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We investigate phase transitions in the encoding of quantum information in a quantum many-body
system due to the competing effects of unitary scrambling and boundary dissipation. Specifically, we
study the fate of quantum information in a one-dimensional qudit chain, subject to local unitary quantum
circuit evolution in the presence of depolarizing noise at the boundary. If the qudit chain initially contains
a finite amount of locally accessible quantum information, unitary evolution in the presence of boundary
dissipation allows this information to remain partially protected when the dissipation is sufficiently weak,
and up to timescales growing linearly in the system size L. In contrast, for strong enough dissipation, this
information is completely lost to the dissipative environment. We analytically investigate this “quantum
coding transition” by considering dynamics involving Haar-random, local unitary gates, and confirm our
predictions in numerical simulations of Clifford quantum circuits. Scrambling the quantum information
in the qudit chain with a unitary circuit of depth O(log L) before the onset of dissipation can perfectly
protect the information until late times. The nature of the coding transition changes when the dynamics
extend for times much longer than L. We further show that at weak dissipation, it is possible to code at a
finite rate, i.e., a fraction of the many-body Hilbert space of the qudit chain can be used to encode quantum
information.
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I. INTRODUCTION

The chaotic unitary evolution of an isolated quantum
system will spread initially localized quantum informa-
tion over nonlocal degrees of freedom, a process known
as quantum information scrambling [1–4]. This delocaliza-
tion of information aids in protecting quantum information
against local noise, which is present in any real physical
system. Studying the robustness of quantum information
in the presence of both unitary scrambling and dissipation
is important both to understand new dynamical regimes
of quantum many-body dynamics, and from a practical
standpoint, to design quantum codes and to appropriately
interpret studies of quantum many-body evolution in near-
term quantum simulators. While dissipative dynamical
phases of matter have been the subject of intense research
for decades [5–9], understanding the dynamics of quan-
tum information in this context opens a new perspective.
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Understanding the spreading of information in unitary evo-
lution has led to a deeper understanding of quantum chaos
and thermalization [2,10–16], suggesting that investigat-
ing the dynamics of quantum information in dissipative
systems can shed light on the structure of (possibly new)
dynamical regimes of quantum matter.

Besides its fundamental relevance for the dissipative
dynamics of generic quantum systems, the fate of quan-
tum information in the presence of unitary scrambling and
destructive local noise or measurements has been explored
in the context of quantum information theory, leading to
the development of the theory of quantum error-correcting
codes [17–20]. A key result in the theory of quantum error
correction (QEC) is the threshold theorem, stating that,
for error rates below some threshold, one can reverse the
effects of the errors by applying additional quantum gates
[21–23]. In other words, it is possible to correct errors
faster than they are created.

The threshold theorem is essential in designing fault-
tolerant quantum computers. Applying additional gates,
trying to preserve the code space against the noise, allows
one to perform logical operations for long times with high
precision. Such an active error correction is feasible in
artificial quantum systems with a “digital” architecture, in
which real-time measurements and unitary evolution can
be executed over targeted degrees of freedom. However,
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FIG. 1. (a) Quantum information is encoded in a qudit chain through entangling with a reference qudit R. The qudit chain subse-
quently evolves with a “brickwork” array of Haar-random, two-site unitary gates and dissipation at the boundary. One time step of
these dynamics corresponds to two layers of unitary gates along with depolarizing noise at the boundary, as shown schematically in
(a). Phase diagrams hosting coding transitions are shown in (b), for localized encoding near the boundary (left), and in the presence
of a unitary prescrambling step delocalizing the information before the onset of dissipative dynamics (right). Left: the blue critical
line indicates a continuous coding transition with a total number of time steps T � L/p , only occurring for localized encoding in the
vicinity of the boundary (see Sec. III). In a statistical mechanical description of the dynamics of quantum information, this transition
corresponds to the depinning transition of an Ising domain wall (see Sec. II). The red critical line is a first-order coding transition with
T � L/p . Across this line, as the system approaches thermalization, it becomes maximally entangled with the environment, resulting
in information loss (see Sec. IV). Right: performing unitary prescrambling on timescales scaling logarithmically with the system size
increases the robustness of encoding and can perfectly protect the information up to timescales T ∼ L/p .

in analog quantum simulators realized, e.g., with ultracold
atoms, the options for active error correction are more
restricted and costly due to the limited control over the
dynamics. This provides a strong motivation for explor-
ing whether the system’s intrinsic dynamics alone can
protect information, by hiding it from destructive local
noise. Despite this fundamental relevance, the conditions
for obtaining such a robust, self-generated coding dynam-
ics in a generic quantum system without any degree of
external control, are still not fully explored.

Recently, the robustness of a self-generated code space
against a special class of local perturbations has been
investigated, taking the form of local projective measure-
ments. These studies revealed a phase transition driven by
the measurement rate, such that the code space can store
an extensive amount of information, as long as the rate of
measurements remains below a finite threshold [24–28].
However, this result cannot be generalized to more generic
noise channels. For example, a quantum many-body sys-
tem evolving in the presence of random erasures occurring
in the bulk with a finite rate destroys all quantum informa-
tion in constant time [29,30], and active error correction
during the dynamics is required to protect the informa-
tion beyond this timescale. Understanding the conditions
(if any) that unitary evolution and local errors have to sat-
isfy to guarantee the emergence of a robust, self-generated
code space, without the need for an active error correc-
tion during the dynamics, is an open question of utmost
relevance.

A. Summary of results

With these motivations, we take a step towards
understanding the dynamics of quantum information under
generic scrambling and local noise, by exploring the fate of
quantum information, subjected to the competing effects
of boundary dissipation and unitary spreading in a one-
dimensional chaotic quantum system. For concreteness
and simplicity, we focus on the setup sketched in Fig. 1(a),
showing the first few layers of a random quantum circuit
with a depolarization channel acting at the left boundary.
We note that it is known in both classical coding the-
ory [31–35] and the quantum case [36–38] that random
unitary dynamics provides an optimal encoding of infor-
mation. We entangle one external reference qudit R near
the boundary into a maximally entangled pair, thereby
encoding one qudit of quantum information initially local-
ized near the dissipative boundary. Our results summarized
below do not depend on the precise distance between this
entangled pair and the dissipative boundary, as long as
it remains finite in the thermodynamic limit. For con-
creteness, in all of the numerical simulations presented
in this paper, we choose to entangle the leftmost qudit,
such that the quantum information is encoded right at the
dissipative boundary. We then ask what happens to this
information as the system is subject to noisy dynamics,
up to timescales T scaling linearly with the system size
L, such that T/L is fixed. We note that we are focus-
ing on random circuits without any symmetries, consisting
of “generic” unitary gates, i.e., gates that increase the
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entanglement between subsystems linearly in time until
saturation. Under these conditions, the reduced density
matrix of subsystems approaches a maximally mixed den-
sity matrix at late times, a process that can be interpreted
as thermalization towards infinite effective temperature.
We use the term “thermalization” in this sense throughout
the paper. Importantly, by taking the thermodynamic limit
L → ∞ and the long time limit T → ∞ simultaneously,
with T/L constant, we probe the system on timescales
where it is expected to thermalize [12].

Interestingly, we find that this quantum information can
remain robust even at these long times, giving rise to
a rich dynamical phase diagram as a function of dissi-
pation strength p and the ratio T/L. Our main results,
supported both by analytical arguments for general qudit
systems, and numerical simulations performed on qubit
chains, are summarized in Fig. 1(b). The left panel shows
the case where the noisy dynamics starts immediately after
the encoding of the quantum information locally, near the
leftmost boundary. We find a dissipation-induced quan-
tum coding phase transition, separating a region where the
coherent information remains partially protected and gets
delocalized within the system, and a phase where all of this
information leaked to the environment. The nature of the
coding transition, however, depends on the ratio T/L. For
T/L � 1, the right boundary is effectively decoupled from
the dynamics of information and we observe a continuous
second-order phase transition (blue line). For even larger
ratios T/L, the right boundary plays a crucial role and gives
rise to a first-order phase transition (red). We also demon-
strate that adding a unitary “prescrambling” step after the
local encoding, before the onset of the dissipative dynam-
ics, can efficiently increase the robustness of the encoded
information. In particular, as shown in the right panel of
Fig. 1(b), a prescrambling time tscr scaling logarithmically
with the system size, tscr ∼ log L, ensures that quantum
information remains perfectly protected for small enough
dissipation strengths p , up to timescales T ∼ L/p .

We gain a detailed understanding of these different types
of coding transitions, by mapping the dynamics of quan-
tum information in a qudit chain, governed by a circuit
with Haar-random unitary gates and boundary dissipa-
tion, to the statistical mechanics of a two-dimensional
lattice magnet. This mapping, which has been extensively
employed to understand unitary circuit quantum dynam-
ics as well as dynamics with projective measurements (see
Refs. [39,40] for a review), allows us to obtain analytical
predictions, as well as instructive numerical results. While
the entanglement measures of interest that diagnose the
quantum coding transition require taking a formal replica
limit of this lattice magnet (akin to a limit arising when
considering “quenched” disorder), we focus our attention
on understanding this lattice magnet away from the replica
limit (akin to studying an “annealed” disorder average).
Specifically, we focus on the “annealed” disorder average

of the second Rényi mutual information between the out-
put of the circuit, A, and the reference qubit R. In this limit,
the circuit with the boundary depolarization can be mapped
to the statistical mechanics of an Ising magnet, in which
a single Ising domain wall experiences an attractive or
repulsive potential at one boundary of the two-dimensional
system, whose strength is tuned by the dissipation strength.
In this language, the coding transition at times T/L � 1
can be understood as a second-order pinning-depinning
transition of the Ising domain wall at the noisy boundary;
we provide conjectures as to the true nature of this tran-
sition in the replica limit. At later times T/L > 1/p , the
right boundary gives rise to a different, first-order transi-
tion by “absorbing” the Ising domain wall. Insights gained
from this classical statistical picture, valid for general qudit
chains, are confirmed by large-scale numerical simulations
performed on qubit systems evolving according to Clifford
quantum random circuits.

Finally, we show that the coding transition for T/L >

1/p can also be understood as a transition arising from
the monogamy of entanglement. At such late times, as
the system of L qudits becomes entangled with a growing
number of environmental degrees of freedom, scaling as
pT, eventually it can no longer stay simultaneously entan-
gled with the reference qudit, and all information leaks to
the environment. We conclude with the interesting scenario
of encoding an extensive amount of information in the
system. Specifically, we show that a similar coding tran-
sition persists when we entangle an extensive number of
reference qudits into maximally entangled pairs with the
qudits of the system. In particular, we identify two thresh-
old values for the dissipation strength p , pth,1 and pth,2,
separating three regions according to the behavior of the
information density. The information density is perfectly
protected in the system for p < pth,1, while it starts to leak
into the environment above this threshold. A finite den-
sity of information still survives in the region pth,1 < p <

pth,2, until eventually reaching zero at the upper thresh-
old pth,2. As before, we supplement our analytical results
for qudit chains with numerical simulations performed on
qubit systems.

The rest of the paper is organized as follows. In Sec. II,
we lay the foundations for our analytical considerations
of the quantum coding phase transitions in general qudit
chains. To this end, we introduce the mapping between the
coherent quantum information in random circuits and the
properties of an Ising domain wall experiencing a repul-
sive or attractive boundary on the left and an absorbing
boundary on the right, by considering the “annealed” sec-
ond Rényi mutual information between the circuit output
and the encoded information. We derive the random walk
model in Sec. II A. We then show in Sec. II B that different
phases on either side of the coding transition can be under-
stood by inspecting the weighted trajectories of the Ising
domain wall in this statistical mechanical model.
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We turn to the detailed discussion of the second-order
coding transition in the regime T � L/p , induced by the
dissipative boundary alone without the interference of the
clean boundary, in Sec. III. We first rely on the random
walk model to gain a qualitative understanding of the
phase transition in qudit systems, and discuss the classical
pinning-depinning transition of the Ising domain wall in
Sec. III A. Building on these insights, we turn to qubit sys-
tems and verify the presence of the quantum coding tran-
sition and study its properties numerically in Sec. III B, by
performing large-scale numerical simulations on Clifford
quantum circuits. We return to our analytical arguments
and discuss the nature of this transition in more detail in
Sec. III C. To end the section, in Sec. III D we comment
on increasing the robustness of the encoded information
by applying a unitary prescrambling before the onset of
dissipative dynamics. Through a combination of analytical
calculations in qudit systems and numerical simulations on
qubit chains we show that a prescrambling time tscr scal-
ing logarithmically with the system size provides perfect
protection for the coherent information for weak enough
dissipation p , up to timescales T/L ∼ O(1).

We turn to the first-order coding transition, induced by
the interplay of the dissipative left boundary and the clean
right boundary at times T � L/p , in Sec. IV. First, we dis-
cuss how this phase transition can be understood in the
statistical mechanical framework as the absorption of the
entanglement domain wall by the right boundary and is
driven by the monogamy of entanglement as the system
becomes entangled with a growing number of environmen-
tal qudits. We present and analyze the numerical results
obtained from Clifford circuit simulations on qubit chains
in Sec. IV A, and find good agreement with the predictions
of the statistical mechanics of the Ising lattice magnet.
We argue that this coding transition is of first order, and
discuss its scaling properties in Sec. IV B. Finally, Sec V
serves as an outlook to the case of encoding an extensive
amount of information into the system. Here we consider
entangling a finite density of reference qudits with the sys-
tem, and find a monogamy-induced coding transition at
late times T � L/p , similar to that observed for a single
qudit of quantum information. Here we find three phases,
with the information perfectly protected for p < pth,1, a
finite density of information surviving for pth,1 < p < pth,2,
and the density reaching zero above pth,2. We conclude by
summarizing our results, and discussing open questions in
Sec. VI.

II. DISSIPATION IN QUANTUM CIRCUIT
EVOLUTION

A. Statistical mechanics of random unitary evolution
and dissipation

Past studies of random local unitary evolution
[39,40] and evolution with projective measurements

[24–26] and with dissipation [29,30,41–46] have uncov-
ered a wealth of universal structures governing the dynam-
ics of information-theoretic quantities such as the Rényi
entanglement entropy. Averaging over an ensemble of
unitary gates in this setting gives rise to an emergent classi-
cal statistical mechanics of quantum entanglement, which
must be understood in an appropriate “replica limit” in
order to recover the behavior of the information-theoretic
quantities of interest. A qualitatively accurate understand-
ing of the behavior of quantum entanglement in chaotic
unitary dynamics and in dynamics with projective mea-
surements can still be obtained even without taking the
replica limit [13,47–49], though these approaches often
fail to capture quantitative, universal properties character-
izing distinct regimes of quantum many-body evolution
(e.g., of the volume-law-entangled phase of infrequently
monitored quantum many-body evolution [50]) or of crit-
ical points (e.g., separating different phases of monitored
quantum dynamics).

Here, we consider the evolution of qudits under random,
local unitary gates and boundary dissipation. Averaging
over the ensemble of unitary gates, in the calculation of
the evolving purity of the subsystem, leads to an emer-
gent statistical mechanics of an Ising magnet. We present
the various ingredients that the unitary evolution and dis-
sipation correspond to in this setting, before using these
ingredients extensively in subsequent sections to under-
stand the stability of encoded quantum information under
this evolution.

We focus our attention on a one-dimensional chain of
qudits, with Hilbert space dimension q at each lattice
site. The dissipation acts on the boundary qudit, and is
described by the depolarizing channel � acting on the
density matrix ρ of this qudit as

�(ρ) = (1 − p) ρ + p · 1q×q

q
(1)

with p ∈ [0, 1] parameterizing the “strength” of the dissi-
pation. For future convenience, we choose to rewrite the
depolarizing channel as an operator �̂ that acts within a
Hilbert space of dimension q2. The operator �̂ takes the
form

�̂ =
q∑

i,j =1

[
(1 − p) |i, j 〉 〈i, j | + p

q
|i, i〉 〈j , j |

]
, (2)

where |i〉 for i ∈ {1, . . . , q} denotes an orthonormal basis of
states of a single qudit [51].

Apart from the dissipation, the remaining qudits will be
chosen to evolve according to two-site unitary gates, cho-
sen from the uniform (Haar) measure for the unitary group
U(q2). Given such a two-qudit unitary gate U, we note
that the average over the Haar measure of U ⊗ U∗ ⊗ U ⊗
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U∗—a quantity that will naturally appear in subsequent
sections—is given by

V ≡ 〈U ⊗ U∗ ⊗ U ⊗ U∗〉
=

∑

σ ,τ∈{↑,↓}
wg2(στ) |τ , τ 〉 〈σ , σ | , (3)

where 〈·〉 denotes the Haar average, the Weingarten func-
tion is given as wg2(+) = q2/(q4 − 1) and wg2(−) =
−1/(q4 − 1), and states |↑〉 and |↓〉 are defined as |↑〉 ≡∑q

i,j =1 |i, i, j , j 〉 and |↓〉 ≡ ∑q
i,j =1 |i, j , j , i〉 so that

〈σ |τ 〉 = (q2 − q)δσ ,τ + q. (4)

From these expressions, it is clear that

V |↑↑〉 = |↑↑〉 , V |↓↓〉 = |↓↓〉 , (5)

V |↑↓〉 = V |↓↑〉 = q
q2 + 1

[|↓↓〉 + |↑↑〉]. (6)

From Eq. (2), the operator D ≡ �̂ ⊗ �̂ acts on these
states as

D |↑〉 = |↑〉 , D |↓〉 = (1 − p)2 |↓〉 + p(2 − p)

q
|↑〉 .

(7)

B. Boundary dissipation and the encoding of quantum
information

We now consider a qudit chain consisting of L qudits,
into which quantum information has been encoded. We
may imagine that this quantum information is represented
by physical reference qudits that are maximally entan-
gled with the one-dimensional system. This system subse-
quently evolves according to a unitary circuit composed of
Haar-random unitary gates in a “brickwork” array, together
with dissipation that acts near the boundary. We note that
the Haar-random quantum circuit governing the unitary
part of the evolution allows the efficient scrambling of
information, providing a convenient setting to study the
dynamics of generic chaotic quantum many-body systems
[39]. We first focus on the case where only a single qudit
is encoded in the one-dimensional system, and with dissi-
pation acting periodically in time on the boundary qudit,
as shown schematically in Fig. 2(a). A single time step of
this evolution corresponds to the application of two lay-
ers of two-site unitary gates, followed by the depolarizing
channel (1) on the boundary qudit.

To diagnose whether this qudit of encoded information
can remain in the system, even as the boundary dissipa-
tion continues to act, we study the behavior of the bipartite
mutual information between the reference qudit (R) and the

T
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T
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FIG. 2. Top: Haar-averaged purity of the evolving state
mapped to an Ising magnet. The time-evolved purity involves
two forward and two backward copies of the random circuit.
Performing a Haar average over the unitary gates gives rise to
an Ising partition function, expressed as the product of trans-
fer matrices defined in Eqs. (5)–(7). Matrix V emerges from the
average over two forward and two backward replicas of unitary
gates U, and D represents dissipation at the boundary. Bottom: a
coarse-grained description of this Ising magnet involves a single
Ising domain wall (green) in the presence of a boundary magnetic
field (shaded red). The boundary conditions at the bottom of the
Ising magnet, which are fixed by the initial state of the quantum
system, are not shown.

system (A) at time t; this mutual information is defined as

IA,R(t) = SA(t) + SR(t) − SA∪R(t), (8)

where SA ≡ −Tr[ρA(t) logq ρA(t)] is the von Neumann
entanglement entropy of subsystem A at time t. We note
that IA,R(t) is related to the coherent information present in
the system. If IA,R = 2, the entangled qudit can be perfectly
recovered by applying a recovery operation to the system
alone, whereas, for IA,R = 0, the information has leaked to
the environment, that is, IE,R = 2 [52]. Importantly, when
IA,R = 2 − ε for some small ε > 0, the entangled qubit can
be recovered with fidelity F > 1 − 2

√
ε [53].

The mutual information (8) averaged over realizations
of the random unitary evolution thus diagnoses whether
quantum information remains in the system, even in the
presence of boundary dissipation. Instead of considering
the Haar average of the mutual information, we turn our
attention on the “annealed” average of the second Rényi
mutual information between A and R, defined as

I (ann)

A,R (t) ≡ logq〈q I (2)
A,R(t)〉, (9)

where I (2)

A,R(t) = S(2)

A (t) + S(2)
R (t) − S(2)

A∪R(t), with the second
Rényi entropy defined as S(2)

A ≡ − logq TrρA(t)2, and 〈·〉
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denotes the Haar average over the unitary gates in the cir-
cuit. The behavior of the annealed mutual information (9)
is also expected to capture the qualitative behavior of quan-
tum information recovery since I (ann)

A,R = 2 if and only if
IA,R = 2. Though the quantitative details of the annealed
information may differ from the true mutual information,
as we later clarify. We also note that a similar quan-
tity called “mutual purity” F(A : R) = Trρ2

A,R − Trρ2
ATrρ2

R
was recently studied in Ref. [54]. It was shown that mutual
purity also provides a diagnostic for the possibility of
recovery of quantum information.

We proceed to calculate the annealed mutual infor-
mation (9). We initialize the qudits in a product state,
except for the qudit at a site x0 away from the boundary
that is maximally entangled with the reference qudit. As
the system evolves in the presence of unitary gates and
dissipation, it is evident that the purity of the reference
qudit remains unchanged, TrρR(t)2 = q−1 for all times t.
Furthermore, calculation of 〈TrρA(t)2〉 and 〈TrρA∪R(t)2〉
involves performing a Haar average of four copies of the
quantum circuit. Following the discussion in the previous
section, it is thus clear that these Haar-averaged purities
may be written as partition functions for an Ising magnet
of finite extent in the vertical direction—corresponding to
the time direction in the quantum circuit—and with hori-
zontal extent fixed by the number of qudits in the system.
The Ising spins live on the links of a square lattice, and are
acted upon by the transfer matrices V and D, as given in
Eqs. (5), (6), and (7), depending on whether a Haar-random
unitary gate or dissipation is applied at a particular point
in spacetime in the quantum circuit, respectively. The full
transfer matrix is shown schematically in Fig. 2(b).

The boundary conditions for the Ising partition sum at
the bottom and top boundaries are respectively determined
by the initial state of the qudit chain along with the loca-
tion of the reference qudit, and the subsystem over which
the purity is being calculated. First, fixing Ising spins at
the top boundary to be in the ↓ state corresponds to keep-
ing the corresponding qudit within the region for which the
purity is being calculated. As a result, the spins at the top
boundary are all fixed in the ↓ state for the calculation of
both 〈Tr ρA(t)2〉 and 〈Tr ρA∪R(t)2〉, as shown in Fig. 2(b).
These two purities thus only differ in their bottom bound-
ary conditions. Here, the boundary spins are allowed to
freely fluctuate, with the exception of the spin correspond-
ing to the qudit at a distance x away from the boundary; the
state of this Ising spin determines whether the reference
qudit is included in the subsystem whose purity is being
computed. More precisely, this spin is fixed in the ↑ or
↓ state in the calculation of 〈Tr ρA(t)2〉 and 〈Tr ρA∪R(t)2〉,
respectively.

It is convenient to evaluate these partition functions
by contracting the transfer matrix from the top boundary
condition, i.e., “backwards” in time with respect to the
arrow of time in the quantum circuit. Let Z(t) denote the

partition sum obtained by evolving the all-down state of
the Ising spins for t time steps by repeatedly applying the
row transfer matrix corresponding to a single time step of
the dynamics. The partition sum Z(t) describes a single,
directed Ising domain wall, which can only be created or
annihilated at the boundary of the system. This can be seen
as follows. First, starting with the all-down state, dissipa-
tion (7) can flip the boundary Ising spin from |↓〉 to |↑〉,
thus creating an Ising domain wall near the boundary. The
effect of the Haar-random unitary gates (5) and (6) in the
bulk of the quantum circuit is to simply move the domain
wall. Notably, Eq. (5) implies that the Haar-random gates
cannot create or annihilate Ising domain walls in the bulk
of the system, though gates acting near the boundary can
annihilate the Ising domain wall. Once the state of the
boundary spin is |↑〉, the dissipation cannot alter this state
since D |↑〉 = |↑〉; this is simply a consequence of the
fact that the depolarizing channel (1) leaves the maximally
mixed density matrix ρ = 1q×q/q unchanged.

The partition sum Z(t) is thus performed over histo-
ries of the entanglement domain wall trajectories, which
can propagate in the bulk of the system, or be created or
annihilated at the boundary. Formally, we write

Z(t) =
∑

x≥0

z(x, t), (10)

where z(x, t) is a restricted sum over trajectories of the
entanglement domain wall where the domain wall ends
up between sites x − 1 and x at time t. In this convention,
z(0, t) corresponds to trajectories where the entanglement
domain wall no longer exists at time t, as it has been
annihilated at the left interface.

We may now write the Haar-averaged purities as

〈Tr ρA(t)2〉 = q2
∑

y>x0

z(y, t) + q
∑

y≤x0

z(y, t), (11)

〈Tr ρA∪R(t)2〉 = q2
∑

y≤x0

z(y, t) + q
∑

y>x0

z(y, t). (12)

This is due to the fact that 〈Tr ρA∪R(t)2〉 involves a sum
over trajectories of the entanglement domain wall, with
an additional weight q2 given to trajectories that end at a
position y > x0 and a weight q given to trajectories ending
at y ≤ x0, where x0 is the location of the entangled ref-
erence qudit. The opposite weighting scheme is true for
〈Tr ρA(t)2〉. These additional weights arise due to the fact
that, depending on the final position of the entanglement
domain wall, the boundary spin at x is contracted with state
|↑〉 or |↓〉. These overlaps are given in Eq. (4). With these
expressions, it is straightforward to see that

I (ann)

A,R (t) = logq

[
q2 − q(q − 1)P(x0, t)
1 + (q − 1)P(x0, t)

]
, (13)
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where

P(x0, t) ≡ 1
Z(t)

∑

y≥x0

z(y, t) (14)

is the probability that the domain wall ends at a position
y ≥ x0 at time t.

III. QUANTUM CODING TRANSITION

In this section, we study the behavior of the encoding
of quantum information in the system, after evolving the
system by the quantum circuit for T time steps, for a fixed
dissipation strength p . The number of time steps of evolu-
tion T can be large so that T/L ∼ O(1), but is taken to be
small enough throughout the entirety of this section, so that
the left and right ends of the one-dimensional qudit chain
are causally disconnected. As p is increased from zero,
we find a “quantum coding” transition, where information
initially encoded in the system is lost to the environment
above a threshold p = pc.

A. Annealed mutual information, and the pinning of
an Ising domain wall

First, we investigate the behavior of I (ann)

A,R as the dis-
sipation strength p is tuned, by studying the Ising lattice
magnet that emerges after performing a Haar average over
the unitary gates in the quantum circuit acting on a qudit
chain.

As discussed in Sec. II B, the partition sum Z(T)

describes a single Ising domain wall that can propagate
through the bulk of the two-dimensional system, and be
created or annihilated at the left boundary of the sys-
tem. Tuning the dissipation strength, which alters the Ising
symmetry-breaking field applied at the boundary, modu-
lates an effective “pinning potential” for the Ising domain
wall. This can be clearly seen in the limiting cases when
p = 0 and p = 1. In the former case, the dissipation is
completely absent, and Eq. (5) implies that the all-down
state is left invariant by the transfer matrix for the Haar-
averaged circuit. Thus, in this limit, there is no Ising
domain wall. In contrast, when p = 1, the boundary spin
is fixed in the |↑〉 state, and the domain wall is effectively
repelled from the left boundary.

Increasing the dissipation strength can then drive
a pinning-depinning phase transition for the entangle-
ment domain wall. Similar phase transitions due to
the presence of a boundary magnetic field in an Ising
magnet have been studied in the literature (see, e.g.,
Refs. [55–57]). Equivalently, the temporally directed
nature of the Ising domain wall also suggests that these
paths may be thought of as the imaginary-time trajectories
of a single quantum mechanical particle on the half-line,
which experiences a potential near the boundary, which is

tuned by the dissipation strength. Thus, Z(T) is an ampli-
tude for this particle to propagate under imaginary-time
evolution by this Hamiltonian. In this setting, the particle
can undergo a localization transition when the potential is
sufficiently attractive [56]. This result is to be contrasted
with the well-studied problem of a particle on the full
line, with a delta-function potential near the origin, which
always forms a bound state in the potential well as long as
the potential is attractive.

The annealed mutual information precisely measures
the localization of the Ising domain wall, as is evident
from Eq. (13). Deep within a localized phase, where
the transverse wandering of the domain wall is governed
by a length scale �⊥, the probability P(x0, T) ∼ e−x0/�⊥

(�⊥ � x0), so that I (ann)

A,R is a constant, deviating from its
maximal value of 2 by a constant correction that changes
within the localized phase. In contrast, in the delocalized
phase, the probability P(x0, T)

T→∞= 1, where the limit is
taken, keeping the ratio T/L = const. fixed.

Properties of this coding transition, as seen by annealed-
averaged observables, such as the annealed mutual infor-
mation, may be obtained by studying the lattice partition
function for the Ising domain wall, which we present in
Appendix A, due to the technical nature of the calculations
involved. From this study, we find the following.

(1) The phase transition occurs at a probability pc that
varies as a function of the on-site Hilbert space
dimension q. The behavior of pc as q is tuned may
be determined by studying the lattice partition func-
tion. In the limit q → ∞, the coding transition is
absent. Specifically, we find that

pc = 1 − O(q−2), (15)

so that information is always preserved in the sys-
tem in the limit that the on-site Hilbert space dimen-
sion is strictly infinite.

(2) Near the phase transition, the annealed mutual infor-
mation takes the universal scaling form

I (ann)

A,R (T) = T−β/νF[T1/ν(p − pc)], (16)

where β = 1/2 and ν = 2. The function F(x) ∼ xβ

as x → −∞, and we used the standard notation
with exponent β characterizing the scaling of the
order parameter and ν governing the divergence
of the correlation length in the temporal direction.
This relation is obtained by determining that in the
thermodynamic limit the annealed mutual informa-
tion should vanish on approaching the transition as
I (ann)

A,R ∼ �−1
⊥ , where �⊥ is the distance of a trans-

verse excursion of the Ising domain wall in the
pinned phase. Therefore, this length scale diverges
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FIG. 3. Scaling collapse of the annealed mutual information,
consistent with the scaling form in Eq. (16). The inset shows the
behavior of the annealed mutual information as a function of dis-
sipation strength p , indicating the presence of a coding transition.
The exponents β = 1/2, ν = 2 are determined from properties of
the pinning transition of the Ising domain wall. The system size
is taken to be large enough that the left and right ends of the qudit
chain are causally disconnected.

as �⊥
p→p−

c∼ (pc − p)−β upon approaching the phase
transition [58].

The above scaling form for the annealed mutual infor-
mation is in good quantitative agreement with numerical
studies, which we perform by directly studying the transfer
matrix for the Ising magnet. A numerically obtained scal-
ing collapse for the annealed mutual information is shown
in Fig. 3, which is consistent with Eq. (16).

We expect that the qualitative behaviors presented here
hold for the “quenched-averaged” quantities of interest,
such as the averaged von Neumann mutual information
〈IA,R(t)〉, which truly diagnose the loss of quantum infor-
mation from the system, as the dynamics proceed. The true
nature of the phase transition, however, will be different, as
we discuss in Sec. III C below.

B. Numerical study

Having obtained a qualitative understanding of the cod-
ing transition by considering the “annealed” Haar average
of the Rényi mutual information in general qudit sys-
tems, we now demonstrate the presence of this transition
in numerical studies of quantum circuit evolution in a
qubit chain (q = 2 on-site Hilbert space dimension). Here,
the unitary time evolution of the bulk is governed by
Clifford random unitary gates, arranged in a brickwork
structure. This setup allows us to simulate the dynam-
ics of large systems for sufficiently long times to study
the phase transition introduced above, by relying on the

stabilizer formalism. We note that in a strict sense, Clif-
ford random circuits do not display truly quantum chaotic
behavior, intimately related to the fact that they can be
efficiently simulated on classical computers. Nevertheless,
they capture several crucial characteristics of chaotic quan-
tum many-body systems, in particular, linear entanglement
growth and efficient operator spreading [12–14]. These
properties ensure that Clifford circuits realize dynamical
phases analogous to Haar-random circuits, and establish
them as powerful tools for studying generic chaotic quan-
tum systems [39]. In the setup we consider, the boundary
dissipation is realized as a random erasure channel, act-
ing on the leftmost qubit with probability p in each time
step, by deleting the information stored in the qubit. In
the stabilizer formalism, this boundary erasure channel is
implemented by deleting all stabilizers acting nontrivially
(as a nonidentity operator) on the leftmost qubit.

We note that besides the protocol described above, we
also considered other forms of boundary dissipation and
Clifford scrambling, all giving rise to similar results for the
behavior of the mutual information. Specifically, we imple-
mented an alternative dissipation channel, by applying a
controlled-NOT (CNOT) gate entangling the boundary qubit
with an environmental ancilla qubit that was subsequently
traced out from the density matrix. Moreover, we consid-
ered protocols with sparse bulk scrambling, where each
unitary gate in the brickwork structure is a random Clif-
ford unitary with probability pU < 1, but the trivial identity
operator with probability 1 − pU. This setup allowed us to
tune the efficiency of the scrambling through parameter pU,
while keeping the boundary noise fixed, leading to a phase
transition similar to that discussed in the main text. We dis-
cuss these alternative protocols in more detail, and present
supplementary numerical results in Appendix B.

We encode a Bell pair in the initial state at the leftmost
site, by entangling the boundary qubit with a reference
qubit. In the notation introduced in Sec. II, this corresponds
to the choice x0 = 0. We note that the precise location of
the encoding x0 does not affect our results for the proper-
ties of the quantum coding transition, as long as x0 takes
a fixed finite value not scaling with the system size L. The
remaining qubits are initialized in a random product state.
We run the dissipative dynamics for time T, with the sys-
tem size L chosen to keep T/L < 1 fixed, such that the
right boundary of the system is not causally connected to
the Bell pair. This setting allows us to detect the coding
transition induced by a single boundary, by increasing the
evolution time T. As noted in the introduction, perform-
ing the long time limit T → ∞ and the thermodynamic
limit L → ∞ simultaneously allows us to probe the mutual
information on timescales where the system is expected to
become thermalized.

The mutual information IA,R between the output of the
dissipative quantum circuit A and the reference qubit R
is shown in Fig. 4 for different dissipation strengths p
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FIG. 4. Coding transition induced by a single boundary. The
mutual information between the reference qubit and the out-
put of the circuit shown as a function of dissipation strength p ,
for T/L < 1 fixed, with boundary dissipation realized as a ran-
dom erasure channel. The scaling with circuit depths T points
to a phase transition between a phase with partially protected
information and a phase with all information lost.

and circuit depths T. These results are consistent with
a coding transition tuned by the dissipation strength p ,
between a phase where the system retains part of the
encoded information and a strongly dissipative phase with
all information lost. We note that determining the crit-
ical exponents and critical point of this transition from
finite time data is numerically challenging. Nevertheless,
we attempt to estimate these parameters by noting that
the mutual information obeys the finite-size scaling IA,R ∼
T−β/ν at the critical dissipation strength pc, while it satu-
rates to a finite value as T → ∞ for p < pc. Relying on this
observation, we identify pc with the smallest p where the
numerical data are consistent with IA,R approaching zero
algebraically as T → ∞, yielding the estimate pc ≈ 0.5.
We then use the critical scaling IA,R|p=pc ∼ T−β/ν to fit the
ratio β/ν; see Fig. 5(a). Finally, we estimate ν by requiring
a good scaling collapse for the full set of data from Fig. 4.
We obtain the critical parameters pc = 0.5, β/ν = 0.34,
and ν = 2, yielding the scaling collapse shown in Fig. 5(b).
We note, however, that due to the large number of fitting
parameters, the critical exponents extracted this way carry
a considerable uncertainty. We leave the more thorough
investigation of critical properties for future work.

C. The replica limit and the nature of the phase
transition

The behavior of quenched-averaged quantities, e.g., the
Haar-averaged Rényi mutual information 〈I (2)

A,R(t)〉, close
to the coding phase transition are quantitatively distinct
from the annealed-averaged mutual information studied in
Sec. III A. This observation is supported by the numeri-
cal studies of the previous section, which present strong
evidence that the coding phase transition is in a different
universality class from a depinning phase transition for
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random erasure channel
p = pc

FIG. 5. Critical properties of the coding transition for a single
boundary. (a) Critical power-law scaling of the mutual infor-
mation with respect to circuit depth T at the estimated transi-
tion point, pc = 0.5. The scaling relation IA,R ∼ T−β/ν is used
to extract β/ν = 0.34 (dashed line). (b) Full scaling collapse
of the rescaled mutual information Tβ/νIA,R as a function of
T1/ν (p − pc), using ν = 2.

a single Ising domain wall. Here, we provide some con-
jectures on the nature of this phase transition, based on
analytic arguments.

We focus our attention on the averaged second
Rényi mutual information 〈I (2)

A,R(t)〉 whose behavior may
be obtained via a “replica trick”; the second Rényi
entropy may be obtained in the limit S(2)

A (t) = limk→0{1 −
[TrρA(t)2]k}/k, so that the calculation of the Haar-averaged
mutual information reduces to evaluating quantities such
as 〈[TrρA(t)2]k〉 in a replica limit k → 0. After the Haar
average, these quantities may be regarded as partition
functions for lattice magnets with “spins” taking val-
ues in the permutation group on 2k elements S2k [39].
A drastic simplification in the limit of large, but finite,
on-site Hilbert space dimension q occurs [59], whereby
〈[TrρA(t)2

]k〉 may be regarded as k copies of an Ising mag-
net, with weak inter-replica interactions at each spacetime
point where a Haar-random unitary gate has been applied.
The intrareplica interactions for each Ising magnet are
described by the statistical mechanical rules presented in
Sec. II A. The inter-replica interactions are known to be
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attractive, and vanish in the limit that q is strictly infi-
nite [59]. As already derived in Sec. II A, the boundary
dissipation acts as an Ising symmetry-breaking field, giv-
ing rise to a boundary potential for the Ising domain wall
within each replica.

The replica limit of the resulting theory may thus be
regarded as the description of a directed path in a random
environment [60,61], restricted to the half-line x ≥ 0, and
in the presence of a potential near this boundary, due to the
dissipation. The path integral for this problem for a given
realization of the disorder is formally given by

Z[V] =
∫

Dx(τ ) e−S[x,V], (17)

where

S[x, V] ≡
∫

dτ

[
1
2

(
dx
dτ

)2

+ V[x, τ ] − u δ[x]
]

. (18)

Here x(τ ) is the coordinate of the path at time τ . The ran-
dom potential in the bulk V[x, τ ] is taken to have zero
mean, and is short-range correlated in spacetime, e.g., we
may take the potential to be delta-function correlated as
V[x, τ ]V[x′, τ ′] = σ 2δ(x − x′)δ(τ − τ ′), where · denotes
an average over the probability distribution for the dis-
order. The statistical mechanics of the replicated theory
Zk thus describes k interacting paths in the presence of a
boundary potential, and thus resembles that of the Haar-
averaged quantities 〈[TrρA(t)2]k〉, 〈[TrρA∪R(t)2]k〉 in the
limit of large, but finite, q. A schematic depiction of this
replicated theory is shown in Fig. 6.

The weak inter-replica interactions are known to be a
relevant perturbation at the critical point describing the
pinning of a single Ising domain wall [62]. Remarkably,
the new critical point describing the pinning or depinning
of a directed polymer to an interface has been understood
exactly [62] by Bethe ansatz techniques. The characteristic

T
im

e

FIG. 6. The Haar-averaged Rényi mutual information between
the reference qudit(s) and the system, 〈I (2)

A,R(t)〉, is described in the
large-q limit by k Ising domain walls in the presence of attractive,
inter-replica interactions, and an attractive interface within each
replica, in the limit k → 0. This is described by the path integral
in Eq. (18).

wandering length of the polymer transverse to the inter-
face diverges with an exponent ν⊥ = 2 on approaching the
phase transition from the localized phase, while the diver-
gence of the specific heat is characterized by the exponent
α = 0. For time-independent dissipation (e.g., the depo-
larizing channel is applied identically at the boundary at
each time step of the quantum evolution), we thus expect
the coding transition to be in the universality class of this
depinning phase transition for a directed polymer.

In contrast, if the boundary dissipation varies ran-
domly in time—as was studied in Sec. III B—then the
nature of the phase transition is not completely under-
stood. This problem corresponds to having an imaginary-
time-dependent boundary potential u(τ ) = u0 + v(τ) in
Eq. (18), where v(τ) has zero mean and is short-range cor-
related in spacetime; for simplicity, we take v(τ1)v(τ2) =
μ2δ(τ1 − τ2), with · denoting the average over the distri-
bution for v(τ).

We may study the relevance of randomness in this
boundary potential at the depinning transition. Here, the
action is invariant under coarse graining and rescaling τ ′ =
τ/bz and x′ ≡ x/b, where z is the dynamical critical expo-
nent at the phase transition. Under this transformation, the
random boundary potential becomes

∫
dτ v(τ )δ[x] −→

bz−1
∫

dτ ′ v(bzτ ′)δ[x′], so that we identify v′(τ ′) ≡
bz−1v(bzτ ′) as the renormalized potential in the coarse-
grained theory. The correlations of the renormalized poten-
tial are thus

v′(τ ′
1)v

′(τ ′
2) = μ2bz−2δ(τ ′

1 − τ ′
2). (19)

Therefore, the strength of the disorder decreases under
renormalization when z < 2. It has been conjectured [63]
that z = 3/2 at the pinning transition for the directed poly-
mer, so that the randomness in the boundary potential
should be irrelevant by Eq. (19), so that the same fixed
point describing the depinning of a directed polymer stud-
ied in Ref. [62] should describe the resulting transition in
the presence of randomness.

We are, however, unaware of the correctness of this
result in Ref. [63] for the dynamical exponent. The numer-
ical studies presented in Sec. III B further suggest that
ν‖ = 2 (as opposed to ν‖ = zν⊥ = 3, which is what would
be predicted on the basis of z = 3/2 and ν⊥ = 2), though
more extensive numerical studies are required to pin down
the nature of this transition [64]. We note, for complete-
ness, that Eq. (19) suggests that the random boundary
potential is a marginal perturbation exactly at the depin-
ning phase transition for the Ising domain wall (which
has z = 2 [57]). A Wilsonian renormalization-group cal-
culation to higher order further suggests that the disorder
is marginally relevant [65]. The nature of the result-
ing critical point is not understood, and deserves further
investigation.
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D. Perfect information protection using scrambling

In the low-dissipation phase of the coding transi-
tion, quantum information is only partially protected.
One would expect that the information protection can be
improved by first scrambling the information with unitary
gates, which can effectively act like a random encoding,
before the dissipation is turned on; we refer to this as a
“prescrambling” step. Here we argue that, for fixed system
size L and dissipation strength p , scrambling the initially
local quantum information via a random unitary circuit of
logarithmic depth tscr = k log L for some sufficiently large
k can lead to perfect protection of quantum information
within the system, up to times of order T ∼ L/p . For a
prescrambling step with a fixed depth tscr = k log L and
for low k, we can observe the coding transition by tuning
the dissipation strength p . The coding transition will now
manifest in a step-function-like behavior of the mutual
information IA,R across the transition, due to the perfect
preservation of information for sufficiently low dissipation.

To gain some intuition for this result, we again con-
sider the statistical mechanics of the Ising domain wall.
As before, the domain wall is naturally thought of as prop-
agating in a direction that is opposite to the arrow of time
in the quantum circuit evolution. The domain wall thus
propagates through T time steps of the circuit involving
boundary dissipation, and then encounters the prescram-
bling step where the dissipation is absent. This corresponds
to free evolution of the domain wall without the symmetry-
breaking field at the boundary. When this field at the
boundary is turned off, trajectories of the domain wall that
have already been annihilated at the boundary—such as
that shown in the left panel of Fig. 7—do not cost addi-
tional weights in the partition sum. On the other hand,
“surviving” domain wall trajectories in the bulk—such as
that shown in the right panel of Fig. 7—incur a weight

FIG. 7. The behavior of the Ising domain wall in the pres-
ence of a prescrambling step, whereby the initially local quantum
information is evolved by a unitary quantum circuit of depth tscr
before the onset of dissipation. We consider propagation of the
domain wall backwards in time, with respect to the arrow of
time in the quantum circuit. In this picture, trajectories of the
domain wall that survive in the bulk to the prescrambling step
(right) are exponentially suppressed relative to trajectories that
are annihilated at the boundary beforehand (left).

of q/(q2 + 1) at each time step. Thus, the weights of
the bulk trajectories of the domain wall are exponentially
suppressed in time relative to trajectories terminating at the
boundary.

Let Za(t, T) be the partition function for the Ising domain
wall, after the T time steps of the dynamics with dissipation
have taken place, followed by an additional t time steps
of prescrambling, and so that the domain wall has been
annihilated at the boundary of the system. In contrast, let
Zb(t, T) be the partition function for the Ising domain wall
to “survive” in the bulk of the system after the same evo-
lution. To determine the behavior of the annealed mutual
information, we wish to determine the probability that the
domain wall ends at position x ≥ x0 after another t steps
of the dissipation-free evolution, as per Eq. (13), where x0
is the location of the entangled reference qubit of quan-
tum information. For simplicity of presentation, we take
x0 to be at the boundary of the qubit chain, so that this
probability P(t, T) is

P(t, T) = Zb(t, T)

Za(t, T) + Zb(t, T)
. (20)

To make progress, we note that since the “surviving”
trajectories contributing to Zb(t, T) are exponentially sup-
pressed in time, we may write Zb(t, T) = Zb(0, T)e−γ t,
where γ is a phenomenological decay rate that will be a
function of the local Hilbert space dimension and the dis-
sipation strength. We further approximate the partition sum
Za(t, T) by its value before the prescrambling step, so that
Za(t, T) = Za(0, T). With these approximations, we may
write

P(t, T) = P(0, T)

P(0, T) + [1 − P(0, T)]eγ t . (21)

The annealed mutual information is now obtained from
Eq. (13). At sufficiently long times, so that P(t, T) � 1,
we thus find that the mutual information deviates from its
maximal value by

2 − I (ann)

A,R (t) = q2 − 1
q

P(0, T)

P(0, T) + [1 − P(0, T)]eγ t . (22)

In the pinned phase of the domain wall, we expect P(0, T)

to be exponentially small in the number of time steps T.
In contrast, in the depinned phase, the probability that the
domain wall has been annihilated at the interface decays
as a power law in time due to the diffusive nature of the
Ising domain wall, so that P(0, T) = 1 − O(T−a), with a
a constant. For fixed T, we thus find that, for a sufficiently
long prescrambling time t, the mutual information deviates
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from its maximal value as

2 − I (ann)

A,R (t) ∼
{

e−γ t, p < pc,
Tae−γ t, p > pc.

(23)

Evaluating this expression at the scrambling time tscr =
k log L yields

2 − I (ann)
A,R (t) ∼

{
L−γ k, p < pc,
La−γ k, p > pc.

(24)
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FIG. 8. Coding transition with logarithmic-depth prescram-
bling. In (a), I (ann)

A,R versus p is plotted with a prescrambling
circuit of depth tscr ∼ log L. The subsequent evolution with dis-
sipation proceeds for a total number of time steps T = L. The
main plot is for tscr = 4 log2(L). The annealed mutual informa-
tion approaches the maximum value as L is increased, indicating
that logarithmic-depth encoding is enough to protect the informa-
tion against boundary dissipation. Inset: plot for tscr = log2(L)

with I (ann)
A,R going through a transition with respect to p . The

results agree with Eq. (24) derived in the text. In (b), we plot the
mutual information calculated in Clifford dynamics as a func-
tion of dissipation strength p , applying prescrambling of depth
tscr = log2(L). Boundary dissipation is realized as a random era-
sure channel, and T/L = 1/2 is kept fixed for different system
sizes. The mutual information reveals a phase transition, with the
critical point appearing as a crossing point of the data for different
system sizes.

The above calculation implies that, for tscr = k log L, with
large enough k, quantum information is perfectly pre-
served. Logarithmic scrambling is enough to protect the
information against noise. For low values of k, the mutual
information can exhibit different behavior depending on
whether a − γ k is positive or negative. We show the
results obtained from studying the annealed mutual infor-
mation numerically in Fig. 8(a), and find good agreement
with the considerations above.

We now turn to the simulation of Clifford quantum cir-
cuit dynamics, restricting our attention to qubit chains. To
explore how logarithmic prescrambling affects the cod-
ing transition induced by a single boundary, we modify
the circuit protocol to include a unitary, nondissipative
prescrambling step, with the prescrambling time scaling
logarithmically with the system size, tscr = k log L, before
applying the dissipative dynamics for time T. We then
approach the thermodynamic limit by increasing T and L,
while keeping the aspect ratio T/L < 1 fixed. In accor-
dance with the insights gained above from the annealed
Haar average, we find a phase transition for k = 1 as
a function of p between a phase retaining information
between the input and output of the circuit, and a phase
with all information destroyed by dissipation, as shown
in Fig. 8(b). The critical properties are different from
the case without prescrambling discussed in the previous
subsection, and, as predicted by the annealed model, the
critical point is signaled by a crossing point in the mutual
information obtained for different system sizes. We find a
similar coding transition for k ≤ kmax, with kmax ∼ O(1).
For even larger values of k, the mutual information remains
maximal for all values of p .

IV. CODING TRANSITION ON THE APPROACH
TO THERMALIZATION

In the previous section, we studied systems of size L
with dissipation acting near the left boundary in the regime
T � L so that the right boundary did not play a role in the
dynamics. More precisely, as long as L/T remains larger
than the velocity of the entanglement domain wall, which
is less than the lightcone velocity in the quantum circuit,
the coding transition can be understood as a depinning
transition of the domain wall, such that, for noise rate p
below the critical value pc, some amount of information
survives.

In this section, we study what happens when the dynam-
ics in the coding phase extend for even longer periods of
time, and show that the surviving information will even-
tually be lost to the environment as the system completely
thermalizes. We may understand this result by considering
the dynamics of the Ising domain wall, which describes
the behavior of the annealed mutual information. For suf-
ficiently large T/L, the domain wall will escape and get
annihilated at the right boundary. Thus, using Eq. (13),

030327-12



QUANTUM CODING TRANSITIONS... PRX QUANTUM 5, 030327 (2024)

FIG. 9. Plot of I (ann)

A,R in Haar-random circuits for T/L = 4 and
tscr = L. Inset: the data collapse to a single curve as a function of
(p − pd)L.

I (ann)
A,R becomes zero and the information gets leaked to

the environment. In this sense, the presence of the right
boundary induces a phase transition at such large ratios
T/L, which is qualitatively different from the transitions
discussed in the previous sections. We can also interpret
this phase transition in the original quantum circuit setup.
In this language, the transition stems from the finite system
size. Intuitively speaking, the system gets entangled with
pT environment qudits, and when pT � L, the system gets
maximally entangled with the environment and becomes
thermalized. By the monogamy of entanglement, the refer-
ence qudits can no longer be entangled with the system, but
are lost to the environment [66]. Therefore, for large T/L,
there is a transition with respect to the dissipation strength
p , and the location of the critical point scales as pd ∼ T/L;
for p > pd, the information gets completely entangled with
the environment. This transition is also visible with respect
to T and for fixed dissipation strength p .

We study this coding transition by performing tscr = L
steps of prescrambling before turning on the noise. As
explained in the previous section, linear prescrambling
perfectly protects the information for all strengths of dis-
sipation, as long as T/L is sufficiently small. Because of
this prescrambling step, the mutual information IA,R takes
the shape of a “step function” as a function of dissipa-
tion strength, signaling the phase transition. We confirm
this behavior by showing I (ann)

A,R (T) versus p for T/L = 4
in a Haar-random circuit in Fig. 9. We also find a scaling
collapse as a function of (p − pd)L (see the inset).

A. Numerical study

We also verify the above transition in the Clifford circuit
setting acting on a qubit chain, introduced in the previ-
ous section. Here, after initializing a Bell pair at the left
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FIG. 10. Coding transition upon approaching thermalization.
(a) Mutual information between the input and the output of the
Clifford circuit shown as a function of dissipation strength p ,
converging towards a step function in the thermodynamic limit.
Prescrambling time is set to tscr = L, followed by dissipative
dynamics for time T, with T/L = 4 fixed. (b) Data collapse as
a function of (p − pd)L1/2, with the critical point pd = 0.136
corresponding to the crossing point of finite-size data.

boundary of the chain, we run a prescrambling step lin-
ear in system size, tscr = L, followed by the dissipative
dynamics applied for time T. As before, we examine the
finite-size scaling by increasing T and L, while keeping
T/L > 1 fixed. As already discussed in the annealed frame-
work, we find a phase transition for large enough aspect
ratio T/L > 1. In Fig. 10(a), we plot the mutual infor-
mation between the reference qubit and the output of the
circuit as a function of p for different system sizes L, using
a prescrambling time tscr = L and aspect ratio T/L = 4. In
perfect agreement with the annealed picture, the mutual
information curve approaches a step function in the ther-
modynamic limit, confirming a phase transition between a
phase with all the information protected and a phase with
all information destroyed.

We find a good scaling collapse with the scaling function
depending on (p − pd)L1/2; see Fig. 10(b). The form of the
scaling function differs from the annealed result. This devi-
ation can be understood by noting that, for the annealed
case, we applied a deterministic boundary depolarization
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channel, Eq. (1), whereas the dissipation in the Clifford cir-
cuit is applied at random time steps, and this disorder may
change the properties of the transition. Indeed, the effect
of randomness in the dissipation channel can be studied by
introducing disorder into the annealed model and applying
channel (1) at random times, which leads to a scaling
function depending on (p − pd)L1/2 (data not shown), in
perfect agreement with the Clifford circuit results. The
discrepancy between the factor of L and L1/2 can be under-
stood as follows. With randomness, the number of envi-
ronment qubits entangled with the system increase linearly
with T, but has fluctuations of order

√
T. This results in the

critical point fluctuating as δp/
√

T, leading to (p − pd)L1/2

dependence of the mutual information.

B. Nature of the phase transition

We end this section by discussing the nature of the tran-
sition explored above. We argue below that the coding
transition in this regime is a first-order phase transition.

To begin with, let us consider the large qudit limit
such that 1/q � (1 − p)2. The partition function in the
annealed picture contains contributions coming from all
possible trajectories of the domain wall. The contribu-
tion at time t from trajectories having the domain wall at
nDW time steps is of order (1/q)nDW[(1 − p)2]t−nDW. The
entropic factor, due to there being more configurations
with the domain wall as opposed to without it, can only
renormalize the 1/q factor. Thus, the partition function
is dominated by the term having no domain wall at any
point of time, (1 − p)2t. However, for (1 − p)2t > (1/q)L,
it is preferable for the domain wall to go all the way
to the right boundary and get annihilated there. Thus, at
tc ∼ log(1/q)L/log(1 − p) the nature of the domain wall
changes discontinuously from being stuck at the noisy
boundary to getting annihilated at the un-noisy boundary,
indicating a first-order transition. The finite q corrections
to the above picture only act as thermal fluctuations, which
causes the domain wall to have some excursions inside
the bulk. The contributions from these excursions will be
subleading and we expect the transition to remain first
order. Note that similar timescales were also identified in
Ref. [30] for the system to become perfectly thermalized
in the presence of noise.

As in the standard theory of first-order phase transitions,
the two boundaries correspond to the two local minima
for the domain wall and the system discontinuously jumps
from one to the other. The mutual information is then a
function of the probability that the system is in one of
the two minima [see Eq. (13)]. Since the free energy is
extensive, the probability of being in a particular minimum
scales as a function of δgV, where δg is the tuning parame-
ter for the transition and V is the total volume of the system.
In our case, the volume is equal to T. This explains the

observed finite-size collapse as a function of (p − pd)T in
Fig. 9.

V. ENCODING AT A FINITE RATE

So far, we have focused on the dynamics of a single
maximally entangled qudit pair localized near the noisy
boundary. It is equally interesting to understand the effects
of the noise when we have an extensive number of max-
imally entangled pairs in the initial state. We denote the
code rate, defined as the fraction of the system’s qudits
entangled with reference qudits, by C = NR/L, where NR
is the total number of maximally entangled pairs. For the
purpose of this section, we consider code density C = 1/2,
but we expect that the qualitative results should not change
for different values of C as long as C is not close to 1. To

Time

FIG. 11. Top: schematic representation of the statistical
mechanics of the Ising domain wall in the calculation of the
annealed mutual information, when coding at a finite rate. Typ-
ical domain wall trajectories when pth,1 < p < pth,2 are shown.
In Z⇓ the domain wall remains localized, whereas it is delocal-
ized for Z⇑, as explained in the text. Bottom: plot of the annealed
mutual information in a qubit chain, measured between reference
qubits entangled with the system’s qubits at alternate sites (C =
1/2) and the system at the end of the dissipative evolution. The
Bell pairs are prescrambled by a unitary circuit for time tscr = L,
after which the system is evolved in the presence of the bound-
ary dissipation for time T = 7L. We find that, for p < p1

th ≈ 0.06,
full information is preserved, while for p1

th < p < p2
th ≈ 0.2, a

finite density of information is protected. The threshold values
decrease as T is increased. Inset: for low p < p1

th, there is no
information loss even for T = 7L, that is, the difference between
I (ann)
A,R and the maximum value L goes to zero with the system

size. Thus, all Bell pairs can be perfectly recovered by a recovery
operation acting on the system.
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make the final results independent of the spatial distribu-
tion of the maximally entangled pairs at the initial time, we
apply random encoding by performing unitary scrambling
for time tscr = L.

We plot the annealed mutual information between the
input and output, I (ann)

A,R , in Fig. 11 as a function of the
dissipation strength for T = 7L. We find two threshold
values for the noise rate, pth,1, pth,2. For p < pth,1, the infor-
mation is perfectly protected and I (ann)

A,R is equal to the
maximal value 2CL. For pth,1 < p < pth,2, the information
starts leaking to the environment, but a finite density of
it still remains in the system. Finally, when p > pth,2, the
information is completely leaked to the environment. Note
that the values of pth change with the ratio T/L.

Similarly to the strategy followed in the previous sec-
tions, we verify these predictions by performing numerical
simulations on qubit chains subject to Clifford random
quantum circuits. We show the density of the mutual infor-
mation between the output of the circuit A and the refer-
ence qubits, IA,R/NR, with NR = L/2 denoting the number
of input Bell pairs, as a function of dissipation strength
p in Fig. 12, for different system sizes L with T/L = 4
fixed. As noted above, here we applied a linear unitary
prescrambling step for time tscr = L, before the onset of
the noisy dynamics, such that the results do not depend
on the spatial distribution of the Bell pairs in the initial
state. We find a phase with perfectly protected informa-
tion for small enough dissipation strength p , followed by a
crossover region with a finite density of preserved coher-
ent information decreasing continuously with p , eventually
decaying to zero for large p .

To understand this behavior, we again resort to the sta-
tistical mechanics of the Ising domain wall. The case of
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FIG. 12. Coding transition for a finite code rate. Density of the
mutual information between the output of the circuit and the ref-
erence qubits shown as a function of dissipation strength p , for
fixed evolution time T/L = 4 and NR = L/2 initial Bell pairs.
Prescrambling time is tscr = L, followed by noisy dynamics with
a random boundary erasure channel. The information density is
perfectly protected for weak enough dissipation p , then decays
continuously towards zero with p in a crossover region, with all
information leaked to the environment for large enough p .

a finite code rate shows important differences compared
to the model with an O(1) amount of quantum informa-
tion encoded. For a finite coding rate, there is an extensive
number of Ising spins at the top boundary whose state is
fixed by the boundary conditions, though the bulk dynam-
ics of the domain wall remain the same. This leads to an
exponential amplification of the trajectories that minimize
the number of domain walls at the top boundary (note
that these domain walls at the boundary are different from
the Ising domain wall performing a random walk in the
bulk). As shown at the top of Fig. 11, the annealed mutual
information is given by

I (ann)
A,R = CL + logq

(
Z⇓
Z⇑

)
, (25)

where Z⇓, Z⇑, are the partition functions of the statistical
mechanics model with down and up spins, respectively, at
the locations of the encoded maximally entangled pairs.
As discussed in Sec. IV, the domain wall discontinuously
changes from being at the left boundary to being at the
right boundary. To a good approximation, we can thus only
keep these two trajectories in the partition function. For
clarity of the expressions, we also introduce p̃ ≡ 1 − p .
The partition functions Z⇓, Z⇑ can thus be written as

Z⇓ ≈ p̃2Tq2CL +
(

1
q

)L

qCL, (26)

Z⇑ ≈ p̃2TqCL +
(

1
q

)L

q2CL. (27)

Substituting the above expression into Eq. (25) and
identifying the threshold values to be 1 − pth,1 ∼
q−(1−C)L/(2T), 1 − pth,2 ∼ q−(1+C)L/(2T), we get

I (ann)
A,R ≈

⎧
⎪⎪⎨

⎪⎪⎩

2CL, p < pth,1,

2CL − 2T log
(

1 − pth,1

1 − p

)
, pth,1 < p < pth,2,

0, p > pth,2.
(28)

Intuitively, for low p , the domain wall remains localized
near the noisy boundary and mutual information is max-
imal. As p is increased, it is easier for the domain wall
in Z⇑ to delocalize compared to Z⇓, as in the former,
delocalization results in an exponential reduction in the
cost associated with having domain walls at the boundary.
Thus, the critical point at which the domain wall delocal-
izes is different for the two boundary conditions, resulting
in the two thresholds discussed above.

VI. SUMMARY AND DISCUSSION

In this work, we studied one-dimensional quantum
many-body systems with a noisy boundary. We focused on
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the dynamics of the information of an initially localized
maximally entangled qudit pair near the (noisy) bound-
ary by studying the mutual information IA,R(t) between
the inert reference qudit R of the pair and system A at
late times. This is also related to the coherent information
about the maximally entangled pair remaining in the sys-
tem [52,53]. We find that the chaotic scrambling due to
the unitary dynamics is sufficient to protect a part of this
information against getting leaked to the environment for
noise rate p < pc and long times T � L/p by allowing
the information to escape away from the boundary. We
further show that a random encoding of the maximally
entangled pair via noiseless scrambling dynamics of depth
O(log L) is sufficient to perfectly protect the informa-
tion for all strengths of the noise up to time T � L/p .
See Fig. 1(b) for a schematic representation of the phase
diagram.

In the regime when the total time of evolution T � L/p ,
any remaining information in the system is revealed to the
environment and the system goes through a first-order cod-
ing transition. This transition can also be seen as a result
of the system approaching thermalization to infinite tem-
perature. We expect this form of coding transition to be
present in all noisy channels, though in the case of the
boundary noise considered here, the timescales associated
with the transition increase parametrically with the system
size [30].

We also consider the coding dynamics for a finite code
rate, that is, when an extensive number, NR = CL with
C < 1, of the system’s qudits are entangled with refer-
ence qudits. We find that the code space can be perfectly
preserved for noise strengths below some threshold pth,1,
and for strengths above pth,2, the code space is completely
destroyed; see Figs. 11 and 12. Equivalently, we can also
extract the time for which the information stays in the sys-
tem for a fixed noise rate p , and define two threshold times
Tth,1 < Tth,2, both of which scale linearly with the system
size.

This work provides new insights into the competition
between scrambling and decoherence. Normally, active
feedback in the form of error correction is needed to
counter the decoherence effects of the noise. However,
we present the case of boundary noise where it is possi-
ble to have stable quantum error codes in the presence of
generic noise, with the code space dynamically protected
by scrambling. Previously, such dynamical protection of
information was also observed for the special case of
dephasing noise, which can be unraveled into quantum
trajectories corresponding to projective measurements, but
there an extensive number of ancilla qubits that act as a
register for the measurement outcomes are made part of
the system [27]. It would be of interest to generalize our
results and techniques in the presence of ancilla qubits for
cases different from the boundary noise. We leave this for
future work.

Other interesting directions to explore are the pres-
ence of similar coding transitions in purely unitary evolu-
tion. It seems possible for quantum information to remain
confined in part of a system evolving under chaotic uni-
tary dynamics for a long time, and before the system
thermalizes. We leave a detailed discussion of this direc-
tion to future work [67].

The competition between chaos and decoherence has
also been studied in the context of open quantum systems.
Previous studies have mostly focused on level statistics
and quantities like the spectral form factor, purity, and
the Loschmidt echo to study the effect of decoherence in
chaotic dynamics [68–75]. It is an open question to study
such probes in our context and whether the coding transi-
tions can also be seen in these quantities. There is also a
close relationship between the input-output mutual infor-
mation and operator spreading [measured via out-of-time
correlators (OTOCs)] in noise-free unitary dynamics [4].
It is interesting to understand how OTOCs in noisy sys-
tems are related to the emergent QEC property of the noisy
dynamics [76–78]. Or, more generally, how is the dynam-
ics of information related to the abovementioned quantities
for open quantum systems?

The coding transitions imply protection of the code
space against noise and the potential existence of a decod-
ing protocol that brings back the code space to its initial
state. Constructing such a protocol is notoriously hard for
random dynamics having little structure, except in a few
special cases like the Preskill-Hayden black hole proto-
col [1,79] or for special types of noise like the erasure
channel. For Clifford circuits with boundary dissipation
considered here, an efficient decoder can probably be con-
structed for the erasure channel and potentially also for
depolarization noise [80]. Another interesting direction in
further understanding the error-correcting properties of the
coding transitions is to look into the code distance of the
resulting code. We leave a detailed study of the decoding
protocols and code distance for future studies.

We also find similar coding transitions for bulk defects
where noise acts on the same site in the bulk. Protection
of quantum information against bulk defects is important
for the design of modular quantum computers, in which
smaller modules of the quantum memory or computer are
connected together to form a larger block. In this case, one
expects the noise in the gates connecting the two modules
to be far greater than the noise in the bulk of the individual
modules. Thus, the existence of an error threshold against
a bulk defect and the availability of the decoding protocol
discussed above gives a fault-tolerant way of building a
modular quantum computer.

A possible extension of our work is to study informa-
tion dynamics in noisy symmetric systems. The behav-
ior of information in symmetric systems with local
charge density in the presence of measurements has been
shown to be qualitatively different from the case without
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symmetry [81–84]. It is also known that systems with local
charge conservation can have charge transport and long-
time operator entanglement growth even in the presence
of strong dephasing noise [85,86]. This may potentially
lead to a more robust encoding of the information when
the code space is spread across different charge sectors
as opposed to being confined to one sector. We leave the
exploration of this effect for future studies.

ACKNOWLEDGMENTS

The authors thank the Kavli Institute for Theoretical
Physics (KITP), where this research was initiated and
partly performed. The KITP is supported, in part, by
the National Science Foundation under Grant No. NSF
PHY-1748958. S.V. thanks Matthew Fisher for helpful
discussions. U.A. thanks Ali Lavasani for helpful discus-
sions. I.L. acknowledges support from the Gordon and
Betty Moore Foundation through Grant GBMF8690 to
UCSB. This work was supported by the Simons Collabo-
ration on Ultra-Quantum Matter, which is a grant from the
Simons Foundation (651440, U.A.). S.V. acknowledges
the support of the W. M. Keck Foundation (Grant No.
9303).

APPENDIX A: LATTICE PARTITION FUNCTION
AND THE ANNEALED PHASE TRANSITION

The annihilation of the Ising domain wall at the bound-
ary, and the free propagation of the domain wall through
the bulk describe two distinct phases that may be accessed
by tuning the dissipation strength, as described in detail in
Sec. II. Here, we make this connection precise by study-
ing the lattice partition function for the domain wall using
the weights derived in Sec. II A. We consider the quan-
tum circuit evolution shown schematically in Fig. 13(a),
where each site (in blue) denotes the action of a two-
site unitary gate on a qudit chain, while dissipation (in
orange) acts periodically on the boundary qudit. Let Z(T)

denote the partition function for the domain wall propa-
gating for a time T, defined so that at the initial and final
times, the domain wall is absent (i.e., has been annihi-
lated at the x = 0 interface). This partition sum may be
calculated as follows. First, we define Za(t) to be the par-
tition function when there is no domain wall for a time
interval t (it has been annihilated), while Zf (t) is the parti-
tion function when the domain wall is created at the x = 0
interface, wanders, and first returns back to the interface
after a time t, after which it is then annihilated (the domain
wall is free). With these definitions, we observe that
Z0(T) is given by summing over all possible domain wall
histories as

Z(T) = Za(T) + Zf (T) +
∑

t<T

Za(t)Zf (T − t) + · · · ,

(A1)

(a) (b)

FIG. 13. A depiction of the quantum circuit that is applied to
the qudit chain is shown in (a). Here, each blue vertex indicates
the application of a two-site unitary gate, while the orange sites
indicate the periodic application of a single-qudit depolarizing
channel. The calculation of the corresponding Ising partition sum
can be performed, with spin configurations living on bonds of
the square lattice, as in (b), and which are naturally thought of
as propagating in the indicated “time” direction by the trans-
fer matrix for the Ising magnet. Shown is a contribution to
Zf (t = 5), where the domain wall is created by the dissipation
at the initial time, and is annihilated four time steps later. The
trajectory of the Ising domain wall can be thought of as a path
on the lattice, which starts from the first unitary gate that acts
on a pair of antialigned spins, and ends when the domain wall is
annihilated.

where the ellipsis denotes all possible domain wall con-
figurations in which, at intermediate time steps, the
domain wall wanders away or is annihilated at the
interface.

It is convenient to consider the discrete Laplace trans-
form of the partition function

z(w) ≡
∑

T≥0

wTZ(T). (A2)

The inverse of this transformation is given by

Z(T) = 1
2π i

∮

�

dw
z(w)

wT+1 , (A3)

where the contour � encloses the origin in the complex
w plane. This relation is easily verified by substituting
Eq. (A2). As a result, the smallest real singularity of
z(w)—denoted w∗—determines the behavior of the parti-
tion function at long times. Equivalently, the free-energy
density f = −T−1 log Z is given by

f
T→∞∼ log w∗. (A4)
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The Laplace transform of Z(T) is straightforward to eval-
uate, since each term in expansion (A1) is a discrete con-
volution of products of Za and Zf . As a result, the Laplace
transform of each term in this sum is simply the product of
the Laplace transformations of appropriate products of Za
and Zf . We thus find that

z(w) = za(w) + zf (w) + 2 za(w)zf (w)

1 − za(w)zf (w)
(A5)

with za(w) and zf (w) defined as the Laplace transforms of
Za(t) and Zf (t), respectively.

Observe that Za(t) = (1 − p)2t so that

za(w) = w(1 − p)2

1 − w(1 − p)2 . (A6)

Similarly, we note that, when t ≥ 2,

Zf (t) = p(2 − p)

q

(
q

q2 + 1

)2t−3

N2t−4. (A7)

Here, p(2 − p)/q is the weight to create the Ising domain
wall, as indicated in Eq. (7). The domain wall is acted
upon by 2t − 3 two-site unitary gates, incurring a weight
q/(q2 + 1) for the action of each gate. Finally, N2k is the
number of walks on the rotated square lattice—such as that
shown in Fig. 13(b)—which start at a site closest to the
boundary, and which return to the same point after 2k steps,
without touching the boundary. This counting of paths is
easily determined to be

N2k =
(

2k
k

)
−

(
2k

k + 1

)
. (A8)

Performing the Laplace transform thus yields

zf (w) = p(2 − p)

2q
w(q2 + 1)

q

[
1 −

√
1 − w

w1(q)

]
, (A9)

which has a singularity when the argument of the square
root vanishes at

w1(q) ≡ (q2 + 1)2/4q2. (A10)

We note that z(w) is also singular at w = w2 such that
za(w2)zf (w2) = 1. Finally, we note that, while za(w) con-
tains a pole at w = 1/(1 − p)2, it is clear from Eq. (A5)
that this does not give rise to a singularity in z(w).

When p > pc, the smallest real singularity of z(w)

occurs at w = w1(q), so that the free energy

f = 2 log
(

q2 + 1
2q

)
, p > pc. (A11)

A phase transition occurs at p = pc when the two singu-
larities merge, w1 = w2, and for p < pc, the singularity

at w∗ = w2 determines the free-energy density. The phase
transition therefore occurs when

zf (w1)za(w1) = 1. (A12)

This equation may be solved numerically to obtain pc
for any finite q. The critical probability increases with
increasing Hilbert space dimension q. In the limit q → ∞,
we may analytically solve this equation to find that pc
approaches one as

pc = 1 − O(q−2), (A13)

so that the phase transition is absent when the on-site
Hilbert space dimension is strictly infinite.

Finally, we may study the singular part of the free energy
near the transition at p = pc. Expanding the equation
zf (w2)za(w2) = 1 for p = pc − δp with δp � pc yields
the result that the singularity w∗ = w2 = w1 − δw, where
δw ∼ (δp)2. As a result, the free-energy difference van-
ishes when approaching the critical point as

�f (p) ≡ f (pc) − f (p)
p→p−

c∼ (p − pc)
2. (A14)

On general grounds, the singular part of the free-energy
density should vanish as �f ∼ 1/ξ‖, where ξ‖ is the cor-
relation length along the time direction. This correlation
length thus diverges as ξ‖ ∼ (p − pc)

−ν‖ with ν‖ = 2.
Finally, we may determine the typical length of an

excursion �⊥ that the domain wall will make into the bulk
of the quantum circuit, and how this distance diverges as
we approach the phase transition from the pinned phase
p ≤ pc. First, observe that the weight for the Ising domain
wall to make an excursion for a time t is Zf (t)/Z(t). Then
the typical duration of an excursion is

τ =
∑

t t Zf (t)/Z(t)∑
t Zf (t)/Z(t)

∼
∑

t t wt
∗Zf (t)∑

t wt∗Zf (t)
= ∂ ln Zf (w)

∂ ln w

∣∣∣∣
w=w∗

,

where in the second expression, we have used the fact
that Z(t)

t→∞∼ w−t
∗ . On approaching the transition from the

localized phase p = pc − δp , the singularity w∗ = w2 =
w1 − δw with δw ∼ δp2, as derived previously, which
yields the result that τ ∼ (pc − p)−1 as p → p−

c . Assum-
ing a diffusive wandering of the domain wall, the trans-
verse distance covered by the domain wall diverges on
approaching the depinned phase as

�⊥
p→p−

c∼ (pc − p)−1/2. (A15)

Approaching the phase transition, when �⊥ � x0, the prob-
ability that the domain wall has reached a point y ≥
x0 is approximately P(x0, t) = 1 − O(x0/�⊥). Substitut-
ing this into Eq. (13) yields the result that the annealed
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mutual information vanishes as I (ann)

A,R ∼ �−1
⊥ ∼ (pc − p)β

(with β ≡ 1/2) when approaching the phase transition.
This behavior, along with the knowledge of ν‖ = 2 moti-
vates the finite-size scaling form for the annealed mutual
information, which we use in the main text, I (ann)

A,R (T) =
T−β/νF[T1/ν(p − pc)].

APPENDIX B: ALTERNATIVE RANDOM CIRCUIT
PROTOCOLS

To show that the phase transition in the mutual infor-
mation persists irrespective of the precise form of the
boundary dissipation and scrambling dynamics, here we
introduce and examine four different protocols for the
random circuit acting on a qubit chain. We consider the
following two types of time evolution, each of them with
two different realizations of the boundary dissipation.

(a) Random boundary dissipation + maximal Clifford
scrambling. In each time step, the dissipation acts
on the leftmost qubit with probability p . Scrambling
is provided by random Clifford gates arranged in a
brickwork structure. Therefore, the relative strength

of the dissipation compared to the efficiency of
scrambling is tuned through parameter p .

(b) Periodic boundary dissipation + sparse Clifford
scrambling. The dissipation acts on the leftmost
qubit periodically, with periodicity Tperiod. The uni-
tary gates providing the scrambling of information
are applied in a sparse brickwork structure, where
each gate in the brickwork is a random Clifford uni-
tary with probability pU, and the identity with prob-
ability 1 − pU. In this setup, the relative strength
of the dissipation compared to the efficiency of
scrambling is determined by two parameters, Tperiod
and pU.

As described in the main text, the Bell pair is encoded in
the initial state at the left boundary, optionally followed
by a prescrambling step logarithmic or linear in the system
size, depending on the type of phase transition that we con-
sider. We note that the prescrambling is realized by a full
or sparse brickwork of Clifford unitary gates, in the first
and second types of dynamics, respectively.

As mentioned above, we consider two different realiza-
tions of the boundary dissipation.
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FIG. 14. Coding transition induced by a single boundary for different circuit protocols. Mutual information between the input and the
output of the circuit (a) as a function of dissipation strength p for boundary dissipation realized as a CNOT coupling to an ancilla qubit
with maximal bulk Clifford scrambling; (b),(c) varying the strength of sparse bulk Clifford scrambling pU with a periodic boundary
erasure channel (b) or a periodic boundary CNOT gate to an ancilla (c). All data are consistent with a coding transition between a
phase with partially protected information for weak dissipation or strong enough scrambling, and a dissipative phase with all encoded
information lost. No prescrambling step was used for these plots.
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(i) Boundary erasure channel. The dissipation acts
by deleting the information stored in the leftmost
qubit.

(ii) Coupling to an ancilla qubit. Here, we first cou-
ple the leftmost qubit of the system to an ancilla
qubit through a CNOT gate, and then trace out the
ancilla. In the stabilizer formalism, this operation
results in deleting all stabilizers containing a Y or
Z Pauli operator at the left end of the chain. To
restore rotational invariance and obtain a smooth
limit pU → 0, for sparse Clifford scrambling, we
also act with a random single-site Clifford gate on
the leftmost qubit before applying the CNOT gate.

In the main text we mainly focused on the case of random
boundary dissipation and maximal Clifford scrambling,
with the dissipation realized as a boundary erasure chan-
nel. We also briefly commented on the effect of a periodic
boundary noise, modifying the critical properties for lin-
ear prescrambling compared to the random case. Below
we provide supplementary numerical results for the other
protocols, showing a similar phase transition in the mutual
information.

We show the coding transition in the mutual information
without prescrambling, induced by a single boundary with
aspect ratio T/L < 1, in Fig. 14 for three different proto-
cols. We cross the phase transition by tuning the strength
of dissipation p in Fig. 14(a), realized with a random CNOT
coupling between the boundary spin and an ancilla qubit.
In contrast, in Figs. 14(b) and 14(c) the tuning parameter is
the strength of sparse bulk scrambling pU, while we apply
a fixed strength periodic boundary dissipation, realized as
an erasure channel in Fig. 14(b) and as a CNOT gate with an
ancilla qubit in Fig. 14(c). We recover the coding transition
between a phase with partially protected coherent infor-
mation and a phase where all information is destroyed for
all protocols. Because of the difficulties in fitting critical
exponents from finite-size data mentioned in the main text,
we leave the detailed study of critical properties for future
work. In the cases with periodic boundary dissipation we
used Tperiod = 5 (b) and Tperiod = 3 (c).
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