6) and anyon v in Eq. (28).

— Step 3-3: We have a set of anyons with
redundancy. For example, it includes an anyon
spanned by others (up to syndromes of local
Pauli operators). To obtain the most compact
form of anyons, we would like to keep the basis
anyons and exclude others, following the pro-
cedure in Sec. IV C. We first use the matrix M 1
formed by the error syndromes. For the matrix
M 1 over Z,, when d is prime, we sequentially
insert anyon row vectors into the matrix one
by one and check the rank of the matrix after
insertion (or use Theorem 3 for nonprime d).
If the rank of the matrix is unchanged after
adding the new anyon (or the anyon is spanned
by the matrix), then this newly added anyon
is generated by the existing anyons. The new
anyon that can be jointly generated by existed
anyons and local syndromes will be neglect and
we proceed with the rest of anyons such that
only inequivalent anyons will remain. Finally,
we compute the Smith normal form of the anyon
relation matrix to obtain the basis anyons and
their fusion rules [133].

e Step 4: Using the coefficients of the error syndrome
polynomials in Eq. (28), we can obtain the string
operators in the x direction. More explicitly, from a
solution of the equation

(1 =x™)v = pi(x,y)e(X) + p2(x,y)e(X2)
+ p3(x,y)e(Z1) + pa(x,)e(2),

(103)
the string operator P, is obtained as
D1 (X,J’)
D2 (an’)
P, ==L 104
P30e) (104
pa(x,y)

Step 5: From anyon v solved in the x direction,
we utilize the matrix MGE(M ;) [modified Gaussian

elimination of M 1 in Eq. (89)] and Theorem 3 to
solve the anyon equation in the —y direction:

(I =y ™) = ps(x,y)e(X)) + ps(x,y)e(X2)

+pr(x,y)e(Z)) + ps(x,p)e(2,).
(105)

From this solution, we obtain the string operator P,
in the —y direction

ps(an/)

_ p6(an’)
Br=1picen |- (106)

ps(x,y)

The P, and P, are shown in Fig. 9(a).

Now, we have obtained the string operators of the basis
anyons.

B. Extracting topological spins of anyons

In Sec. V A, we have demonstrated how to extract anyon
string operators by solving the anyon Eq. (28), we can
obtain the string operators of all anyons, labeled P. and
P;, which represent the string operator of the ith anyon in
the x direction and —y direction, respectively. To obtain
the topological spin between all anyons, we perform the
following steps:

(1) Obtain the topological spin 6 for each basis anyon
by using the T-junction process in Sec. [V D.

(2) Construct the string operator for anyon v; x v;
where v; and v; are basis anyons. For example, for
anyon v; and anyon v,, we first construct string
operators that move v; X v, in the x and —y direc-
tions of anyon vy x v, as Py'""? = P?P;' and
Py = P)2P)'. Then, we substitute P;'*" and
P,"*"? in Eq. (101) to obtain long string operators
Ui, U, Us. Because anyon v X v, may have non-
negligible size, we use the extended string operators
Ui, U,, U; as shown in Fig. 9 such that the braiding
process is unaffected by the size of anyons. We have
extended the length of string operators in x and y
directions to g times of the original length.

(3) Finally, we can calculate the topological spin of
anyon vy X v;:

O(v; X vy)

2mi
= exp (7[(]1, U, U3]>
2mi
= exp (T[Ula U]+ [Us, Us] + [Us, U1]> .

Using the fact that the mutual braiding
braiding B(vi, v2) = (B(v; X v2)/0(v1)0(vy)) (see
Appendix A), we can obtain the braiding between
anyons v; and v;.

C. Rearranging the basis anyons

This section demonstrates a method that rearranges the
basis anyons of a Z, (prime p) Pauli stabilizer code to
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(a) (b)
—LL'_n”ngl X V2 P;1><v2 U1 — (L_n* + :L‘_in' . )P:l XV U3 — _(1 + e + .”L‘2n1 4+ )P:l X Vg
P;l Xv2
U2 — (1 4 yfny 4 y72ny N )P;'I X V2
FIG. 9. (a) The T-junction process for short string operators. Anyon v; X v; is the composite of two anyons v; and v,, which might

have a finite size larger than the short string, so the process might fail to detect the correct statistics of v; x v,. (b) To avoid the size
effect of anyon v; x v, we extend P, and P, to the long string operators U;, U,, Uz, which is g times longer.

decoupled {e,m} pairs in finite copies of Z, toric codes.
For example, the 2D honeycomb color code is two copies
of Z, toric codes, and we aim to find the decoupled pairs
{e1,m} and {ey, m,} from the basis anyons we found. The
procedure is as follows:

(1) Start from the entire anyon set ) and compute all
topological spins. We search for a nontrivial boson
b, defined as a bosonic anyon that is not equiva-
lent to the trivial anyon (the identity anyon) 0 :=
[0,0,...0]. The existence of such a nontrivial boson
is proven in Ref. [44]. The order of » must be p.

(2) We find another anyon ¢ such that

B(b,c) = exp (@)
p

The existence of such ¢ is proved in Ref. [134].
Without any loss of generality, we can assume
c to be a boson. If ¢ is not be a boson, i.e.,
0(c) = exp(2rwin./p), we can redefine it as ¢’ =
¢ x b7 This ensures that ¢’ is a boson, with
0(c') = 6(c)B(c,b)™" = 1, while maintaining the
same braiding properties with b.

(3) Start from {b,c} and follow the procedure in
Sec. IV C to obtain the basis anyons set:

(107)

Vbasis = {b,C, v1>v2>v3a'~'}' (108)
We can further assume that all v; have no braiding
with b. If a v; exhibits braiding with b, B(v;,b) =

_®
exp (Zninjb) /p), it can be redefined as v; x ¢ .

Similarly, if B(v;,c) = exp<2nin;c)/p>, v; can be

redefined as v; x b , ensuring that v; also has
no braiding with ¢. Consequently, the pairs b, ¢ are
effectively decoupled from the other basis anyons,
denoted as {e, m }.

(4) Consider a new set of anyons generated by
{v,v2,vs3,...}. Repeat the above steps to obtain
{e1, m} decoupled from the remaining basis anyons.
Continue until all {e, m} pairs are found.

After the rearrangement of the basis anyons, the table of
topological spins and braiding statistics, defined in Table I,
has the specific form:

€1 ny (%) niy (4] nms
e I | —1] 1 1 1 1
m | —1] 1 ] 1 111
e | 1 1 1 | —-1] 1 |-
my| 1| 1 [ 1|1 1 ]1] -} (109
es | 1 | 1 [ 1T [ 1] 1 ~-1
my | 1 1 1 I | —1] 1

VI. APPLICATIONS ON VARIOUS QUANTUM
CODES

In this section, we apply the algorithm to various quan-
tum codes to test the TO condition and extract their topo-
logical data (if there exist). We start from the modified
color codes in Sec. VI A, which are self-dual CSS codes on
Z, qubits. According to Ref. [43], they can be decomposed
into finite copies of Z, toric codes. Our algorithm confirms
this and finds the {e, m} pairs in the decoupled copies of the

TABLE 1. Topological spins and braiding statistics of basis
anyons {vy, v, V3, Vs, . . .}.

[ %] U3 V4
V1 0 (v1) B(vi,v2)  B(vi,v3)  B(vi,v4)
v2  B(vp,vy) 0(v2) B(vy,v3)  B(vz,v4)
v B(vz,v)  B(v3,v2) 0 (v3) B(v3,v4)

vy B(vg,v1)  B(vg,v2)  B(vs,v3) 0(vq)
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TABLE IL

The topological orders of various examples in Fig. 1 and, obtained from the algorithm described in Sec. V. Here, we

check the 2D honeycomb color code and double semion code with Z4 qudits (for details see Sec. I within the Supplemental Material

[136]), which serve as sanity checks.

Model

Topological order

2D honeycomb color code (example (1))
Example @)

Modified color code A (example )
Modified color code B (example @)
Modified color code C (example ()
Modified color code D (example 6))

Z4 CSS code induced from double semion
Double semion code with Z4 qudits
Six-semion code with Z4 x Z4 qudits

Two copies of Z, toric codes
Does not satisfy TO condition
Four copies of Z, toric codes
Eight copies of Z, toric codes
Four copies of Z;, toric codes
Six copies of Z, toric codes
Two copies of Z, toric codes
Double semion topological order
Six-semion topological order

7, toric codes. In Sec. VI B, we investigate anyons of CSS
codes on Z4 qudits induced from the double semion code
[135]. We confirm the conjecture in Ref. [135] that this
code is two copies of Z, toric code and find the decoupled
{e, m} pairs. In Sec. VI C, we investigate a model called the
six-semion code defined on Z4 x Z4 qudits whose basis
anyons are v; and v, with topological spin —i that indi-
cates that v; and v, are (anti)semions. The mutual braiding
between them gives the i phase. The topological orders
detected for these examples are summarized in Table II.

A. Modified color code

We construct six examples of self-dual CSS codes on
the 2D honeycomb lattice, denoted as modified color

eDD =10,1+x+7),
eZ2)O =1 +x+7,0),

l+x+y+xy
S@— I1+y+x+xp
1 - 0 D
0

eD@ =101 +x+7 +y],
eZ)D =1 +x+7 +x,0],

codes. Their stabilizer terms are shown in Fig. 1. Although
Ref. [43] has shown that all the 2D translation invari-
ant Pauli stabilizer models for prime-dimensional qudits
can be decomposed into finite copies of toric codes, we
do not have prior knowledge about the number of copies
of toric codes that these modified color codes can be
decomposed to. We use these modified color codes as a
showcase to demonstrate the effectiveness of our algorithm
in determining the topological data. For examples that sat-
isfy the TO condition, the algorithm finds string operators,
fusion rules, topological spins, and braiding statistics of
anyons.

The stabilizers and syndromes of those six examples
are

0
ol 0
ST =155+, | (110)
I+y+x
e D =101+ +7, o
e2)D =1 +y +%0),
0
@ _ 0
S = ik vty | (112)
I+y+x+xy
)@ =10, 14y +3+5]
2 y 2% (113)

eZ)® =[1 4y +3+3,0],
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l+X+y+Xxy+xy
S@— I14+y+x+xy+xy
= 0 )
0

e =[0,1 +x+7 +xv + 5],
eZ)® = [1 +x +7 +xv +57,0],

1+X+y+3 +xp + 3
l+y+x+xXy+xy+xy
0 ,
0

sP_

cX)® Z (0,1 +x+7 +xv + T + 171,

e@&®=ﬂ+mﬁ+w+ﬁ+ﬁm,

L+X+y+y°

1+y+x+5
O b
0

s® -

e = [0, 1+4x+7 +57,
e(Z)Q =1 +x+7+7%0],

1+X4+y+x°

1+y+x+3°
0 b
0

s® -

cn® = 10,1 +x+7 + 57,

eZ2)©® =[1 +x+7+57°,0],

Upon inputting the stabilizer and syndrome polynomials
into the algorithm, we found that example ) does not
exhibit topological order, whereas the others do. The oper-
ator described in Fig. 10 commutes with all stabilizers in
example (2), yet it cannot be generated by those stabilizers:

The algorithm provides the string operators of basis
anyons for examples that satisfy topological order condi-
tions, with pictorial descriptions shown in Sec. I within the

0
o 0
ST | Trs o tw | (114)

I14+y+x+xy+xy
)@ =[0,1 +y +T+x + 31, .
e(2)® = [1 +y +T+x +57,0],

0

@ 0
Sy = l+X+y+xy+xy+xy |’ (116)

14+ 7 +x+3 +x9 + 7
c)® =01 +y+34+0+T+5], .
6(32)@=[1+y+)_c+xy+@+)_cy,0],

0

S = 0 118
e (11

1+7 +x+5
() =[0,1+y +7+2,

(119)
e(Z2)® =[1+y +%+y%0],
0

sO_| 0 120
2 T | I4+x+y+x7 | (120)

1+y+x+x°
e)® =101 +y +5+07,

(121)

e2)® = [1 +y +3 407,01

(

Supplemental Material [136]. The algorithm then performs
the T-junction calculation and obtains the topological spins
and braiding statistics for the examples (D, @), @, ©), ©®.
We confirm that modified color codes exhibiting topologi-
cal orders can be expressed as finite copies of toric codes.
Table III displays the anyon pairs we identified, which
agree with the analytical results obtained for the 2D honey-
comb color code. The braiding statistics for examples 3),
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FIG. 10. The local Z operator, marked in red, commutes with
all the X stabilizers shown on the left. It has been verified that
this local Z operator cannot be generated from the stabilizers.

@), (), and (6) are delineated in Tables III, IV, V, and VI
of the Supplemental Material [136]. We validate that the
anyons in examples ), @, ), and ) are equivalent to
finite copies of toric codes, as indicated in Table II.

This matches the theorem [43] that 2D Z, topological
Pauli stabilizer codes can always be decomposed to copies
of Z, toric codes.

B. CSS codes induced from the double semion

In Sec. VI A, we have shown that our algorithm gives
us the expected result for 2D Z, topological codes whose
local dimension is a prime integer. In this subsection, we
apply our algorithm to a more challenging case, which is
a topological Pauli stabilizer code defined on nonprime-
dimensional qudits, and show its capability of finding
the anyons for a topological Pauli stabilizer code with
nonprime qudits.

There is a recent paper [135] discussing the mapping
between qudit Pauli stabilizer codes to CSS codes. The
authors map the double-semion Pauli stabilizer code that

TABLE III. Topological spins and braiding statistics of
anyons for the 2D honeycomb color code (example QM10163-
struc2x.pngo1;IMG ). We can see this table is formed by two
decoupled copies of toric code, where {vj,v,} and {vs,v4}
correspond to {e;, m;} and {e,, m;} of two copies of toric code.

is a non-CSS code on Z4 qudits to a CSS code by doubling
the number of qudits. This code was conjectured to be
equivalent to two copies of Z, toric codes. Our algorithm
confirms the conjecture.

The stabilizers of this CSS code are

. ,
X1X2 XI |_X1
Si=_ gﬂ\ﬂX;XQJ . S = X7 XY,
i .
| X3
2
83 = X2 s Sy = 2
_x2| !
i | (122)
% ,
21z, 7} %27
85 = _Zl UZIZ; P 86 - Z|22_ p 522 5
i “
. 7
Sy = 2ﬁ1 , Sg= Z22
—Z; |

In Eq. (122), we assign two Z4 qudits on each edge whose
Pauli matrices are colored blue and red, respectively.

We utilize our algorithm to investigate the anyons in the
CSS code and find anyon string operators, fusion rules,
topological spins, and braiding statistics. The topologi-
cal spins and braiding statistics of the basis anyons are
shown in Table IV, which shows there are two decoupled
{e, m} pairs: {vy, v3} and {vy, v4}. Moreover, 2v; ~ 2v; ~
2v; ~ 2v4 ~ 0 indicates that all basis anyons have order 2.
Hence, this model is two copies of Z;, toric codes.

TABLEIV. Topological spins and braiding statistics of anyons
for the CSS codes induced from double semion code. We can see
this table is formed by two decoupled copies of toric code, where
{v1, v3} and {v,, v4} correspond to {e;, m, } and {e,, m;} in the two
copies of toric codes.

V1 (%) V3 V4 V1 1%} U3 Vg4
V] 1 -1 1 1 vy 1 1 -1 1
vy -1 1 1 1 ) 1 1 1 —1
U3 1 1 1 -1 V3 -1 1 1 1
Uy 1 -1 1 V4 1 -1 1 1
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TABLE V. Topological spins and braiding statistics of basis
anyons in the six-semion code. The mutual braiding between v,
and v, gives the i phase, and the topological spins of v; and v,
are —i, indicating that v; and v, are antisemions.

Vi U2

V1 —I i
(%) i —i

C. Six-semion stabilizer code

The six-semion stabilizer code has stabilizers

A
2
Xlzixl z, |2—Zl—|2
Sy -Xlxz!{XIZlXﬂ , Se=21 P 7,
Z2
XX, 1

|
e

Xzt z Z5
242 2 Iz_ —|2
s aeg ) 3
2.
X, Z
|
2
v [T
85 = J 17 '56 = 212 )
—Z; |
| X2 —
X2 S
S = Jz, Sg = ZJZ_§ .
72375 ]] (123)

This model can be regarded as condensing e?m} and

ele3m3 anyons in two copies of Zj toric codes [34]. The
Ss, 86,57, S are the condensing terms. The first four
terms of Eq. (123) come from the stabilizer group of two
copies of Z4 toric code. The anyon theory of this model
includes four bosons, six semions, and six antisemions. We
use the algorithm discussed in Sec. V to analyze this model
and find the basis anyons v; and v,. The topological spins
and braiding statistics of them are shown in Table V. The
fusion rules are 4v; ~ 4v, ~ 0, indicating that both have
order 4.

VII. TIME COMPLEXITY OF THE ALGORITHM

In this section, we discuss the time complexity of our
algorithm for extracting topological orders from Pauli sta-
bilizer codes with Z; qudits. The running time of the
algorithm depends on several parameters, including the
number of qudits per unit cell w, the number of stabilizer

generators ¢, the geometric range of stabilizers r, the trun-
cation range k [as defined in Eq. (58)], and the translational
duplicate range m and m’ [as described in Egs. (59), (89),
and (91)]. For simplicity, we might use m to refer to both
m and m', as they are approximately equal. The pseu-
docode for our algorithm is provided in Appendix C. The
algorithm consists of the following steps:

(1) Check the topological order condition of given sta-
bilizer codes. The procedures outlined in
Secs. IVA1 and IVB1 employ the (modified)
Gaussian elimination algorithm twice to compute
the matrices M 1 in Eq. (60) [and Eq. (89) for non-
prime qudits] and M 2 in Eq. (62) [and Eq. (91) for
nonprime qudits] where M 1 is a [2w@2m + 1)?] x
[1(2k + 1)2] matrix and M, is a [t2m' + 1)?] x
[(2k + 1)?] matrix. The size of M 2 is smaller than
M 1, 80 the time complexity of this step is dominated
by }‘\4/ 1-

(2) Solve the anyon equations, as illustrated in
Secs. IVA2 and IV B 2. This step involves apply-
ing the modified Gaussian elimination to matrix M 3
in Eq. (64) [and Eq. (92) for nonprime qudits] for
n=1,...,N such that all anyons are found. This
implies that the modified Gaussian elimination must
be performed N times on the [2w + £)(2m + 1)?] x
[#(2k + 1)%] matrix Ms. This step is the most time
consuming, dominating the running time in compar-
ison to the previous steps where modified Gaussian
elimination was applied to M 1 and M 2

(3) Identify the equivalence classes of anyons. The
details are discussed in Secs. IVA3 and IVB3.
For prime-dimensional qudits, equivalence can be
readily verified by computing the rank, akin to
the Gaussian elimination algorithm. For nonprime-
dimensional qudits, anyons are examined individu-
ally. Whenever an anyon is encountered that cannot
be generated by the existing set Ve, it is added to
Veen, and the matrix M is updated using the modi-
fied Gaussian elimination algorithm. Consequently,
the total number of applications of the modified
Gaussian elimination algorithm is limited to the total
number of inequivalent anyons in the topological
order, which is independent of the parameters in our
algorithm.

(4) Compute the fusion rules of anyons. The process is
described in Sec. IV C, which computes the Smith
normal form of the anyon relation matrix.

For an 7 x ¢ matrix, the Gaussian elimination (GE)
algorithm operates in O(r - ¢ - min(r, ¢)) time. According
to Theorem 4, the modified Gaussian Elimination (MGE)
algorithm applied to an » x ¢ matrix is equivalent to
the Gaussian elimination (GE) algorithm applied to an
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(r 4+ ¢) x ¢ matrix over Z. Therefore, one might anticipate
its running time to be O(logd - (r + ¢) - ¢*), where logd
factor arises from executing the Euclidean algorithm in the
principal ideal domain Z. However, it is important to note
that in the implementation of the MGE algorithm on matrix
A in Eq. (74), rows are inserted one by one. Consequently,
the number of rows actively involved in the computation
remains r, not » + c¢. Therefore, the effective time com-
plexity for the MGE algorithm remains O(r - ¢ - min(z, ¢)).
Additionally, if we account for tracking the relations as
depicted in Eq. (83), the actual running time scales with
O(r - (r + ¢) - min(#, ¢)) due to the necessity of appending
an extra r columns to the right side of A’ [137]. Conse-
quently, the computational complexity for GE and MGE,
including tracking of relations, is characterized as follows:

ifr <ec,

P LU GO i
o), ifr>c,
(124)
MGE - {0(logd~ P +r%0), ifr<c,

"0 (logd - (Pc+rc?)), ifr>c.

We have empirically validated the time complexity of exe-
cuting the GE and MGE algorithms for » x ¢ matrices. Our
method involved generating random, nearly dense » x ¢
matrices—defined as having densities close to 1, where
density refers to the ratio of nonzero entries to the total
number of entries. We subsequently recorded the time to
perform the GE and MGE on these matrices. For this
experiment, 7 and ¢ were chosen sufficiently large to ensure
that other factors contributing to the time complexity were
negligible.

The results, plotted for matrix sizes r = 50,100,
150,...,2000 with ¢ =2000, are displayed in Fig. 11.
From these plots, we observe that the running time of the

—— Third-order fitting (MGE)

100 Second-order fitting (MGE)
—— Second-order fitting (GE)

» 80 Linear fitting (GE)
2
0E> MGE over Zg
= 60 x  GE over Zs «
o X
£ X
E x X
S5 40 X
o x

i Jx .
0

0 250 500 750 1000 1250 1500 1750 2000
r

FIG. 11. Average running time of Gaussian elimination and
modified Gaussian elimination for randomly generated r x ¢
matrix for » = 50,100, 150,...,2000;c = 2000 on a personal
computer. Each data point is averaged over 100 samples of
random matrices.

MGE follows a cubic function when r < ¢, and transi-
tions to a quadratic function when » > ¢. These findings
are consistent with our theoretical analysis and confirm the
predicted scaling behavior.

Typically, computing the Smith normal form is con-
siderably more time consuming than executing the GE
algorithm on matrices of the same size [138]. However, in
the described procedures, the Smith normal form is com-
puted for the anyon relation matrix, which is constrained
by the number of inequivalent anyons. Consequently, the
computational time does not escalate with the truncation
range k and the translational duplicate ranges m, m’. Con-
sequently, executing the GE or MGE algorithm accounts
for the majority of the computational effort. Accordingly,
our analysis focuses primarily on estimating the time com-
plexity of the GE or MGE, which contributes the most
significant terms to the overall time complexity of our
algorithm. From our previous analysis, the time complex-
ity for nonprime qudits is predominantly governed by the

execution of MGE N times on M 3

O (Nm*(w + > (m* + k%) - logd - min ((w + ym?, tk?)) .
(125)

As illustrated in Refs. [41,117], while the existence of
string operators capable of moving anyons is guaranteed,
these operators can be long compared to the interaction
range. The length of the string operators is only bounded
by [sing :=d x 2", where d is the qudit dimension and r
is the geometric range of stabilizers. The parameters N,
k, and m all scale with the length /ins. Consequently, the
worst-case running time of Eq. (125) is bounded by
O(logd - (w+1)*- I

string

). (126)

However, when solving for the string operators in the x
string, we may select a rectangular truncation region that
extends [ying in the x direction and remains constant in the
y direction. As a result, the terms m? and k> are replaced
by m.m, and k.k,, respectively, which only scale linearly
with [ging. Thus, the worst-case running time is instead
bounded by

O(logd - (w+ %I} ).

string

(127)

Fortunately, the worst-case performance scenarios are lim-
ited to exotic examples constructed in Refs. [41,117] and
are not typical of the examples usually encountered. In
practical applications, it is sufficient to select N < 5 and
m, k < 10 to effectively identify all anyons in the examples
studied in this paper.

VIII. DISCUSSION

This work has introduced an algorithm to detect topo-
logical order and extract anyon string operators from trans-
lation invariant Pauli stabilizer codes. Additionally, the
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algorithm enables the derivation of braiding statistics and
fusion rules from these string operators. Applicable to both
prime and nonprime-dimensional qudit stabilizer codes,
this algorithm has been tested across various translation-
invariant Pauli stabilizer codes, demonstrating its efficacy.
As a result, it serves as an efficient tool for characterizing
the topological orders and anyon theories associated with
translation-invariant Pauli stabilizer codes.

Characterizing and constructing various topological
orders in qudit systems represents a challenging and endur-
ing problem. Recently, Ref. [34] illustrated the possibili-
ties for constructing diverse topological orders using 2D
translation invariant Pauli stabilizer codes with nonprime-
dimensional qudits. However, the analytical and numeri-
cal characterization of topological codes with non-prime
dimensional qudits was previously lacking. This work
presents an algorithm offering a numerical approach to
characterizing such topological codes. An intriguing future
research direction is exploring Pauli stabilizer codes that
exhibit exotic topological orders. For instance, various
quantum codes could be constructed using the Quantum
Lego [139-141] formalism; applying our algorithm to
characterize the topological properties of these Lego codes
will be interesting. Recently, in Ref. [142] it is shown the
connections between the underlying tensor network struc-
ture of quantum Lego codes and quantum weight enumer-
ator can be used to efficiently predict the properties of the
codes, including code distance. Another interesting ques-
tion is investigating the implications of our polynomial
method on the tensor network side.

In addition to Pauli stabilizer codes, extensions of
the stabilizer formalism, such as the XS [143] and
XP formalisms [144,145], have been developed. These
extensions modify the conventional stabilizer approach by
integrating roots of Pauli Z into the stabilizer. Since XP
stabilizer codes also possess a symplectic representation,
extending the polynomial formalism and our algorithm to
accommodate these codes is possible. This adaptation is a
critical first step toward exploring non-Pauli or even non-
Clifford stabilizer codes, which could potentially exhibit
interesting non-Abelian anyon statistics that are essential
for universal topological quantum computation. Beyond
constructing and characterizing topological order from
polynomial formulations, the topological data can be rig-
orously described by a G-crossed braided fusion category
[146]. This framework is crucial for the classification of
topological orders, as elucidated in Refs. [147,148]. Our
approach effectively verifies these classifications within
Abelian theories using alternative methods.

In this work, we demonstrate the applicability of our
algorithm across various topological orders by examining
extensive cases. Although topological orders are typically
discussed concerning closed manifolds, exploring topo-
logical orders with gapped boundaries or defects, and
their relationship to anyon condensations [149,150] is

also crucial. A future extension of this algorithm could
involve generating all possible gapped defects and bound-
aries for any given Pauli stabilizer codes. Furthermore, we
contemplate a 3D generalization of our algorithm. Iden-
tifying mobile particle excitations in three dimensions is
straightforward, similar to our approach in two dimen-
sions. However, challenges arise with the “fracton” phase,
where excitations exhibit restricted mobility. We should
replace previous string operators with “fractal operators”
to detect these excitations. Additionally, a new protocol is
necessary to detect loop excitations. One potential method
involves a dimensional reduction process by compactify-
ing one dimension in 3D, transforming the system into
a quasi-2D framework. This adaptation would allow our
2D algorithm to detect both particle and compactified loop
excitations effectively.

Another potential generalization involves subsystem
codes [37,134,135,151] and Floquet codes [60,62,152—
154]. Subsystem codes offer a relaxation of the require-
ment that each term in the Hamiltonian must commute;
instead, noncommuting terms act as gauge operators.
The commutants of all gauge operators then form the
stabilizer group. Furthermore, Floquet codes exploit the
temporal sequence of measurements, introducing more
structural complexity than subsystem codes. Each mea-
surement cycle induces an instantaneous stabilizer code,
such as the toric code in the original example [60]. Thus,
applying our algorithm in these scenarios to explore a
broader range of subsystem and Floquet codes would yield
valuable insights.

Furthermore, an additional extension of our polyno-
mial formalism involves generalizing the Z?-translational
symmetry to more intricate group structures, including
non-Abelian groups. Currently, we focus on Pauli stabi-
lizer codes on two-dimensional lattices, which exhibit a Z2
symmetry generated by translations in the x and y direc-
tions, represented by generators x and y in the Laurent
polynomial ring. We aim to broaden this to incorporate
more exotic graph with any translation group G (poten-
tially non-Abelian), where the translation generators are
denoted as gi, g, g3, etc. Within this framework, we
can still employ a “polynomial” ring over these gener-
ators. This extension would facilitate the representation
of Pauli stabilizer codes over the Cayley graph of G, a
technique widely used in the construction of quantum low-
density parity-check (qLDPC) codes [99,100,155—157]
recently. We plan to adapt our algorithm to these Cay-
ley graphs, anticipating that our numerical approach will
provide deeper insights into these advanced qLDPC codes.
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APPENDIX A: RELATION BETWEEN BRAIDING
STATISTICS AND TOPOLOGICAL SPINS

In this Appendix, we review how the topological spins
in Abelian anyon theories completely determine the braid-
ing statistics. Specifically, from the topological spin given
in Eq. (6), we derive Eq. (7). We again consider the T-
junction setup as shown in Fig. 4. Using the T-junction,
braiding anyon a counterclockwise around anyon b is seen
to be given by

J

a,

By(a,b) = (W) Wi wi(wh) T wh

< (W ws oy maaw . (A1)
Suppose that a starts at y;(0) and b at y3(0). Then this
corresponds to moving a and b in the following order:

(1) a:y1(0) — p — 1(0),
(2) b:y3(0) > p — 71(0),
(3) a: y2(0) — p — y3(0),
4) b: y1(0) — p — 1(0),
(5) a:y3(0) > p — 71(0),
(6) b: 2(0) — p — ¥3(0),

thus performing the braid as desired. Using from Eq. (6)
that

0(a) = W) WD s, (A2)
we will show that
. 0(a x b)
Bg(a, b) = W (A3)

Ultimately, this follows from the definition W**? :=
WP W¥; that is, moving the composite anyon a x b is equiv-
alent to moving each anyon separately along the same
path.

Since each W is a Pauli, we have that

a,b
W?W/b =zij WJbW7

for some complex numbers z; Jb. Starting from Eq. (A2), we have that

9((1 % b)—l — (Wzlsz)Tszsz(Wgsz)TWzllxb(ngb)Tngb

= (W whws vt W ws) T (wh W
= G S DT W) 7253

O =z or)Tor? (A4)
Wi = G )T,
(AS5)
(A6)
Ty iy wh (A7)

= (@) ARz G T D T ) (W) (W) T2 (1) T () T 2 () T e () T

(A8)

= (@) Rz ) T D T ) (W) (W) T2 (1) T () T 2 (v T () T

b\ — b _a,b b\ — b _ab b\ — b\ —
= (23,3) 1Z§,1,3Z‘11,1(Z(11,2) 12‘11,322,2(2(11,2) 1(23,3)
b b\—1_ab,_ab\— 3 + +
X 215(@55) T s ) T ) T W o tm (ws) T wE () T (w) T ows) T

b, _ab\—1_ab,_ab\—1 by—1_ab -1 —1
=Z§,2(Z¢11,2) Zg,l(zg,l) (23,3) 27,36(5’) O(a).

(A9)

1_ab,_aby—1_ab,_ab\—1_ab, _ab\—1
21,3(23,1) 22,1(21,1) Z3,2(Zz,2)

(A10)
(A11)
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O(a x b)=

FIG. 12. Relation between 0(a x b), 0(a),0(b) and the mutual braiding B(a, b). This equality indicates 6(a x b) = 0(a) x 6(b) X

B(a,b).
Thus,

Q(leb) a,b\—1_a, a,by—1_a,b_a, a,b —

m :(235) lzl,g(zz,f) lzs,fzz,g(zl,g) L (A12)
Meanwhile, from Eq. (A1),

By(a, b) = (W) waow) wows)t wh cws) tws cwy P (wg) T (A13)
= @) I ) v v T v T (Al4)
= (597 AL T Ty ) s (A15)
= (37 A2EN T AIELCED (A16)

Comparing to Eq. (A12), we see that

O(a x b)

Bota.b) = 5 o)

(A17)

Another way to interpret this equation is to treat the topo-
logical spin 6(a) as a 27 rotation of an anyon a, according
to the spin-statistics theorem. As depicted in Fig. 12, the
27 rotation of anyon a x b can be decomposed into three
pieces: the 27 rotation of anyon a, the 277 rotation of anyon
b, and the mutual braiding between anyons a and 5. How-
ever, we emphasize that this is a physical picture instead of
a rigorous proof derived by Egs. (A12) and (A16).

APPENDIX B: THE HERMITE NORMAL FORM
AND THE SMITH NORMAL FORM

Throughout this work, we have been broadly interested
in solving linear systems of equations over a ring R. Specif-
ically, suppose we have an r x ¢ matrix 4 with entries
Aj; € R and a vector b € R" represented by a column b; €
R. To solve the system defined by 4 and b, we must find a
vector x € R¢ such that Ax = b, where = denotes equality
within R. We will denote the linear system by (4, b)g.

When R is a field K, such as R or a finite field F,»,
(4, b)k can be solved efficiently using Gaussian elimina-
tion algorithm. By performing row operations, we effec-
tively transform the system Ax = b into CAx = Cb, where
C € GL(r,K) with GL denoting the general linear group.
One can efficiently find C such that C4 is in reduced
echelon form, making x easy to find.

When R is not a field but instead only a principal ideal
domain (PID), an analogous procedure finds C € GL(7, R)
such that CA4 is the Hermite normal form (HNF) of 4 [158].
The HNF of 4 can be efficiently found. The most impor-
tant property of the HNF is that it is upper triangular. When
R =17, C is called a unimodular matrix. Using the HNF,
linear systems (4, b)z over Z can be efficiently solved. The
ring of modular integers Z, = Z/nZ is not a PID, but lin-
ear systems can still be solved using the HNF by turning
the system over Z, into a system over Z. Specifically, we
transform the system Ax = b (mod n) into Ax — ny = b,
where y € 7" is an additional set of variables. We define
the new (r + ¢) x 1 variable vector X = x @ y and the new
r X (r+ ¢) matrix 4 = (4 —nl,y,). The value of x in the

solution X to the system (4, b)7 over Z is the solution to the
system (4, b)z, over Z,.

030328-28



EXTRACTING TOPOLOGICAL ORDERS...

PRX QUANTUM 5, 030328 (2024)

In this work, we are most interested in solving linear
systems (4,b)g over the polynomial ring R = Z,[x,y].
Using the same procedure above, we can reduce this to
solving linear systems (4,b)r over the polynomial ring
R = Z[x,y]. By truncating the polynomials coming from
Z[x,y] to some maximum degree d, we obtain a new
(larger) linear system over simply Z.

One natural question is: can we solve the linear system
over Z[x,y] directly, without truncating the degree of the
polynomials? Unfortunately, Z[x, y] is not a PID, and thus
the HNF cannot be used. We cannot, in general, get around
degree truncation. Specifically, we can effectively solve
linear systems over Z[x, y] if and only if we can construct
an algorithm that outputs an upper bound on the polyno-
mial degrees that occur during the solving algorithm. The
= direction is obvious, and the <= direction follows from
our discussion above, where we reduced a general linear
system over Z[x,y] to a linear system over Z once we
picked a degree at which to truncate. In Eq. (28), for exam-
ple, there is no general way of bounding the degree since v
can be arbitrary. Hence, the best we can do is pick a degree
to truncate.

Finally, we recall the Smith normal form (SNF). The
HNF of a matrix over a PID is analogous to the reduced
echelon form of a matrix over a field. In a similar way,

ALGORITHM 1. Checking topological order condition.

Input: Stabilizer polynomials S, truncation range k,
translation range m, searching range m’, Zq d
Output: Whether the stabilizers satisfy the TO condi-
tion
1: Calculate the error syndrome ¢(P) for single-Pauli
operator VP € {X1, 21,..., Xy, 2y} from stabilizer
polynomials. Get the syndrome matrix

)]
€(Xz)

which is a (2w) x [t(2k + 1)?] matrix for system with
t stabilizers and w physical qudits per unit cell.

2: Apply the translation duplicate map TD,, with
range m to each row of F, such that

TD,,(e(X1))
M, m _ TDm(.E(XQ)) (C2)
TD,, (e(Z2y))

ALGORITHM 1. (Continued.)

M, is a [20(2m + 1)?] x [t(2k + 1)2] matrix

3: Perform modified Gaussian elimination (for non-
prime dimensional qudits) or Gaussian elimina-
tion (for prime dimensional qudits) of on Ml, get
(M)GE(ﬁl) and a [2w(2m + 1)?] x [(2k + 1)?] rela-
tion matrix R;.

4: Obtain local operator set O from rows of R; that
correspond to zero rows in (modified) Gaussian elim-
ination

5: Apply translation duplication map TD,,, with range
m' < k to stabilizer matrix S,

—_—

TD, (S1)

~  |TDm(S2)

TDr (Sq)

Moy is a [t(2m’ +1)2] x [(2k + 1)?] matrix.
6: Perform modified Gaussian elimination (for non-
prime dimensional qudits) or Gaussian elimina-

tion (for prime dimensional qudits) of on Mg, get
(M)GE(M>).

7. if d is prime then

8: r1 < rank(GE(M3)).

9: ro < GE(concate(O, GE(M3)))

10: if 71 # ro then

11: return ”"Does not satisfy the TO condition”

12: end if

13: end if

14: if d is nonprime then

15: for O; in local operator set O do

16: if O, is not in the row span of MGE(MQ).
then

17: return ”Does not satisfy the TO condi-
tion”

18: end if

19: end for

20: end if

21: return ”Satisfy the TO condition”

ALGORITHM 2. Extracting string operators.

N - ~——
Input: Syndrome matrix E, M; = TD,,(E), search
range N, IV, for - and y-direction.
Output: Basis anyon matrix V' and string operators
P, P,
1: forn, =1,2,..., N, do
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ALGORITHM 2. (Continued.) ALGORITHM 2. (Continued.)
2: Define matrix ?\7? as 9: Define matrix f]\\/[?; as
- — 5 TD,,(e(X1))
TD,(e(X1)) :
| ey W o | Dull =70 |
—_— e —
My (ng) < | TD, (1 — 2™ )141) | » (C4) D ((1 — y™)1a)
D, (1= 2" )1y) :
. _TDm((]- - yny)lq)_
[TDy (1 —27)1) M is a [(2w + £)(2m + 1)?] x [£(2k + 1)2] matrix.
10: Calculate (M)GE(MZ (ny)), obtain a anyon
. iy . ) rawe A 3 \y))y O
Wbere 1; ?epresents at dlmenswnaflvone.) hot vector matrix Vy(ny) = {v1(rg),va(mg),-.} and their
with the i-th entry equals to 1. Ms is a [(2w + string operators along the y-direction ;’_(\n_/) =
£)(2m +1)2] x [t(2k + 1)2] matrix. S8 OpTralors alons Hhe y\ty) =
3: Calculate (M)GE(MZ (n;)), obtain a anyon ma- () pr2m) 1 from the relation matrix
trix RY% _
11: W (ny), Py(ny) —
T S~——— - T ~——
v1(ng) Find-Independent_Anyons(Vy (ny), Py(ny))
12: end for
—_——~— :
Vo (1) n,, < min(arg max(Shape(Vy (n;),0))
" (C9)
which is a a x (t(2k + 1)?) matrix.?® Their string 7 - MY (nF)
. . . 3 3 Yy
operators along the z-direction form the string op-
erator matrix Y . ~ o~
15: V, P, «+ Find_Independent_Anyons(Vx, P,) >
—_—~— Extract the basis anyon matrix V' and its string op-
Py 1(na) erators P, from Vx and P,.
- ~~—— ~ _ T ——
P,(ng) « : (C6) 16: Reset My < TD,,(E) N
—~— 17: for v; is a rows of anyon matrix V' do
Vo (na) - ~
Py 18: Expand (1 — y~")v; in the span of rows of M,
obtain the corresponding string operator P’
which is a a x (2w(2k + 1)?) matrix obtained from 19: ﬁ; . concate(/];?’_i/, fﬁ;)
the relation matrix Rx (ns). 20: end for
- ~——
4 Vx (nz), Po(ng) . “ 21: r(taturn1 Babltshanyon m(z;trlx ;/ antd thil; 51tDrlng oper-
T n, n irection P,
Find_Independent_Anyons(Vx (ny), Pe(ns)) 9. ators along The o and y echo
5: end for 23:
6: 24: function FIND_INDEPENDENT ANYONS(V’ P’) >
V' is the input anyon set, P’ is the corresponding
n’ <+ min(arg max(Shape(Vx(nz),0 string operators.
v ( gnw (Shape(Vx (n..), 0))) 25: Construct M, using the convention in Eq. (98)
~X ~y 26: Calculate the Smith normal form of M, as
Mz« M3 (n) (C7) PAQ = M,
T 27: index + arg; A(i,i) # +1
VX < Vx(ng) 28: The relation matrix between basis anyon matrix
~ e e : e Vi ; A
P, « Py(n}) 1% an(,ivthef\l},lput ianyon matrix V. is Q(mdefr., :) such
that V = V'Q(:,index). > Find the basis anyon
. matrix.
: 29: P« P'Q(:,index)
8: for ny, =1,2,..., N, do 20. return V, P
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the SNF of a matrix over a PID is analogous to the diag-
onalization of a matrix over a field. Specifically, one can
efficiently use row and column operations amounting to
matrices C € GL(r,R) and D € GL(c, R) such that CAD is
diagonal. CAD is called the SNF of 4, and it further sat-
isfies that its nonzero diagonal elements dj, . .., d, satisfy
di|dy|---|dg. di,...,d; are unique and are called the
elementary divisors of A.

ALGORITHM 3. Extracting topological spins.

N TN
Input: String operator matrices P, P, for basis anyon

matrix ,I\/'J in the x and y direction, the length exten-
sion ¢ of string operator
Output: Topological spin array T and braiding matrix

B

1: Define Topological spin array T = {}

2: for v; is a row of anyon matrix V' do

3: Convert Pyi and P’ to the corresponding poly-
nomials P} and P

4: Extend the length of string operators to its g
times
UYi (x4 g @ Dne e PY

Ui = (L+y ™™ +y 2™ 4y )Py,
Uyt « —(1+a" + 2% 4 + 29")PY,

(C10)

0(v;) « %[Ul, U] + [Us, Us] + [Us,U4]  (C11)

T <+ concate(6(v;),T)
end for

Define braiding matrix B = {}
10: for v; is a row of anyon matrix V do

~
11: for v; is a row of anyon matrix V', and v; # v;
j ) j
do

12: Convert P)*, PJ*, Py’ , Py’ to the correspond-
ing polynomials Py, Py, P P
13: Combine the string operator
PYiXvi « PYipYi

V4 Vi Vi U4 (012>
PUiXs ¢ PUipYi

14: Extend the length of string operators to its ¢
times

UfiX'Uj — (‘r*qnx + xf(qfl)n:n 44 xfnz)P;)z‘XUj’
U;l X — (1 + y—ny + y—2ny R y—qny)Pyvi ><vj7

U;}ix’v]‘ (——(14—1:”1 -‘1-,@2”” +.-.+anz)P;iXUj7
(C13)

ALGORITHM 3. (Continued.)

15:

o
O(v; x vj) %[Ul, U] + [Ua, Us] + [Us, U] (C14)

0(vi Xvj
16: B(vi,v;) < 9((?%1;))
17: end for
18: end for

19: Take the converged values of T and B.
20: return Topological spin array T and braiding matrix
B

APPENDIX C: ALGORITHM PSEUDOCODE FOR
EXTRACTING TOPOLOGICAL ORDERS FROM
GENERALIZED PAULI STABILIZER CODES

This Appendix presents the pseudocode for the
algorithm described in Secs. [V and V.

We have completed the pseudocode for our main
algorithm. For a detailed theoretical background, please
refer to Secs. III, IV, and V.

ALGORITHM 4. Rearranging the basis anyons.

Input: Basis anyon set V', topological spin array T and
braiding matrix B
Output: Rearranged anyon set Vi, formed by decou-
pled {e, m} pairs
1 Viee < {}
2: for Find a nontrivial boson b € V' do

3: Find a anyon ¢ € (V — {b}) such that
B(b,c) = exp(%)

4 if ¢ is not a boson then

5: ¢+ cxb# > make ¢ to be a boson

6: Vaee < {{b, c}pairs} U Viec

7 end if

8 for v; € (V —{b,c}) do

9: if B(b,v;) #1 or B(c,v;) # 1 then

10: v; — v; X b#F x c# > decouple b, ¢ with
the rest of anyons

11: V<« V—-{bc}

12: end if

13: end for

14: end for

15: return Rearranged anyon set V.. formed by decou-
pled {e,m} pairs
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