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Calculating the equilibrium properties of condensed-matter systems is one of the promising applica-
tions of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have
been proposed to efficiently extract these properties from a measurement of the Loschmidt amplitude
〈ψ |e−iĤ t|ψ〉 from initial states |ψ〉 and a time evolution under the Hamiltonian Ĥ up to short times t. In
this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we
measure the Loschmidt amplitude for the Fermi-Hubbard model on a 16-site ladder geometry (32 orbitals)
on the Quantinuum H2-1 trapped-ion device. We assess the effect of noise on the Loschmidt amplitude
and implement algorithm-specific error-mitigation techniques. By using a thus-motivated error model, we
numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by
measuring expectation values of local observables at finite energies. Finally, we estimate the resources
needed for scaling up the algorithm.
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I. INTRODUCTION

Calculating the properties of quantum matter in equi-
librium is at the heart of condensed-matter and high-
energy physics as well as quantum chemistry. In partic-
ular, models containing interacting fermions are key to
understanding high-temperature superconductivity [1] and
the low-energy properties of quantum chromodynamics
[2]. However, despite decades of method development,
it remains challenging for classical methods to calculate
equilibrium properties of high-dimensional systems with
a sign problem such as spin models on frustrated lattices
and fermionic models. A paradigmatic example of such
systems is the two-dimensional (2D) Fermi-Hubbard (FH)
model [3,4]. It has attracted a tremendous amount of inter-
est due to its rich but partially understood phase diagram
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[5–7] and its potential application to high-temperature
superconductivity [8–10].

In recent years, analogue quantum simulators have
established themselves as a complementary means of
studying equilibrium properties of fermions [11–13],
although both reaching low enough energies and tuning the
Hamiltonian beyond a restricted parameter regime remain
challenging. Extensive progress has recently been made in
the size and control of digital quantum computers, poten-
tially leading to a highly flexible tool for solving high-
dimensional fermionic problems. Although many ground-
state studies have been performed [14–16], only a few
demonstrations of experimentally scalable finite-energy or
finite-temperature quantum algorithms have been carried
out so far [17,18].

Recently, time-series algorithms have been suggested as
an efficient way to obtain equilibrium observables in quan-
tum computers [19,20]. These algorithms require access
to only short-time dynamics—i.e., low-depth circuits—on
the quantum computer while the equilibrium properties
are obtained by classical postprocessing. Despite this rela-
tive simplicity, the execution of time-series algorithms on
current quantum computers is still challenging due to the
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requirement to measure the Loschmidt amplitude

Gψ(t) = 〈ψ |e−iĤ t|ψ〉 , (1)

where Ĥ is the Hamiltonian, |ψ〉 is an initial state, and
t is time. Indeed, the existing experimental methods for
the measurement of Eq. (1) require the measurement of
a global observable, making them particularly susceptible
to noise and requiring very precise quantum hardware. In
this work, we experimentally assess the feasibility on cur-
rent quantum hardware of the quantum subroutine of the
time-series algorithm of Ref. [19]—the computation of the
Loschmidt amplitude—for the simulation of the FH model.
To this aim, we carry out an experiment in Quantinuum’s
32-qubit digital quantum computer [21]. We analyze the
effect of the noise present on the hardware, implement
error-mitigation strategies, and extrapolate our results to
evaluate the resource requirements needed to scale up
the algorithm to larger system sizes. While we study the
Loschmidt amplitude in the context of time-series algo-
rithms, note that the kind of interferometry experiment
we have performed in this work has important uses in
other quantum algorithms [22], notably in quantum phase
estimation algorithms [23–27], which has been demon-
strated on Quantinuum hardware on small systems with
error detection [28].

Our main findings are twofold. First, a quantum com-
puter with an average two-qubit gate fidelity of 0.998, low
state-preparation-and-measurement (SPAM) error, as well
as all-to-all connectivity–such as the H2 device–allows for
the extraction of physical properties of the FH model at
finite energies using times-series algorithms. Second, scal-
ing to the classically intractable problems is expensive
without further improvement due to the large shot over-
head associated with error mitigation as well as the cost of
performing Monte Carlo sampling.

To begin with, we summarize in Sec. II the algorithm
proposed in Ref. [19] and the protocol we use to mea-
sure the Loschmidt amplitude. In Sec. III, we introduce the
FH model and explain how we map fermions to qubits in
order to perform the dynamics on the digital quantum com-
puter. In Sec. IV, we measure the Loschmidt amplitude
of a product initial state for the FH model on the ladder
geometry and apply error-mitigation schemes to the data
obtained from the quantum device. Then, in Sec. V, we
simulate the full operation of the algorithm using matrix-
product-state simulations and test the sensitivity of the
algorithm to the presence of noise, as it is unlikely that
all errors can be mitigated in the near future. Finally, moti-
vated by these results, we evaluate the feasibility of this
algorithm and discuss its prospects for quantum advantage
in Sec. VI.

II. ALGORITHM

A. Review of the time-series algorithm for the
microcanonical ensemble

To compute observables of excited states, we imple-
ment the quantum subroutine of an algorithm put forward
in Ref. [19]. The underlying idea behind this algorithm is
that the expectation value of an energy-filtered state with
low variance will approach the microcanonical expectation
value, even if the width of the filter does not tend toward
zero. This can be understood in light of the eigenstate-
thermalization hypothesis (ETH) [29–31], which predicts
that the expectation values of few body-observables are
a smooth function of energy, implying that they do not
change abruptly within a small energy window. Although
such a low-energy-variance state is difficult to prepare
directly on the quantum computer, one can nevertheless
use a cosine-filter operator (see also Ref. [20], for a dif-
ferent perspective akin to Wick rotation), which can be
decomposed into a sum of time-evolution operators. For
convenience, the main steps of the calculation presented in
Ref. [19] are reproduced in Appendix A.

The central quantity required for the algorithm is the
Loschmidt amplitude given in Eq. (1). We explain Sec.
II B how to efficiently measure this quantity. From the
Loschmidt amplitude measured at different times, one
can approximately calculate the filtered density of states
Dψ ,δ(E) (see Appendix A), defined as

Dψ ,δ(E) = 〈ψ |e− (Ĥ−E)2

2δ2 |ψ〉. (2)

Dψ ,δ(E) can be understood as a weighted sum of the
overlaps of |ψ〉 with the eigenstates inside a Gaussian
energy filter of width δ centered around the energy E.
The longer one performs the time evolution, the smaller
the width of the filter δ becomes. Supposing that one is
interested in an observable diagonal within the Ẑ-product-
state basis {|ψp〉, p = 1, . . . , 2N }, one can compute the
microcanonical expectation value in the following way:

〈Ôδ(E)〉 =
∑

|ψp 〉 Dψp ,δ(E)Op
∑

|ψp 〉 Dψp ,δ(E)
, (3)

where Op = 〈ψp |Ô|ψp〉 is the corresponding eigenvalue of
Ô. Instead of calculating Dψp ,δ(E) for every |ψp〉 in order
to evaluate the sum in Eq. (3), one can simply use a classi-
cal sign-problem-free Monte Carlo algorithm to efficiently
sample from the distribution, provided that one can mea-
sure the Loschmidt amplitude on a quantum device. In this
work, we assess the effect of the noise present on cur-
rent hardware on the program outlined above and estimate
the resources necessary for its application to larger system
sizes.
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B. GHZ-like state preparation for the measurement of
the Loschmidt amplitude

The Loschmidt amplitude given in Eq. (1) corresponds
to the (generally complex) overlap of a time-evolved state
with the initial state. This quantity can be calculated on a
digital quantum computer using the Hadamard test, where
the dynamics U(t) of a quantum system are controlled on
an ancilla qubit that starts in a superposition and inter-
feres with both evolved and nonevolved systems when
it is rotated out of the superposition [32]. However, this
method is costly in terms of entangling gates, as it requires
controlling every gate of U(t) on an ancilla qubit. Alterna-
tively, all qubits can be prepared in a Greenberger-Horne-
Zeilinger– (GHZ) like state corresponding to a superposi-
tion between the state of interest and a state that does not
evolve under application of the Hamiltonian, i.e., an eigen-
state |φ〉. The Hamiltonian is then applied and the qubits
rotated back into the original basis, causing interferome-
try between the time-evolved and initial states [19,20]—as
illustrated in Fig. 1. More precisely, if we define the states
| ± (φ,ψ0, ξ)〉 = 1√

2

(|φ〉 ± eiξ |ψ0〉
)
, the real part of the

Loschmidt amplitude can be extracted from measurements
of ||〈+(φ,ψ0, Et)|Û(t)| ± (φ,ψ0, Et)〉||2 in the following
way. Consider the quantities

p0(t) : = ||〈+(φ,ψ , Et)|Û(t)| + (φ,ψ , Et)〉||2

= 1
4
(
1 + |Gψ(t)|2 + 2Re{Gψ(t)eiEt}) (4a)

and

pπ(t) : = ||〈+(φ,ψ , Et)|Û(t)| − (φ,ψ , Et)〉||2

= 1
4
(
1 + |Gψ(t)|2 − 2Re{Gψ(t)eiEt}) . (4b)

We then find that

Re
(
Gψ(t)eiEt) = p0(t)− pπ(t). (5)

We have thus reduced the problem of measuring the non-
Hermitian observable Û(t) to measuring the real quantities
p0 and pπ that correspond to the probability of the circuit
shown in Fig. 1(c) to output certain bit strings. We review
the details of this technique in Appendix E. Compared to
the conditional dynamics technique outlined before, this
method reduces the circuit depth by a significant factor, as
highlighted in Table I. Note that a GHZ-state preparation
can be achieved using a constant-depth circuit with midcir-
cuit measurement or a log-depth circuit without midcircuit
measurement. A GHZ-state preparation with 32 qubits has
been carried out with 82% fidelity on the device used in
this study [21].

We note that in the case in which the initial states are
product states, it is also be possible to apply a series of
single-qubit interferometry experiments in order to cir-
cumvent the GHZ-state preparation [19,20]. However, this
method introduces a shot overhead proportional to the

(a)

(b)

(c)

(d) First Second

FIG. 1. The hybrid quantum-classical algorithm for the finite-energy properties of the FH model on the H2 quantum computer. (a)
An illustration of the quantum-classical loop in the algorithm of Ref. [19], with a modified picture of the Quantinuum H2 surface-
ion-trap microchip used in our work. (b) The mapping of the FH model on a 2 × 8 lattice onto 32 qubits. The spin-up (spin-down)
fermions are encoded in the black (blue) half of the system. The Jordan-Wigner– (JW) adjacent sites are linked by a solid line, while
the non-JW-adjacent sites are linked by a dashed line. (c) A sketch of the circuits used to measure the Loschmidt amplitude using the
Greenberger-Horne-Zeilinger– (GHZ) like state preparation. (d) The details of the structure of the time-evolution circuit using two
Trotter steps.
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TABLE I. The two-qubit gate cost for implementing the Trotterized time evolution and measurement of Re[〈ψ |UTrotter|ψ〉] for a
x × y rectangular FH lattice using the GHZ-state technique and the Hadamard test.

Lattice

x × y 2 × 8 5 × 5

GHZ-state technique
Number of two-qubit gates On-site interaction xy 16 25

Hopping interaction yx2 + 7xy − 4(x + y) 104 260
GHZ preparation 2(xy − 1) 30 48
Two Trotter steps 2yx2 + 17yx − 8(x + y)− 2 254 593

Number of qubits 2xy 32 50

Hadamard test
Number of two-qubit gates On-site interaction 7xy 112 175

Hopping interaction 5yx2 + 11xy − 8(y + x) 256 820
Two Trotter steps 29xy + 10yx2 − 16(y + x) 624 1815

Number of qubits 2xy + 1 33 51

system size and is susceptible to error accumulation. Fur-
thermore, a new interferometry technique employing a
short imaginary time evolution has very recently been
introduced [22] and could also be used for this algorithm.

III. MODEL AND QUANTUM CIRCUIT
IMPLEMENTATION

The Hamiltonian for the FH model is given by

H = Hhopp + Hint, (6)

Hhopp = −J
∑

〈i,j 〉,σ

(
a†

iσaj σ + a†
j σaiσ

)
, (7)

Hint = U
∑

i

ni↑ni↓, (8)

where aiσ (a†
iσ ) is a fermionic operator that destroys (cre-

ates) a particle at site i with spin σ , niσ = a†
iσaiσ is the num-

ber operator, and 〈i, j 〉 denotes adjacent sites on a lattice.
The term Hhopp is the hopping term of the Hamiltonian,
which enables fermions to move to neighboring sites. The
term Hint describes the on-site interactions between spin-↑
and spin-↓ fermions. The J and U are the parameters that
control the magnitude of the hopping and interaction terms.
Throughout this paper, we choose J = 0.5 and U = 2.

To encode the fermionic operators on a quantum com-
puter, we use the Jordan-Wigner (JW) transform, which
maps each fermionic mode to one qubit such that the qubits
are interpreted as lying along a one-dimensional (1D) line.
The hopping term, Hhopp, is mapped to

J (a†
iσaj σ + a†

j σaiσ ) → J
2
(
XiσXj σ + YiσYj σ

)

× Zi+1,σ . . . Zj −1,σ , (9)

where Xj σ , Yj σ , and Zj σ are the Pauli operators acting on
the j th site of σ ∈ {↑, ↓} spin sector. The interaction term

Hint is mapped to

Uni↑nj ↓ = Ua†
i↑ai↑a†

j ↓aj ↓ → U
4
(
Ii↑ − Zi↑

)⊗ (
Ii↓ − Zi↓

)
.

(10)

The sites that are adjacent in the JW ordering will be
referred to as JW adjacent. All of the terms of the Hamil-
tonian between the JW-adjacent sites are two-qubit oper-
ators. The terms between non-JW-adjacent sites involve
Pauli strings the lengths of which are proportional to
the distance between sites in the JW ordering. For for a
2 × 8 rectangular lattice, the interactions are illustrated in
Fig. 1(b).

Various methods have been proposed in the literature
to perform Hamiltonian simulation on a digital quantum
computer, such as Trotter decomposition [33], randomly
compiled Hamiltonian simulation [34,35], or classically
optimized quantum simulation [36–38]. We use a first-
order Trotter decomposition, which approximates Û(t) =
e−iHt by

ÛTrotter(t) = (
e−iHhopp�te−iHint�t)n , (11)

where �t = t/n and n is the number of steps. Note that for
an initial product state, the effect of e−iHint�t is simply to
add a global phase to the circuit. For generic observables,
one would expect the first-order Trotter decomposition
to lead to an error O(t2/n). However, for the Loschmidt
amplitude of a Hamiltonian and initial states that are real
in the same basis, the first-order decomposition turns out
to be surprisingly efficient. As we show in Appendix M,
we have

〈ψ |ÛTrotter(t)|ψ〉 = 〈ψ |e−iĤ t|ψ〉 + O(t3/n2), (12)

i.e., the first-order decomposition scales just as well as
the second-order one, gaining a factor t/n over the naive
scaling.
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We now focus on the Trotter-circuit implementation on
the H2 quantum computer. The qubits in the H2 charge-
coupled-device ion-trap quantum computer are effectively
all-to-all connected, as any ion pair can be brought into
interaction zones via shuttling [39,40]. The native two-
qubit entangling gate on H2 is the ZZPhase gate, which
implements an e−iθZiZj operation between two qubits i and
j with a tunable phase θ . The interaction Hamiltonian Hint

contains the Z↑
i Z↓

i two-body terms. Its time evolution can
thus be directly realized using the N ZZPhase gate, where
N is the number of sites. Note that if the initial state ψ
is a classical bit-string state, then the effect of eHint in the
first Trotter step can be implemented using single-qubit
rotations.

The hopping dynamics between sites that are adja-
cent in the JW ordering are implemented using operators
ei(XX +YY)α , where α = −J�t. This can be expressed as a
product of XXPhase(α) ≡ eiXX α and YYPhase(α) ≡ eiYYα ,
both of which are equivalent to ZZPhase up to a con-
jugation by local unitaries. Thus, the cost of implement-
ing hopping dynamics between two JW-adjacent sites is
two two-qubit gates. The hopping between the non-JW-
adjacent sites is more complex, since it involves operators
with long Pauli strings, ei(XX +YY)Z...Zα . An elegant way to
compile these operators into two-qubit gates is to use the
Fermi-SWAP (FSWAP) networks [41,42]. The FSWAP gates,
defined as CZ · SWAP, where “CZ” refers to the controlled-Z
gate, swap the states of JW-adjacent fermions while pre-
serving the antisymmetric exchange symmetry of the state
vector. A sequence of FSWAP gates can be used to bring
the distant fermions into JW-adjacent position. Once the
sites are JW adjacent, the hopping dynamics can be imple-
mented as usual using two two-qubit gates. The cost of
implementing the FSWAP operation on H2 is only one two-
qubit gate, since the SWAP can be implemented by simply
relabeling the qubits and the CZ gate can be implemented
using ZZPhase(π/4) and local rotations. One round of
application of the FSWAP network changes the ordering
of the qubits. Thus to restore the original order, the gate
sequence in the next Trotter step is reversed as shown in
Fig. 1(d). For a square L × L, the gate overhead associ-

ated with FSWAP gates scales as L3 ∝ N
3
2 , where N is the

number of qubits (cf. Appendix F).
For a general x × y rectangular lattice, the total number

of gates for two Trotter steps is given in Table I. Measuring
Re〈ψ |U(t)|ψ〉 using the GHZ-state technique adds only a
linear-in-system-size overhead to the two-qubit gate count
of n − 2 gates, where n is the number of fermions in the
state |ψ〉, which is significantly smaller than measuring
the Loschmidt amplitude using the Hadamard test. For the
2 × 8 and 5 × 5 lattices, the GHZ technique results in an
approximately factor-of-3 reduction in the two-qubit gate
count. For details of the gate decomposition into the native
gate set, see Appendix F.

IV. RESULTS ON THE QUANTUM DEVICE

In order to test the methods discussed above, we bench-
mark the measurement of the Loschmidt amplitude for
the 2 × 8 FH model on the 32-qubit H2 Quantinuum
device. As the initial state, we choose the Néel state:
|ψ0〉 = a†

1,↑a†
2,↓a†

3,↑ . . . |0〉, where the ordering of sites fol-
lows a “snake,” as illustrated in Fig. 1. The results are
shown in Fig. 2. Since the Loschmidt amplitude is a global
observable, a single error in any of the gates will cause a
corruption of the output. Therefore, we would generically
expect to measure a signal that is reduced from its ideal
value by a factor

q =
∏

i

Fi, (13)

where Fi is the fidelity of gate i and the product runs over
all gates in the circuit. For a more in-depth derivation, see
Ref. [44] or Appendix H of the present work. In our case,
assuming all gates to be of the same quality, we expect [44]

Re Gnoisy = qRe Gnoiseless, (14)

where q is given by the two-qubit gate fidelity to the power
of the number of two-qubit gates. The two-qubit gate of
the H2-1 ion-trap quantum computer has been determined
to be 99.8% through extensive cycle benchmarking (see
Ref. [21]). Thus, the most straightforward error-mitigation
scheme is to simply rescale the obtained results accord-
ing to the above formula. Alternatively, we compare this
method to symmetry-filtered postprocessing. As our Trot-
terized time evolution conserves the number of spin-up and
spin-down fermions in the system, we can discard the shots
where the bit strings do not correspond to the initial num-
ber of particles [15]. The data shown in Fig. 2 demonstrate
that both techniques yield similar results.

While the rescaling by a factor equal to the inverse of
the global fidelity works reasonably well, there are correc-
tions to this simple rescaling. Surprisingly, the raw signal
obtained for the first time point for pπ is greater than the
clean value, which cannot be captured by the model given
by Eq. (14). The reason for this counterintuitive result
is that the GHZ state that is involved in time is highly
nongeneric: incoherent Z errors cause a flip between the
|(φ,ψ , Et)〉 and | − (φ,ψ , Et)〉 states (cf. Secs. G and H),
which can increase the values of the measured probabili-
ties p0 and pπ . Furthermore, we expect memory errors to
play a larger role with increasing system size. These errors
can be modeled as the coherent evolution ei

∑
i Ziθi , where

the θi are angles that depend on the idling time of qubit
i. In particular, a translationally invariant memory error
maps ReG → cos(

∑
θi)ReG + sin(

∑
θi)ImG and thus p0

or pπ can be larger than their noiseless values. Mitigat-
ing the effect of coherent errors on the measurement of the
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(a) (b) (c) (d)

FIG. 2. The experimental data for the Loschmidt amplitude. For each time point, we prepare a GHZ state |0 . . . 0〉 + eiEt|ψ0〉, where
|ψ0〉 = |1010 . . . 〉 is the Néel state on a 2 × 8 ladder (32 spin orbitals) and E = 1.0. Subsequently, the system is evolved under the
FH model with J = 0.5, U = 2 using Trotterized time evolution. Finally, the inverse of the GHZ-state-preparation circuit (without
the extra phase eiEt) is applied and the probability of the bit strings p(0 . . . 0) = p0 and p(10 . . . 0) = pπ is measured at the output.
The number of Trotter steps is set to one for the first two time points and two for all other time points. (a)–(c) The results for (a)
p0 = 1

4 ||1 + eiEtGψ0(t)||2, (b) pπ = 1
4 ||1 − eiEtGψ0(t)||2, and (c) p0 − pπ = Re(eiEtGψ0(t)) compared with exact classically simulated

circuits and with data obtained by applying the error-mitigation techniques described in Sec. IV. Note that the raw data for pπ are closer
to the exact result than the mitigated data for the first time point. (d) A comparison of the filtered density of states obtained from the
exact time evolution D∗ with eight Trotter steps with that obtained from the experimental estimates DH2. The filtered density of states
is obtained by using Dδ,|ψ〉(E) ≈ ∑R

m=0 2cmRe〈ψ |e−i(H−E)tm |ψ〉 with cm = (1/2M )
( M

M/2−m

)
, δ = 1.0 leading to R = 12 (see Appendix

A). The dotted line represents the relative error of the filtered density of states due to Trotterization. The effect of increasing the final
time and the sampling rates is negligible (see Appendix L).

Loschmidt amplitude is beyond the scope of the present
work but it is clearly important to explore it in the future
by, e.g., incorporating dynamical decoupling techniques
[45,46].

We note that the rescaling error-mitigation method
requires a good device characterization, as its results will
be only as precise as the knowledge of the gate fidelity. In
contrast, the symmetry-filtering method is device agnos-
tic and does not depend on any calibration parameter.
Both methods come at the cost of increasing the uncer-
tainty by a factor of q−2, which can in turn be offset by
increasing the number of shots by the same factor. Inter-
estingly, although based on different principles, the two
error-mitigation methods produce similar results.

As we will now see, the estimate yielded by both error-
mitigation techniques is sufficiently close to Gnoisesless for
the target parameters.

V. CLASSICAL SIMULATION OF MONTE CARLO
SAMPLING

In order to assess the effect of the noise on the final
expectation value of the operator of interest in the micro-
canonical ensemble using classical simulations, we assume
that all initial states behave similarly in the presence of
noise. We simulate the Markov chains at different energies
for the ladder geometry using MPS techniques, with bond
dimension χ = 100. While it is not expected that the pre-
cise behavior of the Loschmidt amplitude at the longest
times is perfectly captured with this bond dimension, the
filtered densities of states nevertheless converge quickly

with the bond dimension (see Appendix K), in line with
the findings of Ref. [20,47]. Therefore, the bond dimension
captures the correct features of the target (unormalized)
distribution of the sampling algorithm. To simulate the
effect of shot noise of ideal quantum hardware, we add
binomial noise to the time series. As can be seen in Fig. 2,
some appreciable bias beyond shot noise remains after the
various error-mitigation procedures. Therefore, to simulate
the effect of systematic hardware errors that cannot be per-
fectly mitigated, we add random error terms to the time
series. They are drawn from a Gaussian distribution cen-
tered at zero with standard deviation σ = 0.05. With this
simple error model, we artificially introduce more error
than observed in Fig. 2. In each case, we use the noisy time
series to calculate the filtered density of states. The results
are shown in Fig. 3.

A few comments are in order. First, the quantity repre-
sented in Fig. 3—

∑
i〈ni,↑ni,↓〉δ/Nsites, with δ = 1—is the

expectation value of the double occupancy per site in the
filter ensemble. For finite systems, the filter ensemble can
be thought of as a moving average of the microcanoni-
cal ensemble expectation value over an energy window of
width δ. By keeping δ of the order O(1) and by increasing
the system size, the filter ensemble eventually converges to
the microcanonical ensemble for intensive quantities and
for generic quantum systems that satisfy the ETH [19,47].
However, in Fig. 3 we already capture the tendency of the
FH model to be insulating at high energy and conducting
at low energies. Second, the finite-energy algorithm in the
presence of noise displays a similar behavior to the finite-
temperature scheme investigated in Ref. [48]. Namely, the
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FIG. 3. The performance of the algorithm for different ener-
gies as a function of noise. We compare the results obtained
for the average double occupancy per site

∑
i ni,↑ni,↓/Nsites from

the Markov chain obtained by simulating the Loschmidt ampli-
tudes using matrix-product-state (MPS) time evolution (blue) to
results obtained by adding shot noise for 700 shots (green) and
adding shot noise and Gaussian noise (red). For all data points
considered, we have used 5000 Monte Carlo samples, except for
E/(2J ) = 0.0, 1.0 and 2.0 in the presence of error, for which we
have used 8800 samples. The error bars come from a blocking
analysis of the Monte Carlo samples [43]. For all the simulations,
the bond dimension used is χ = 100.

expectation values of local observables are not sensitive to
noise at high energies and/or temperatures. In other words,
we expect the densities of states (or Boltzmann weights
in the case of the canonical ensemble) to be relatively
immune to noise as long as the overlap of the initial state
with the targeted energy (temperature) region of the spec-
trum is large, and therefore we expect the Monte Carlo
sampling to perform well in these cases. The algorithm
starts to show deviations to the noiseless values close to
E = 0.0. Note that E = 0.0 is the lowest energy that can
be targeted in a scalable manner with Ẑ product states. As
explained in Ref. [19,47], it is not possible to explore lower
energies using the Ẑ-product-state basis, since the low
overlap of these initial states with the corresponding eigen-
states will decay with the system size, yielding a vanishing
density of states when approaching the thermodynamic
limit. In contrast to the finite-temperature algorithm, we
find that we need very few shots (as low as 50 for the
energy considered) to converge toward the correct expec-
tation value. This indicates that the finite-energy scheme
is much more resilient to noise than the finite-temperature
algorithm. This is explained by the fact that the Boltzman
weights Wψ are not simply equal to the density of states
as in the present work but are convolved by a factor e−βω:
Wψ = ∫

dEe−βEDψ(E). Therefore, the low-energy sector
is multiplied by an exponential factor and any error at
low energy caused by noise will be amplified accordingly.
Our results thus support the hypothesis that finite-energy

properties are more amenable to quantum techniques in the
near term than finite-temperature ones, at least in the time-
series framework proposed in Ref. [19]. However, we note
that other initial states—with higher overlap with the low-
energy sector—could be chosen, as demonstrated in Ref.
[47]. It would be interesting to compare the performance of
the two schemes when sampling from these initial states.

VI. PROSPECTS OF QUANTUM ADVANTAGE

It has been demonstrated in Ref. [47] that for the
finite-energy algorithm studied in our work, choosing the
maximal time constant as a function of the system size is
sufficient to reach the microcanonical expectation value in
the thermodynamic limit, for generic quantum systems sat-
isfying the ETH. Naively, one might conclude that quan-
tum circuits of constant depth are thus sufficient. However,
as the system size increases, so does the Trotter error. It
has been proven in Ref. [49] that for a local Hamiltonian
acting on N qubits, the number of Trotter steps required to
reach time t with a fixed precision scales as N 1/p t1+1/p in
the worst case, where p is the order of the Trotter prod-
uct formula. The number of entangling gates needed per
second-order Trotter step using the JW encoding for a
rectangular geometry of size x × y is given by

nJW = 2yx2 + 3xy + 14x − 2y − 15, (15)

while the number of entangling gates needed for a recently
proposed local encoding [50] is given by

ncompact = 26xy − 24(x + y). (16)

While the overall scaling of the algorithm is extremely
favorable in a fault-tolerant setup, the strength of the
signal decreases exponentially with the number of gates
for a noisy intermediate-scale quantum (NISQ) device, as
Gψ(E)measured ∝ f Ngates := q, where f is the gate fidelity.
Therefore, the number of shots will increase exponentially
with the system size, in order to reach the precision that
would be obtained on a noiseless ideal device. Based on
these considerations, we present the shot overhead as a
function of the size of the system for the square lattice
geometry in Fig. 4. We choose the units such that t = 1,
yielding nTrotter =

⌈
2√
32

√
Nqubits

⌉
, such that for 32 qubits

we use two Trotter steps as in the present work and we use
p = 2 (second-order Trotter decomposition). Our resource
estimate is likely pessimistic, as it would in principle be
possible to take the final time as small as t ∝ 1/

√
N [47].

However, choosing the maximum time constant ensures
a faster convergence to the microcanonical value as a
function of the system size.

Note that this resource estimate will likely be further
improved by both hardware and software improvements.
In particular, improved gate fidelity and optimization of
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(a)

(b)

FIG. 4. A comparison of the estimated shot overhead between
Fermion encodings: (a) shot overhead as function of fidelity f for
system size L = 6; (b) shot overhead as function of system size
for different fidelities. We consider the cost of time evolving a
square-lattice FH model of size L × L with J = 0.5 and U = 2
up to t = 1, with a Trotter error comparable to that demonstrated
in the experimental results of this work. The shot overhead 1/q2

is the number of shots required to compensate the exponential
damping of the signal by the global fidelity, given in terms of
the fidelity to the power of the number of two-qubit gates, q
(cf. Eq. (13)). We assume that single-qubit gates can be car-
ried out with unit fidelity. We compare the JW encoding and
the compact encoding for the two-qubit gate fidelities f = 0.998
and f = 0.999. A second-order Trotterization is assumed for all
time points, which, in order to reach the same precision as in
the present experiment, requires two Trotter steps at L = 4, three
steps at L = 5, 6, and four steps at L = 7, 8.

the time-evolution circuits [36–38,51] have the potential
to reduce the resources requirement by several orders of
magnitude.

The whole algorithm requires at least 103 Monte Carlo
iterations for each energy density. For each iteration, we
need about 2

√
N time steps, measured at least 102 times

each. Assuming 99.8% gate fidelity and an 6 × 6 lat-
tice, the shot overhead from error mitigation is about
102. Therefore, each MC iteration requires about 105

shots. Assuming a shot time of around a second, the
full algorithm would require a run time of the order of
1700 days. While this estimate is likely pessimistic, as it
should be understood as an upper bound of the total run
time given our current assumption, we conclude that the
scheme presented in this work will require at least an order
of magnitude of improvement to be practical on NISQ
devices. The improvements will most likely come from

the hardware, as well as from more efficient Monte Carlo
sampling and time-evolution algorithms.

Note that the resulting scaling of the algorithm presented
in Fig. 4 is roughly exponential in the system size. This is
expected, as most of the NISQ error-mitigation techniques,
indispensable for obtaining sensible results, scale exponen-
tially [52], as the increasing number of gates would result
in an exponential increase of the noise.

If one is interested in the center of the spectrum only
[47], one could instead evaluate the trace equation [Eq.
(A5)] directly, e.g., by using the preparation of approx-
imate unitary 2-designs [53]. This would circumvent the
need for Monte Carlo sampling and bring down the costs
but would not allow for the exploration of low ener-
gies properties of the spectrum, due to the exponentially
vanishing filtered density of states.

While classical simulations of this algorithm can be
performed efficiently in one dimension [47] (we exploit
this fact in Sec. V), MPS simulations would require com-
putational resources growing exponentially with one of
the dimensions of the system. Nevertheless, we expect
that the particular quantum routine demonstrated in this
work could also be performed for larger system sizes by
other state-of-the-art classical techniques. First, 2D tensor
network classes could be used in principle, including pro-
jected entangled pair states (PEPSs). There, it is expected
that computing the Loschmidt amplitude would be chal-
lenging, due to the complexity of the PEPS contraction
[54–57]. Furthermore, neural-network simulations have
proven competitive for performing the dynamics of 2D
systems for short times [58–60] and it would be inter-
esting to investigate whether they are able to capture the
Loschmidt amplitude with the precision required by the
algorithm used in this work. Our investigation of the effect
of noise in Sec. V is encouraging, as it suggests that even
approximate time series could yield satisfying observable
expectation values.

Nonetheless, it is desirable to go beyond the program
that we have applied in the present work. First, in order
to reach smaller energies and/or temperatures, one needs
to prepare an initial state with significant overlap with
the low-energy sector, which would significantly increase
both the classical and quantum resources needed [47]. Fur-
thermore, while we have studied only static properties,
a similar approach could give access to the finite-energy
expectation values of dynamical observables, at the cost of
deeper circuits. Due to the exponential resources needed
to perform time evolution classically with most commonly
used methods [61], it is likely that such a program would
be out of reach for classical computers.

VII. DISCUSSION AND OUTLOOK

In this work, we have demonstrated that the current
capabilities of the Quantinuum H2 trapped-ion quantum
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device allow for the execution of the quantum subrou-
tine of one of the simplest time-series algorithms on
a condensed-matter system. Although the noise of the
machine still affects the results, the high fidelity of the
gates as well as the low memory and SPAM error allow
us to obtain satisfying data after error mitigation, in the
sense that the physical features of the system should be
well captured at the end of the hybrid quantum classical
algorithm (see Fig. 3). We have compared two different
and independent error-mitigation techniques, one based on
symmetry and the other based on the probability of suc-
cess of our circuit, and found that both give comparable
results. Furthermore, using classical simulations, we have
provided numerical evidence that the remaining errors,
not correctly taken into account by our error-mitigation
schemes, would have a low impact on the final prediction
of the finite-energy properties of the system for the system
size that is reachable with the current experimental setup
(32 qubits). In other words, the particular Monte Carlo
sampling explored here seems to be relatively resilient
to noise. Furthermore, assuming that one is able to scale
up the device while conserving the same level of fidelity,
we have evaluated the resources necessary in order to run
the algorithm for larger system sizes. To summarize the
analysis: we have evaluated the number of shots neces-
sary to recover the time series to the same accuracy as in
the current experiment, given the dependency of the error-
mitigation techniques on the number of gates and the noise
level, and taking into account the known scaling of the
algorithm. Assuming that this shot budget is allocated, the
weight of the Monte Carlo sampling procedure would be
obtained with the same precision and therefore the Monte
Carlo chain should yield the same accuracy for the expec-
tation values of local observables, which we have found
adequate in the present case.

Overall, we have demonstrated that while time-series
algorithms require the measurement of a global observ-
able, which is in principle maximally sensitive to noise,
the precision of an existing device today is sufficient to run
these hybrid quantum-classical schemes. We have found
that the effect of noise is not entirely explained by a global
damping of the signal by the global fidelity. On the other
hand, our resource estimates indicate that sampling over
tens of thousands of initial states makes this algorithm
prohibitively expensive to run on ion-trap devices before
a significant drop in cost per sample caused, e.g., by the
advent of a manufacturing age in which many quantum
computers can execute coherent evolutions of intermediate
depth in parallel.

It is as yet an open question to evaluate how precisely
classical methods are able to capture the Loschmidt ampli-
tude at moderately short times for 2D systems, although
some theoretical studies have already been performed [62],
which leaves open the possibility that the algorithm stud-
ied in this work could be carried out classically. However,

more involved versions of this algorithm would be nec-
essary to explore the low-energy properties as well as
the linear-response behavior of strongly correlated sys-
tems. These would likely be very challenging to execute
classically, indicating the possibility of near-term useful
quantum advantage with time-series algorithms.

The numerical data that support the findings of this study
are available at Ref. [63]. The code used for numerical sim-
ulations is available from the corresponding author upon
reasonable request.
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APPENDIX A: REVIEW OF THE ALGORITHM

The central quantity used in Ref. [19] is the filter
operator:

P̂δ(E) = exp

(

− (Ĥ − E)2

2δ2

)

, (A1)

where E is the target energy and δ is the width of the filter.
It can be shown that as long as ||H − E||∞ < Nπ/2, where
|| · ||∞ denotes the operator norm,

P̂δ(E) ≈ cos

(
Ĥ − E

N

)
⌊

N2

δ2

⌋

2
, (A2)

where N is the system size and �·�2 denotes the near-
est even integer. By writing the cosine as a sum of two
complex exponentials, using the binomial formula, and
truncating the resulting series, one finds [19]

P̂δ(E) ≈
R∑

−R

cme−i(H−E)tm , (A3)

where cm = (1/2M )
( M

M/2−m

)
, R = �x/δ�, in which x is a

scalar controlling the truncation of the series and tm =
2m/N . Furthermore, it has been shown that one can fur-
ther reduce the number of measurements by choosing
R = �xα/δ�, tm = 2m/α and α ∝ √

N if the initial states
are product states. In order to relate the microcanonical

030323-9



KÉVIN HÉMERY et al. PRX QUANTUM 5, 030323 (2024)

expectation value and the cosine-filter operator, Ref. [19]
considers

〈Â〉δ(E) = trÂPδ(E)

trP̂δ(E)
(A4)

=
∑

i Dδ,|i〉(E)Aδ,|i〉(E)
∑

i Dδ,|i〉(E)
, (A5)

where the sum over the index i denotes the sum over the
product states in the Ẑ basis and

Aδ,|ψ〉 = 〈ψ |ÂP̂δ(E)+ P̂δ(E)Â|ψ〉
2〈ψ |P̂δ(E)|ψ〉 , (A6)

Dδ,|ψ〉(E) = 〈ψ |Pδ(E)|ψ〉. (A7)

≈
R∑

0

2cmRe(〈ψ |e−i(H−E)tm |ψ〉). (A8)

The sum in Eq. (A5) is sampled using classical Monte
Carlo, with Dδ,|i〉 being the (unnormalized) target distribu-
tion of the sampling algorithm. Note that in this work, we
choose the observable Â to be diagonal in the Ẑ-product-
state basis; therefore, Aδ,|i〉 reduces to the eigenvalue of Â
corresponding to the product state |i〉.

APPENDIX B: SCALING OF THE ALGORITHM

The scaling of the algorithm with the system size has
been investigated in Ref. [47]. For convenience, we sum-
marize the authors’ main arguments and results in this
appendix.

The key finding concerns the scaling of the width of the
filter as a function of the system size. In order to under-
stand the requirements analytically, it is important to note
that for systems that satisfy the ETH [30], the value of
∑

E∈[E0−ε,E0+ε]〈E|Â|E〉, where |E〉 denotes the eigenstate
of the Hamiltonian of interest, converges to the micro-
canonical ensemble in the thermodynamic limit if Â is
extensive and if ε/n → 0. This is because for a system
satisfying the ETH, the values of 〈E|Â|E〉 are smooth
functions of E. Therefore, in order to understand the con-
vergence of the filter ensemble of Eq. (A5) to the micro-
canonical ensemble, one needs to determine the width of
the density of states in the filter ensemble as a function
of the width δ. This can be done by performing a convo-
lution of the density of states of the Hamiltonian–which
is a Gaussian with variance σ0 for most interacting model
of interest [64,65]– and of the envelope of the filter. The
result is a density of states proportional to a Gaussian with

variance � = δ/

√
1 + δ2/Nσ 2

0 . According to the above

discussion, a choice of δ as big as δ ∝ √
N (or smaller)

is sufficient to ensure that �/N → 0.

The choice of α governing the number of measurements
is related to the fact than one uses a cosine filter given
in Eq. (A2) to approximate an Gaussian filter given in
Eq. (A1). Because of the periodicity of the cosine, one
needs to make sure that 〈ψ |(H − E)/α|ψ〉 < (π/2) for all
states |ψ〉 on which the filter operator is applied. If one
samples over product states, it is enough to choose α ∝√

N , due to the limited support of the energy distribution
of product states.

In the present work, α = 2
√

N , δ = 1 and x = 1.

APPENDIX C: BEHAVIOR OF LOSCHMIDT
AMPLITUDE AS A FUNCTION OF SYSTEM SIZE

In order to better understand the scaling of the
algorithm, it is interesting to study the decay of the
Loschmidt amplitude Gψ = 〈ψ |e−iHt|ψ〉 as a function of
the system size N . Note that the considerations presented
in Appendix B have been derived from the knowledge of
the density of states of the interacting system and since
the Loschmidt amplitude can be understood as the Fourier
transform of the density of states, the two pictures are
equivalent. However, it might be more intuitive for the
reader to look at the Loschmidt amplitude directly, since it
is the quantity that is measured on the quantum computer
in the algorithm used throughout this work.

We start by deriving an analytical expression for the
Loschmidt echo for a particular class of initial states. We
consider local Hamiltonians of the form

Ĥ =
∑

i

h0
i + hint

i,i+1, (C1)

where h0
i acts on the subsystem i and hint

i,i+1 is the interaction
term between subsystem i and i + 1. It has been proven in
Ref. [64] that for the product states |a〉 = ∏

i |ai〉 such that
h0

i |ai〉 = εi|ai〉, one has

lim
N→∞

〈a |δ(H − E)| a〉 =
exp

(
− (E−Ea)2

2σ 2
a

)

√
2πσa

, (C2)

where Ea = 〈a|Ĥ |a〉 and σ 2
a = 〈a|(H − E)2|a〉. Further-

more, one has

〈a |δ(H − E)| a〉 = 1
2π

∫

〈a|e−iHt|a〉eiEt′dt′. (C3)

Taking the inverse Fourier transform gives

Ga(t) =
∫ exp

(
− (E−Ea)2

2σ 2
a

)

√
2πσa

e−iEtdE (C4)

= e−t2σ 2
a /2e−iEat. (C5)

Because the states |a〉 have finite correlation length and we
have supposed Ĥ to be local, we have σa = σ0

√
N , where
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σ0 depends on the details of the Hamiltonian. Therefore,
the Loschmidt amplitude is a modulated Gaussian with
variance proportional to 1/

√
N :

|Ga(t)| = e−t2σ 2
0 N/2. (C6)

If we define tε as the time such that ∀t > tε , |Ga(t)| < ε,
which is the time at which one can truncate the series given
in Eq. (A3), one obtains

tε(N ) ∝ 1/
√

N . (C7)

Note that the scaling of the algorithm makes intuitive
sense, as the number of measurements increases as

√
N ;

therefore, one obtains a constant number of nonzero mea-
surements as one increases the system size. In order to
check that these results are representative of the behav-
ior of the Loschmidt amplitude at relatively small system
sizes, we perform a numerical study of the following 1D
tilted-field Ising model:

Ĥ =
∑

i

ẐiẐi+1 + hxX̂i + hzẐi, (C8)

with parameters to ensure that the system is ergodic: hx =
0.8090 and hz = 0.9045 [66], at various chain lengths L.
We simulate the time evolution of this model at short time
using the time-evolving block decimation (TEBD) tech-
nique, using bond dimension χ = 400, starting from Ẑ
product states (for details, see the caption of Fig. 5). We
measure the Loschmidt amplitude as a function of time.
In Fig. 5(a), we plot one typical Loschmidt amplitude
as a function of the system size. We fit the results with
a Gaussian with variance proportional to 1/

√
L and we

find relatively good qualitative behavior for already small
system sizes. Note that these numerics go beyond the ana-
lytical calculation above, since the Ẑ product states are not
eigenstates of the noninteracting part of the Hamiltonian.
In Fig. 5(b), we plot the statistics of the decay exponent
κ , defined as tε(L) = CLκ . We find that in most cases, κ is
close to − 1

2 as expected. We have obtained similar results
with various choices of small ε.

Note that Eqs. (C5) and (C6) are valid only in the case
in which the initial product states are the eigenstates {|a〉}
of
∑

i h0
i . This means that for large enough systems, the

algorithm is tractable analytically only for operators that
are diagonal in the {|a〉} basis. While this opens the door
to rigorous benchmarking of the algorithm in the future,
when quantum computers will reach the realm of hundreds
of qubits, this is not applicable to the vast majority of
observables of interest. In particular, the dynamical observ-
ables of the form eiĤ tÂe−iĤ t, which are extremely relevant
to experimental settings, are not amenable to analytical
treatments.

(a)

(b)

FIG. 5. The numerical study of the decay of the absolute value
of the Loschmidt amplitude |Gψ(t)|. (a) The typical decay of the
Loschmidt amplitude as a function of the system size at fixed
density, starting from a Ẑ product state, simulated with MPS:
|Gψ(t)| is plotted in full lines, while the dashed lines represent
the fit with a Gaussian e−t2Nσ 2

0 /2, where σ0 is obtained by fit-
ting the largest system size. The product states |ψ〉 are given by
|ψ〉 = | ↓↓↓↑↑↑↓↑↓↑〉⊗L/10 (b) The statistics of the decay of
the absolute value of the Loschmidt echo. One starts with a pat-
tern that is a product state of the form |i1 . . . i10〉⊗(L/10), where ij
is either ↑ or ↓, to ensure that we are at fixed energy density.
From the curve |Gψ ,L(t)| at different system sizes, we obtain the
time t0.1(L) such that |Gψ ,L(t0.1(L)| = 0.1. We then fit t0.1,L with
the function Ctκ .

APPENDIX D: DETAILS OF THE MONTE CARLO
SAMPLING

In order to extract expectation values of observables
from the time-series algorithm outlined in Appendix A, we
sample Eq. (A5) using the Metropolis-Hasting algorithm.
As our goal is to probe the sector with a specific number
of spin-up and spin down fermions, we use the follow-
ing update scheme. We propose a new state |ψ ′〉 from the
previous one |ψ〉 by applying a random hopping of one
fermion from one site to one of its unoccupied nearest-
neighboring sites with the same spin. We then accept this
new state with the acceptance ratio

A = min
(

1,
Dδ,|ψ ′〉(E)
Dδ,|ψ〉(E)

Pψ→ψ ′

Pψ ′→ψ

)

, (D1)

where Pψ ′→ψ is the probability of hopping from ψ ′ to ψ
and is related to the number of unoccupied neighboring
sites. At the end of the sampling procedure, we obtain a
list of product states. Since the observable that we study
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in this work, the double occupancy, is diagonal in the
product-state basis, the expectation value is estimated as
the average double occupancy of the sampled product
states.

APPENDIX E: GHZ-LIKE STATE PREPARATION

Suppose that there exists a state |φ〉 such that Û|φ〉 =
|φ〉. Let us define | ± (φ,ψ , t)〉 = 1√

2

(|φ〉 ± eiEt|ψ〉). We
further introduce

p0(t) = ||〈+(φ,ψ , t)|Û(t)| + (φ,ψ , t)〉||2

= 1
4
(
1 + |G(t)|2 + 2Re{G(t)eiEt}) (E1)

and

pπ(t) = ||〈+(φ,ψ , t)|Û(t)| − (φ,ψ , t)〉||2

= 1
4
(
1 + |G(t)|2 − 2Re{G(t)eiEt}) , (E2)

where G(t) = 〈ψ |e−iHt|ψ〉 as in the main text. In order
to run the microcanonical algorithm, one only needs the
real part of the Loschmidt amplitude modulated by a
time-dependent phase, as made explicit in Eq. (A8). It is
straightforward to see that

Re(〈ψ |Û(t)|ψ〉eiEt) = p0(t)− pπ(t). (E3)

When |ψ〉 is a product state, as it is the case in this paper,
this procedure is very similar to a GHZ-state preparation.
Note that both p0 and pπ can be obtained from measuring
all qubits of only one circuit if |ψ〉 is a product state. This
can be understood by inspecting Fig. 6, which shows the
circuit for the three-qubit GHZ-like state with the initial
product state |ψ〉 = |101〉.

Indeed, p0 = 1
4 ||(〈101| + 〈000|)Û(t)(|000〉 + |101〉)||2

correspond to the probability of obtaining the bit string
“000.” pπ = 1

4 ||(〈000| − 〈101|)Û(t)(|000〉 + |101〉)||2 cor-
respond to the probability of measuring the bit string “000”
after introducing a single-qubit X gate on the right of the
leftmost Hadamard gate. Equivalently, pπ corresponds to
the probability of measuring the bit string “100.” For this
reason,we denote “000” (“100”) the 0 string (π string).

We note that as an alternative to applying the inverse of
the GHZ-state preparation at the end of the circuit, one may
directly measure �0 ⊗ 1/M

∑M
k=1(−1)k(cos(kπ/M )X +

sin(kπ/M )Y)⊗M , where M is the number of |1〉 s in the ini-
tial state and �0 is the projector on |0〉 on the other qubits
[67].

APPENDIX F: IMPLEMENTING FH-MODEL
TROTTER CIRCUITS

In this appendix, we give more details on the implemen-
tation of Trotterized dynamics on the H2 32-qubit quantum

FIG. 6. A circuit diagram illustrating the GHZ-like state tech-
nique on three qubits, with an initial state |ψ0〉 = |101〉.

device. We show in Fig. 7 the important gates used in the
Trotterized-dynamics circuit.

The native one-qubit gates on the H2 are rota-

tions U1q(θ ,φ) ≡ e− 1
2 (cos(φ)X̂ +sin(φ)Ŷ) and Rz(θ) ≡ e− 1

2 iθ Ẑ

for θ ,φ ∈ [0, 2π ] and the native two-qubit gate is the

ZZPhase-gate-implementing operation e− 1
2 iα(Ẑ⊗Ẑ) for α ∈

[0, 2π ].
In the JW encoding, some interaction terms become

strings of Pauli operators, the length of which is propor-
tional to the size of the system. In the 2D FH model, these
are the hopping terms between sites that are not adjacent
in the JW ordering. Operators of the form eiα(XX +YY)Z...Z

can be implemented by means of a staircase circuit using
2(n − 1) two-qubit gates [41,42]. The gate overhead asso-
ciated with the implementation of long Pauli strings can
be reduced by using FSWAP networks [68,69]. The FSWAP
operator swaps the states of the neighboring qubits in the
JW ordering while preserving the fermionic antisymmet-
ric exchange statistics. The SWAP network is a sequence of
FSWAP gates that brings the non-JW-adjacent sites into JW-
adjacent positions, so that the hopping term between them
can be implemented locally. This can be viewed as a suc-
cession of rotations into a basis in which the nonlocal Pauli
string become two-body terms.

For a rectangular grid, an efficient way to implement an
FSWAP network is described in Ref. [69]. The procedure
consists of repeatedly applying the operator VW, where
V swaps odd-numbered columns with those to their right
and W swaps even-numbered columns with those to their
right. After each application of VW, a new set of qubits
that were previously not JW adjacent are made JW adja-
cent and the hopping term can be implemented locally
via gate e−i(X ⊗)X αe−i(Y⊗)Yα . After implementing all of the
vertical hopping interactions, the FSWAP operations would
normally be applied in reverse to return the qubits to their
original positions. However, for Trotterized dynamics this
is not necessary, since the order can be restored in the
next Trotter step, by implementing the hopping-interaction
gates in reverse order.

If the Trotter circuit involves an odd number of steps,
then the final ordering needs to be restored by adding the
FSWAP gates in reverse at the end of the circuit. However,
for classical input states |ψ〉 (tensor products of |0〉 and
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|1〉), the effect of the FSWAP network can be efficiently
computed classically and thus observables of the form
|〈ψ |U(t)|ψ〉|2, can still be obtained without applying the
reversed FSWAP network on the last Trotter step.

On the H2 device, the simplest way to implement FSWAP
is to use a single CZ gate and a software swap, i.e., virtually
relabeling the qubits. The FSWAP operator can be expressed
as a product of CZ and SWAP gates, FSWAP = CZ · SWAP.
Since H2 has all-to-all connectivity, the relabeling of the
qubits does not add any overheads in implementation of
subsequent gates. Thus, each FSWAP operation costs one
two-qubit gate on H2.

The FSWAP network gate sequence for the ladder geome-
try and for a three-column geometry are illustrated in Figs.
8(a) and 8(b), respectively. The experiments on the H2
devices have been carried out on a 2 × 8 ladder geome-
try. In general, for an x × y rectangular lattice, the number
of VW repetitions in the FSWAP network is �(x − 1)/2�.
Each column swap operator involves y swaps and there
are (�x/2�) column swaps in operators V and W. Thus,
the total number of FSWAP operations in one Trotter step is
yx(x − 1). For a square 2D system, where x = y = L, the
number of two-qubit gates in the FSWAP network is pro-
portional to ∝ L3 or ∝ N 3/2, where N is the number of
qubits. The superlinear scaling with the system size can
be avoided by using the local fermion to qubits encod-
ing [50,70–72] instead of JW encoding but for the small
systems considered in this work, the JW encoding is more
resource efficient.

APPENDIX G: ERROR MITIGATION

Error mitigation is crucial for obtaining meaningful
results on NISQ devices. We have considered two differ-
ent error-mitigation strategies. The first strategy utilizes
the number-conservation symmetry of the FH Trotterized
evolution. It simply involves discarding the shots that vio-
late the number symmetry and thereby reducing the error
in the observed quantities. The second strategy involves
rescaling the measured quantities to compensate for the
effect of noise. Here, we detail the theoretical details of
this heuristic.

The prepared GHZ-like states that undergo the Trotter-
ized evolution are given by

|ψ0〉 = V0|0〉 = 1√
2
(|0〉 + |ψ〉) , (G1)

|ψπ 〉 = Vπ |0〉 = 1√
2
(|0〉 − |ψ〉) , (G2)

where |0〉 ≡ |0〉⊗n is the vacuum state and |ψ〉 is a product
state. The operators V0 and Vj prepare the GHZ-like state
from a product state. As explained in Appendix E, V0 can
be constructed using a Hadamard gate on a selected qubit,

j , and a series of controlled-NOT (CNOT) gates with a con-
trol on the j and targets on qubits where |ψ〉 is in state |1〉.
It is easy to show that Vπ = Xj V0.

The GHZ-like measurement technique obtains the real
part of the Loschmidt amplitude through a difference of
expectation values:

Re[G(t)] = |〈0|V†
0UV0|0〉|2 − |〈0|V†

πUV0|0〉|2 (G3)

≡ |〈0|W0|0〉|2 − |〈0|Wπ |0〉|2 (G4)

= p0 − pπ , (G5)

where W0 ≡ V†
0UV0 and Wπ ≡ V†

πUV0 = Xj W0.
Now let us consider the effect of gates affected by inco-

herent noise on 〈ψ0|U|ψ0〉 and 〈ψ0|U|ψπ 〉. First, note that
a Z flip on a single qubit can flip the GHZ state |ψ0〉 ↔
|ψπ 〉:

Zk
1√
2
(|0〉 + |ψ〉) = 1√

2
(|0〉 − |ψ〉) , (G6)

if |ψ〉 is in state |1〉 in position k. Similarly,

Zk
1√
2
(|0〉 − |ψ〉) = 1√

2
(|0〉 + |ψ〉) . (G7)

If the Z error occurs in the position of where |ψ〉 is in state
|0〉, it has no effect on the GHZ states. In a fully occupied
FH lattice model, |ψ〉 has an equal number of qubits in |0〉
and |1〉 states, and hence the probability of a single error Z
causing the flip between GHZ states is equal to the prob-
ability of the state being unaffected. Other types of Pauli
noise, i.e., X and Y flip, will randomize the states |ψ0〉 and
|ψπ 〉.

More formally, let W̃0 be a noisy channel corresponding
to noisy circuit W0. The noise is assumed to be Markovian
and incoherent. The effect of the noisy channel on the input
state ρ is

W̃0[ρ] ≈ (q + γ )W0ρW†
0+γWπρW†

π+(1 − q − 2γ )
I

22N ,

(G8)

where q is the probability of an error that randomizes the
state.

The noisy probabilities p∗
0 and p∗

π are obtained by apply-
ing the W̃0 on ρ0 = |0〉〈0| and projecting on the state
�0 = ρ0 = |0〉〈0| or Xj�0Xj :

p∗
0 = Tr[�0W̃0[ρ0]]

= (q + γ )Tr
[
�0W0ρ0W†

0

]
+ γTr

[
�0Wπρ0W†

π

]

+ (1 − q − 2γ )Tr
[
�0

22N

]

= (q + γ )p0 + γ pπ + K, (G9)
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(a)

(b)

FIG. 7. (a) The H2 native gates. (b) The operations used in the FH Trotterized dynamics circuits—on-site interaction dynamics,
hopping, and FSWAP—and their decomposition into one- and two-qubit gates native to the H2 device.

where K = (1 − q − 2γ )/22N and

p∗
π = Tr[Xj�0Xj W̃0[ρ0]] = (q + γ )Tr

[
Xj ρ0Xj W0ρ0W†

0

]

+ γTr
[
Xj�0Xj Wπρ0W†

π

]+ (1 − q − 2γ )Tr

×
[

Xj�0Xj

22N

]

= (q + γ )pπ + γ p0 + K. (G10)

From, Eqs. (G9) and (G10), it follows that

p∗
0 − p∗

π = q(p0 − pπ). (G11)

Thus, from the measured noisy value of Re[G(t)]∗ = p∗
0 −

p∗
π , one can obtain the true value using rescaling (p∗

0 −
p∗
π)/q. The factor q can be estimated from the micro-

scopic model of the system. For example, in the presence
of two-qubit depolarizing noise, where gate errors occur
with probability p , the factor q is given by q = (1 − p)n,
where n is the number of two-qubit gates in the circuit.
This is the approach used to mitigate errors in the experi-
mental results presented in Fig. 2. The scaling parameters
q and γ can be more accurately obtained by performing a
zero-noisy extrapolation (ZNE) experiment.

ZNE involves systematically varying the amount of
noise in the circuit and deducing the scaling parameters

from the change in the observed expectation values. One
possible ZNE scheme for measuring q is to use “folding,”
i.e., to apply W̃†

0 ◦ W̃0, where W̃†
0 denotes a noisy reversed

circuit W†. The combined map W̃†
0 ◦ W̃0 is equal to iden-

tity in the absence of noise. Its effect on the input state
ρ0 = |0〉〈0| is

W̃†
0 ◦ W̃0[ρ0] = (q + γ )2W†

0W0ρ0W†
0W0

+ (q + γ )γW†
0Wπρ0W†

πW0

+ γ (q + γ )W†
πW0ρ0W†

0Wπ

+ γ 2W†
πWπρ0W†

πWπ

+ (1 − q − 2γ )
I

22(N−1) . (G12)

Using W0 = V†
0UV0 and Wπ = V†

0UVπ , we have

W†
0Wπ = V†

0U†V0V†
0UVπ = V†

0Vπ (G13)

and

W†
πW0 = V†

πU†V0V†
0UV0 = V†

πV0. (G14)
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(a) (b)

FIG. 8. The FSWAP network for an x × y lattice with (a) x = 2 and y = 5 and (b) x = 3 and y = 5. The network consists of applying
the column swap operations V and W. The tables show the full sequence of operations without returning qubits to their original order.

Using Eqs. (G13) and (G14), Eq. (G12) simplifies to

W̃†
0 ◦ W̃0[ρ0] = (q + γ )2ρ0 + (q + γ )γV†

0Vπρ0V†
πV0

+ γ (q + γ )V†
πV0ρ0V†

0Vπ

+ γ 2ρ0 + (1 − q − 2γ )
I

22(N−1)

= (q + γ )2ρ0 + 2γ (q + γ )Xj ρ0Xj

+ γ 2ρ0 + 2(1 − q − 2γ )
I

22N . (G15)

After applying W̃†
0 ◦ W̃0, all qubits are measured in the

computational basis. The probability of obtaining the out-
come 0 on all qubits, i.e., projecting on the state ρ0,
is

pZNE
0 = Tr[ρ0W̃†

0

[
W̃0[ρ0]

]
]

= (q + γ )2Tr[ρ2
0 ] + 2(q + γ )γTr[ρ0Xj ρ0Xj ]

+ γ 2Tr[ρ2
0 ] + 2K

= (q + γ )2 + γ 2 + 2K. (G16)

Similarly, projecting on state Xj ρ0Xj gives

pZNE
π = Tr[Xj ρ0Xj W̃†

0

[
W̃0[ρ0]

]
]

= (q + γ )2Tr[Xj ρ0Xj ρ0] + 2γ (q + γ )Tr

× [Xj ρ0Xj Xj ρ0Xj ] + γ 2Tr[Xj ρ0Xj ρ0] + 2K
= 2γ (q + γ )+ 2K. (G17)

Solving Eqs. (G16) and (G17) for q and γ gives

q =
√

pZNE
0 − pZNE

π , (G18)

γ = −q +
√

q2 + (pZNE
π − 2K). (G19)

In practice, the ZNE approach involves performing “fold-
ing” experiments to evaluate q and γ using Eqs. (G18) and
(G19), which are then used to obtain noiseless p0 and pπ
from p∗

0 and p∗
π using Eqs. (G9) and (G10).

We have tested this procedure numerically by perform-
ing noisy circuit simulations on a QISKIT Aer backend [73],
where all two-qubit gates experience a uniformly depolar-
izing noise with probability of gate error ε. The simulations
have been carried out for a 2 × 2 FH model with two
spin-up and two spin-down fermions with |ψ〉 = |1010〉 ⊗
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Number of Trotter steps Number of Trotter steps

FIG. 9. Measuring the q and γ factors from numerical simula-
tions of ZNE experiments. The two-qubit gate noise is modeled
as a depolarizing channel with the probability of gate error set
to ε = 0.0015, 0.003, 0.0045. The simulations have been carried
out for the 2 × 2 FH model at half-filling, with U = 2.0, J = 0.5.
The final time has been set to T = 1.6 and the number of Trotter
steps has been varied, thereby changing the depth of the circuit.
Each data point has been obtained from 5000 shots.

|0101〉. The depth of the circuit is varied by changing the
number of Trotter steps, while keeping the final time T con-
stant. To apply a rescaling procedure, the factors q and
γ have been obtained using the folding procedure. The
resulting q and γ factors are shown in Fig. 9. As expected,
the q factor decreases with the number of Trotter steps
(and hence noisy gates), as well as the probability of gate
error ε. The factor γ is much smaller than q, since it arises
only from the phase errors in the GHZ-state-preparation
circuit. In Fig. 10, we present that probabilities p∗

0 and p∗
π

obtained in noisy simulations and the rescaled values using
the measured q and γ factors. The rescaled values appear
to be close to the real values for a range of circuit depths,
which supports the validity of our model.

The rescaling procedure also works for biased Pauli
noise. In Fig. 10, we show the rescaling error mitigation
for simulations on H1E, which models realistic noise in the
H1 device. On the H1E, the Pauli errors affecting the two-
qubit gates are not equally likely—in particular, Z errors
are more likely than X and Y errors. In addition, the H1E
includes the coherent memory errors. Since the coherent
errors are not included in the error-mitigation model, we
expect that the memory errors will degrade the perfor-
mance of the rescaling procedure. Indeed, from Fig. 10, we
can see that the rescaling performs better when the coher-
ent memory error is switched off. As the number of qubits
and the depth of the circuit grows, the memory errors
will become much more significant and will have to be
accounted for in the error-mitigation procedure. Dynam-
ical decoupling methods can be used to reduce the number

Number of Trotter steps Number of Trotter steps

FIG. 10. Numerically testing rescaling error mitigation for p0
and pπ on the Aer simulator and the H1E emulator. The Aer
simulator has been used with the depolarizing noise model with
probability of two-qubit error ε = 0.0015 and 0.003. The H1E
emulator has been used with the default device-realistic error
model and a model with the memory error switched off. The
parameters q and γ have been extracted using simulated ZNE
experiments. The simulations have been carried out for the 2 × 2
FH model at half-filling with U = 2.0, J = 0.5 and the final time
T = 1.6. Each data point has been obtained from 5000 shots.

of accumulated memory errors. In addition, the rescaling
model can be modified to include extra parameters asso-
ciated with the build-up of memory error, as discussed in
Appendix H.

APPENDIX H: MEMORY ERROR

Let us define

ρ0/π (t) = U(t)V0/πρ0V0/πU(t)†. (H1)

The effect of memory error alone can be thought of as

ρ0/π (t)∗ =
∫

dθp(θ)|�0/π
θ (t)〉〈�0/π

θ (t)|, (H2)

where �0/π
θ (t) = 1√

2

(|φ〉 ± eiθeiEt|ψ〉). This leads to

p0/π = q
4
(1 + |G(t)|2 ± (2〈cos(θ)〉ReG(t)

− 2〈sin(θ)〉ImG(t))). (H3)

If we call W0[·]∗ the noisy channel, which takes into
account only memory error, and W̃0[ρ] the channel that
takes into account both depolarizing noise and memory
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error, we have

W̃0[ρ] ≈ (q + γ )W∗
0ρW∗†

0

+ γW∗
πρW∗†

π + (1 − q − 2γ )
I

22N , (H4)

according to Appendix G. Therefore we find that

p0/π = (1 − q − 2γ )
I

2N + q + 2γ
4

(
1 + |G(t)|2)

± q
4
(2〈cos(θ)〉ReG(t)− 2〈sin(θ)〉ImG(t)) .

(H5)

Note that in Appendix G, we have outlined how the
effect of depolarizing noise could be mitigated through
a simple zero-noise extrapolation procedure.In princi-
ple, similar schemes could be developed in the presence
of memory error but since there are three parameters
(θ , q, and γ ), the procedure would likely be more com-
plicated. This difficulty could potentially be avoided using
dynamical-decoupling techniques.

APPENDIX I: TROTTER ERROR ANALYSIS

The results of the time series as well as the error on
the corresponding filtered density of states are presented
in Fig. 11. All simulations have been performed using the
WII method [74], with dt = 0.025 and χ = 300.

APPENDIX J: PURIFICATION RESULTS

In order to compare the minimum energy reachable with
the product state with other studies performed in the canon-
ical ensemble, we have performed a simulation of the
system using the purification algorithm [75,76] using the
TeNPy library [77] and measured the expectation value
of the Hamiltonian as a function of the temperature. The

(a) (b)
Two Trotter steps
Four Trotter steps
Six Trotter steps
Eight Trotter steps

Number of Trotter steps

FIG. 11. (a) The real part of the Loschmidt amplitude
Re(G(t)eiEt)with E = 1.0 as a function of time for different num-
bers of Trotter steps. (b) The relative error on the final filtered
density of states D as a function of the number of Trotter steps,
with the reference value being with eight Trotter steps.

FIG. 12. The average value of the energy as a function of the
inverse temperature obtained through purification.

results are presented in Fig. 12. The minimum energy
reachable using Z product states is E = 0, which according
to our simulation, corresponds to approximately β = 1.4.
Note that lower temperatures can be reached by preparing
initial states that have higher overlaps with the low-energy
sector of the Hamiltonian.

APPENDIX K: CONVERGENCE OF THE
MARKOV CHAIN WITH BOND DIMENSION

When checking the bond-dimension convergence of the
MPS simulation, we have found that low bond dimensions
are sufficient to capture the filtered density of states with
high accuracy. We show the relative error (compared to
χ = 200) on the filtered density of states for 60 different
states in Fig. 13, at E = 1.0. For χ = 100, which we use
in the main text, the average relative error is below 1%
with very few outliers around 2%.

APPENDIX L: INFLUENCE OF CUT-OFF TIME
AND MEASUREMENT FREQUENCY ON

FILTERED DENSITY OF STATES

In order to quantify the error on the truncation of the
series of Eq. (A3), we have calculated the value of the
filtered density of states with x = 0.5, for the Néel state
and E = 1.0, with eight Trotter steps and α = 2

√
L. We

have found D = 0.2468 with x = 1.0 and D = 0.2447 for
x = 0.5, indicating a good convergence in time. Similarly,
we have tested the dependence on measurement by dou-
bling α. With α = 4

√
L, we have found an almost identical

result, D = 0.2469, indicating a good convergence with
the number of measurements.

APPENDIX M: SECOND-ORDER SCALING FOR
FIRST-ORDER TROTTERIZATION OF

LOSCHMIDT AMPLITUDES

It is known that the error of first-order Trotterization
generally scales as O(t2/n), while the error of second-
order Trotterizaton scales as O(t3/n2), where t is the total
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FIG. 13. The convergence of the filtered density of states for a
set of states as a function of the bond dimension. The states are
the first 60 samples of a Markov chain, obtained with χ = 200.
(a)–(c) Histograms of the relative error on the filtered density
of states for (a) χ = 10, (b) χ = 50, and (c) χ = 100. (d) The
convergence of the average of the relative errors on the fil-
tered density of states as a function of the bond dimension.
The reference value in calculating the relative error is the one
corresponding to χ = 200.

time and n is the number of Trotter steps. In the following,
we prove that for Hamiltonians the noncommuting terms
of which are all real in some basis, then for all real wave
functions in the same basis, first-order Trotterization of
its Loschmidt amplitudes scales, rather, as O(t3/n2). Note
that the notion of realness is basis dependent and that this
proposition is true as long as there exists some basis in
which all quantities are real.

Let the Hamiltonian be H = A + B, where A and B are
noncommuting operators with commutator C := [A, B].
Using the Baker-Campbell-Hausdorff formula, we can
write the first-order Trotterization as

U(t, n) := [e−iA t
n e−iB t

n ]n = e
−it(A+B)− t2

n
C
2 +O

(
t3

n2

)

. (M1)

The Taylor series of a function f (δ) = eX +δY reads

f (δ) = eX + δ

∫ 1

0
dαeαX Ye(1−α)X + O(δ2). (M2)

Using this formula to expand the right-hand side of Eq.
(M1) as a function of small time steps δ := t

n , with X =
−itH and Y = −tC/2 + O(t2/n), we obtain

U(t, n) = e−itH − t2

n

∫ 1

0
dαe−itHαCe−itH(1−α) + O(t3/n2).

(M3)

The leading error term in the Loschmidt amplitude
〈ψ |e−itH |ψ〉 would then be (t2/n)ε, with

ε :=
∫ 1

0
dα 〈ψ |e−itHαCe−itH(1−α)|ψ〉 (M4)

=
∫ 1

2

− 1
2

dα 〈ψ |e−itH(α+ 1
2 )Ce−itH( 1

2 −α)|ψ〉 (M5)

=
∫ 1

2

0
dα〈ψ |e−itH(α+ 1

2 )Ce−itH( 1
2 −α)

+ e−itH( 1
2 −α)Ce−itH( 1

2 +α)|ψ〉 (M6)

=
∫ 1

2

0
dα 〈ψ(t1))|C|ψ(t2)〉 + 〈ψ(−t2))|C|ψ(−t1)〉

(M7)

=
∫ 1

2

0
dα 〈ψ(t1))|C|ψ(t2)〉 − 〈ψ(−t1))|C|ψ(−t2)〉∗ ,

(M8)

where t1 := −t(α + 1
2 ) and t2 := t( 1

2 − α), and we have
used the fact that C is anti-Hermitian (because it is the
commutator of two Hermitian operators). Let us assume
that the operators A and B are real in some basis |a〉. Then,
for any wave function that is real in that basis, we have
the time-reversal symmetry 〈a|ψ(t)〉 = 〈a|ψ(−t)〉∗. More-
over, the matrix elements 〈a′|C|a〉 of the commutator are
also real in the same basis. Therefore,

〈ψ(−t1))|C|ψ(−t2)〉∗

=
⎡

⎣
∑

a,a′
〈ψ(−t1))|a′〉 〈a′|C|a〉 〈a|ψ(−t2)〉

⎤

⎦

∗

= 〈ψ(t1)|C|ψ(t2)〉 (M9)

and the leading error term ε vanishes. The next error term
in Loschmidt amplitude is then proportional to O(t3/n2).

Extending this proof to Hamiltonians with more than
two terms is straightforward by replacing the commutator
C with the sum of all commutators.
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