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We show a dissipative phase transition in a driven nonlinear quantum oscillator in which a discrete
time-translation symmetry is spontaneously broken in two different ways. The corresponding regimes dis-
play either discrete or incommensurate time-crystal order, which we analyze numerically and analytically
beyond the classical limit, addressing observable dynamics, phenomenology in different (laboratory and
rotating) frames, Liouvillian spectral features, and quantum fluctuations. Via an effective semiclassical
description, we show that phase diffusion dominates in the incommensurate time crystal (or continuous
time crystal in the rotating frame), which manifests as a band of eigenmodes with a lifetime growing
linearly with the mean-field excitation number. Instead, in the discrete time-crystal phase, the leading
fluctuation process corresponds to quantum activation with a single mode that has an exponentially grow-
ing lifetime. Interestingly, the transition between these two regimes manifests itself already in the quantum
regime as a spectral singularity, namely, as an exceptional point mediating between phase diffusion and
quantum activation. Finally, we discuss this transition between different time-crystal orders in the context
of synchronization phenomena.
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I. INTRODUCTION

Driven-dissipative quantum systems display genuine
nonequilibrium phases and dissipative phase transitions
emerging from the interplay of driving, dissipation, and
interactions. Their characterization, critical dynamics, and
universal features is the focus of a large body of theo-
retical [1–19] and experimental [20–24] work. In recent
years, intense activity has focused on nonequilibrium
phases of matter in which time-translation symmetry is
spontaneously broken, the so-called time crystals.

The existence of time crystals (TCs) was initially dis-
cussed for closed Hamiltonian systems [25]; however, it
was later shown that they cannot emerge in equilibrium
systems with short-range interactions [26–29]. Attempts
have been made to circumvent the possibility of observ-
ing time crystals in Hamiltonian systems that are based
on either long-range multispin interaction [30] or inter-
acting gauge fields [31], although these approaches have
also been criticized [32,33]. Far from equilibrium, time
crystals have been reported in both driven-Hamiltonian
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[34–39] and driven-dissipative systems [37,38,40]. In
driven-dissipative scenarios, time-translation symmetry
can appear due to different mechanisms, which provoke
the emergence of nonequivalent forms of time crystals.
In time-independent systems (or in an appropriate rotat-
ing frame) this symmetry can be broken continuously,
leading to continuous time crystals [40–61]. In time-
dependent periodic systems this symmetry can be broken
discretely, e.g., as a rigid subharmonic response to an
external periodic forcing, which are known as discrete (dis-
sipative) time crystals [56,62–72]. Time-dependent sce-
narios can also lead to the emergence of stable incom-
mensurate responses. In the context of driven Hamiltonian
systems, these are generally referred to as time quasicrys-
tals [73–76], while in driven-dissipative scenarios the
name incommensurate time crystal is also used [56,69,77–
80]. Signatures of these different time-crystalline orders
have recently been reported in various experimental plat-
forms, studying both driven-Hamiltonian systems [81–85],
driven-dissipative atomic systems [86–88], and nonlinear
optical cavities [89].

The eigenspectrum of the dynamical map describing
an open quantum system provides a powerful tool to
analyze the emergence of symmetry-broken phases and
dissipative phase transitions (DPTs) [90–92], as well as
dynamical phenomena like metastability [72,93] or quan-
tum synchronization [94,95]. DPTs can be signaled by a
Liouvillian gap closure in the thermodynamic [90] and
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infinite-excitation limits [9,92]. In continuous time crystals
a set of Liouvillian eigenvalues becomes purely imagi-
nary in these limits [40]. While in discrete (dissipative)
time crystals, one can find the signatures in the Floquet
map spectrum, in which a set of eigenvalues acquire a
unit absolute value [62,67,72]. The properties of the domi-
nant eigenvalues explain the distinctive emergent behavior
characterized by nondecaying oscillatory responses either
with a continuous period [40,42,47] or a rigid subhar-
monic response [62,67,72]. Therefore, for a deeper under-
standing of these emergent phenomena, it is crucial to
understand the behavior of the leading eigenvalues of the
dynamical generator. This analysis can shed light on the
dominant fluctuation processes that affect such phenom-
ena and facilitates the characterization and classification
of nonequilibrium phases and phase transitions.

In this work, we consider the quantum van der Pol
(QvdP) oscillator with squeezed drive [96–100]. This is
a paradigmatic system in the study of quantum synchro-
nization [94]. It allows for the study of synchronization
phenomena from the classical to the quantum regime
[101–104]. In the presence of a squeezed forcing, this
system exhibits a nonequilibrium transition between a
phase characterized by a stable incommensurate response
(incommensurate time crystal) and a phase characterized
by a stable subharmonic response (discrete time crystal).
Interestingly, in this setup, the explicit time dependence
of the model can be eliminated by moving to the driving
corotating frame. In such a frame, we demonstrate that
the incommensurate time crystal manifests as a continu-
ous time crystal and the discrete time crystal manifests
as a parity-broken stationary phase. In Table I in Sec. II,
we resume the different kinds of emerging mechanisms
depending on the frame and on the system parameters. This
provides an intriguing scenario in which to address the
interrelation between different symmetry-broken phases
and fundamental questions such as (i) how different time-
crystal orders shape the spectral properties and fluctuation
processes occurring in the same degrees of freedom; and
(ii) how these properties and processes reorganize them-
selves through a nonequilibrium transition or DPT. In Secs.
IV and V we address question (i), analyzing both the Liou-
villian spectrum and system observables. We show that a
semiclassical effective phase model allows us to identify
the dominant fluctuation processes of each symmetry-
broken regime and to explain the asymptotic behavior of
the Liouvillian spectrum. In Sec. VI we address question
(ii), showing that a spectral singularity, namely, an excep-
tional point (EP) [105,106], mediates in between these two
regimes. This provides a signature of the nonequilibrium
transition far from the infinite-excitation limit and marks
the point at which the dominant eigenvalues qualitatively
change their behavior. We present our conclusions in Sec.
VII, where we discuss the prospect of observing similar
phenomena in general synchronization scenarios.

TABLE I. Reference frame and emerging phases. Parameter η
measures the driving strength and is defined in Eq. (2), while the
critical value ηc is defined in Eq. (8).

Laboratory frame Rotating frame

η < ηc Incommensurate TC a Continuous TC b

η > ηc Discrete TC c

Parity (Z2)
symmetry
breaking

aSee also Refs. [56,69,77–80].
bSee also Refs. [40–61].
cSee also Refs. [56,62–72].

II. MODEL AND SYMMETRIES

The squeezed QvdP oscillator consists of a bosonic
mode coherently driven by a two-boson term (the squeez-
ing) and subject to linear amplification and two-boson dis-
sipation. The model is described by the following master
equation in the laboratory frame (� = 1) [96,100]:

∂tρ̂L = −i[ĤL(t), ρ̂L]+ γ1

2
D[â†]ρ̂L + γ2

2
D[â2]ρ̂L

= LL(t)ρ̂L

(1)

with

ĤL(t) = ω0â†â+ iη(â2ei2ωst − â†2e−i2ωst). (2)

Here ω0 is the frequency of the mode, η and 2ωs the
squeezing strength and its frequency, γ1 the amplifica-
tion rate, and γ2 the two-boson dissipation rate. The
Lindblad dissipator is here defined as D[L̂]ρ̂ = 2L̂ρ̂L̂† −
L̂†L̂ρ̂ − ρ̂L̂†L̂. The master equation displays a discrete
time-translation symmetry with period T = π/ωs, i.e.,
LL(t+ T) = LL(t). This model also displays a parity sym-
metry, as revealed by its invariance under the transforma-
tion â(â†)→−â(−â†). This can be formally expressed as
[Z2,LL(t)] = 0, where the action of the parity superoper-
ator is given by Z2ρ̂ = e−iπ â†âρ̂eiπ â†â [91,92].

A. Rotating frame

The explicit time dependence of this Liouvillian can
be conveniently eliminated in a rotating frame, as
defined by a time-dependent unitary transformation: Ût =
exp(−iωsâ†ât). In this frame, the Hamiltonian reads

Ĥ = �â†â+ iη(â2 − â†2) (3)

with the detuning defined as � = ω0 − ωs. This trans-
formation does not affect the other terms in the master
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equation, which now reads

∂tρ̂ = −i[Ĥ , ρ̂]+ γ1

2
D[â†]ρ̂ + γ2

2
D[â2]ρ̂ = Lρ̂, (4)

and which describes the dynamics of the rotating state:

ρ̂(t) = Û†
t ρ̂L(t)Ût. (5)

In the following, we first analyze the dynamics in the
rotating frame, which is easier to compute. Then, we
examine its counterpart in the laboratory frame through
unitary (5). As we show below, the spontaneous break-
ing of parity symmetry is equivalent (in this system) to the
emergence of a stable subharmonic response in the labo-
ratory frame. On the other hand, the continuous breaking
of time-translation symmetry in the rotating frame is iden-
tified as the emergence of nondecaying oscillations [40]
whose fundamental frequency varies continuously with the
system parameters and which manifest as an incommensu-
rate stable response when we move to the laboratory frame
(see Table I).

III. CLASSICAL DYNAMICS

The first step in the analysis is to consider the mean-field
description, where quantum correlations and fluctuations
are completely neglected. This provides us with a basic
description of the system dynamics, from which the bifur-
cation diagram can be retrieved. In QvdP systems this
description becomes accurate for large bosonic occupa-
tion numbers, which can be achieved when the amplifi-
cation rate is much larger than the nonlinear dissipation:
γ1/γ2 � 1 [101].

A. Mean-field bifurcation diagram in the rotating
frame

The mean-field equations of motion are obtained from
those of 〈â〉 factorizing higher-order moments 〈â†ââ〉 →
〈â†〉〈â〉〈â〉 and identifying the complex amplitude as α =
〈â〉. This yields the following nonlinear equation for the
complex amplitude:

α̇ = −i�α + γ1

2
α − γ2|α|2α − 2ηα∗. (6)

The mean-field dynamical regimes are particularly simple
because they depend only on the relationship between the
detuning � and the squeezing strength η. This becomes
apparent after rewriting the amplitude in terms of the inten-
sity N and the phase φ: α = √Neiφ . The equations of

motion for the new variables are

Ṅ = γ1N − 2γ2N 2 − 4ηN cos(2φ),

φ̇ = −�+ 2η sin(2φ).
(7)

These equations display a limit cycle for η < ηc and two
stable fixed points for η ≥ ηc [96,99], with

ηc = |�|2
. (8)

The bifurcation diagram is summarized graphically in
Fig. 1(a). The limit-cycle regime is characterized by an
average (over a period) intensity

N̄ = γ1

2γ2
(9)

and a fundamental frequency given by

� =
√
�2 − 4η2. (10)

The bistable regime is made of two fixed points given by

α± = ±
√

Nsseiφss (11)

with [96]

Nss = γ1

2γ2
+ 1
γ2

√
4η2 −�2,

2φss = π − sin−1 �

2η
,

(12)

and thus related by a parity transformation, i.e., a π phase.
The transition corresponds to an infinite period bifurcation
in which a limit cycle disappears and gives birth to two
saddle nodes [99]. This contrasts the more familiar (super-
critical) Hopf bifurcation in which the period is finite and
the amplitude of the cycle gradually builds up after the
transition [107]. At the mean-field level, the limit cycle
continuously breaks the time-translation symmetry, while
the fixed points constitute parity-broken solutions.

1. Mean-field dynamics in the laboratory frame

In the laboratory frame, the amplitude of the system
acquires the time-dependent phase factor e−iωst. Since ωs
and � are generally incommensurate, the limit cycle,
whose oscillation contains multiple harmonics of �, man-
ifests as a quasiperiodic oscillation in the laboratory
frame. On the other hand, the bistable regime for η >
ηc becomes a phase characterized by a subharmonic
response, α±(t) = ±

√
Nsseiφss−iωst, breaking the discrete

time-translation symmetry with an oscillation at half of the
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(a) (b)

FIG. 1. Bifurcation diagram. (a) In the rotating frame the
mean-field dynamical system displays a stable limit cycle for
η < ηc = |�|/2 or two stable fixed points for η > ηc. (b) Col-
ored dashed lines represent the stationary occupation number
for the full quantum model for �/γ1 = 0.1 and different n̄ex.
Black solid line represents the mean-field results (averaged over
a period).

driving frequency. In Table I we summarize the correspon-
dence between the different phases in the two frames, indi-
cating other setups in which similar nonequilibrium phases
have been observed. Note that many of the continuous time
crystals reported in the literature also manifest as incom-
mensurate time crystals in the corresponding laboratory
frame.

2. Quantum to classical crossover

The bifurcation diagram is independent of the ratio
γ1/γ2, which only controls the amplitude of the solu-
tions, i.e., how excited the system is. This motivates the
definition of the parameter

n̄ex ≡ N̄ = γ1

2γ2
. (13)

At the mean-field level, this is just the scaling factor that
controls the amplitude of the oscillations; n̄ex exactly cor-
responds to the mean-field intensity of the limit cycle
[Eq. (9)], while it also gives the dominant contribution to
the intensity of the bistable fixed points near the bifur-
cation [Eq. (12)]. In fact, the order of magnitude of the
boson number in the quantum oscillator is well captured
by this parameter, so we refer to it as the mean-field exci-
tation number. It can also be used to explore the transition
between the quantum (small n̄ex) and classical (large n̄ex)
limits of the system [101]. This is shown in Fig. 1(b),
where we compare the mean-field solution with the sta-
tionary boson number of the quantum system, obtained by
numerical integration of the master equation, as n̄ex varies.
We can clearly see that, for large n̄ex, the quantum results
tend to collapse on the mean-field results (averaged over
a period). In order to fully characterize the emergence of
these nonequilibrium regimes, one must go beyond the
stationary state quantities and study the dynamics of the
observables and the distinctive features of the Liouvil-
lian spectrum. Equivalently, it is necessary to identify the

leading fluctuation processes accompanying the mean-field
dynamics and how they behave with n̄ex.

IV. SPONTANEOUS SYMMETRY BREAKING IN
THE ROTATING FRAME

In this section, we address the full quantum model in
the rotating frame and analyze the emergence of the dif-
ferent symmetry-broken phases as n̄ex →∞. We begin
by addressing the breaking of continuous time-translation
symmetry for η < ηc, and later on we address the spon-
taneous parity breaking occurring for η > ηc. In both
cases, we first analyze how they manifest in the dynamics
of observables and the Liouvillian spectrum and after-
wards we present a semiclassical fluctuation model in
which mean-field dynamics is supplemented by classical
white noise. This enables us to understand the behavior of
the dominant Liouvillian eigenvalues in these symmetry-
breaking regimes and unveil the dominant fluctuation
processes.

A. Continuous time crystal: full quantum model

In driven-dissipative quantum systems, continuous
time-translation symmetry breaking occurs when there are
observables for which there emerge nondecaying persis-
tent oscillations that evolve in time according to some
function [40,43]:

f (τ ) = lim
t→∞ lim

n̄ex→∞
Tr[Ôρ̂(t+ τ)]. (14)

Here f (τ ) is a periodic function whose period varies con-
tinuously with the system parameters. Interestingly, the
two limits in Eq. (14) generally do not commute, since,
for finite sizes (or excitation number, as in our case), the
master equation usually has a unique time-independent sta-
tionary state that respects the Liouvillian symmetry and is
then incompatible with a symmetry-broken regime.

1. Signatures in the dynamics of expectation values

The progressive emergence of the limit-cycle solution
can be observed in the dynamics of the mean ampli-
tude, as shown in Figs. 2(a) and 2(b). Here, we present
Im[〈â(t)〉/n̄1/2

ex ] for increasing n̄ex, taking as the initial con-
dition a coherent state of equal amplitude n̄1/2

ex to the clas-
sical limit cycle [cf. Eq. (9)]. In this figure, the mean-field
self-sustained oscillation is also shown (black dashed line)
for η/ηc = 0.4 (a) and η/ηc = 0.8 (b). As the squeezing
strength is increased, more harmonics are involved in the
oscillation. In both cases, we observe how the lifetime of
the oscillations increases with n̄ex. Moreover, the quantum
oscillations increasingly overlap with the mean-field ones
for larger n̄ex, indicating the emergence of nondecaying
oscillations [40].
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FIG. 2. Signatures of continuous time-translation symmetry
breaking. (a),(b) Colored solid lines represent the imaginary part
of the amplitude dynamics for different n̄ex with �/γ1 = 0.1 and
(a) η/ηc = 0.4 or (b) η/ηc = 0.8. The initial condition is a coher-
ent state of amplitude

√
n̄ex. Black dashed lines represent the

mean-field dynamics. (c) Leading eigenvalues of the Liouvillian
for η/ηc = 0.4, �/γ1 = 0.1, and n̄ex = 10 (blue open triangles)
or n̄ex = 50 (red filled triangles). (d) Blue filled circles repre-
sent the first four leading decay rates of the Liouvillian L. Red
open circles represent the first four leading decay rates of the
phase Fokker-Planck operator L̂φ . Black dashed lines represent
the perturbation theory (PT) results for L̂φ [Eq. (25)]. Pertur-
bative results predict a scaling n/γ1 = cn/n̄ex, with c1 = 0.48,
c2 = 1.93, c3 = 4.34, and c4 = 7.72. Parameters for panel (d) are
η/ηc = 0.4 and �/γ1 = 0.1.

2. Signatures in the Liouvillian spectrum

The Liouvillian spectrum provides a way to systemat-
ically analyze the dynamics of a driven-dissipative sys-
tem. The eigenspectrum is composed of right and left
Liouvillian eigenmatrices together with their eigenvalues,
i.e.,

Lr̂j = λj r̂j , L† l̂j = λ∗j l̂j , (15)

where, if diagonalizable, these form a biorthogonal basis
Tr [l̂†j r̂k] = δjk. Assuming the presence of a steady state
ρ̂ss (this is always the case in finite dimensions, while it
needs to be checked in the case of infinite-dimensional
Hilbert space [108,109]), this corresponds to λ0 = 0, ρ̂ss =
r̂0/Tr[r̂0], and l̂0 = I. The rest of the eigenvalues have
a nonpositive real part that can be used to order them:
Re[λ1] ≥ Re[λ2] ≥ Re[λ3] ≥ · · · . The eigenmatrices can
be used to decompose the dynamics of the state of the
system as

ρ̂(t) = ρ̂ss +
∑

j≥1

Tr[l̂†j ρ̂(0)]r̂j eλj t, (16)

which shows that the timescales in the dynamics can be
generally understood from λj (this would not necessarily

be the case in the presence of collective phenomena such as
skin effects [110]). Defining their real and imaginary parts
as their frequency and decay rates, respectively,

εj = Im[λj ], j = −Re[λj ], (17)

we see that the criterion for nondecaying oscillations is that
j = 0 and εj �= 0 for some j . This can emerge in some
scaling limit [40], e.g.,

lim
n̄ex→∞

j = 0, lim
n̄ex→∞

εj �= 0. (18)

3. Bands of eigenmodes

In Figs. 2(c) and 2(d) we analyze the behavior of the
leading Liouvillian eigenmodes with n̄ex and η < ηc. In
panel (c) we show the leading eigenvalues for η/ηc = 0.4,
�/γ1 = 0.1, and n̄ex = 10 (blue open triangles) and n̄ex =
50 (red triangles). In both cases, there appear many eigen-
values with approximately the same frequency but different
decay rates. We refer to those with the smallest decay rate
for each frequency as the fundamental band of modes,
while those with approximately the same frequency and
larger decay rates form the subsequent higher-order bands
of modes. The band structure actually disappears for η >
ηc, in the discrete time-crystal regime. The decay rates do
establish the notion of the continuous time crystal: while
those of the fundamental band diminish with n̄ex, those of
the rest of the bands display a different behavior saturating
to approximately γ1 (see Appendix D).

4. Asymptotic behavior of the fundamental band

In Fig. 2(d) we focus on the behavior of the decay rates
of the fundamental with n̄ex (blue circles). We focus on
the four smallest rates as their asymptotic behavior is more
evident for finite n̄ex. As we can see, they diminish with n̄ex
and asymptotically approach the black dashed lines, which
scale linearly with the inverse of the mean-field excita-
tion number, i.e., ∝ 1/n̄ex. This scaling behavior is the
signature of continuous time-translation symmetry break-
ing in the infinite-excitation limit [40], while the inverse
proportionality with system size has also been reported for
spin systems [44,58]. Moreover, note that their imaginary
parts show a band structure, as they tend to the mean-field
frequency or multiples of it (see Appendix D). Thus, the
fundamental band is behind the emergence of persistent
oscillations observed in Figs. 2(a) and 2(b). In the next
subsection, we show that the∝ 1/n̄ex scaling of the leading
decay rates can be understood from a semiclassical analy-
sis, which tells us that these eigenmodes describe a phase
diffusion process.

030325-5



CABOT, GIORGI, and ZAMBRINI PRX QUANTUM 5, 030325 (2024)

B. Continuous time crystal: semiclassical approach

In the following, we present an effective semiclassical
model that provides analytical insights into the main fea-
tures of the continuous time-crystal regime. In the mean-
field approximation, the effect of fluctuations is completely
neglected and, therefore, information about the leading
relaxation timescales of the quantum system is gener-
ally lost. In order to understand the features discussed
in the previous subsection, a next level of approxima-
tion is required. This can be achieved with a semiclassical
approach inspired by a system-size expansion, extensively
applied in nonlinear quantum optics [111], e.g., in the
study of dispersive optical bistability [112–114], resonance
fluorescence [115,116], or in QvdP systems [97,99,101]
to name a few, and also in the context of cold atoms
(see, e.g., Refs. [117,118]). As detailed in Appendix A,
such a description can be obtained by approximating the
master equation in a phase space representation by a
Fokker-Planck equation [111,119].

Focusing on the small detuning limit, i.e., �/γ1  1
(which implies that ηc/γ1  1), intensity and phase fluc-
tuations can be approximately decoupled (see Appendix A
and Ref. [97]). In this limit, we consider fluctuations
around the mean-field average intensity,

δN = N − n̄ex (19)

which are described by the Langevin equation [111,119]

δṄ (t) = −γ1δN (t)+ ξδN (t),
E[ξδN (t)] = 0, E[ξδN (t)ξδN (t′)] = 3γ1n̄exδ(t− t′),

(20)

and the dynamics of the phase, which is described by

φ̇(t) = −�+ 2η sin[2φ(t)]+ ξφ(t),

E[ξφ(t)] = 0, E[ξφ(t)ξφ(t′)] = 3γ1

4n̄ex
δ(t− t′),

(21)

where E[·] stands for an average over stochastic realiza-
tions, while the ξδN (φ)(t) are Gaussian white noise terms
[111,119]. The intensity dynamics describes a relaxation
towards the mean-field intensity, while the phase dynam-
ics retains its full nonlinear form. This is commonly
observed when studying the fluctuations around limit-
cycle attractors, owing to the fact that while the amplitude
is dynamically fixed, the phase remains free [97,120].

1. Semiclassical spectrum

The Langevin equations (20) and (21) can be equiv-
alently formulated as a Fokker-Planck equation for the

probability distribution W(δN ,φ, t) (see Appendix A):

∂tW(δN ,φ, t) = (L̂δN + L̂φ)W(δN ,φ, t) (22)

with the expressions for the intensity Fokker-Planck oper-
ator L̂δN and the phase operator L̂φ given in Eqs. (A11) and
(A12), respectively. The eigenvalues of the Fokker-Planck
operator characterize the leading timescales of the system,
providing a semiclassical approximation to the Liouvillian
spectrum. In our case, the eigenvalues are

λ̃m,n = μm + νn, (23)

which are given as the sum of the intensity eigenval-
ues (μm) and the phase eigenvalues (νn). The intensity
eigenvalues can be found analytically (see Appendix B):

μm = −mγ1, m = 0, 1, 2, . . . . (24)

Using first-order perturbation theory in the small parameter
1/n̄ex, the phase eigenvalues can be approximated by (see
Appendix C)

νn = in�− γ1

n̄ex
cn, n = 0,±1,±2, . . . . (25)

Here cn is a positive real constant that depends on the
unperturbed eigenmodes and on �. Note that c0 = 0 (the
stationary state), while we numerically find that cn =
n2c1, forming a ladder structure, which, for η = 0, can be
analytically shown to be c1 = 3/8.

2. Band structure and phase diffusion

A crucial difference between the intensity and phase
eigenspectrum is that the former remains gaped as the
number of excitations increases, while the phase eigen-
spectrum becomes purely imaginary as n̄ex →∞. This
explains the band structure of the leading eigenmodes of
the Liouvillian observed in Fig. 2(c); the fundamental band
of eigenvalues corresponds to pure phase eigenvalues, i.e.,
λ̃0,n = νn, while the subsequent higher-order bands con-
tain mixed intensity and phase eigenvalues, i.e., λ̃m,n with
m ≥ 1, with a gap between bands that tends to γ1 (see
Appendix D). Thus, the Liouvillian eigenmodes behind the
emergence of nondecaying oscillations correspond only to
the phase dynamics, such that limn̄ex→∞ νn = in�.

In Fig. 2(d) we compare the real parts for the first four
eigenvalues for the Liouvillian and the different approxi-
mations presented in this section: blue circles denote the
exact results for the Liouvillian, red open circles denote
the exact results for L̂φ , and black dashed lines denote
the perturbative approximation [the real part of Eq. (25)].
We observe excellent agreement between the exact and
semiclassical results for sufficiently large n̄ex. The semi-
classical approximation allows us to analyze significantly
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larger values of n̄ex than the full quantum model (see also
Appendix C 2). Therefore, Eq. (25) provides a quantitative
prediction about the lifetime of the emerging oscillations,
which increases proportionally to the mean-field excita-
tion number, and thus diverges in the infinite-excitation
limit. Moreover, this allows us to identify phase diffu-
sion as the fluctuation process behind the finite lifetime of
the oscillations for finite sizes. This is because the lead-
ing eigenmodes correspond to phase-only eigenmodes, and
describe the diffusive dynamics of this degree of freedom.

C. Parity symmetry breaking: full quantum model

The structure of the Liouvillian spectrum changes qual-
itatively as the squeezing strength is increased above the
critical point η > ηc. This change has important conse-
quences as the limit of large n̄ex is approached. In the
continuous time-symmetry-breaking regime all complex
eigenvalues λj �=0 were distributed in a curved many-fold,
as in Fig. 2(c). In the parity-symmetry-breaking regime, as
shown in Fig. 1 of Ref. [100], all the leading eigenvalues
are real, and the characteristic band structure reported in
the previous section disappears.

As the number of excitations increases, a spectral gap
opens between λj for j ≥ 2 and λ0,1, while simultaneously
λ1 → 0. In Ref. [100] we analyzed the consequences of the
gap opening between λ0,1 and λj≥2, in which we charac-
terized in detail a resulting effective metastable dynamics
and its relation with quantum entrainment. Here, instead,
we focus on how, for η > ηc, the Liouvillian gap closes
as n̄ex →∞. In other words, we study the limit λ1 → 0,
where a second stationary state emerges, resulting in the
parity symmetry breaking [92].

1. Closure of the Liouvillian gap

In Fig. 3(a) we show the behavior of the two lead-
ing eigenvalues with n̄ex and for two different squeezing
strengths larger than the critical one. As we can see, λ2
saturates to a finite value (triangles), while λ1 dimin-
ishes with n̄ex (squares). In fact, λ1 vanishes exponentially
with the mean-field excitation number. This is confirmed
when comparing the squares with the black dashed lines,
which correspond to the analytical result presented below
[Eq. (29)] and which predict that the Liouvillian gap van-
ishes exponentially with n̄ex. We find excellent agreement
between the two up to a slight overestimation of the gap.
This provides strong evidence for the gap closure in the
infinite-excitation limit. Alternatively, the Liouvillian gap
can also be made to close by increasing the squeezing
strength (which also increases the excitation number). This
is shown in Fig. 3(b) (blue solid line) and, as the black
dashed line shows, it is also predicted by our analytical
approach.
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FIG. 3. Signatures of parity symmetry breaking. (a) Plot of
1/γ1 as a function of n̄ex (on a log scale) for η/ηc = 2 (filled
red squares) and η/ηc = 3 (open blue squares), and plot of
2/γ1 as a function of n̄ex for η/ηc = 2 (filled red triangles) and
η/ηc = 3 (open blue triangles). Black dashed and dash-dot lines
correspond to the analytical result (29) for the corresponding
parameter values. (b) Blue solid line represents the Liouvillian
gap (i.e., smallest decay rate) for n̄ex = 20. Dashed red line repre-
sents the smallest decay rate of the phase Fokker-Planck operator
L̂φ . Black dotted line represents the analytical approximation of
the smallest decay rate [Eq. (29)]. In all panels �/γ1 = 0.1.

2. Symmetry-broken states

The closure of the Liouvillian gap is the signature of a
dissipative phase transition [90,92] associated with a sym-
metry breaking. Indeed, here, the closing eigenmode r̂1
belongs to a different symmetry sector with respect to ρ̂ss,
implying the breakdown of parity symmetry in this regime
[92]. Recall that, as a consequence of the parity symmetry
of the Liouvillian, its eigenmodes transform as [91,92]

Z2r̂j = zj r̂j , (26)

where zj = ±1 is the parity eigenvalue. The stationary
state belongs to the symmetric sector [91,92], i.e., z0 = 1,
while numerical analysis reveals that r̂1 is antisymmetric,
i.e., z1 = −1. In these conditions, and in the limit η > ηc,
n̄ex →∞ in which the gap closes, we can decompose r̂1
and ρ̂ss in terms of symmetry-broken stationary states (see
Ref. [92] and Appendix E):

ρ̂± = ρ̂ss ± r̂1. (27)

These states satisfy Lρ̂± = 0 and Z2ρ̂± = ρ̂∓, and hence
they are stationary and parity symmetry broken. Indeed,
they are mapped one to each other through a parity
transformation, analogously to the mean-field solutions
[Eq. (12)], while the observables computed on these
states tend to the corresponding mean-field stable solu-
tions (see Appendix E). Therefore, the emergence of these
symmetry-broken states through the Liouvillian gap clo-
sure signals the emergence of the mean-field bistable
regime as the infinite-excitation limit is approached.
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D. Parity symmetry breaking: semiclassical approach

In the presence of bistability and noise, we can gener-
ically expect two fluctuation modalities: (i) small fluc-
tuations around the fixed points and (ii) noise-induced
transitions between the two fixed points [119]. In potential
systems and in the small noise limit, noise-induced tran-
sitions occur at a rate that decreases exponentially with
the ratio of the potential barrier over the noise intensity
[119]. Thus, process (ii) can be expected to govern the
longest timescale dynamics in the system. Such a fluctu-
ation process is ruled by the phase equation (21) whose
deterministic part corresponds to the derivative of the
phase potential

V(φ) = �φ + η cos(2φ). (28)

For η > ηc, this displays two minima in the range φ ∈
[0, 2π) corresponding to the bistable fixed points (see
Fig. 4). Thus, the noise term in Eq. (21) can induce
transitions between these two solutions, as illustrated in
Fig. 4(b). Under these conditions, we can obtain an approx-
imate expression for the rate of jumps over the potential
barriers (see Appendix C 3) [119],

gap = C exp
[
− 8n̄ex

3γ1

(√
4η2 −�2

+� sin−1 |�|
2η
− |�|π

2

)]
(29)

with

C = 2
π

√
4η2 −�2, (30)

which we can use as an approximation for the spectral gap
of L̂φ and the Liouvillian. Indeed, in Fig. 3(b) we compare
the Liouvillian gap (blue solid line) with the gap of L̂φ (red
dashed line) and this analytical result (black dotted line).
From this figure we observe that Eq. (29) is very accu-
rate away from the transition, only slightly overestimating
the Liouvillian gap. Finally, we note that just at the transi-
tion point (η = ηc) we find the Liouvillian gap to display
a different scaling law, being proportional to λ1 ∝ n̄−0.37

ex .
Interestingly, power-law scalings have also been observed
at the transition point of other nonequilibrium systems
[44,121].

1. Quantum activation process

The excellent agreement between Eq. (29) and the Liou-
villian gap leads us to conclude that the dominant fluctua-
tion process in the bistable regime is that of quantum acti-
vation [64,122–124]. This is an incoherent phenomenon in
which the system “jumps” over potential barriers because
of the accumulated effect of quantum fluctuations. The fact

(a) (b)

FIG. 4. Quantum activation process. (a) Flow diagram of the
phase degree of freedom in the limit-cycle (top) or the bistable
(bottom) regime. Stable fixed points are represented with filled
circles and unstable ones with open circles. (b) Tilted wash-
board potential V(φ) [Eq. (28)] in the bistable regime. In the
interval φ ∈ [0, 2π) there are two minima (corresponding to the
stable fixed points) and two maxima (corresponding to the unsta-
ble ones). The activation process can be thought of as follows:
supposing that the system starts in the left stable point, it can
transition to the other state, jumping over the right barrier with
a rate → [Eq. (C23)] or over the left one (since the potential is
periodic) with a rate ← [Eq. (C25)]. This is represented by the
arrows. In this case, jumping to the right is exponentially sup-
pressed with respect to jumping to the left as the potential barrier
is larger, and hence the process is dominated by the latter.

that the phase equation captures the correct eigenvalue
behavior implies that this equation accurately describes
the preferred direction of jumping in phase space between
the two stable solutions, i.e., the phase space path through
which it is easier to transition from one to the other [119].

V. SPONTANEOUS SYMMETRY BREAKING IN
THE LABORATORY FRAME

In this section we address the dynamics of the full
quantum model in the laboratory frame and analyze the
spontaneous breaking of the discrete time-translation sym-
metry. This occurs when stable solutions emerge that do
not respect the periodicity of the Liouvillian, LL(t+ T) =
LL(t). In the case of a discrete time crystal, this is sig-
naled by observables that display nondecaying oscillations
whose period is a multiple of T, i.e.,

fL(τ + nT) = fL(τ ), n > 1. (31)

as shown in, e.g., Refs [62–71,86]. In this frame. quasiperi-
odic solutions can also emerge, in which the dynam-
ics contains components oscillating at incommensurate
frequencies. This leads to the emergence of an incommen-
surate time crystal [56,69,77–80].

A. Stroboscopic dynamics in the laboratory frame

For our purposes, it is sufficient to consider the state in
the laboratory frame at stroboscopic times, i.e., ρ̂L(t = nT)
with n a positive integer. In this way, we can understand
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the dynamics in the laboratory frame from the results we
already have for the rotating frame. This is because at
multiples of the Hamiltonian period (t = nT) the unitary
transformation (5) that links both frames is equivalent to a
set of n concatenated parity transformations:

ρ̂L(nT) = ÛnTρ̂(nT)Û†
nT

= e−inπ â†âρ̂(nT)einπ â†â. (32)

Owing to the fact that, for finite n̄ex, the eigenmodes have a
well-defined parity symmetry, we can also decompose the
stroboscopic laboratory frame dynamics in their terms:

ρ̂L(nT) = ρ̂ss +
∑

j≥1

(zj )
n Tr[l̂†j ρ̂(0)]r̂j eλj nT. (33)

Depending on the parity of the eigenmodes (zj = ±1), the
additional oscillating phase (−1)n is displayed. Equation
(33) tells us that the dynamics in the laboratory frame can
be fully analyzed if we know the eigenvalues λj , their
behavior when approaching the limit n̄ex →∞, and the
parity zj of their respective eigenmodes.

B. Emergence of an incommensurate time crystal for
η < ηc

For η < ηc and approaching the limit n̄ex →∞, the
eigenvalues of the fundamental band display a vanishing
decay rate and an imaginary part that tends to � and mul-
tiples of it (see Fig. 2 and Appendix D). For long times
and in the infinite-excitation limit, only this fundamental
band of eigenmodes contributes to the dynamics, and we
can write the state of the system as

ρ̂L(nT) ≈ ρ̂ss +
∑

j∈{j=0}
(zj )

n Tr[l̂†j ρ̂(0)]r̂j ein�j T (34)

with

�j ∈ {m�, m = ±1,±2,±3, . . . }. (35)

In the infinite-excitation limit the approximation sign
accounts for neglecting the remaining modes of the higher-
order bands at large times. In Eq. (34) we use the notation
�j to denote that the frequency can be � or a multi-
ple of it. In all cases, we can rewrite the time-dependent
factor as ei�j nT = einπ(�j /ωs). The frequency � varies con-
tinuously with the system parameters [see Eq. (10)] and,
thus, without fine-tuning, it is generally incommensurate
with ωs. This means that the nondecaying time-dependent
solution described by Eq. (34) is incommensurate with the
driving period. Moreover, since Eq. (34) contains compo-
nents both at� and its harmonics, the emergent solution is
generally quasiperiodic. Therefore, for η < ηc and in the
laboratory frame, the system displays an incommensurate
time crystal.

100 101 102 103
t/Ts

–1.2

1.2

R
e(
〈â

〉 L/
n̄

1/
2

ex
)

FIG. 5. Signatures of discrete time-translation symmetry
breaking. Amplitude dynamics in the laboratory frame for
ωs/γ1 = 20π , η/ηc = 2, �/γ1 = 0.1, n̄ex = 20, and a coherent
state of amplitude α+ as the initial condition. The blue solid line
corresponds to the full-time evolution; orange line points cor-
respond to the stroboscopic time evolution; black dashed and
dash-dot lines correspond to exponential decaying envelopes
with decay rate gap/γ1.

C. Emergence of a discrete time crystal for η > ηc

Next, we show that the parity-breaking DPT occurring
in the rotating frame for η > ηc implies discrete time-
translation symmetry breaking in the laboratory frame.
This can be demonstrated by use of Eq. (33) and the results
presented in Sec. IV. As the Liouvillian gap closes in
the infinite-excitation limit and r̂1 is parity antisymmetric
(z1 = −1), then, for nT � −1

2 and n̄ex →∞, the state of
the system reads

ρ̂L(nT) ≈ ρ̂ss + (−1)n Tr[l̂†1ρ̂(0)]r̂1. (36)

In the infinite-excitation limit the approximation sign
accounts for neglecting the remaining modes (j > 1) at
large times. Equation (36) clearly signals the breakdown of
the discrete time-translation symmetry, as the state of the
system shows a nondecaying period-doubled dynamics.
Parity antisymmetric observables are capable of resolv-
ing this period doubling, and, thus, they can be used as
an order parameter of the type given in Eq. (31). This is
illustrated in Fig. 5, in which we plot 〈â(t)〉L, solving the
master equation in the laboratory frame both at strobo-
scopic times (yellow squares) and continuous time (blue
solid lines). We can see that the stroboscopic dynamics
alternate between two values that depend on the initial con-
dition, while the full-time evolution depicts the complete
harmonic oscillation of frequency ωs. Since the considered
n̄ex is finite, the symmetry-broken state has a finite lifetime
and thus this period-doubled dynamics eventually decays
out on a timescale −1

gap. This decaying envelope is shown
with black dashed lines.

VI. EXCEPTIONAL POINT AS THE
BIFURCATION POINT

In the previous sections, we have shown that the Liou-
villian spectrum displays qualitatively different features
in the different regimes as the infinite-excitation limit is
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approached. In the rotating frame, the continuous time
crystal is signaled by a whole band of eigenmodes dis-
playing a vanishing decay rate for η < ηc, while, for η >
ηc, the Liouvillian gap closes and the parity symmetry is
spontaneously broken. Here we address how the spectrum
changes from one regime to the other for any value of n̄ex.
Interestingly, we show that a spectral singularity, an excep-
tional point, mediates in between both regimes and plays
an analogous role to the bifurcation point. This singular
behavior for finite excitation number is in stark contrast
with the smooth behavior of the observables in the steady
state in the quantum regime (see, e.g., Fig. 1).

A. Exceptional point

In Fig. 6 we show the behavior of the imaginary (a) and
real (b) parts of the two leading Liouvillian eigenvalues
(blue solid lines) varying the squeezing strength η across
the transition point ηc. For small η/ηc, the two eigenvalues
are complex conjugate, while at η = ηEP they collide in the
complex plane and they become real for larger squeezing.
The point of degeneracy corresponds to an EP, in which
both the eigenvalues and eigenvectors coalesce and the
Liouvillian becomes singular [105,106]. The presence of
this EP was first reported in Ref. [100], and lies in between
the parameter regimes in which the eigenvalues behave in
a qualitatively different fashion. This EP is also captured
by the semiclassical phase model [Eq. (21)], as we show
with red dashed lines. Indeed, we observe excellent agree-
ment between the two leading eigenvalues of L and of L̂φ ,
despite the EP in the latter seeming to occur at a slightly
larger squeezing strength. The EP can also be observed in
Fig. 3(b) as the tipping point in which the Liouvillian gap
changes its behavior. We recall that the EP also manifests
in the laboratory frame, as the dynamics at stroboscopic
times [Eq. (33)] depends on the spectrum of the Liouvillian
in the rotating frame.

1. EP and bifurcation point

From Figs. 6(a) and 6(b), the question arises whether
ηEP and ηc are related. As a matter of fact, we observe
that ηEP depends on the other parameters of the system,
i.e., the detuning and the mean-field excitation number.
We observe that ηEP > ηc for finite n̄ex, while their differ-
ence vanishes as the infinite-excitation limit is approached.
This is shown in Fig. 6(c), where we consider three differ-
ent values of the detuning, and we analyze the difference
between the bifurcation point and the EP, i.e., �ηc =
ηEP − ηc for the Liouvillian (blue filled markers) and for
the phase Fokker-Planck operator (red open markers), the
latter allowing us to explore significantly larger values of
n̄ex. In all cases we find that the following scaling law
accurately captures the asymptotic value of this difference:

�ηc/γ1 ∝ n̄−βex . (37)

(a)

(c)
(d)

(b)

FIG. 6. Exceptional point and emerging bifurcation. Imagi-
nary (a) and real (b) parts of the two dominant eigenvalues
varying the squeezing strength across the transition for n̄ex =
20. The blue solid lines correspond to the eigenvalues of the
Liouvillian, while the red dashed lines correspond to those of
the phase Fokker-Planck operator. (c) Plot of �ηc = (ηEP − ηc)

as a function of n̄ex for different values of �/γ1. Blue filled
markers correspond to the results obtained from the Liouvillian,
while red open markers correspond to those obtained from the
phase Fokker-Planck operator. Black dashed lines correspond
to the fit �ηc/γ1 ∝ n̄−βex for n̄ex ∈ [100, 550] for the Liouvil-
lian. The exponents read β = [0.659, 0.660, 0.656] for �/γ1 =
[0.05, 0.1, 0.2], respectively, where the last decimal is within
the standard deviation of the fit. The corresponding fits for the
semiclassical results for n̄ex ∈ [500, 104] yield the exponents
β = [0.670, 0.671, 0.671]. (d) Sketch of the emerging bifurca-
tion diagram and the behavior of the leading eigenvalues of the
Liouvillian as the squeezing strength is varied. The black arrows
depict the qualitative behavior of the leading decay rates (in the
continuous time-crystal regime), the two dominant eigenvalues
(in the parity-symmetry-breaking regime), and the EP, as the
infinite-excitation limit is approached.

The black dashed lines in Fig. 6(c) correspond to the fit to
the points with the largest n̄ex for the Liouvillian, in which
we find a similar exponent for the three detunings, namely,
β ∼ 0.66. Considering the semiclassical results (red open
markers), we see that they slightly overestimate the Liou-
villian ones; however, they are still accurately fitted by the
same scaling law [Eq. (37)]. In this case, we have per-
formed the same fit for much larger excitation numbers (up
to n̄ex = 104), obtaining similar exponents β ∼ 0.67. This
strengthens the conclusion that, as the infinite-excitation
limit is approached, the EP approaches the bifurcation
point as a power law in n̄ex, i.e., limn̄ex→∞ ηEP = ηc. There-
fore, the EP provides a spectral signature of the emergent
nonequilibrium transition.

VII. SUMMARY AND CONCLUSIONS

In this work, we have analyzed a dissipative phase
transition that occurs in the squeezed QvdP oscillator. This
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transition separates two distinct regimes in which different
symmetries are spontaneously broken. In the laboratory
frame, the system breaks the discrete time-translation
symmetry in two different ways. When the squeezing
strength is smaller than the critical one, an incommensurate
time crystal emerges, with its characteristic nondecaying
quasiperiodic response. When the squeezing strength is
larger, a discrete time crystal emerges. In the rotating
frame, the former manifests as a continuous time crys-
tal, while the latter manifests as a parity symmetry-broken
phase (see Table I).

Addressing the Liouvillian spectral signatures of both
phases, we have shown them to be accurately described
by a semiclassical fluctuation model in which the dom-
inant fluctuation modes correspond to a phase degree of
freedom. This has allowed us to identify the main fluctua-
tion processes in each regime as well as to obtain accurate
expressions for the dominant Liouvillian eigenvalues. We
have shown that phase diffusion is behind the finite lifetime
of the oscillations in the continuous time crystal (or incom-
mensurate time crystal in the laboratory frame), while
quantum activation [64,122–124] accounts for the domi-
nant lifetime in the parity-breaking regime (discrete time
crystal in the laboratory frame). These processes display
qualitatively different spectral signatures as the asymptotic
scaling of the dominant lifetimes: for phase diffusion, the
dominant lifetime scales linearly with the mean-field exci-
tation number (n̄ex), while for quantum activation regime,
it scales exponentially with it.

The peculiar nonequilibrium transition we have reported
manifests as a spectral singularity even for finite excitation
numbers. For finite n̄ex, the point where the eigenspectrum
changes qualitatively is an EP occurring at ηEP, where the
leading eigenvalues λ1,2 become real. For smaller squeez-
ing strengths, the spectrum develops the band structure
characteristic of phase diffusion, while for larger ones,
the dominant eigenvalue vanishes and the rest remains
gaped as n̄ex →∞. The squeezing strength at which the
EP occurs approaches the classical bifurcation point as
n̄ex →∞, following a power law in the mean-field exci-
tation number, as we have shown for the Liouvillian and
semiclassical spectra. These results are graphically sum-
marized in Fig. 6(d), which shows the qualitative behavior
of the leading eigenvalues and the EP with n̄ex →∞. This
correspondence between EP and a bifurcation point has
also been observed in Ref. [92] for a different DPT, in
which a different exponent β has been identified. It remains
an open question whether further examples of this corre-
spondence can be discovered, and whether the exponent β
can be used to classify different families of nonequilibrium
transitions.

Finally, we discuss our results in connection with the
phenomenon of entrainment, i.e., synchronization to an
external signal [125]. In this system the presence or
absence of entrainment is related to the time-crystal order;

in the incommensurate time-crystal regime there is no
entrainment, while in the discrete one, there is entrainment.
This can be understood by recalling that in an entrained
regime, a system oscillates at the same or at a multiple or
fraction of the frequency of a forcing, which means that it
either respects the time-translation symmetry imposed by
the forcing (as in the driven QvdP oscillator [101,102]) or
it breaks it discretely, as in the present case. On the other
hand, in the absence of entrainment, the system oscillates
at a frequency that depends on the internal parameters and
it is incommensurate with that of the forcing [125,126],
leading to the possible emergence of an incommensu-
rate time crystal. This connection between entrainment
and time-crystalline order differs from that of other syn-
chronization phenomena reported in the literature, as in
Ref. [41] in which the regime of mutual synchroniza-
tion does indeed correspond to a continuous time crystal.
However, this distinction can be attributed to the under-
lying synchronization scenarios being considered. In the
case of entrainment, an external frequency is imposed.
Conversely, mutual synchronization occurs when a shared
or common frequency emerges spontaneously among the
interacting components.
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APPENDIX A: DERIVATION OF THE
SEMICLASSICAL MODEL AND EIGENVALUE

PROBLEM

In this appendix, we discuss how to obtain the semi-
classical fluctuation model of Eqs. (20)–(22). We begin
in Appendix A 1 by rewriting the master equation in
the Wigner phase space representation and we perform
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the semiclassical approximation of truncating higher-order
partial derivatives. Afterwards, in Appendix A 2 we dis-
cuss the approximation of the decoupling phase and inten-
sity fluctuations. Finally, in Appendix A 3 we overview the
formulation of the eigenvalue problem for Fokker-Planck
equations.

1. Truncated Wigner approximation and change of
variables

The starting point is the exact rewriting of the mas-
ter equation in the rotating frame as a partial differential
equation for the Wigner distribution [111]:

∂tW(α,α∗, t) = L̂MEW(α,α∗, t) (A1)

with the differential operator defined as [101]

L̂ME = ∂αα
[
γ2(|α|2 − 1)− γ1

2

]
+ (2ηα∗ + i�α)∂α

+ ∂α∂α∗
2

[
γ1

2
+ γ2(2|α|2 − 1)

]
+ γ2

4
∂2
α∂α∗α + c.c.

(A2)

The semiclassical approximation consists in neglecting
third-order partial derivatives while approximating the dif-
fusion coefficient by the mean-field amplitude for η = 0
[101], i.e., |α|2 ≈ n̄ex. This approximation becomes more
accurate as the limit n̄ex →∞ (γ2/γ1 → 0) is approached
[101], while the squeezing strength and the detuning need
to be small compared with the amplitude of the limit cycle
such that its amplitude and shape are not significantly
altered. Note that this approximation does not correspond
to a rigorous system-size expansion [111].

Then, the semiclassical equation for the Wigner distri-
bution reads

∂tW(α,α∗, t) = L̂FPW(α,α∗, t) (A3)

with

L̂FP = ∂αα
[
γ2|α|2 − γ1

2

]
+ (2ηα∗ + i�α)∂α

+ 3γ1

4
∂α∂α∗ + c.c. (A4)

Essentially, we have replaced the original quantum dynam-
ics as described by the general partial differential equation
(A1) by a Fokker-Planck equation for the Wigner distri-
bution [111]. From now on we regard W(α,α∗, t) as a
classical probability distribution and α (α∗) as classical
variables, which allows us to fully analyze Eq. (A3) using
classical stochastic methods [119,129].

From now on and in the following appendices, we work
with the dimensionless parameters

τ = γ1t, �̃ = �/γ1, η̃ = η/γ1. (A5)

Moreover, we make a change of variables in the Fokker-
Planck equation to rewrite it in terms of the phase and
intensity: α = √Neiφ with φ and N the stochastic coun-
terparts of the mean-field phase and intensity, respectively.
With the use of these dimensionless parameters and the
change of variables, the semiclassical model reads

∂τW(N ,φ, τ) = L̂FPW(N ,φ, τ) (A6)

with

L̂FP = −∂N

[
1− N

n̄ex
− 4η̃ cos(2φ)

]
N

+ ∂φ[�̃− 2η̃ sin(2φ)]+ 3
2
∂N N∂N + 3

8N
∂2
φ . (A7)

We observe that, with these new variables, noise terms
become multiplicative, i.e., the diffusion terms depend
on N . We now comment on some important aspects of
Eq. (A7): (i) the noiseless intensity dynamics depends on
the phase; (ii) the noiseless phase dynamics is indepen-
dent of the intensity, but it is nonlinear; (iii) the diffusion
terms are exactly the same as for the case η/γ1 = 0, and
hence the strength of phase fluctuations depends inversely
on the squared amplitude (intensity) of the limit cycle, i.e.,
N−1. In the following subsection, we perform some further
approximations on Eq. (A7) based on the dynamics of the
system, which will allow us to obtain analytical results for
the dominant timescales of the system.

2. Decoupling of intensity and phase fluctuations.

In the limit of small detuning and squeezing strength,
i.e., |�̃|, η̃  1, the contribution of the phase term in the
intensity dynamics is small, and can be neglected in a
first approximation [this corresponds to neglecting the term
proportional to η in Eq. (7)]. Recall that, since the bifurca-
tion diagram only depends on the relation between � and
η, the considered limit does not preclude the observation of
the bifurcation, as ηc = |�|/2 can still be small compared
to γ1. Physically, what this approximation exploits is that
in this limit the amplitude of the limit cycle is large com-
pared to the squeezing strength, and, thus, it is essentially
the same as that of the undriven system. Equivalently, the
phase-space representation of the cycle is essentially cir-
cular, with only small elliptical deformations due to the
nonzero squeezing [97]. In the same way, in the bistable
regime, it exploits the fact that in this limit the fixed points
display an amplitude that is essentially

√
n̄ex plus small

corrections [see Eq. (12)].
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Therefore, in the small detuning and squeezing strength
limit we approximate Eq. (A7) by

L̂FP ≈ −∂N

[
1− N

n̄ex

]
N + ∂φ[�̃− 2η̃ sin(2φ)]

+ 3
2
∂N N∂N + 3

8N
∂2
φ . (A8)

Furthermore, for large n̄ex and small |�̃|, η̃, the intensity
dynamics is much faster than the phase dynamics [see, for
instance, Ref. [120] for a similar discussion in a closely
related system], and we make the approximation of lin-
earizing the intensity dynamics around its stable value.
Such a linearized description is obtained by defining the
intensity fluctuations

δN = N − n̄ex, (A9)

and substituting this into Eq. (A8), keeping only up to
linear terms. This approximation allows us to completely
decouple intensity and phase fluctuations and thus to
obtain an effective stochastic model for the phase alone,
i.e., Eq. (21). As we will see, this effective description
captures the slowest fluctuation modes of the system,
i.e., those associated with the leading eigenvalues of the
Liouvillian. In terms of the Fokker-Planck equation, we
obtain

∂τW(δN ,φ, τ) = (L̂δN + L̂φ)W(δN ,φ, τ) (A10)

with

L̂δN = ∂δN δN + 3n̄ex

2
∂2
δN (A11)

and

L̂φ = ∂φ[�̃− 2η̃ sin(2φ)]+ 3
8n̄ex

∂2
φ . (A12)

This equation displays the same intensity fluctuations of
the Gaussian process in the absence of squeezing, while
the phase is now governed by a nonlinear drift with addi-
tive Gaussian noise. Note that this nonlinearity makes
the phase dynamics non-Gaussian. Since intensity fluc-
tuations and phase dynamics are completely decoupled,
the phase dynamics can be written in terms of the one-
dimensional Langevin equation written in the main text,
i.e., Eq. (21), which provides an intuitive picture of the
stochastic dynamics as resulting from the interplay of a
tilted washboard potential, V(φ) [Eq. (28)], and a Gaussian
white noise term, ξφ(t), whose intensity decreases with the
mean-field excitation number n̄ex. The approximations per-
formed in this section are accurate for small detuning and
squeezing strengths, and they will enable us to obtain accu-
rate results for the leading eigenvalues of the full model.

Finally, we recall that while here we have heuristically dis-
cussed these approximations, a more rigorous treatment for
this and other related systems can be found in Ref. [97].

3. Eigenspectrum of the Fokker-Planck operator

In this section, we briefly review how a Fokker-Planck
equation can be treated by eigenvalue methods (for a thor-
ough introduction, see Ref. [129]) and we write down some
general properties of the eigenvalue problem associated
with the Fokker-Planck operator of Eq. (A10).

We consider the Fokker-Planck equation

∂tW({x}, t) = L̂FPW({x}, t) (A13)

for the probability distribution W({x}, t), where {x} is the
set of variables of the problem. This operator is defined
by both the Fokker-Planck equation and the boundary con-
ditions. The boundary conditions for Eq. (A3) are the so-
called natural boundary conditions, in which W(α,α∗, t) is
a normalizable function that vanishes at infinity, together
with the associated probability current [119,129]. The
operator L̂FP is generally non-Hermitian. Thus, similar to
the Liouvillian, it is not necessarily diagonalizable, e.g.,
there may be exceptional points at which this operator can
only be reduced to a Jordan normal form [129]. Away from
these points, we can decompose the dynamics of the prob-
ability distribution in terms of the eigenspectrum of L̂FP. In
particular, we define its right and left eigenfunctions as

L̂FP�n({x}) = λ̃n�n({x}),
L̂†

FP�̄
†
n ({x}) = λ̃n�̄

†
n ({x}),

(A14)

from which we can form a biorthonormal basis:
∫

d{x}�̄†
n ({x})�m({x}) = δn,m. (A15)

Then, we obtain

W({x}, t) =
∑

n

An�n({x})eλ̃nt,

where

An =
∫

d{x′}�̄†
n ({x′})W({x′}, t = 0).

This formula is analogous to that used in the Liouvillian
formalism for the decomposition of the dynamics in terms
of the Liouvillian eigenmodes. Since the probability dis-
tribution W({x}, t) is real valued, the eigenvalues must be
real or appear in complex conjugate pairs. Moreover, if the
drift and diffusion terms of L̂FP have no singularities, the
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diffusion is always positive, and L̂FP is time independent,
there is a stationary state corresponding to

�0({x}) = Wss({x}), �̄
†
0 ({x}) = I, λ0 = 0,

(A16)

while the real part of the rest of the eigenvalues is nonpos-
itive [129].

We now consider the particular case of Eq. (A10) in
which we work with an effective description where inten-
sity and phase dynamics are decoupled. Because of this
decoupling, i.e., because of the separability of Eq. (A10),
we can rewrite the Fokker-Plank equation as

W(δN ,φ, τ) = P(δN , τ)Q(φ, τ), (A17)

where

∂τP(δN , τ) = L̂δN P(δN , τ),

∂τQ(φ, τ) = L̂φQ(φ, τ).
(A18)

Therefore, the complete eigenvalue problem can be
decomposed into two independent one-dimensional eigen-
value problems. Defining

L̂δNψn(δN ) = μnψn(δN ),

L̂φχm(φ) = νmχm(φ),
(A19)

then

L̂FP�n,m(δN ,φ) = λ̃n,m�n,m(δN ,φ),

�n,m(δN ,φ) = ψn(δN )χm(φ),

λ̃n,m = μn + νm.

(A20)

We analyze the intensity and phase eigenvalue problems
separately in Appendices B and C, respectively.

APPENDIX B: ANALYSIS OF THE INTENSITY
EIGENVALUES

In this appendix, we analyze the eigenspectrum of the
intensity fluctuations as described by L̂δN [Eq. (A11)].
This corresponds to an Ornstein-Uhlenbeck process in
the domain δN ∈ (−n̄ex,∞), since the total intensity N =
n̄ex + δN is positive definite. In order to obtain analyt-
ical results, we make the simplification of relaxing the
finite range of δN and consider δN ∈ (−∞,∞). This is a
reasonable approximation as this variable models the fluc-
tuations around a large mean value and thus |δN |  n̄ex
should hold. If the solution obtained had a significant prob-
ability for values of δN that are not small compared to
n̄ex, then the linearization procedure would not be correct.
Considering this expanded range and natural boundary

conditions, the problem is analytically solvable (see, e.g.,
Refs. [119,129]). The eigenvalues are

μn = −n, n = 0, 1, 2, 3, . . . , (B1)

and thus proportional to unity (to γ1 when considering the
bare time t). This means that they converge to a finite
value with increasing n̄ex, and, hence, the fluctuation spec-
trum of the intensity is gaped. Moreover, the right and left
eigenfunctions read

ψn(δN ) =
√

w
2nn!π

e−wδN 2
Hn(δN

√
w),

ψ̄†
n (δN ) =

1√
2nn!

Hn(δN
√

w), w = 1
3n̄ex

,
(B2)

where the Hn(x) are Hermite polynomials, e.g., H0(x) =
1, H1(x) = 2x, H2(x) = 4x2 − 2 [130]. Interestingly, the
stationary state can be written as

Pss(δN ) = ψ0(δN ) = 1√
3π n̄ex

e−δN
2/3n̄ex . (B3)

This defines a Gaussian distribution with standard devi-
ation

√
3n̄ex/2. Thus, the ratio of the standard deviation

of the intensity fluctuations over the mean-field intensity
vanishes in the classical limit.

APPENDIX C: ANALYSIS OF THE PHASE
EIGENVALUES

In this appendix, we analyze the eigenspectrum of the
phase dynamics as described by the phase Fokker-Planck
operator L̂φ [Eq. (A12)] with periodic boundary condi-
tions. As φ is an angular variable and we do not distinguish
between full rotations, the physical space is restricted to
φ ∈ [0, 2π). A practical way to automatically incorporate
the boundary conditions is to write the eigenfunctions in
terms of Fourier modes [129]:

χn(φ) = 1
2π

∞∑

q=−∞
cq,neiqφ (C1)

with q taking integer values. Introducing this expansion
in the phase eigenvalue problem [Eq. (A19)] leads to
the following infinite recurrence relation from which all
eigenvalues and eigenfunctions can be determined:

[
i�̃q− 3q2

8n̄ex
− νn

]
cq,n − η̃qcq−2,n + η̃qcq+2,n = 0. (C2)

Importantly, the cq with odd q are decoupled from those
with even q. This means that the operator L̂φ can be sep-
arated into two independent “blocks” depending on the
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parity of the eigenfunctions, as functions that are only
made of even (odd) Fourier modes are symmetric (anti-
symmetric) under a φ→ φ + π translation. Therefore,
defining

aq,n = c2q,n, bq,n = c2q+1,n, q = 0,±1,±2, . . . ,
(C3)

we obtain two independent recurrence relations from the
original one (C2):
[

i2�̃q− 3q2

2n̄ex
− νa,n

]
aq,n − 2η̃ q aq−1,n + 2η̃ q aq+1,n = 0,

(C4)

[
i�̃(2q+ 1)− 3(2q+ 1)2

8n̄ex
− νb,n

]
bq,n

− η̃(2q+ 1)bq−1,n + η̃(2q+ 1)bq+1,n = 0.
(C5)

Note that we have introduced the new subindexes a, b to
distinguish the eigenvalues of the two symmetry sectors
νa(b) and the corresponding eigenfunctions

χa,n(φ) = 1
2π

∞∑

q=−∞
aq,nei2qφ ,

χb,n(φ) = 1
2π

∞∑

q=−∞
bq,nei(2q+1)φ ,

(C6)

from which their symmetry or antisymmetry is evident.
This can be understood as the manifestation of the par-
ity symmetry of the model, i.e., the invariance of Eq. (A2)
under the transformation α→−α and α∗ → −α∗ that has
not been lost in the subsequent approximations. Moreover,
the stationary state belongs to the symmetric sector, i.e.,
“a.”

Finally, in order to obtain a solution for these infinite
recurrence relations, one must generally resort to trunca-
tion [129]. Then we obtain a finite recurrence relation that
can be mapped to two independent matrices, recovering
the standard matrix eigenvalue problem. Thus, consider-
ing a truncation at q = M (for q = −M is analogous) the
recurrence relations are closed as

[
i2�̃M − 3M 2

2n̄ex
− νa,n

]
aM ,n − 2η̃M aM−1,n = 0 (C7)

and
[

i�̃(2M + 1)− 3(2M + 1)2

8n̄ex
− νb,n

]
bM ,n

− η̃(2M + 1)bM−1,n = 0. (C8)

The results are meaningful as long as they do not vary sig-
nificantly when considering the next truncation size: M +
1. In this sense, this method parallels the usual truncation
schemes used to numerically diagonalize (e.g., bosonic)
Liouvillians.

1. Limiting case of η = 0

This is an illustrative case in which the phase dynamics
can be analytically solved. Moreover, this will allow us to
show explicitly how the decay rate of the phase eigenval-
ues are exactly proportional to 1/n̄ex, and thus they become
purely imaginary in the infinite-excitation limit.

Fixing η = 0 in the first recurrence relation (C2) yields
[

i�̃q− 3q2

8n̄ex
− νn

]
cq,n = 0. (C9)

Hence, the different Fourier modes are not coupled by the
phase dynamics, and they are actually the eigenmodes of
the problem for η = 0. The eigenspectrum in this case is

νn = i�̃n− 3n2

8n̄ex
, n = 0,±1,±2, . . . , (C10)

χn(φ) = 1
2π

einφ , χ̄†
n (φ) = e−inφ , (C11)

from which we can easily check that
∫ 2π

0 dφχn(φ)χ̄
†
m(φ) =

δn,m. In this case the stationary state corresponds to the
uniform phase distribution Qss = 1/(2π).

2. Phase diffusion regime

For nonzero squeezing strength, the recurrence relations
given in Eqs. (C4) and (C5) cannot be analytically solved
and one must resort to numerical diagonalization of the
matrix representation of their truncated form. Neverthe-
less, in the limit-cycle regime η < ηc, we can use pertur-
bation theory to show that the decay rate of the leading
phase eigenmodes scales at most as 1/n̄ex, such that in the
infinite-excitation limit they become purely imaginary. We
proceed by focusing on the eigenvalues of the odd-parity
sector, to which the two leading excitation eigenmodes
belong. Afterwards, we comment on the extension to the
even-parity sector that follows similar lines.

The starting point is to rewrite the (truncated) recurrence
series (C5) in matrix form, which we denote as �(b). The
matrix elements read

�
(b)
j ,k = i�̃{2[j − (M + 1)]+ 1}δj ,k

− 3
8n̄ex
{2[j − (M + 1)]+ 1}2δj ,k

− η̃{2[j − (M + 1)]+ 1}δj ,k−1(1− δj ,0)

+ η̃{2[j − (M + 1)]+ 1}δj ,k+1(1− δj ,2M+1),
(C12)
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where j , k ∈ [0, 2M + 1], δj ,k is the Kronecker delta, and
M is the truncation dimension of the originally infinite
recurrence relation given in Eq. (C5). Note that from
Eq. (C4) we can define the corresponding matrix for the
even-parity sector, which in this case splits into two inde-
pendent matrices for positive and negative q. These are
complex conjugates of each other and we denote them by
�(a). These matrices contain the stationary state and the
even-parity excitation spectrum. The matrices �(a,b) are
non-Hermitian and tridiagonal. We now split�(b) into two
matrices:

�(b) = H+ 1
n̄ex

V (C13)

with

Hj ,k = i�̃{2[j − (M + 1)]+ 1}δj ,k

− η̃{2[j − (M + 1)]+ 1}δj ,k−1(1− δj ,0)

+ η̃{2[j − (M + 1)]+ 1}δj ,k+1(1− δj ,2M+1)

(C14)

and

Vj ,k = −3
8
{2[j − (M + 1)]+ 1}2δj ,k. (C15)

Note that H contains information about the mean-field
dynamics, while V introduces the effects of diffusion. In
these terms, H depends only on �̃ and η̃, while V is
independent of the parameters of the system, and n̄ex
enters as a constant dividing V . This form of rewriting the
problem suggests a perturbative approach for the classi-
cal limit (i.e., for n̄ex →∞). One can numerically check
that the eigenvalues of H are given by i(2n+ 1)� with
n = 0,±1,±2, . . . in a very good approximation (related
to the finite truncation of the recurrence series). Therefore,
the separation between adjacent eigenvalues is 2�, and for
(1/n̄ex) �, we should be able to account for the effects
of V perturbatively. In particular, we restrict ourselves to
the first-order corrections of the eigenvalues, as we will
show that they provide us the scaling of the lifetime with
the mean-field excitation number n̄ex.

The starting point of such a perturbative treatment is the
diagonalization of H, i.e.,

H|R(0)j 〉 = ν(0)j |R(0)j 〉, 〈L(0)j |H = ν(0)j 〈L(0)j |, (C16)

where the right and left eigenvectors form a biorthogo-
nal system that can be normalized in such a way that

〈L(0)j |R(0)k 〉 = δj ,k. Next, we consider the perturbation series

(
H+ 1

n̄ex
V

)(
|R(0)j 〉 +

1
n̄ex
|R(1)j 〉 +

1
n̄2

ex
|R(2)j 〉 + · · ·

)

=
(
ν
(0)
j +

1
n̄ex
ν
(1)
j +

1
n̄2

ex
ν
(2)
j + · · ·

)

×
(
|R(0)j 〉 +

1
n̄ex
|R(1)j 〉 +

1
n̄2

ex
|R(2)j 〉 + · · ·

)
,

(C17)

where the superscript denotes the perturbation order of the
expansion in terms of 1/n̄ex. Separating the zero and first
orders in 1/n̄ex we obtain

H|R(0)j 〉 = ν(0)j |R(0)j 〉 (C18)

and

H|R(1)j 〉 + V|R(0)j 〉 = ν(0)j |R(1)j 〉 + ν(1)j |R(0)j 〉. (C19)

We multiply on the left by 〈L(0)j | and we use the biorthogo-
nality property and the fact that 〈L(0)j | is an eigenvector of
H to obtain

ν
(1)
j = 〈L(0)j |V|R(0)j 〉. (C20)

Since |R(0)j 〉, 〈L(0)j | are not Hermitian conjugates, we can-
not tell in advance whether ν(1)j is real or complex. Thus,
in principle, we have two possibilities: (i) the first-order
correction is real valued, leading to a finite decay rate with
a scaling 1/n̄ex; (ii) the first-order correction is complex
valued, leading additionally to a frequency correction of
order 1/n̄ex. Note that, by the properties of the Fokker-
Planck equation, the possible real part of the eigenvalues
must be negative [129]. In both cases, the conclusion is that
in the perturbative regime, the eigenvalues can acquire at
most a decay rate that scales inversely proportional to the
mean-field excitation number. Indeed, we have taken a step
forward and we have numerically obtained Eq. (C20) for
parameter values and different eigenmodes, always finding
that it is real and negative, which suggests that this might
be the case for all eigenmodes in the limit-cycle regime.
Therefore, to first order in 1/n̄ex, the eigenvalues of �(b)

are given by

νb,n = i(2n+ 1)�̃− 1
n̄ex

c2n+1, n = 0,±1,±2, . . . ,

(C21)

where c2n+1 is a positive real constant that depends on the
eigenmode and on�, according to Eq. (C20). Numerically,
we observe that cn = c1n2, similarly to the exact analyt-
ical results for η = 0. This provides an argument for the

030325-16



NONEQUILIBRIUM TRANSITION. . . PRX QUANTUM 5, 030325 (2024)

101 102 103 104 105

n̄ex

10−1

10−2

10−3

10−4

10−5

Γ 1
/γ

1
(a)

L̂φ PT

101 102 103 104 105

n̄ex

10−1

10−2

10−3

10−4

(b)

FIG. 7. Emergence of the perturbative regime in phase diffu-
sion timescales. Red open dots represent the leading decay rate of
the effective phase model. Black dashed line represents the decay
rate according to the first-order perturbation theory as given in
Eq. (C21). (a) The η/ηc = 0.6 case with the perturbation theory
results c1 = 0.69. (b) The η/ηc = 0.9 case with the perturbation
theory results c1 = 2.77. In both cases �/γ1 = 0.1. The com-
parison between (a) and (b) shows that the closer we are to the
bifurcation, the larger n̄ex needs to be in order for the perturbative
results to be accurate.

scaling of the decay rates with 1/n̄ex for large enough n̄ex.
Interestingly, as � vanishes at the bifurcation point, this
means that the perturbative regime in which the first-order
results are accurate occurs for ever increasing n̄ex as the
bifurcation is approached. This also provides an argument
to explain why the linear regime needs larger n̄ex to be
observed as η̃ is increased towards the critical value (see
Fig. 7).

Finally, we note that the same perturbative arguments
apply to the even-parity excitation modes. This is because
�(a)

q essentially displays the same structure as in Eq. (C13),
which is the basis of the perturbative treatment. The only
important difference to take into account is that �(a)

q con-
tains the stationary state and thus a zero eigenvalue. This
eigenvalue and the corresponding eigenvector must be
excluded from the perturbation series expansion. How-
ever, such a perturbative expansion can still be pursued
for the rest of the excitation eigenmodes, thus generaliz-
ing Eq. (C21) to Eq. (25) of the main text. In conclusion,
in the perturbative regime, they also acquire a decay rate
that scales at maximum as 1/n̄ex, as shown in Fig. 2(d) for
the first two leading eigenmodes of the even-parity sector.

3. Quantum activation regime

In the bistable regime, the longest timescale corre-
sponds to an activation process in which noise induces
the system to jump from one stable solution to the other.
This timescale is given by the inverse of the rate of jumps,
which we calculate in this appendix.

Because of the periodicity of the potential, we can ana-
lyze this process by initially considering just one of the
stable fixed points. Each fixed point has a potential barrier
on its right and on its left (see Fig. 4 for a graphical guide).
The rate of left or right transitions corresponds to the
inverse of the escape time through the left or right poten-
tial barrier [119,129]. In the small noise approximation

(small diffusion constant compared to the potential barrier
height), the well-known Kramer’s escape rate formula can
be used [119,129]:

esc = 1
2π

√
|V′′(φM)|V′′(φm) exp

[
V(φm)− V(φM)

D

]
.

(C22)

Here φM denotes the phase at one of the local maxima
of the potential defined in Eq. (28), while φm denotes the
phase at the potential minimum corresponding to one of
the stable fixed points. Derivatives with respect to φ are
denoted with a prime, while D is the diffusion constant, in
our model given by D = 3/(8n̄ex) [Eq. (A12)]. Particular-
izing this formula for the potential barrier at the right of a
stable fixed point we obtain

→
γ1
= C̃

2
exp

[
− 8n̄ex

3

(√
4η̃2 − �̃2

+ �̃ sin−1 |�̃|
2η̃
+ �̃π

2

)]
(C23)

with

C̃ = 2
π

√
4η̃2 − �̃2, (C24)

while for the left potential barrier, it leads to

←
γ1
= C̃

2
exp

[
− 8n̄ex

3

(√
4η̃2 − �̃2

+ �̃ sin−1 |�̃|
2η̃
− �̃π

2

)]
. (C25)

Taking their ratio we see that jumps to the right (or left) are
exponentially suppressed with respect to jumps to the left
(or right) when the detuning is positive (negative). For this
reason, we take into account only those occurring through
the dominant direction. Then, taking into account the facts
that there are two stable fixed points and that they are con-
nected through periodic boundary conditions, we identify
the Liouvillian gap as 2 times the dominant direction rate
[129],

gap = 2← for � > 0, (C26)

and the other way around for � < 0. This result should be
accurate for a large number of excitations and well into the
bistable regime. Note that we do not expect this formula
to work near the bifurcation as there the noise intensity
becomes relatively large compared to the potential barrier
that tends to be flat. Analogously to the limit-cycle regime,
a given noise intensity, or the number of excitations, deter-
mines the notion of close or far from the bifurcation.
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(a) (b)

FIG. 8. Supplemental results for the eigenvalues in the limit-
cycle regime. (a) Difference between the eigenfrequencies of the
first four modes of the fundamental band and the correspond-
ing multiple of the mean-field frequency [Eq. (D1)], varying n̄ex.
Circles correspond to the first eigenfrequency (n = 1), squares to
the second (n = 2), triangles to the third (n = 3), and inverted
triangles to the fourth (n = 4). (b) Blue markers represent the
decay rate of the first four Liouvillian eigenvalues of the second
band. Black dashed lines correspond to the approximate expres-
sion given in Eq. (D2) with the same values of cn as given in
Fig. 2. In both cases η/ηc = 0.4 and �/γ1 = 0.1.

Finally, taking the absolute value of the detuning, we arrive
at the formula given in the main text,

gap

γ1
= C̃ exp

[
− 8n̄ex

3

(√
4η̃2 − �̃2

+ �̃ sin−1 |�̃|
2η̃
− |�̃|π

2

)]
, (C27)

which we have shown to be in excellent agreement with
the exact results in Fig. 3.

APPENDIX D: SUPPLEMENTAL RESULTS FOR
THE CONTINUOUS TIME-CRYSTAL REGIME

In this appendix, we include some supplemental results
regarding continuous time-symmetry breaking. In the main
text, we focused on the behavior of the decay rates of
the fundamental band of eigenmodes, which vanish in
the infinite-excitation limit, while their imaginary parts or
eigenfrequencies tend to multiples of the mean-field fre-
quency. Here, we exemplify the latter. In particular, in
Fig. 8(a) we plot the difference between the imaginary parts
of the first four modes of the fundamental band and the
corresponding multiple of the mean-field frequency:

�n = εn −�n, �n = n�. (D1)

As we can see, their relative difference (weighted by �n)
diminishes with n̄ex and indeed seems to tend towards zero
as the mean-field excitation number increases. Note how
higher harmonics seem to be more affected by finite size
effects, as in order for the corresponding �n to go below a
certain value, larger n̄ex are needed.

We now analyze the behavior of the decay rates of the
second band of eigenmodes and we exemplify how they

saturate to γ1 with increasing n̄ex. In Fig. 8(b) we compare
the exact results for the first four eigenvalues of the sec-
ond band (blue markers) with the approximate ones (black
dashed lines). The latter are obtained by combining the
intensity fluctuation eigenvalue for m = 1 [Eq. (24)] with
the first four phase eigenvalues obtained with perturbation
theory [Eq. (25)]:

Re[λ̃1,n] ≈ −γ1 − γ1cn

n̄ex
, n = 1, 2, 3, 4. (D2)

From this figure, we observe that the approximate results
reasonably well capture the behavior of the exact Liouvil-
lian eigenvalues, despite the considered n̄ex not being very
large. Importantly, we observe that the decay rate of the
second band of eigenmodes tends to saturate to γ1, as we
have commented in the main text.

APPENDIX E: SUPPLEMENTAL RESULTS FOR
THE PARITY-BROKEN PHASE

In this appendix, we analyze in more detail the emer-
gence of the symmetry-broken states in the infinite-
excitation limit and for η > ηc. Numerically, these states
can be most easily computed from the spectral decomposi-
tion of r̂1. Recall that, as λ1 is real, r̂1 is Hermitian, while
it is also traceless. This implies that it can be written as the
subtraction of two density matrices, which, as we will see,
do correspond to the symmetry-broken states [92]:

r̂1 = 1
2 (ρ̂+−ρ̂−). (E1)

Following Ref. [92], in the limit in which λ1 → 0, r̂1 and r̂0
become degenerate, and we make the ansatz of also writing
down ρ̂ss in terms of ρ̂±:

ξ̂ = 1
2 (ρ̂++ρ̂−), lim

n̄ex→∞
ρ̂ss → ξ̂ . (E2)

This is a hypothesis to be checked numerically. Note that,
by construction, it is consistent with the different symme-
try of the stationary state and the leading eigenmode. In
Fig. 9(a) we numerically check the hypothesis of Eq. (E2),
by plotting the trace distance between ρ̂ss and ξ̂ , i.e.,

D(ρ̂ss, ξ̂ ) = 1
2 Tr

[√
(ρ̂ss − ξ̂ )†(ρ̂ss − ξ̂ )

]
(E3)

for η ≥ ηEP > ηc and various values of n̄ex. We can clearly
appreciate how this distance vanishes as the Liouvillian
gap closes, numerically confirming Eq. (E2). Therefore,
the fact that an eigenmode of a different symmetry sector
(than the stationary state) displays a vanishing eigenvalue
for η > ηc and n̄ex →∞ results in the emergence of two
stationary states, i.e., ρ̂±, that break parity symmetry in this
regime, as explained in the main text.
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FIG. 9. Emergent symmetry-broken states. (a) Trace distance
between the exact stationary state and ξ̂ . This figure of merit is
plotted only for η ≥ ηEP as it is where it is valid to decompose r̂1
in terms of the density matrices ρ̂±. The vertical axes is on a log
scale. (b) Comparison of the real part of 〈â〉+ with the (rescaled)
mean-field solution in the bistable regime (black solid line). In
both panels �/γ1 = 0.1.

As commented, this is intimately related to the pres-
ence of bistability at the mean-field level. In fact, we can
check that observables calculated over these states tend to
the mean-field results for each fixed point. This is illus-
trated in Fig. 9(b), in which we numerically show that
〈â〉+ = Tr[âρ̂+] tends to the mean-field solution α+ in the
infinite-excitation limit and for η ≥ ηEP [131], where α+
is one of the mean-field fixed points [see Eq. (12)]. As
the lifetime of these states diverges in this limit, 〈â〉± �= 0
can be regarded as an order parameter for parity symmetry
breaking [92]. Finally, it is interesting to note that, as n̄ex is
increased, the symmetry-broken states ρ̂± become equiva-
lent to the extreme metastable states that we disclosed in
Ref. [100], both descriptions being equivalent in this limit.
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